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TIVISTELMA

Populaatiogenetiikka on nykyisin olennainen osa ihmisen alkuperan ja
historian seka tautien geneettista tutkimusta. Erilldan toisistaan elavien
populaatioiden valilla havaitaan geneettisia eroja, ja tatd populaatioiden
valistd vaihtelua kutsutaan geneettiseksi rakenteeksi. Tutkimalla
geneettistd rakennetta eri puolilla maailmaa on esimerkiksi pystytty
tarkentamaan nykyihmisen levittaytymisreitteja Afrikan mantereelta
muualle maailmaan viimeisen 100,000 vuoden aikana.
Populaatiogenetiikan modernit menetelmat ovat myds mahdollistaneet
geneettisen rakenteen ja populaatiohistorian  yksityiskohtaisen
analysoinnin yksittaisten maiden sisalla, mutta naitd menetelmia ei ole
viela laajasti hyddynnetty eristaytyneisséd populaatioissa kuten
Suomessa.

Laaketieteellisessa genetiikassa tautien geneettistd taustaa
analysoidaan rutiininomaisesti perimanlaajuisissa
assosiaatiotutkimuksissa (GWAS). Naissa tutkimuksissa on tarkeaa
kontrolloida aineiston geneettinen rakenne kunnolla, jotta voidaan
luotettavasti erottaa tautiin liittyva geneettinen vaihtelu populaatioiden
geneettiseen rakenteeseen liittyvastd yleisestd vaihtelusta. GWAS-
tutkimusten  tuloksia  kaytetdan tieteellisessa  tutkimuksessa
ennustamaan yksildiden geneettistd sairastumisriskida polygeensella
riskiarvolla, joka summaa yhteen usean perimankohdan arvioidun
geneettisen riskin. Summaamisesta johtuen pienikin geneettisesta
rakenteesta johtuva harha GWAS-tuloksissa voi aiheuttaa merkittavaa
harhaa polygeenisiin riskiarvoihin, mika puolestaan voi johtaa
virheellisiin  johtopaatoksiin  erityisesti  populaatioiden  valisissa
vertailuissa. Nain ollen geneettisen rakenteen tunteminen ja sen rooli
polygeenisten riskiarvojen koostamisessa onkin erityisen tarkeaa, jotta
voimme ymmartaa seka polygeenisten riskiarvojen hyodyt etta rajoitteet
akateemisessa tutkimuksessa ja mahdollisissa tulevaisuuden
terveydenhuollon sovelluksissa.

Tassa  vaitdskirjatutkimuksessa  tutkittiin suomalaisten
geneettista hienorakennetta ja sen roolia polygeenisten riskiarvojen
maantieteellisessa jakautumisessa Suomessa. Vaitoskirjan
ensimmainen osa laajensi ymmarrystd Suomen geneettisestd
rakenteesta maarittdmalld maantieteellisen rajan Suomen geneettiselle



pagjaolle Ita- ja Lansi-Suomen valilld ja tunnistamalla 17 ennen
nakematontd geneettistd hienopopulaatiota. Hienopopulaatioiden
havaittin olevan maantieteellisesti keskittyneitd ja noudattelevan
Suomen murrealueita. Toisessa osassa hyddynnettiin aiempia tuloksia
muodostamalla hienorakenteen pohjalta vertailuryhmat  yksilon
geneettisen  alkuperaprofiilin  maarittamiselle  Suomen  sisalla.
Maarittamalla geneettinen alkuperaprofiili joukolle 1923 ja 1987 valilla
syntyneitd yksil6ita, tutkimus onnistui kartoitamaan vuosittaisia
muutoksia Suomen geneettisessa hienorakenteessa 12 alueella.
Vuosittaiset profiilit vastasivat hyvin 1939-1945 sotatapahtumien
seurauksena kaynnistyneitd karjalaisten evakkojen muuttoliikkeita.
Kolmas osa arvioi edelld mainitun geneettisen ita-lansi jaon roolia viiden
monitekijdisen taudin (sepelvaltimotauti, nivelreuma, skitsofrenia,
haavainen koliitti ja Crohnin tauti) ja kolmen mitattavan ominaisuuden
(pituus, painoindeksi ja lantio-vydtaro-suhde) geneettisen riskin
maantieteellisen jakauman taustalla polygeenisia riskiarvoja kayttaen.
Tutkimus osoitti, ettd useimmat polygeeniset riskiarvot, joissa
maantieteellisia eroja havaittiin, heijastelivat geneettistd jakoa Ita- ja
Lansi-Suomen valilla, mutta sisalsivat myos geneettiseen rakenteeseen
littyvaa tilastollista virhettd. Tutkimus osoitti, ettd polygeeniset riskiarvot
ovat alttiita geneettiseen rakenteeseen liittyvalle harhalle myds
suhteellisen samankaltaisissa populaatioissa ja ettd yhteytta
populaatioiden geneettisen vaihtelun ja alueellisten sairastuvuuserojen
valilld on vaikea osoittaa.

Kokonaisuutena taman vaitdskirjan tulokset paivittivat
ymmarryksen Suomen yksityiskohtaisesta geneettisesta rakenteesta ja
sen muutoksista vastaamaan nykyaikaisen geneettisen tutkimuksen
tarpeita, ja havainnollisti seka tiedeyhteisolle ettd suurelle yleisolle
geneettisen rakenteen tuntemuksen merkityksen niin
populaatiohistorian kuin polygeenisten riskiarvojen tutkimuksessa.



ABSTRACT

Population genetics is today an essential part of the studies of human
origin and history, as well as of the studies of disease genetics.
Populations living apart from each other exhibit genetic variation and this
variation between populations is called genetic structure. By studying the
genetic structure around the world, it has become possible, for example,
to elaborate on the migration patterns of modern humans from the
African continent to the rest of the world during the last 100,000 years.
In addition, the modern methods of population genetics have enabled a
very detailed analysis of genetic structure and population history within
single countries, but these methods have not yet been widely utilized in
isolated populations such as in Finland.

In medical genetics, the genetic background of diseases is
routinely analyzed with a genome-wide association study (GWAS). In
these studies, it is important to control for the genetic structure of the
data appropriately, so that the genetic variation associated with the
disease can be reliably distinguished from the general genetic variation
associated with the genetic structure. The results of GWAS are used in
research to predict the genetic disease risk of an individual using a
polygenic score that summarizes the estimated genetic risk over multiple
sites of the genome. Because of this summation, even a tiny bias in the
GWAS results, due to the genetic structure, can lead to a significant bias
in polygenic scores, which, in turn, can lead to incorrect conclusions
especially in comparisons between populations. Therefore,
understanding the genetic structure and its role in building polygenic
scores is exceptionally important to properly understand both the
benefits and limitations of polygenic scores in academic research and in
future health-care applications.

This doctoral thesis examined the fine-scale genetic structure
and its role in the geographic distribution of polygenic scores in Finland.
The first part of the thesis expanded the understanding of the genetic
structure of Finland by determining the geographic border for the major
genetic split between East and West Finland, and by identifying 17
previously unreported genetic fine-scale populations. The fine-scale
populations were observed to be geographically clustered and to follow
Finnish dialect regions. The second part of the thesis utilized the earlier



results by building, based on the fine-scale genetic structure, reference
groups to estimate the genetic ancestry profile of an individual within
Finland. By estimating the genetic ancestry profiles for a set of
individuals born between 1923 and 1987, this second study was able to
map annual changes in the fine-scale genetic structure within 12 regions.
The annual profiles matched well with the migration patterns of Karelian
evacuees who were displaced by the war events between 1939 and
1945. The third part of the thesis assessed the role of the genetic split
between East and West in the geographic distribution of the genetic risk
of five complex diseases (coronary artery disease, rheumatoid arthritis,
schizophrenia, ulcerative colitis, and Crohn’s disease) and three
quantitative traits (height, body mass index, and waist-hip ratio) using
polygenic scores. The third study demonstrated that most of the
polygenic scores, that did show geographic variation, mirrored the
genetic split between East and West Finland but also revealed bias
associated with the genetic structure in Finland. This final study thus
demonstrated two main points: first that polygenic scores are susceptible
to genetic structure-related biases, even within a relatively
homogeneous populations; and second that it is challenging to link
population-genetic variation to geographic variation in disease incidence
with the current methods.

Overall, the results of this doctoral thesis update the current
understanding of fine-scale genetic structure in Finland and its changes
to meet the needs of modern genetics research. It also demonstrates,
both for the scientific community and for the general public, the
importance of understanding the genetic structure in the study of both
population history and polygenic scores.
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1 INTRODUCTION

Genetic information on human populations provides us with unique
opportunities to explore not only the biology of a human being but also
the origin and the history of our species. The field that studies the genetic
variation of populations and the processes affecting it is called
population genetics. The key concept of population genetics is genetic
structure, which describes the patterns of genetic variation within and
between populations, and it is routinely utilized in the studies of
forensics, population history, and medical genetics. In forensics, the
individual’s genotype is contrasted with the genetic structure of the
background population, while in the studies of population history,
population genetic tools are used to identify genetic similarities between
the studied groups. For example, by comparing the genetic information
of modern humans and an ancient sample of a Neanderthal human,
modern humans outside of Africa have been shown to share around 2%
of their genome with Neanderthals demonstrating, that these two human
subspecies have interbred”.

In medical genetics, the last decade has seen an increase in the
number and size of genome-wide association studies (GWAS) aiming to
identify genetic variation underlying complex diseases. To avoid false
positive results due to the confounding caused by genetic variation
between populations, understanding the genetic structure has become
an essential part of these studies. However, as the studies grow and
examine even rarer variants, the current knowledge and methods
controlling for genetic structure may not be sufficient. In addition, the
recent attempts to build polygenic risk estimates from GWAS results, for
potential use in health care, have shown that the current applications can
crucially depend on the populations they were generated in and may not
transfer to other populations? 3. Therefore, a thorough understanding of
the genetic structure between populations is needed.

This doctoral thesis focuses on the population of Finland. Finland
has for decades participated in international genetic studies, because of
the active research community, comprehensive national records and,
most importantly, the population that harbors characteristics beneficial
for genetic studies. Because of the population history, which includes



isolation and genetic bottlenecks, some genetic variants—rare
elsewhere in the world—are enriched in Finland and, therefore, are
easier to identify in the Finnish population. Indeed, a biobank-scale
research project, the FinnGen project (www.finngen.fi), is currently
collecting and analyzing 500,000 Finnish genomes. Thus, Finnish
genetic studies will most likely continue as a key part of the international
genetics research also in the future.

Prior to this thesis, knowledge about the genetic structure of
Finland has relied on the analyses of a few markers in the Y
chromosome and mitochondrial genome, as well as on the analyses of
sparse genome-wide markers. Consequently, these analyses have
mainly characterized the genetic variation between East and West
Finland, and there is a demand for more detailed information on the
genetic structure of Finland and its role in the genetic studies of complex
diseases. To update information on the genetic structure in Finland in
order to meet the needs of modern genetic analyses, this thesis
examines Finland’s fine-scale genetic structure during the 20" century
together with its connections to the polygenic scores of complex
diseases. This thesis utilizes modern haplotype-based methods of
chromosome painting* and the data of over 18,000 individuals from the
National FINRISK Study, providing both a spatially and temporally
detailed view on the fine-scale genetic structure in Finland.

To avoid misunderstanding, it is important to realize the results
of this work cannot be used to define who is, or who is not, a Finnish
individual. Nationality and genetic ancestry are separate concepts that
do not define one another. Nationality and national identity are a diverse
collection of legal, social, cultural, religious, physical, and linguistic
characteristics that can be changed and obtained over a person’s
lifetime. Genetic ancestry, in turn, refers to the set of ancestors from
whom a person inherits genetic material and thus cannot be changed.
Similarly, genetic ancestry does not determine race or tribal identity,
which are more complex concepts than can be defined by genetics
alone. Additionally, it should be noted that the work in this thesis is limited
to one major genetic group in Finland for which there are enough
samples available for study, and the work does not consider Finnish
minority groups or ancestry from other countries, even if these sources
are an essential part of the current Finnish gene pool.



2 LITERATURE REVIEW

21 HUMAN GENOME

211 STRUCTURE OF THE GENOME

Genetic information is encoded in a macromolecule called
deoxyribonucleic acid (DNA). DNA is constructed of two polynucleotide
chains whose basic unit, the nucleotide, is constructed of a deoxyribose
sugar, a phosphate group and a nitrogenous base. In DNA, four types of
bases exist: adenine (A), thymine (T), cytosine (C) and guanine (G). The
bases are linked to each other via the deoxyribose-phosphatase
backbone forming a DNA sequence. This sequence preserves the
genetic information and is used to build proteins in a cell. The two strands
of DNA sequence are joined by bases, such that A connects with T, and
C connects with G, allowing an efficient and accurate DNA replication.

The genetic material of a human being, known as the human
genome, consists of over 3 billion base pairs (bp) that are arranged into
protein-controlled macromolecules called chromosomes. As opposed to
a haploid organism with only a single copy of a chromosome, humans
are called diploids: the chromosomes exist in pairs. Humans have 22
autosomal chromosome pairs and two sex chromosomes: females have
two copies of the sex chromosome X, while males have one X and one
Y chromosome. In addition, the human genome includes extranuclear
mitochondrial DNA (sometimes referred to as the mitochondrial genome)
that exists from hundreds to hundreds of thousands of copies in each
cell, depending on the cell type.

2.1.2 GENETIC VARIATION

While most of the DNA sequence is identical between humans, there
exists genetic positions (loci, singular locus) where two individuals show
genetic variation. Genetic variation is divided into two classes: structural
variation and simple genetic variation. Structural variation is a large
genetic change defined commonly as affecting over 1,000 bps®. This
class includes large duplications and deletions, translocations and
inversions, copy number variation, and transposable elements.
However, the studies of population genetics usually focus on simple



genetic variation and, more specifically, on single nucleotide
polymorphisms (SNPs). SNPs are variants where at least two versions
of a single base pair exist in a population with a sufficient frequency. The
different versions of a variant are called alleles and the combination of
the two alleles, which an individual carries, is called genotype. Other
types of simple genetic variation are small insertions and deletions
(indels), and short tandem repeats (microsatellites).

The international sequencing effort of the 1000 Genomes
Project® has provided a comprehensive basis for understanding the
genetic variation in the human genome. The project sequenced the
whole genomes of more than 2,500 individuals from 26 world-wide
populations and identified over 88 million simple genetic variants and
60,000 structural variants. Most of the simple genetic variants (~75%)
were found to be rare with minor allele frequency (MAF) under 0.5%, and
only 10% were common with MAF above 5%. They also estimated that,
on average, an individual carries 4 to 5 million differences compared to
the reference genome. Later, other projects have supplemented these
analyses by providing information from additional populations, e.g.,
Simons Genome Diversity Project’, or from a larger number of samples,
e.g., the Exome Aggregation Consortium (ExAC)®. To date, the largest
collection of publicly available sequencing information, the Genome
Aggregation Database (gnomAD), has identified over 230 million genetic
variants among the 141,000 samples®. Together these projects have
demonstrated that most of the variation is found in African populations,
and the least variation is found in isolated populations, such as the Finns.

While sequencing is an accurate method to identify both known
and novel genetic variants in a sample, it is expensive to sequence
samples on a large scale. A more cost-effective method for detecting
known genetic variation is genotyping. The method is based on a
genotyping chip (also known as a microarray) on which predesigned
oligonucleotide probes have been attached to predefined positions.
The probes are designed in such a way that they include complementary
DNA sequence for the variants and alleles of interest. The chip is
exposed to a single stranded sample DNA that then anneals with the
complementary probes. A successful annealing induces light emission
(fluorescence) that gets recorded. Finally, the intensity of fluorescence
signal together with its position is computationally transformed into
genotype calls.



2.1.3 INHERITANCE AND RELATEDNESS

Genetic information is distributed from parents to an offspring in
chromosomes via meiosis, the cell division of reproductive cells.
However, genetic material does not stay intact in the process. Physical
changes in base pairs, also known as mutations, usually affect only a
few bases (with a probability of 1.1-1.6 - 10® per bp in a generation'’,
i.e., roughly 40 bases per individual), but the exchange of genetic
material between chromosome pairs, called meiotic recombination,
affects large chunks of a chromosome. Meiotic recombination is
estimated to happen around 1.6 times per chromosome in a generation,
although the rate differs between and within the chromosomes'® '3,
Figure 1 illustrates the segregation of one chromosome in meiosis and
demonstrates the formation of haploid daughter cells, whose genetic
content differs from both of the parental genomes. In addition, Figure 1
shows that the genetic material is inherited in parts, i.e., in groups of
alleles inherited from a single parent, and these parts are called
haplotypes (sometimes also used to refer to the whole chromosome).
Some pieces of haplotypes are inherited through generations, as
illustrated in Figure 2. In each generation, the pieces are broken down,
shuffled and half of the genetic material is randomly transmitted to the
next generation. This results in an offspring who has a random
combination of haplotypes inherited from its ancestors. The number and
length of shared haplotype chunks decrease, the further back in
generations we go, in such a way that, on average, 1/ 29 of individual’s
genome is shared with an ancestor from g generation back. This
proportion of shared genetic information is called genetic relatedness
(identity-by-descent) and is, for example, 0.5 between a parent and an
offspring, and around 0.25 between a grandparent and an offspring.
More specifically, the coefficient of genetic relatedness is defined as the
total probability that the alleles of two individuals are identity-by-descent,
i.e., they are inherited from a common ancestor within a certain
timeframe. This definition allows us to estimate the relatedness between,
for example, full siblings or first cousins by inferring the probability that
they share the same haplotype via either both parents (siblings) or
grandparents (cousins). Thus, the relatedness of siblings is around 0.5
and between cousins around 0.125. Inferring the unknown relationships
between two individuals can be done by estimating relationship
coefficient from the data. Traditionally, the estimates have been done



Stage 1

Figure 1. Schematic presentation of recombination and segregation of a
chromosome in meiosis. The dark and light bars represent the homologous
chromosomes. Bars of the same color represent the sister chromatids connected
with centromere (filled circle). During the meiosis, the homologous chromosomes
pair and recombine by crossing over (stage 1), forming sister chromatids that differ
from the original chromosomes (striped) (stage 2). The homologous chromosomes
are separated into newly formed cells (stage 3), and sister chromatids are further
separated into haploid cells (stage 4). These haploid genomes are different from both
of the parental genomes due to the recombination and the random segregation of

chromosomes.
\. \.

Figure 2. Schematic presentation of the breakdown and inheritance of
haplotypes from grandparents (11-14) to parents (J1, J2), and to an offspring (K). The
parent J1 inherits two chromosomes (also called haplotypes), blue and yellow, from
the grandparents 11 and 12. These chromosomes are not identical to the
chromosomes of grandparents but show a unique combination of them (presented
with different shades of blue and yellow). Similarly, offspring K inherits a colorful
mosaic of the grandparental haplotypes.



from a small number of microsatellites or SNPs', but the modern
methods utilize genome-wide data’ '°.

2.1.4 LINKAGE DISEQUILIBRIUM

At a population level, the genetic variants are observed to be correlated,
i.e., some alleles of the nearby variants are inherited together more often
than would be expected based on their allele frequencies alone. This
correlation between variants is called linkage disequilibrium (LD) and it
is measured between two loci, A and B (with alleles A/a and B/b), with a
correlation coefficient R%:
R2 = (pAB_pAPB)Z’
PAPaPBPb

where pas is the frequency of alleles A and B observed together in the
same haplotype, and pa, pa, ps and p» are the corresponding marginal
allele frequencies. When R? is 0, the loci are in linkage equilibrium, and
when R?is 1, the loci are in complete LD.

Reflecting the pattern of inheritance, the early studies on LD
suggested that the regions of high-LD form block-like structures
(haplotype blocks) that contain a limited number of haplotypes, and this
information could be utilized to identify disease associated haplotypes at
a population level'”'°. However, the information on the LD pattern and
genomic variation of the human genome was sparse and limited and,
thus—to properly characterize the patterns of LD and the haplotype
variation across the whole genome—the International HapMap project
was launched in 20012,

The HapMap project?” %2 sequenced 269 individuals in 4
populations (Europe, Africa, China, and Japan), identified around 6
million new genetic variants, and mapped the recombination frequency,
LD pattern, and haplotype variation across the genome, together forming
the haplotype map of the human genome. They demonstrated that the
recombination often happens within small sections of the genome,
known as recombination hotspots. The LD in between the recombination
hotspots is generally high (see the example in Figure 3). Consequently,
the haplotype variation within the blocks could be captured with high
confidence using only a few genetic variants, known as tagging variants,
Indeed, the project estimated, that in European or Asian populations,
only around 500,000 tagging variants are needed to capture most of the
common variation with R?>0.8; in African populations, the number of
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tagging variants was estimated as being slightly over 1 million®?. These
observations, together with the pioneering open-data sharing policy,
facilitated the design of cost-effective genotyping chips, thereby enabling
cheap genotyping and modern genome-wide association analyses.
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Figure 3. Example of an LD pattern at region 44.2-44.5 Mb in chromosome
22 in the European (EUR) population. The dots show the correlation coefficient (R?,
y-axis on the left) between the variant rs9625964 and other variants located in
different positions at x-axis. The color of the dots shows whether the variant is coding
(red) or non-coding (yellow). The grey line shows the combined recombination rate
(y-axis on the right). The example demonstrates that there are 7 variants in complete
LD and several other variants in high LD with the chosen variant forming a horizontal
pattern (haplotype block) that is bounded by regions with a high recombination rate.
The figure is produced with a public webtool LDproxy (Idlink.nci.nih.gov)?.

2.2 POPULATION GENETICS AND GENETIC
STRUCTURE

Population genetics studies the genetic variation within and between
populations, including its the evolutionary effects. Understanding
population genetics provides tools and solutions for multiple fields
conducting genetic analyses. First, population genetics helps in
answering the fundamental questions about our origin, and provides
complementary tools for multidisciplinary studies of human history.
Second, population genetics supports studies of complex diseases to
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control for genetic structure. Third, population genetics is utilized in
forensics for identification of individuals and their relationships. This
section familiarizes the reader with the field’s basic terms and focuses
on the core concept of this thesis, genetic structure.

2.21 POPULATION GENETIC PROCESSES AND TERMS

The basic principles of inheritance and population genetics were
established already in the 19" and 20" centuries, well before the direct
access to DNA variation. Below, the information of those processes and
terms is based on the book Principles of Population Genetics®* and
lecture material Population and Quantitative Genetics?, if not otherwise
indicated.

Mutation is the process that physically alters DNA sequence producing
genetic variants. Therefore, it is ultimately mutation that increases
genetic variation both within and between populations. However, as
mentioned earlier, the rate of mutation in humans is relatively low, and
thus mutation affects genetic variation relatively slowly, on a long time
scale. The mutations that happen in a germline are inherited through
generations and work as the fundamental material for evolution.

Genetic drift is the term used to describe the random fluctuation
of allele frequencies between generations due to chance only. In diploid
organisms, genetic drift arises from the random sampling of alleles in
meiosis leading to a varying number of alleles to be transmitted to the
next generation, compared to the previous generation. The magnitude
of genetic drift depends on the population size and allele frequency: the
smaller the population, the larger the changes in relative allele
frequencies may be. A simple example with three populations of different
sizes, N = 10, 100, and 1000, shows that if the allele count increases by
5 between generations t and t+1, the changes in relative allele
frequencies are 0.25, 0.025, and 0.0025, respectively. If no other
evolutionary processes are involved, genetic drift eventually leads to a
fixation of one allele and to the loss of the other alleles and genetic
variation. The expected time required for a biallelic locus to become fixed
is proportional to the minor allele frequency.

As opposed to genetic drift, natural selection is the evolutionary
force causing non-random change in the genetic composition of a
population. Natural selection arises from the non-random imbalance in
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the reproductive success of genetically varying individuals. Natural
selection works through phenotypic variation increasing the frequency of
genetic variants associated with favorable phenotypic variation (positive
selection) and decreasing the frequency of deleteriously affecting
variants (negative selection). Thus, the effect of natural selection on
genetic variation varies depending on the effect of variation on
phenotype.

Migration, i.e., the movement of individuals to other living
habitats, is a process that introduces new genetic variation to the habitat
by either mixing with the existing population or by establishing a new
population. The effect of migration on genetic variation is again
proportional to the relative sizes of each of the migrating and the original
groups, and may be effective on a short time scale.

As explained above, changes in population size affect the level
of genetic variation by providing the above processes an opportunity to
act. Especially, the rapid changes in population size have a major effect.
Bottleneck effect is used to describe the decrease in genetic variation
due to the extreme reduction in population size. The genetic variation is
decreased because the remaining variation is usually chosen by random
leading to the loss of especially rare frequency variation at the same time
as genetic drift amplifies the possibility of fixation of alleles in small
populations. Founder effect is a special case of a bottleneck effect
where a small founding group establishes a new population leading to
genetic consequences similar to a bottleneck effect. In contrast,
exponential population growth increases genetic variation as it
provides more opportunities for both existing and novel variants to be
transmitted to the next generation. The effect of exponential population
growth on genetic variation has been observed in humans as an excess
of rare variants compared to the model with a constant population size?®.

2.2.2 GENETIC STRUCTURE

Genetic variation in a population is not always homogeneously
distributed but can show heterogeneous patterns known as genetic
structure (Figure 4). Genetic structure arises from non-random mating.
In most natural populations, individuals mate with others who are
geographically close to them resulting in patterns where geographically
closely located individuals are also genetically more similar. In turn,
geographically distant groups become genetically more distant, even in
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the absence of physical barriers, and this phenomenon is called isolation
by distance. The effect of geographic distance on genetic variation and
structure is further shaped by the evolutionary processes described
above. Another term, tightly connected with genetic structure, is
admixture that describes genetic mixing between ancestral groups and
can be used as a concept to characterize genetic structure.

Figure 4. An example of a homogeneous (A) and a heterogeneous (B)
population. Circles represent individuals in a population and the color represent
which genetic variant, blue or red, they carry. While the red variants are randomly
distributed in the population A, in population B, they are spatially clustered in the
right-hand side of the population. Therefore, the population B can be described as
having dichotomous genetic structure illustrated by the grey dotted line.

In human populations, multiple studies with varying methods
have identified clear patterns of genetic structure and its correlation with
geographic distance on a world-wide scale?’*! as well as in more detail
within Europe®?%", Africa®®43, Asia***®, North America*’*°, and South
America®®2, Additionally, the methodological advancements and
increase in sample sizes have enabled identification of extremely
detailed genetic structure within single countries, such as in Great Britain
and Ireland®® Japan®-°, France®’, Spain®' and the Netherlands®
among others. Although geographic distance remains the main factor
behind genetic structure, other factors, such as culture, language®?, and
religion® 8% can play a role in the formation of genetic structure as well.
The effect of cultural factors on genetic variation are often complex and
interconnected®. For example, the increase in the frequency of lactase
persistence, caused by a genetic variant in MCM6 gene, has been
shown to be tightly connected to the spread of dairy farming in Europe®’.

Population genetic structure changes over time, as evolutionary
processes and demographic events shape the genetic composition of
groups. Therefore, by understanding the changes in genetic structure we
can make interpretations about population history. Changes in genetic

15



structure and population history are examined either by directly
comparing time series of ancient DNA samples®-7° or by comparing only
modern populations to each other. When using only modern populations,
the idea is to look for traces of past demographic events from modern
genomes, such as bottleneck effect and genetic drift altering allele
frequencies®. Such studies and approaches have portrayed ancient and
historic events hundreds and thousands of years ago® 8 7' 72 Historic
events and consequent changes in genetic structure of more recent
history, for example within the last 100 years, have, however, been less
studied.

2.2.3 GENETIC ANCESTRY

In spoken language, ancestry refers to any preceding origin of an
individual or a group, and is often loosely used to connect ancestors,
relatives, and different characteristics via both genetic and cultural
inheritance. However, in genetics, ancestry is strictly defined as the
biological origin delivering genetic information. Mathieson and Scally”®
have recently elaborated the terminology further by explicitly defining
genealogical ancestry and genetic ancestry separately. Genealogical
ancestry of an individual encompasses all those ancestors that are
connected to the individual via a family tree, and thus the theoretical
number of the genealogical ancestors is 2, where G is the number of
generations back. Instead, the genetic ancestry refers only to those
genealogical ancestors from whom the individual has directly inherited
genetic material. Because of the recombination and random
transmission of haplotypes, at particular locus, the probability of
inheriting genetic material from the genealogical ancestors halves in
every generation, and consequently the number of genetic ancestors
(being roughly 2 - (22 + 33 - (G - 1)) ) quickly becomes many fewer than
the number of genealogical ancestors’*. Identification of genetic
ancestors is challenging in practice, and thus it is often approximated by
estimating admixture and genetic similarity to some existing reference
groups. In this thesis, the genetic ancestry is estimated via an
individual’s genetic similarity to predefined reference groups.

2.24 METHODS TO STUDY GENETIC STRUCTURE

Numerous methods to evaluate and visualize different aspects of genetic
population structure exist (see the reviews’>’’). The methods can be
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broadly, although not unambiguously, categorized based on the type of
information they utilize. Most classical methods, such as Fst-measure,
principal component analysis (PCA) and STRUCTURE program’® 7,
were developed before large-scale genotype data and adequate
computational resources were common, and thus they are traditionally
based on the allele frequency differences of independent genetic
variants (although multiple extensions to manage large sample sizes and
LD have been implemented). In turn, the modern haplotype-based
methods utilize information from rare and tightly linked variants. They
have also been shown to gain more power to detect fine-scale genetic
structure than the allele frequency-based methods* . Because rare and
tightly linked variants unfold more information about the recent
evolutionary processes, the haplotype methods are also more suitable
for studies of recent demographic events than the frequency-based
methods®. In the following, | familiarize the reader in more detail with
two classical methods, Fst-measure and PCA, and one haplotype-based
method, chromosome-painting, that are used in this thesis.

Fst-measure

The most frequently utilized statistic for population genetic distance is
the Fst-measure. Sewall Wright developed a set of F-statistics, i.e.,
fixation indices, to measure genetic variation within and between
populations at the turn of the 1950s%2 and later these statistics have been
extensively utilized and extended®. The main idea of the Fst-measure
is to compare genetic variation within a subpopulation to the total genetic
variation of the whole population as

_ Zps(l - ps)
2pr (1 —pr)

where ps is the allele frequency of the subpopulation and pr is the allele
frequency in the whole population®®. Moreover, Fst can be extended
across multiple loci and populations by simply averaging sub- and total
population variances before calculating the ratio. Fst is often reported for
two populations, in which case it measures pairwise-Fst that is the
difference in allele frequencies between the populations relative to the
total variation. Fst between most human populations have been
observed to be small (<0.1)® which, in practice, means that the genetic

F5T=1
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variation between these population is tiny compared to all variation
among humans.

Principal component analysis
Another cornerstone for population genetic studies is principal
component analysis (PCA). PCA is a statistical technique to extract
major axes of variance, known as principal components (PCs), from
multidimensional data. These components describe a decreasing
amount of variance, are orthogonal to each other, and thus are
convenient for data visualization. PCA was introduced to genetics first
by Cavalli-Sforza and colleagues in the 1970s%? and again for modern
whole-genome data by Patterson and colleagues in the 2000s%°. In
genetics, PCs can be perceived to describe orientations in which the
individuals show the most genetic variation. In statistical terms, PCA is
applied on a N x S data matrix where N is the number of samples, S is
the number of independent genetic variants and the matrix entries, gi,
are the genotypes for sample i in locus /. The standard protocol to
perform PCA?% 8 on biallelic data is to first standardize each entry of the
data matrix by extracting the mean genotype 2p; and scaling with the
corresponding standard deviation as

M, = git — 2Dy .

VZpi(1—=p)
Second, the standardized data matrix M is transformed into a sample
covariance matrix X as
1
X = §MM :

Now the major axes of sample variance are found by conducting an
eigenvalue decomposition on the covariance matrix X. In practice, PCA
is performed with existing software such as EIGENSOFT8% & and Plink®’
and the PCs are visualized in pairs on two-dimensional scatter plots. If
PCs encompass genetic structure, it can be detected as non-random
patterns, often triangular or U-shaped, on a PCA plot. However, the
interpretation of the pattern is not straightforward as sample size,
possible correlation between variants, and the strength of evolutionary
processes have varying effects on PCA. Naturally, multiple extensions
for standard PCA have been implemented including, for example, fast
implementation for big data® and an implementation to account for
correlation between samples®® among others.
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Chromosome-painting, FineSTRUCTURE, and SOURCEFIND

In 2012, Lawson and colleagues introduced a haplotype-based method,
chromosome painting* to identify fine-scale populations from genetic
data. Later, it was successfully used to describe the fine-scale genetic
structure of the British Isles®. The method is a collection of software
tools that build on a matrix that summarizes the haplotype-based
relationships of individuals in the data. This coancestry matrix is created
by the ChromoPainter* program and it can be further utilized to identify
population structure in a PCA-like manner or by clustering individuals
into discrete populations with the FineSTRUCTURE* program.
Furthermore, additional programs utilizing the coancestry matrix to
estimate admixture and ancestry, such as GLOBETROTTER® and
SOURCEFIND®?, have been published. In what follows, the general idea
of the programs utilized in this thesis, ChromoPainter, FineSTRUCTURE
and SOURCEFIND, are introduced.

Chromosome painting aims to identify the number (and the
length) of shared haplotypes between the individuals in the data and this
information is assumed to capture rich information about the underlying
genealogies (Figure 5A). The theoretical framework for chromosome
painting is based on an algorithm of Li and Stephens®' which models
haplotype chunks as a Hidden Markov Process. Broadly, the method
compares one individual (recipient) at a time to all other individuals
(donors) and estimates, for each locus, which (one or more) of the donor
individuals are the closest to the recipient individual on that position
(Figure 5B-F). By modeling all loci sequentially using the Hidden Markov
Model, chromosome painting produces local estimates of haplotype
chunks and with whom each chunk is most recently shared. These
chunks are then summed across the genome generating the coancestry
matrix where the rows describe how many chunks each recipient
individual shares with each donor individual.
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Figure 5. A schematic example of a chromosome painting method where

the haplotype of individual number 1 (recipient) is compared to nine other individuals
(donors). Different colors represent the different individuals. A) Recipient individual
has different underlying genealogies for three loci (i, ii, iii), orange individual being
the closest in locus i; dark and light green in locus ii; greens, reds and blues in locus
iii. B) The time to the most recent common ancestor (MRCA) as a function of
sequence position matching the genealogies and representing haplotype patterns.
C) The true distribution of the closest haplotype chunks that is being estimated. D)
The example chromosome paintings produced by ChromoPainter algorithm. E) The
mean chromosome painting averaged over sample paintings. F) The output row in
the coancestry matrix, where the number of haplotype chunks are summarized over
the genome, demonstrating that the recipient individual shares the most chunks with
the orange individual. Reprinted from PLOS Genetics 8(1), Lawson et al. (2012)
Inference of population structure using dense haplotype data under the Creative
Commons Attribution License.

The genetic structure of the coancestry matrix can be identified either by
performing a PCA on it (explained briefly in Section 4.4 or in detail in %),
or by clustering the individuals into fine-scale populations with
FineSTRUCTURE®*. FineSTRUCTURE implements, first, a Markov chain
Monte Carlo (MCMC) method to assign individuals into discrete
populations, and second, builds a hierarchical tree to represent the
relationships of the populations. In general, MCMC tries to find the
optimal population assignment by altering the current assignment either
by splitting or merging existing populations, or moving individuals
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between the populations, and then accepting the new assignment with a
probability based on a likelihood ratio. If the assignment is accepted, the
next new assignment is produced based on the accepted one, otherwise
it is produced based on the current assignment. The end result is a
sequence of different population assignments. If the MCMC algorithm is
continued long enough, the assignments are expected to converge
around the optimal assignment given the data. The assignment that
produces the largest posterior probability is then used as the final
population clustering and is used in the tree-building phase. The
FineSTRUCTURE tree is built “bottom up” in such a way that the
genetically closest fine-scale populations are successively merged into
larger populations. While the FineSTRUCTURE tree does not represent
any true genealogy or evolutionary model, it has been shown to
successfully capture the general genetic structure at multiple levels®.

The results of ChromoPainter and FineSTRUCTURE can be
further utilized to infer admixture proportions as implemented in the
SOURCEFIND program®2. The idea of SOURCEFIND is to compare the
chromosome painting of the test individual, i.e., the row of the coancestry
matrix, with the chromosome painting of the predefined reference groups
to infer admixture proportions. To simplify the calculation process, the
chromosome paintings are first summarized into copying vectors which
sums the fractions of the genome copied from the donor individuals
belonging to the same genetically homogeneous groups defined, e.g.,
by FineSTRUCTURE. The copying vector of the test individual is then
modelled as a weighted mixture of the reference groups where the
weights are inferred as the admixture proportions. To find the optimal
weights, SOURCEFIND uses an MCMC-algorithm that has been shown
to converge to the optimal admixture proportions, given the data®?.

2.3 GENETIC STRUCTURE IN THE GENETIC STUDIES
OF COMPLEX DISEASES

2.31 GENOME-WIDE ASSOCIATION STUDY

The main approach for determining genetic factors underlying complex
diseases is a genome-wide association study (GWAS). GWAS seeks to
identify genetic variants underlying a disease (or a trait) by performing a
statistical test separately for each variant through the whole genome.
More specifically, GWAS fits either a linear or logistic regression model
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on the data, and estimates an effect size, i.e., the strength of the
correlation, and a p-value, i.e., the strength of the statistical significance,
between the variant and the disease. If the p-value of the variant is under
the genome-wide significance level, (typically < 5 - 10°®), the variant is
considered to be associated with the disease. Essentially, GWAS
identifies a list of variants that show statistical association that most often
is only tagging the effect of a real causal variant. During the GWAS era,
almost 180,000 associations for a wide range of diseases and traits have
been identified (the GWAS catalog®, March 2020). While the GWAS
associations alone are not a proof for causality, there are many
examples where a GWAS has been able to pinpoint biological pathways
relevant for pathological mechanisms of a disease or to identify
promising therapeutic targets (examples summarized in% %4).

As both allele frequencies and the incidence of complex
diseases are affected by multiple factors, GWAS are sensitive for
confounding. Confounding is a statistical term to describe a setting
where a possibly unknown, third factor affects both the outcome variable
(here the disease or trait) and the predictor (here variant), which causes
a spurious association between the outcome and the predictor, and can
lead to a false interpretation about causality. In GWAS, age, sex, and
technical factors, such as batch and genotyping plate effects, are
routinely controlled for. In addition, because both the allele frequencies
and diseases can show geographic variation, it was clear, already at the
arrival of the first GWAS studies, that the genetic structure can cause
serious confounding in genetic association studies and should be
controlled for®%". An exaggerated but classic example®® can be given
by imagining a GWAS on the ability to eat with chopsticks within a
sample including individuals from both European and Asian background.
Without a control for genetic structure, this study would tag multiple loci
associated with Asian ancestry, not because they would be biologically
relevant but because the Asian culture and genetic ancestry were
correlated. A standard method for controlling genetic structure in GWAS
is a PCA-based correction® that adjusts the regression model with, e.g.,
the top 10 to 20 PCs. Additionally, multiple other methods have been
developed’® and the modern methods utilize linear mixed models
assessing directly the genetic relationship of the samples®. These
standard methods have been successful in identifying significant
associations that have been replicated in other cohorts'® while under-
or over-correction can still exist (Figure 6).
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The current association studies are also facing some further
challenges related to genetic structure. These challenges include three
main issues. First, most GWAS are being conducted in populations with
European ancestry which limits genetic diversity and the opportunities
for new biologically relevant discoveries and translation to other
populations® * %1 Second, GWAS are increasing in size as the large-
scale studies with 500,000 samples and more are being collected, for
example, in the UK (UK Biobank)'%?, Japan (Biobank Japan)'®, USA
(The Million Veterans Program)'® and in Finland (www.finngen.fi).
Consequently, studies analyze rarer variants that show more subtle and
localized genetic structure'®® 1% and thus more sophisticated methods
for controlling genetic structure are needed. Third, the GWAS results
from non-genome-wide-significant variants are also used in subsequent
analyses, including genomic prediction (section 2.3.2), requiring new
standards especially for effect estimates. Together, these factors
demonstrate that the proper understanding of genetic structure and
diversity is essential also in the future.

(a) Correction is accurate when ancestry is (c) Undercorrection occurs when ancestry is associated with
associated with confounding environment

Ancestry Environment

A

Ancestry
History/
Geography Single SNP

Single SNP Trait

(b) Overcorrection occurs when ancestry is (d) Correction may be unbiased for causal inference

associated with the causal pathway
No
Direct A-O

Ancestry
A A

Single SNP Ancestry Trait Single SNP Trait Outcome
Associated Trait

Figure 6. Models of correction with genetic ancestry for variant-trait
associations. Reprinted from Human Genetics 139, Lawson et al. (2020)'%7 Is
population structure in the genetic biobank era irrelevant, a challenge, or an
opportunity? under the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/).

2.3.2 POLYGENIC SCORES

The results of GWAS are being increasingly utilized in genomic
prediction to estimate and evaluate the genetic risk of an individual in
developing a specific disease. Currently, genomic prediction is
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implemented via polygenic scores (PSs) that summarize the genetic risk
estimate of multiple variants into a single measure. Because the effects
of single variants on complex diseases are small, a large number of
variants are included in the PS to gain a good risk prediction. For
example, the early PSs of coronary artery disease (CAD) utilized
information from 13'% and 28'%° genetic variants, but showed only
modest, if any, improvements in risk prediction when combined with
traditional risk factors. Later, a PS with 49,310 variants improved risk
prediction by around 5% among those over 60 years old'"®. Now, the
modern PSs employ LD-information to summarize millions of variants
across the whole genome'" and utilize, e.g., 6,412,950 variants for
CAD™2_ These highly polygenic scores have demonstrated, for instance,
that individuals in the top 8% of PS distribution match the risk of carriers
of a known monogenic mutation in coronary artery disease''® and that
the PSs improve the risk prediction, especially for the early-onset of the
disease, compared to the traditional risk factors alone''? supporting
future utilization of PSs in clinical setting and disease prevention. Similar
results have also been obtained for other diseases, such as for type 2
diabetes''> '3 and breast cancer'".

While PSs have been utilized in multiple ways, there remain two
main challenges, tightly linked to genetic structure, that hinder their
utilization in health care and in between populations comparisons. First,
because a PS is calculated as a sum of an individual's genotypes
weighted by the effect estimates from a GWAS over a large number of
variants, even a tiny but consistent directional bias in effect estimates,
harmless for a single variant, can accumulate a substantial bias for PSs.
As was discussed above, such a bias can easily arise from poorly
controlled genetic structure. As an example, the GWAS meta-analysis of
adult height by the GIANT consortium ''® was shown to include severe
biases''® "7 that had already led to an apparently false conclusion
about a strong differentiation in height in Europe’®. In addition, a study
utilizing UK Biobank has reported that latent, fine-scale genetic structure
is present in GWAS results, even after adjusting for 40 PCs biasing
PSs'"®. Similarly, fine-scale structure is found to affect PSs of Biobank
Japan®® demonstrating that the need for controlling subtle genetic
structure in GWAS still exists. Recent results have shown that detecting
genetic structure with haplotype-based methods is a promising approach
to control for such biases in GWAS®2,
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Second, the prediction accuracy of PSs decreases the more
genetically distant the target population is from the original GWAS
population? 3. This phenomenon is not only a result of poorly adjusted
population structure but also a result of other GWAS characteristics. As
GWAS have more power to find common as opposed to rare variants,
the associated variants are skewed towards the variants common in the
original GWAS population. For example, there is a concerning
observation that the overall GWAS results are more polymorphic in
European populations compared to other populations than what is
expected based on the known overall genetic variation®. This imbalance
is due to the dominance of European ancestry among the GWAS
samples. Further, environmental factors and LD-patterns between
populations might vary, causing uncertainty to the effect estimates of
tagging variants. As a result, comparison of PSs between populations is
challenging and has been shown to lead to unrealistically large or even
contradictory differences between distant continental populations® '2°
but there is limited information about how similar problems manifest
within the populations with fine-scale genetic structure. Additionally, as
the prediction of PS depends on the ancestry, the interpretation of PS
for admixed individuals is challenging and methods employing local
genetic ancestry have been proposed'?'. Altogether, these challenges
demonstrate that we need to understand fine-scale genetic structure not
only to be able to control for it but also to understand the limitations of
the spurious relationship between the target and the GWAS samples
before translation of PS in clinical use.

2.4 POPULATION OF FINLAND

The Finnish population has been actively utilized in the studies of human
genetics for decades. The following sections summarize the history and
other characteristics of the population outlining the reasons for this
exceptional interest from the international research community.

2.41 HISTORY OF FINLAND

Information on the population history of Finland is limited to the time after
the last Ice Age, which ended approximately 11,000 years ago, as no
reliable archaeological discoveries exist before that. The following times
are often divided into prehistorical periods, where only archaeological
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evidence exist, and into historical times when also written documents are
available. Figure 7 gives a broad overview of the main periods and
events during both the prehistorical and historical eras of Finland. If not
otherwise stated, the information on Finnish prehistory is based on the
book Muinaisuutemme jéljet: Suomen esi- ja varhaishistoria kivikaudelta
keskiajalle'?> whereas the historical period is based on the book Suomen
Historia Jéékaudesta Euroopan unioniin'?,

As the southern and western parts of Finland were covered by
water after the Ice Age, the oldest human remains have been found in
the southeastern and northern parts the country, and have been dated
between 10,000 and 11,000 years old. The southeastern remains are
believed to originate from people who arrived from the South and East,
whereas the northern remains are believed to originate from the people
who arrived along the coast of Norway. Over the millenia since then, it is
presumed that people have continuously inhabited Finland'?*. However,
the density of inhabitation has varied and a wide range of different
cultural, and possibly genetic, influxes have occurred. The Stone Age
populations were based on the hunter-gatherer lifestyle and new cultures
were adopted along with small migrating groups. A large number of
archaeological findings from 7,000 to 5,000 before the present (BP) have
demonstrated a wide spread of the Comb Ceramic and related cultures
across the whole country. For example, the Typical Comb Ceramic
culture covered large geographic regions from the southwest corner all
the way up to the Bothnian Bay and further to the East (Figure 8A)'?2 125,
Outside of Finland, the Comb Ceramic culture was typical for Northern
and Eastern Europe around the Baltic Sea, suggesting that Finland had
close connections to these neighboring areas. This period was followed
by a gradual adoption of agriculture and dairy farming at the end of the
Stone Age. Agriculture and dairy farming have, furthermore, been
associated with the Corded Ware culture (5,000—4,000 BP) and with the
Kiukainen culture (4,500-3,500 BP). But unlike the Comb Ceramic
Cultures, these other cultures have been discovered mainly from the
southwestern corner of Finland (Figure 8B)'?? 25 Abroad, the Comb
Ceramic related cultures are found to be widely distributed around the
Baltic Sea, Central Europe, and Russia'?®.
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Figure 8. The approximate spread of A) the Typical Comb ceramic culture
(5,900-5,500 BP) and B) the Corded Ware culture (5,000—4,000 BP) and the
Kiukainen culture (4,500-3,500 BP) in Finland during the Stone Age according to the
archaeological findings'?2.

The Bronze Age in Finland (4,000-2,500 BP) was characterized by a
reduction in the number of archaeological findings as well as by regional
differences: the coastal region had connections to southern Scandinavia
while the inland region had trading connections to the East all the way to
the Volga region and the Urals. In turn, during the Iron Age (2,500-1,000
BP), the population size started to increase due to stabilized agricultural
practice, especially in the southwestern parts of Finland. The concluding
centuries of the Iron Age were outlined by the Viking movements and
crusades, which both were operated from Scandinavia and once again
influenced especially the southwestern parts of Finland.

The Middle Ages represents the shift from prehistorical to
historical times in Finland and was characterized by the power struggle
between the eastern and western realms, Novgorod and Sweden. With
the Treaty of Noéteborg in 1323, struggle relaxed between the two
powers; the western parts of the country became subject to taxation for
Sweden and the eastern parts for Novgorod. The treaty border of 1323
was Finland’s first known eastern border, but it was partly only loosely
defined and followed approximately from the southeastern corner to the
western coastal region (Figure 9B). It is also noteworthy that a
considerable migration of Swedish people to the coastal regions of
Finland occurred in the 13" and in the beginning of the 14" century. The
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permanent settlement was scattered around the country, but the
southern and western coastal regions up to the Bothnian Bay showed
denser and more continuous settlement (Figure 9A). These regions are
often referred to as the early settlement region in the genetics literature,
but it is noteworthy that the eastern and northern parts of the country,
often known as the late settlement region, were not uninhabited either.
The Middle Ages could also be highlighted for the increase in population
size, which was estimated to be around 300,000 at the time. The
increasing population size in turn increased the pressure to establish
new farming sites and the settlement became more continuous. People
from Savonia are often highlighted as being the most eager to move to
new areas during the 15" and 16" centuries.

Figure 9. A) The permanent settlement in Finland during the Middle Ages
concentrated earlier on the southern and coastal regions of Finland and continuously
covered the whole of Finland only later. B) The border of the Treaty of the Néteborg
in 1323 followed approximately from the Vyborg Castle to the coast of Ostrobothnia,
but its exact location is not clearly known.

The centuries following the Middle Ages were harsh for the Finnish
population. Several wars between Sweden and the reunited Russian
Empire were conducted on Finnish territory and the Great Famine killed
up to one third of the population between 1695 and 1697. Consequently,
the population size did not noticeably increase until the latter part of the
18" century. Starting from the end of the 18" century, the population
expansion triggered further movement within the country. Again,
especially the Savonian people moved to North Ostrobothnia and to the
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Oulu region on Finland’s western coastline along the Bay of Bothnia, but
there was movement also to the South and to the existing cities.

The 20" century remarked the rise of nationalism and the
independence in Finland. After centuries of being ruled by either Sweden
or the Russian Empire, Finland declared its independence in 1917. While
the transition to independence was itself peaceful, the following years
were characterized first by the Finnish Civil War (1918) and later by the
three episodes of World War Il (WWII) in Finland: The Winter War (1939—
1940), the Continuation War (1941-1944) and the Lapland War (1944—
1945). The war during the 1940s induced the largest known internal
migration within the country as large areas in the eastern and northern
parts of Finland were ceded to the Soviet Union. In consequence, around
400,000 individuals (around 11% of the population) were relocated to
other parts of the country. The relocations were controlled and well
documented by the Finnish authorities, and while the plan was to
distribute the evacuees evenly across the country, the southern and
western parts of the country gained around 70% of the evacuees'?’.
However, the evacuees are known to have moved further after the initial
relocations. For example, a large number of the evacuees moved away
from the Southern Ostrobothnia region right after the war while Southern
Finland gained additional evacuees'?’. The population history of Finland
from the end of the 20™ century, as well as at the beginning of the 21°
century, has been mainly characterized by urbanization. In Finland,
urbanization first increased the number of small, local towns in the 1950—
2000, and only fairly recently, has this urbanization centralized into a few
major cities'?®,

2.42 LANGUAGE IN FINLAND

Finland has two official languages: Finnish with 4.8 million speakers
(87%) and Swedish with 300,000 speakers (5%). In addition, 7% of the
population speak languages such as Sami, Russian, or Estonian, among
others'?. In short, the Finnish language belongs to the Uralic language
family and, more specifically to the Finno-Ugric subgroup together with,
for example, Estonian and Hungarian'®. The Finnish language shows
dialectal variation that is well documented in the Finnish Dialect Atlas'3".
The dialects are classically divided into the Eastern and Western
dialects, and further into seven or eight subdialects: Southwestern (and
Southwest transitional), Tavastian, Southern Ostrobothnian, Mid- and
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North Ostrobothnian, Far-Northern, Savonian, and Southeastern'3? 133,
More recently, this classification has been confirmed and further
elaborated by applying quantitative tools to linguistic data* '3,

2.43 GENETICS IN FINLAND

The work in this thesis has focused on a major genetic group within
Finland that is naively referred to as Finns here. However, Finland, and
the Finns, also include other groups that show varying levels of genetic
relatedness to the major group studied here. For example, the Sami
people are a native Finno-Ugric-speaking group that has inhabited the
northern parts of Finland, Sweden, Norway, and the northern Kola
Peninsula in Russia for millennia and show distinct genetic
characteristics from the major group™®'%. Then again, the Swedish-
speaking Finns show a close relatedness to the Finnish-speaking Finns
and can be genetically identified only when samples from the Swedish
population are included in the analysis'® 0. Furthermore, the Finnish
gene pool is getting more diverse in consequence of the world-wide
immigration. For example, in 2019, 8% of the Finnish population had a
foreign background™'. Of this percentage, the largest groups with over
20,000 individuals had a background from Russia, Estonia, Iraq, or
Somalia.

Finnish population in global context

The early population genetic studies of European populations placed
Finns as an outlier population on the genetic map of Europe'?. Later,
PCA-based studies3#-3¢ 143 144 have elaborated the position of Finns at
the northeastern edge of the continuum of European genetics
background, rather than as an outlier. The studies on a world-wide scale
have highlighted the same: Finns are close to the European
superpopulation but show a strong eastern affinity® '4°. For example,
Finns show more Siberian ancestry than Estonians'®. Although,
depending largely on the populations analyzed, the genetically closest
populations to Finns are the geographic neighbors: Estonians'4 146,
Karelians in Russia’#®, and Swedes3*36: 144,

Genetic structure within Finland

Genetic structure within Finland has been rigorously studied and its main
feature, the division into East and West (more specifically into Northeast
and Southwest), was first characterized by the blood group studies of
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Harri Nevanlinna and colleagues in the 1970s. The studies described
frequency differences of blood group markers not only between East and
West, but also between detailed municipality-level regions'#’ 48 These
observations were followed by more direct analyses of genetic markers,
as haplogroup studies of Y chromosome demonstrated a strong East—
West divergence'” 149155 |n turn, the first haplogroup analyses of
mitochondrial DNA did not show strong population differences or a
deviation from European diversity'® 57 but with more data, subtle
regional differences in mitochondrial DNA have also been observed'®*
195,158,159 " Consistently, the autosomal data have repeated the above
results of the main genetic structure as being between East and West'3®
140, 144, 160 and has shown, for example, that the genetic distance,
measured with pairwise-Fsr, is larger between Eastern and Western
Finland than between Germany and Great Britain'*°. However, these
previous studies have evaluated the genetic differences of East and
West either by comparing geographically distinct samples from the
opposite corners of Finland and dismissing the central parts of Finland,
or by comparing geographically defined regions, such as provinces.
Thus, there is no detailed understanding of where the genetic borderline
between East and West exactly lies, and in turn how admixed people
near the borderline are.

Beyond the East-West division, there is also evidence of further
genetic substructure in Finland. However, the information on this topic is
more limited. Many studies utilizing samples around Finland performed
analyses with only a few genetic loci, such as haplogroups in
mitochondrial DNA or Y-chromosome, and have reported subtle
frequency differences between Finnish provinces!!: 193 154, 158, 161, 162
Moreover, the autosomal scans with tens of thousands of unlinked
variants have suggested considerable fine-scale genetic structure. In the
study of Salmela et al. (2008)'%°, a PCA-based analysis separated part
of the samples from different provinces both in Eastern and Western
Finland, and the study of Jakkula et al. (2008)'® showed striking
substructure within Northern Finland, especially between the different
parts of Lapland. More recently, and together with the studies presented
here, haplotype-based methods have allowed a more detailed
examination of the genetic structure within Finland®" 183, As the amount
of data continues to increase, it is expected that we will discover further
details about the genetic structure and admixture in the future’.
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Ancient DNA studies
The advancements in DNA technologies have allowed the analysis of
DNA from ancient and historical samples, and during the last ten years,
the studies of ancient DNA (aDNA) have provided unique opportunities
to understand human history. The studies of aDNA have, for example,
elaborated the mutation rates and Neanderthal admixture in modern
humans'®. In Europe, one of the oldest remains of modern humans
found from Romania (dated 37,000-41,000 BP) surprisingly did not show
genetic proximity to modern Europeans'®®. Instead, the modern
Europeans are currently seen as a mixture of three ancient groups,
contributing to the gene pool at different time points after the Ice Age®®
2. The base of the modern European populations is built on groups of
hunter-gatherers who widely inhabited Europe soon after the Ice Age.
This gene pool was admixed with the early farmers from the Near East
(~8,500 BP) and with Yamna (a.k.a. Yamnaya) ancestry from the
Eurasian Steppe (~3,000-7,000 BP). However, the contributions and
details of this simplistic model vary across Europe and, especially in
Northeastern Europe, there is substantial evidence of additional
contributions from the East and from Siberia’ 146 166168

Unfortunately, the studies of ancient populations in Finland are
almost nonexistent. The soil in Finland does not preserve human
remains well'® and thus there is a limited number of samples suitable
for aDNA analyses. The first major study including Finnish aDNA
examined 7 samples from Levanluhta burial site, and showed that these
samples, dated between 300 and 700 CE, exhibit closer affinity to the
modern Sami people than modern Finns'®’, providing little insight into
the birth of the modern genetic structure. In turn, a larger study with 70
ancient mitochondrial-DNA (mtDNA) samples, from three different
ancient and historical periods, detected a considerable spatial and
temporal heterogeneity in mt-haplogroups: The change of the main mt-
haplogroups of Finland, U and H, was observed such that, during the
Iron Age and the medieval era in Finland, haplogroup U was the most
common group in the southwestern corner of Finland. But among the
modern samples, H is the most common in the southwestern parts—and
this change in U/H ratio was almost 6-fold"®°. In the eastern parts of
Finland, an opposite change was observed, although less dramatic,
suggesting that especially the early population history of Finland is not
well understood. Presumably, the additional aDNA (including mtDNA, Y-
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chromosomal, and genome-wide) data combined with the modern
samples will elaborate the population history of Finland in the future.

Finns in the genetic studies of diseases

In the 1970s, researchers observed that Finland exhibit multiple rare
diseases that are, in practice, absent from the other countries of the
world. These diseases were soon observed to be inherited and were
defined as the Finnish Disease Heritage, a group of rare, genetic
diseases almost exclusive to Finland'® """ (http://www.findis.org/). The
quest to understand these diseases was one of the initializing forces in
studying genetics in Finland. The same mechanisms that produced the
Finnish Disease Heritage have more broadly led to a phenomenon
where some rare variants have been enriched in the population (along
with the loss of many other variants)'’? and are therefore easier to
identify in a GWAS in the Finnish population than in other populations.
Consequently, and because of the active research community, Finns
have been included in several international consortia studying the
genetics of disease and traits, including for example GWAS meta-
analyses of coronary artery disease'’®, schizophrenia'* and adult
height''®. Currently, a large-scale biobank collection of 500,000 Finnish
samples is being carried out and their genotyping in the FinnGen Project
(www.finngen.fi) highlights the continuation of genetic studies in Finland.

244 GEOGRAPHIC VARIATION OF DISEASES AND TRAITS IN
FINLAND

Despite the top-level health-care system in Finland'’®, the Finnish
population shows geographic variation in the disease prevalence and
incidence rates. In addition to the geographic clustering of many rare
diseases of the Finnish Diseases Heritage'® 176, also many complex
diseases show geographic variation. As an example, the general
morbidity index of the Finnish institute for health and welfare
(summarizing information on coronary artery disease, cerebrovascular
diseases, cancers, musculoskeletal diseases, dementia, mental-health
problems, and accidental injuries) is considerably higher in Eastern than
in Western Finland'””. Coronary artery disease (CAD) is one of the main
drivers of these regional differences (together with musculoskeletal
diseases and mental-health problems) showing 1.6 times higher
incidence rates in Eastern than in Western Finland between 2013 and
2015'8, Indeed, the dramatic difference in CAD incidence rates between
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Eastern and Western Finland initiated, already in 1972, a community-
based program called the North Karelia Project aiming to prevent
cardiovascular disease, and was later expanded to cover other regions
of Finland forming the foundation for the National FINRISK Study'”®
utilized in this work (see section 4.1). Together the projects successfully
managed to decrease coronary mortality by over 80% between 1972 and
20148 Yet, after over 40 years of favorable changes in lifestyle and
improvements in health care, there still exist some regional differences
in CAD incidence rates'’®. However, not all existing geographic
differences are between East and West in Finland. For example,
ulcerative colitis has been reported to be more common in northern than
in the southern parts of Finland'®'. While multiple traditional factors, such
as socioeconomic status and lifestyle, are known to play a key role in the
risk for complex disease, the role of population genetic differences in
regional health discrepancies is not well understood.
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3 AIMS OF THE STUDY

The Finnish population is one of the most studied populations in human
genetics. Due to the ongoing large-scale biobanking efforts,
advancements in polygenic risk prediction and attempts to integrate
genetic information as part of health-care systems, it is increasingly
important to thoroughly understand the genetic structure in Finland. In
this thesis, the main goal is to characterize how the genetic structure
develops geographically and how it is connected to the complex
diseases and traits in Finland. More specifically, this thesis aims to

1. Characterize the fine-scale genetic structure (Study ),

2. Track the changes in the genetic structure throughout the 20"
century (Study Il), and

3. Map the geographic variation and population structure-related
bias in polygenic scores (Study III)

in Finland.
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4 MATERIALS AND METHODS

41 STUDY SUBJECTS

This thesis utilizes samples from the National FINRISK Study (hereafter
FINRISK). FINRISK is a survey of the Finnish adult population (24- to
75-year-olds) to examine chronic and noncommunicable diseases and
their risk factors. The study includes a comprehensive questionnaire and
health examination that capture a wide range of information from
measured blood pressure to self-reported lifestyle factors, such as sleep
and physical exercise. In addition, FINRISK has collected biological
samples including DNA."82

FINRISK consists of surveys that have been collected at 5-year
intervals, beginning since 1972. In this thesis, Studies | and Ill utilize data
from the survey of 1997 and Study Il uses the surveys of 1992, 1997,
2002, 2007, and 2012. While the FINRISK collection has been
centralized into five collection regions, shown in Figure 10, the birth
places of the study participants readily cover most parts of the country.
However, there are considerably more samples collected in North
Karelia (NKA) and North Savonia (NSA) compared to other parts of the
country. Table 1 presents the number of samples in each of the study
regions, for each study separately. As FINIRSK was the largest and the
most comprehensive Finnish population cohort including genetic
information from all parts of Finland at the time this work was started, it
was the natural choice for studying genetic structure in Finland.
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Figure 10. The sample collection regions of the National FINRISK Study
(blue) and the study regions examined in this thesis (in bold). Abbreviations
correspond to those presented in Table 1.

Table 1. Number of samples per region in Studies I, Il and Ill.

Region Study | Study Il Study Il
LAP Lapland 38 1,010 38
NOS  North Ostrobothnia 206 2,291 382
KAI Kainuu 57 726 140
NSA  North Savonia 139 3,060 592
NKA North Karelia 139 3,088 587
CNF Central Finland 45 420 45
SSA South Savonia 69 622 90
SKA South Karelia 47 442 49
OST Ostrobothnia 84 555 85
TAV Tavastia 71 833 75
SWF  Southwestern Finland 109 3,073 226
SOF Southern Finland 38 1,870 67
ALA Aland 0 8 0
CKA  Ceded Karelia 0 465 0
Total 1,042 18,463 2,376
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4.2 QUALITY CONTROL

| utilized FINRISK samples that had been genotyped with lllumina
HumanCoreExome genotyping chip that consists of over 500,000 rare
and common genetic variants and were called with zCall'®® preceding
this study. The usage of only one type of genotyping chip assisted in
merging the data but does not insulate them from batch effects or
genotyping errors. To ensure the high quality of the data, | performed the
following variant and sample related quality-control steps. For each
variant, | calculated minor allele frequency (MAF), Hardy-Weinberg
equilibrium (HWE) p-value (that quantifies whether the number of
observed genotypes matches with the number expected based on the
allele frequency), and the proportion of missing samples. | excluded the
variants, if their MAF was under 5% or HWE p-value was under 10 or
missingness was over 1%. For each sample, | calculated the proportion
of missing variants and the rate of heterozygosity. Samples were
excluded if they showed large deviations from other samples in these
measures. In addition, | excluded one individual from each pair of related
individuals (3rd degree) and individuals who themselves, or whose
parents were born outside of Finland, or who did not have sufficient
location information. Quality measures were calculated using PLINK18”
and PLINK2'8 In Study Il, relatedness was calculated using KING™.
For each study, the specific description of the quality-control steps and
thresholds are given separately in the original publications.

4.3 GEOGRAPHICALLY UNIFORM SAMPLE SETS

For Studies | and Il, | selected a geographically uniform subset of the
samples to ensure a robust identification of fine-scale populations. In
Study |, the uniform sample set of 1,042 individuals were selected by
placing a grid of 25 km on Finland and by randomly sampling a maximum
of 5 individuals from each grid square. In Study Il, the set of 2,741
samples were selected in a two-step process that sequentially excluded
individuals with the largest number of geographically closest neighbors.
On the first round, individuals were excluded until no individual had more
than 15 neighbors within 5 km proximity reducing the number of samples
in large cities. On the second round, the number of individuals were
further reduced in such a way that each individual had at maximum 40
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individuals within 30 km radius, resulting in a geographically uniform
sample set. The exclusions were performed in R,

4.4 PRINCIPAL COMPONENT ANALYSIS

| performed principal component analyses (PCA) on our data to both
identify possible quality issues and to study the genetic structure of our
samples. In Study I, PCA was run using SmartPCA program of the
EIGENSOFT library®. In Study Il, PCA was run in PLINK1.9%". PCAs
were performed with a set of LD-independent variants (R?< 0.2): 61,598
variants in Study | and 56,661 in Study Il. In Study Il, 31 samples were
excluded as they showed closer affinity to the word-wide populations
than to the Finnish samples in PCA.

For the method comparison in Study I, | performed a custom
PCA on the haplotype-based coancestry matrix as described in Lawson
et al. (2012)*: coancestry matrix was first modified by adding the column
sums to the diagonal, subtracting the column means from all the
elements and last multiplied by its transpose. This resulted in a
normalized, symmetric matrix on which PCA was performed with the
eigen-function in R85,

4.5 PAIRWISE-Fst

Pairwise-FST measures were calculated using SmartPCA program of
the EIGENSOFT library® using command ‘fstonly’ on the same set of
independent variants that were used for PCA.

4.6 HAPLOTYPE-BASED ANALYSES

While principal component analysis is a useful tool for detecting genetic
structure, it excludes information on tens of thousands of variants that
are correlated via genetic linkage. To include information from these
linked variants | utilized a haplotype-based method called chromosome
painting. Here, | used chromosome painting implemented in
ChromoPainter and its companion program, FineSTRUCTURE, to
identify fine-scale populations.
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4.6.1 GENOTYPE PHASING

Before identifying shared haplotypes, ChromoPainter requires that the
samples are jointly phased. Phasing is a computational process to
determine which variants were inherited together in one chromosome
and thus it determines individual haplotypes. | phased the data with
SHAPEIT2'® using an average European effective population size
(11,418) and recombination map from the HapMap phase 11?2,

4.6.2 CHROMOPAINTER: CHROMOSOME PAINTING

As briefly introduced in section 2.2.4, chromosome painting identifies the
number and the length of shared haplotypes between the recipient and
donor individuals. In study I, | used ChromoPainter* version 0.0.4 to paint
all 1,042 samples against all other samples. First, | estimated parameter
values for global switch and mutation rates utilizing chromosomes 1, 9,
15, and 22, and following Leslie et al. (2015)3. The individuals were then
painted using the estimated parameters. Other parameters were kept at
the default values. In Study I, | used ChromoPainter version 2.0 similarly
as before, but all 18,463 individuals were painted against a subset of
2,741 geographically evenly distributed individuals. ChromoPainter
outputs a coancestry matrix, which is a non-symmetric genetic
relationship matrix, and is further used to identify fine-scale populations
and estimate genetic ancestry.

4.6.3 FINESTRUCTURE: IDENTIFICATION OF FINE-SCALE

POPULATIONS
To identify fine-scale genetic populations, | utilized a clustering approach
implemented in the FineSTRUCTURE* program. FineSTRUCTURE is
designed to first identify small, genetically homogeneous groups based
on ChromoPainter’'s coancestry matrix, and second build a bifurcating
tree by merging these groups into higher-level populations.

In Study I, | ran FineSTRUCTURE version 0.0.5 on the
coancestry matrix of 1,042 individuals. To identify fine-scale populations,
I ran FineSTRUCTURE’s MCMC algorithm using 1,000,000 burn-in-
iterations, 1,000,000 sample iterations recorded every 10,000th
iteration, first by allowing only two populations, and second allowing any
number of populations. In Study Il, | ran ChromoPainter on 2,741
individuals similarly to that above, except that | used version 2.0.1 and
2,000,000 sample iterations. Additionally, before tree-building, | re-
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assigned a part of the individuals into new populations to improve the
overall posterior probability by following the procedure of Lawson et al.
(2012)*. The FineSTRUCTURE-tree was built using the default options.

4.6.4 BUILDING THE TVD-TREE

While FineSTRUCTURE merges small genetic groups into a reasonable
tree-structure, it is affected by the sample size. To build an alternative
tree that utilizes the haplotype information but is not affected by the
sample size, | employed the measure of total variation distance (TVD)
described in Leslie et al. (2015)%. TVD compares two copying vectors,
a and b, i.e., the rows of coancestry matrix, to each other as

TVD,, = 0.5- |la; — by,

where aj (b)) is the copying proportion from a refence population i. Here,
| used the 17 fine-scale populations defined by FineSTRUCTURE-tree
as the number of reference populations (K=17). To build a tree based on
the TVD measure, | started with the 17 fine-scale populations, calculated
the pairwise TVDs, and recursively merged the two populations that
showed the smallest TVD.

4.7 ANCESTRY ESTIMATION

4.7.1 IDENTIFYING REFERENCE GROUPS

Ideal reference groups for genetic ancestry estimation would be
ancestral, genetically homogeneous (i.e., do not exhibit substructure),
genetically independent (i.e. are not admixed) and would each represent
one well-defined group such as a geographic region. To identify
reference groups that mimic the above characteristics, we developed a
workflow illustrated in Figure 11. The procedure utilizes predefined
populations. First, it iteratively excludes admixed populations (steps 2—
4), and, second, excludes individuals that do not unambiguously
represent the population to which they were assigned (step 5), and,
finally, excludes the individuals if they are single, extreme geographic
outliers of their own population (step 6). Note that an intensive exclusion
of geographic outliers should be avoided and manually checked, so as
not to produce reference groups based on prior expectations.
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To identify the reference groups for ancestry estimation in Study
II, | started with 2,741 geographically evenly distributed individuals
whose parents were born within 80 km from each other. | identified the
fine-scale populations among these 2,741 reference candidates using
FineSTRUCTURE (see section 4.6.3) and focused first on the two main
populations, East and West. | estimated that the identity proportions (see
Figure 11, step 3) of both East and West populations were over 80%,
and thus | continued to estimate each individual’'s own ancestry. |
excluded 1,266 individuals whose both western and eastern ancestry
proportions were under 95% and 3 individuals who were geographic
outliers. These reference groups are illustrated in Figure 16A (in Results
section 5.2.1) and are referred to as reference groups in reference set 2
(hereafter abbreviated as refset).

Step 1:
Choose the starting number of populations, K.

!

Step 2:
Estimate the genetic ancestry of reference candidates with
respect to the K populations (SOURCEFIND).

{
Step 3:
Fo h of the K lati lculate th lation’
r each of the K populations, calculate the population’s Update K.

identity proportion as the average proportion of ancestry in
that particular population across the individuals assigned to
that population.

¥

Step 4:
Exclude the populations with low identity proportion (<
50%), and repeat from step 2. If no population is excluded,
proceed to step 5.

'

Step 5:
Exclude reference candidates who show low levels of
ancestry coming from the population they were assigned to.

¥

Step 6:
Exclude possible geographic outliers.

Figure 11. Workflow to identify robust reference groups for ancestry
estimation with fine-scale populations.

Second, | started with 15 fine-scale populations and estimated their
identity proportions. Out of the 15 populations, 5 showed low identity
proportions (under 50%) and were excluded. The ancestry estimation
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was repeated with the remaining populations, and this time the
remaining populations showed either around 70% or around 80% identity
proportions. | continued with all 10 reference populations, and, in
addition, generated reference groups with the 6 populations that showed
around 80% identity proportions. For both sets of reference groups (i.e.,
refset 10 and refset 6), | excluded heterogeneous individuals showing
under 70% of ancestry coming from the population they were assigned
to. Additionally, | manually excluded the individuals who were located
outside the core region of their reference group. The reference groups
in refsets 6 and 10 are shown in Figure 16 (in Results section 5.2.1)
panel B and C.

4.7.2 SOURCEFIND: ESTIMATION OF ANCESTRY PROPORTIONS

Genetic ancestry was estimated using SOURCEFIND®? v2. In our
approach, | ran SOURCEFIND for all 18,463 individuals that were
painted against the 2,741 donor individuals. For MCMC iterations, | used
50,000 burn-in iterations followed by 150,000 sample iterations and
recorded every 5,000th sample. The ancestry proportions were then
estimated as an average over the 30 recorded samples. SOURCEFIND
was run separately for refsets 2, 6, and 10. The genetic ancestry was
separately estimated for the reference individuals such that the
reference individual itself was excluded from the reference group while
other parameters were kept as described above.

4.7.3 SIMULATING INDIVIDUAL ANCESTRIES

To test the usability of our reference groups | performed simulations with
real-world data. First, | identified ancestor candidates that matched the
geographic location of the reference groups and then simulated offspring
by modeling recombination between the ancestor chromosomes.

The ancestor candidates were identified among the FINRISK
samples that were not part of the 2,741 reference candidates but whose
parents were still born within 80 km from each other. For the first set of
simulations between East and West, | identified ancestor candidates
whose parents were born in SWF or OST (A-West ancestors) or in CKA,
NKA, KAI, NKA or LAP (A-East ancestors). For the second set of
simulations, | identified ancestors from 7 more detailed regions, SWF,
OST, LAP, NKA, KAI, Kuusamo/Pudasjarvi and CKA. In addition, the
ancestor candidates were assessed as having homogeneous genetic
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background based on PCA. Figure 12 shows the geographic locations
of the ancestor candidates.

| simulated offspring by randomly sampling ancestors among the
candidates defined above. Each ancestor candidate was used only
once. | simulated two kinds of offspring: those who had all their N
ancestors coming from one ancestor group and those whose 1 ancestor
came from one population and the other N-1, where N = 2#generations
ancestors came from another population. This allowed us to estimate the
proportion of detectable ancestry as the function of generations back in
time. In detail, | simulated the haplotypes of the offspring by sampling
recombination events between the ancestor haplotypes and randomly
sampling one of the novel haplotypes to be transmitted to the offspring.
To sample the recombination events, | used the recombination map from
the HapMap phase Il.
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Figure 12. Location of ancestor candidates used for simulating offspring.

4.8 POLYGENIC SCORES

4.8.1 SUMMARY STATISTICS AND VARIANT FILTERING

To study the geographic distribution of polygenic scores and its
connection to the genetic structure in Finland, we targeted 5 complex
diseases and 3 quantitative traits. For each disease or trait, we used
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summary statistics from a large, international GWAS meta-analysis as
listed in Table 2.

Summary statistics were filtered for minor allele frequency
(<0.01), p-value (>0.05), imputation quality (<0.9), number of samples or
cohorts in meta-analysis (<0.9 of the maximum possible), and by
removing the region of the major histocompatibility complex. The multi-
allelic variants were also excluded. The remaining variants were filtered
to include LD-independent variants using an LD-clumping method with
500 kb window and 0.1 threshold for R? using PLINK 1.9.

Table 2. Characteristics of summary statistics used to build polygenic scores (PSs).
The column ‘GWAS N’ shows the number of samples (cases/control) in the
corresponding genome-wide association study.

GWAS  Finnish Variants in

Trait Study N samples PS
Coronary CARDIoGRAM 60,801/ 5,825/
CAD artery disease plusC4D'"3 123,504 5,639 19,597
Rheumatoid Okada et al. 18,136 /
RA arthritis 201487 49,724 -- 32,736
Crohn’s 5,956 /
CD disease IIBDGC'8 14,927 -- 21,771
Ulcerative 6,968 /
ucC colitis IIBDGC88 20,464 -- 23,513
36,989/
SCZ  Schizophrenia PGC'* 113,075 - 30,311
WHR  Waist-hip ratio  GIANT'8® 224,459 ~16,000 13,727
FINRISK 24,919 24,919 43,252
Body mass
BMI index GIANT0 322,154  ~23,000 12,742
UKBB™! 337,199  -- 75,979
FINRISK 24,919 24,919 44,920
HG Height GIANT5 253,288 ~23,000 27,066
UKBB'! 337,199 - 113,079
FINRISK 24,919 24,919 50,536

4.8.2 POLYGENIC SCORES AND GENETIC RISK MAPS

Polygenic scores were calculated for each FINRISK individual i as a sum

of genotype, xj, weighted by the effect estimate, fs]., of a variant j as
M

PSi = 2 XI]B]

j=1
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PSs were later scaled by the mean and standard deviation of 1,042
geographically evenly distributed individuals from Study I.

Genetic risk maps were generated by overlying a grid on top of
the map of Finland and for each map point, p, | calculated a weighted

averaged over all individual PS as
N

be 1 ZPSi
P I'rot =1 rizp’

where rjp is the distance between individual i and grid point p, and rty; =

Zir% is the sum of the weights. For each point, PS, also included a
ip

pseudo individual with an average PS and a distance of 50 km to the
point to deal with the uncertainty in regions with low sample sizes.
Additionally, to avoid high variance in weights, | used a minimum value
of 50 km in rip. The width of the grid was set to 10 kilometers. Genetic
risk maps were plotted in R using map data from GADM data base
https://gadm.org/.

4.8.3 POLYGENIC AND PHENOTYPIC DIFFERENCES

To quantify polygenic and phenotypic differences between East and
West, we first defined the genetic groups using 2,376 individuals. The
genetic East and West for this sample was defined using ChromoPainter
and FineSTRUCTURE similarly to Study | defined above. The analysis
assigned 1,604 individuals to East and 772 individuals to West.

The observed phenotypic difference was calculated for
quantitative traits by adjusting the traits for sex, age, and age? using
linear regression. WHR was additionally adjusted for BMI. The observed
phenotypic difference was finally calculated as the difference in the
mean of the residuals between the two groups in their original units, e.g.,
in cm for HG.

Polygenic score differences were calculated first in standard
deviation units after scaling the PS with the subset of 1,042 (Study [)
geographically evenly distributed samples. The phenotypic difference
predicted by the PS was calculated for the quantitative traits only by first
fitting the linear model where the phenotype was explained again by sex,
age, and age?. WHR was additionally adjusted for BMI. Second, the
residuals from the first model were explained by the PS in a linear
regression and the corresponding effect estimate for PS was used to
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transform the PS difference between East and West into phenotypic
scale by multiplication.

4.8.4 DETECTION OF BIAS ACCUMULATION BETWEEN

POPULATIONS
To detect bias accumulation between two populations in GWAS
summary statistics, we developed an empirical approach that utilizes the
least significant part of the variants in the summary statistics. The
approach assumes that if there is a bias aligned with the population
structure between the populations of interest, this bias is included in all
variants equally, regardless of whether they associate with the
phenotype or not. PS built on only weakly associated variants would
accumulate the bias between the populations when more variants are
included in PS but will not explain phenotype well.

| implemented the approach by filtering the summary statistics
similarly to the original scores (see section 4.8.1), but included only the
weakly associated variants with p-value above 0.5. Among these
variants, | permuted the remaining p-values and performed the LD-
clumping as above but set the p-value threshold to 1, so as not to
exclude further variants. Then, | sampled randomly different numbers of
variants (5,000; 10,000; 20,000; 40,000; 60,000 and 80,000) and
calculated the corresponding PS. Each random PS setting was repeated
ten times. The accumulation of these random PSs were compared to the
expected results with truly zero effect estimates. For this, | generated an
additional 1,000 simulated PSs, where their effect estimates were
sampled from a normal distribution with a mean of zero and standard
deviation corresponding to the standard error of the variant in GWAS.
These 1,000 PSs were then used to define the 95%-confidence interval
for the PS difference between the two populations.
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5 RESULTS

5.1 GENETIC STRUCTURE IN FINLAND (STUDY I)

5.1.1 COMPARING STANDARD PCA AND CHROMOPAINTER

To motivate the usage of computationally intensive haplotype-based
ChromoPainter over an efficient principal component analysis (PCA), we
started with a comparison of these two methods. We ran a standard PCA
on a set of unlinked variants and a custom PCA on a haplotype-based
coancestry matrix of ChromoPainter program using 1,042
geographically evenly distributed FINRISK samples whose parents were
born within 80 km from each other. Figure 13 shows that, while the
standard PCA identifies West-East and South-North structure well,
ChromoPainter separates, for example, individuals of Ostrobothnia
(OST) from the individuals of Southwestern Finland (SWF) more clearly.
We also compared the two methods quantitatively (see original
publication of Study I) and showed that ChromoPainter clustered
individuals from the northern and eastern parts of Finland more tightly
together than the standard PCA, and only in Tavastia (TAV) did the
standard PCA cluster individuals more tightly together than
ChromoPainter. In the other regions, the difference was not significant.
Taken together, these results demonstrated that haplotype-based
methods show more potential in detecting fine-scale genetic structure
than the standard PCA.
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Figure 13. A) A custom principal component analysis (PCA) on a haplotype-
based coancestry matrix and B) a standard PCA with unlinked variants for 1,042
Finnish individuals. The colors on the PCA-plots correspond to the individuals’
geographic locations on the map. The figure is adapted from G3: Genes, Genomes,
Genetics 7(10), Kerminen et al. (2017) Fine-Scale Genetic Structure in Finland under
the Creative Commons Attribution License.

5.1.2 GENETIC BORDERLINE BETWEEN EAST AND WEST

We utilized haplotype-based methods and a geographically evenly
distributed sample of 1,042 individuals to identify the main genetic
division in Finland. The analysis identified two genetic populations, with
a pairwise-Fst of 0.002 (SE = 2 - 10°), one located in the western and
the other in the eastern parts of the country (Figure 14). Because of the
geographically dense and comprehensive sample, this division revealed,
for the first time, the geographic location of the genetic borderline
between the populations in East and West. The genetic borderline
curves across Finland starting from South Karelia and ends at the coast
of North Ostrobothnia.
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We compared this genetic borderline to two historical borders:
the early settlement border of the Middle Ages and the border of the
Treaty of Noteborg in 1323, as well as to the main dialect regions. The
genetic borderline revealed substantial similarity to the approximated
border of the Treaty of Noteborg, while it had clear discrepancies with
the settlement border in the central parts of the country. The dialect
regions showed two distinct differences to the genetic borderline. In the
South, the western population dominates the eastern dialect region, and
near the city of Oulu, the eastern population dominates the western
dialect region. In Study I, the genetic borderline was not compared to the
spread of different cultures in the Stone Age, but by comparing the result
in Figure 14 with the maps in Figure 8 (in section 2.4.1), it is notable that
the genetic borderline also closely resembles the spread of the Corded
Ware and the Kiukainen culture in the southwestern parts of the country.

.. - Eastem dialects
Western dialects

.
< "' o Je Also Swedish
Treaty of
Néteborg
Settlement
border

Figure 14. A) The main genetic populations in Finland are located in the East
(blue) and West (red). B) The comparison of genetic populations to the borders of
the early settlement region, Treaty of Néteborg and to the main dialect regions. The
figure is adapted from G3: Genes, Genomes, Genetics 7(10), Kerminen et al. (2017)
Fine-Scale Genetic Structure in Finland under the Creative Commons Attribution
License.

In addition to the analysis with 1,042 individuals (Study |), we repeated
the analysis of the western and eastern populations in Studies Il and IlI
with two different sample sizes (N = 2,741 and 2,376, respectively).
Despite the striking similarities between the three analyses, in the largest
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sample set, Lapland was clustered into the eastern population, while, in
the two smaller analyses, it was part of the western population. Together
with the results of PCA, where individuals from Lapland are distributed
along the East-West component (Figure 13), it seems that the population
of Lapland cannot be consistently assigned to either the western or
eastern population as a whole; rather, the individuals form a continuum
between West and East.

5.1.3 FINE-SCALE GENETIC POPULATIONS

To utilize the full potential of haplotype-based methods, we
characterized the fine-scale genetic structure in Finland with an
unprecedented level of detail. Using the sample of 1,042 individuals, the
FineSTRUCTURE program identified 52 small, genetically
homogeneous groups and merged them into higher-level populations.
We verified that, at the level of 17 fine-scale populations, the populations
were robust to varying sample sizes and had at least 25 individuals each.

The 17 fine-scale populations, shown and named in Figure 15,
cover all other parts of Finland except Lapland and Aland Islands evenly,
and are geographically tightly clustered with an exception of population
P6. This population is mostly located in the southeastern corner of the
country but is also scattered across the genetic borderline of East and
West. When we compared the age distribution of the samples, we
observed that the P6 population was slightly younger (median birth year
1957) than the other populations (median birth year 1950). In addition,
P6 showed small and equal pairwise-Fst values to all other populations
independent of their status between East and West. Additionally,
according to the ancestry analyses in Study Il, the individuals in P6 were
shown to share 70% of ancestry from the East and 30% from the West
(unpublished results) suggesting that FineSTRUCTURE clustered
together individuals of admixed background.

Because FineSTRUCTURE provides a tree-building algorithm
that was observed to be affected by the sample size, we developed our
own algorithm based on total variation distance (TVD) for inferring
relationships between population and compared this newly generated
TVD-tree to the original FineSTRUCTURE-tree. The TVD-tree showed
more robust results with respect to the sample size than
FineSTRUCTURE-tree in our data, and thus the relationships of the 17
populations are shown with the TVD-tree in Figure 15B. The TVD-tree
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shows that, after the division into East and West, both populations are
divided in North-South direction, and the further splits demonstrate that
the fine-scale populations are equally sized and geographically clustered
around the country.

In addition to comparing the main dialect regions, we compared
the fine-scale populations to the more detailed dialect regions (Figure
15C). This comparison showed that, in both the East and West, the
genetic populations closely follow the dialect regions. The fine-scale
populations most accurately follow the dialect border in South
Ostrobothnia, Southwestern Finland, and in Lapland. In the Savonian
dialect region, there are multiple genetic populations but they correspond
well to the subdialect regions. On the contrary, the dialect region of Mid-
and North Ostrobothnia contains individuals from multiple populations
that also extend outside of the dialect region.
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5.2 GENETIC ANCESTRY WITHIN FINLAND (STUDY lII)

The fine-scale genetic structure, identified in Study |, focused on the
individuals whose parents were born close to each other (under 80 km)
and who thus were expected to have a relatively homogeneous
background. However, this criterion of parents born close to each other
excludes a majority of the FINRISK samples and describes the genetic
structure only as present at the beginning of the 20th century. To get a
more comprehensive understanding of the genetic background of the
Finnish population, we developed and tested a framework to detect
individual-level genetic ancestry within Finland in Study II.

5.21 FINE-SCALE REFERENCE GROUPS DETECT GENETIC
ANCESTRY
Estimation of genetic ancestry builds on two resources: statistical
methods and reference data. In Study Il, we aimed to estimate the
genetic ancestry within Finland by utilizing an existing statistical method
implemented in the SOURCEFIND®? program, and by characterizing
easily interpretable and reliable reference groups. By following the
procedure described in section 4.7.1, we identified three sets of
reference groups that can be used for estimating ancestry with different
levels of detail. The reference groups in refset 2 capture the genetic
ancestry between the main division of East and West (Figure 16 A) and
match well with the eastern and western populations identified in Study
I. However, | note that the reference individuals located in Lapland are
part of R2-East reference group in contrast to the previous results.
Furthermore, the reference groups in refsets 6 and 10
capture genetic ancestry with an exceptional level of detail: Refset 6
identifies two groups in the West and four groups in the East, while refset
10 identifies four additional groups, one in East Lapland and three along
the genetic borderline between East and West. The pairwise-Fst values
(see manuscript of Study Il) show that the smallest difference, 0.002, is
between the groups called R10-Evacuated and R10-Central_Finland,
while the largest difference, Fst = 0.007, is between R10-Kainuu and
R10-Bothnia, corresponding well to the Fsrt-values that were seen
between the fine-scale populations in Study |. While these 10 groups do
not exactly match all the 17 fine-scale populations identified in Study |,
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they represent the geographic regions in Finland well and show sufficient
genetic differentiation to serve as reference groups.

To test whether the identified reference groups can reliably
detect ancestry, we simulated offspring using real-world data and
compared the ancestry estimates of our framework to the geographic
origin of the true ancestors of the simulated individuals. The simulations
were conducted in two scenarios where the ancestors of the simulated
offspring originated: 1) broadly from the East and West; and 2) from
seven more detailed regions (see Figure 12) that approximately match
the locations of the reference groups in refset 6 and some in refset 10.

@ R2-West
@ R2-East

4. @ R6/10-Southwest
« @ R6/10-West_Lapland
@ R6/10-Savo-Karelia
._% @ R6/10-Kainuu
R6&/10-Bothnia

ﬁrc R6/10-Kuusamo
R @ R10-Evacuated
&, > a © R10-Kokkola
. = 2" @ R10-Central_Finland
i ‘3‘%‘ ~ R10-East_Lapland

Figure 16. The geographic location of the reference groups used to detect
genetic ancestry within Finland in A) refset 2, B) refset 6, and C) refset 10. The
legend on the right shows the names of the reference groups. The figure is reprinted
from the manuscript Kerminen et al. (2020) Changes in the fine-scale genetic
structure of Finland through the 20th century.

The first simulation scenario, with ancestors from A-East and A-West,
demonstrated that the refset 2 can accurately detect one ancestor
coming from either of the populations 4 generations back. This result
suggest that we can reliably estimate ancestry proportions that are 6%
or larger with refset 2. The second simulation scenario, with the refset 6
and refset 10, demonstrated that we can accurately estimate the main
source of ancestry from any region 3 generations back but the minor
source of ancestry is underestimated if it comes from 2 or more
generations back and the correct source of the minor ancestry is difficult
to identify from 3 or more generations back. We should keep in mind
that, as these simulations were based on real-world data, we do not
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know the correct genetic ancestry profile and the expected ancestry is
based on the geographic origin of the ancestors.

5.2.2 CHANGES IN GENETIC ANCESTRY IN THE 20™ CENTURY

To characterize the admixture spectrum of genetic ancestry in Finland,
we applied the framework of genetic ancestry estimation to 18,463
individuals from the FINRISK Study. These individuals were born all
around Finland between 1923 and 1987 and allowed us to examine the
changes in the genetic structure through a major part of the 20" century.

We grouped the 18,463 individuals into 12 groups based on their
birth region, shown in Figure 17 and Figure 18, and averaged the
individuals’ ancestry estimates stratified by their birth years using a local
regression (LOESS). Figure 17 shows the changes in the proportion of
ancestry from R-West and R-East per region. Unsurprisingly, the
western ancestry dominates the southwestern regions, SOF, SWF, TAV
and OST, and the eastern ancestry dominates the regions of LAP, KAI,
NOS, NSA, NKA, SSA, and SKA during the whole period. However, we
detect significant changes in the proportions over time. The most
dramatic change happened in CNF, where the eastern ancestry has
increased and displaced the western ancestry as the largest source in
the 1970s. Smaller changes were also detected, for example, in SOF
and TAV, where the western component has decreased over 20
percentage points between 1930 and 1980. In OST, NOS, KAI, LAP, and
SKA, the ancestry proportion has remained fairly constant with only
some small fluctuation.

In Figure 18, we illustrate the changes in the genetic ancestry
using the reference groups in refset 10. The results using refset 6 closely
reflect the results of refset 10 and are shown in Study Il. Overall, we
detect similar behavior as with refset 2: the dominant ancestry originates
from the nearest reference group and its proportion is often decreasing
with time, suggesting that the genetic ancestry is diversifying with time.
Interestingly, we also detect a few rapid changes that, in some cases,
can be dated almost within the precision of one year. For example, in
TAV and SWF, we detect a sharp increase in the R10-Evacuated
ancestry (purple) in 1940. The increase in this ancestry source can be
detected in all other regions, except in SKA and KAI. Table 3 compares
the proportions of WWII evacuees in Finland, based on Paukkunen
(1989)'?"| to the genetic ancestry estimates in 1950 and shows that the
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genetic estimates are slightly higher than the recorded proportions of
evacuees.

Table 3. The proportion of Karelian evacuees (from CKA) and the estimated genetic
ancestry proportion of R10-Evacuated reference group in different regions in the year
1950. Comparisons with other regions was not feasible due to regional changes
since 1950. The table is adapted from the manuscript Kerminen et al. (2020) Annual
changes in the fine-scale genetic structure of Finland through the 20th century.

Proportion Genetic ancestry
Region of evacuees estimate (95% Cl)
SOF 0.11 0.19 (0.18-0.21)
SWF 0.09 0.11  (0.10-0.12)
TAV 0.12 0.17  (0.15-0.20)
OST 0.05 0.07 (0.04-0.10)
NOS+KAI 0.03 0.07 (0.07-0.08)
LAP 0.04 0.08  (0.07-0.09)
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5.3 GENETIC STRUCTURE AND POLYGENIC SCORES
(STUDY Il

A polygenic score (PS) is a quantitative measure that summarizes the
set of individual's genotypes after weighting them with the corresponding
effect estimate from a GWAS. If we knew exactly which variants
contribute to the disease or trait of interest, we could use polygenic
scores to predict the differences also between individuals from different
populations. However, the current polygenic scores can integrate
information from tens of thousands to millions of variants, and thus even
a tiny bias in the effect estimates of the underlying data can lead to
flawed interpretations. It is especially critical to understand whether such
biases exist, whether they amplify the differences in polygenic prediction
between populations, and further affect the individual risk estimation. In
Study lll, we assessed the geographic variation and biases related to
genetic structure in polygenic scores between the eastern and western
populations in Finland.

5.3.1 POLYGENIC SCORES SHOW GEOGRAPHIC VARIATION

To evaluate the geographic variation in PS in Finland, we built polygenic
scores for 5 diseases: coronary artery disease (CAD), rheumatoid
arthritis (RA), Crohn’s diseases (CD), ulcerative colitis (UC), and
schizophrenia (SCZ), along with 3 quantitative traits: height (HG), body
mass index (BMI) and waist-hip ratio (WHR), based on large
international GWAS meta-analyses. We calculated these PS for 2,376
individuals from FINRISK. Then, by utilizing the geographic location
information of the individuals, we generated risk maps that described the
geographic distribution of the polygenic scores (Figure 19). These maps
showed geographic differences for the PS of CAD, RA, SCZ, BMI, WHR
and HG in East-West direction (statistics shown in Study Ill). In South-
North direction, there were significant differences only for HG and WHR.
PS of CD and UC did not show any significant geographic differences.
As most of the maps showed suspiciously similar patterns to the
main genetic structure in Finland, we took a closer look at the observed
differences in the quantitative traits. Especially for HG, the difference
between East and West was peculiarly large, over 1.5 SD-units. In our
sample, Eastern Finns were observed to be 1.7 cm shorter on average
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than Western Finns. When the 1.5 SD-unit difference in PS of HG was
translated into a natural scale, it corresponded to 3.5 cm difference
dramatically overestimating the observed phenotypic difference,
especially when considering that the PS of HG explained only 14% of
the variance in height. Similarly, the differences in PS of BMI and WHR
showed exaggerated differences when compared to their phenotypic
counterparts.

A CAD (p=1.6e-4) B RA (p=5.5e-5) C CD (p=8.7e-1) D UC (p=2.2e-1)

q

q
E SCZ (p=4.4e-3) F BMI (p=1.8e-3) G WHR (p=4.7e-12) H HG (p=2.1e-60)

7y

Figure 19. Geographic distribution of polygenic scores (PS) of complex
diseases and traits in Finland. The scale corresponds to the standard deviation units
of each PS distribution. The values above the maps correspond to the p-value of PS
association with longitude. A) CAD = Coronary artery disease, B) RA = Rheumatoid
arthritis, C) CD = Crohn’s disease, D) UC = Ulcerative colitis, E) SCZ =
Schizophrenia, F) BMI = Body mass index, G) WHR = Waist-hip ratio, H) HG =
Height. The figure is reproduced from AJHG 104(6), Kerminen et al. (2019)
Geographic Variation and Bias in the Polygenic Scores of Complex Diseases and
Trait in Finland with permission from the publisher.

5.3.2 GENETIC STRUCTURE CAN BIAS POLYGENIC PREDICTION

Polygenic scores have been shown to exaggerate differences between
genetically distant, continental populations such as African, Asian and
European populations® '2°. The above results caused concerns about
whether similar biases can arise even within more homogeneous
populations, such as between Eastern and Western Finns. We assessed
possible biases in our PS using adult height as a model trait. We
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compared three polygenic scores, built based on different summary
statistics (GIANT, UKBB, FINRISK), and observed considerable
differences in their predicted height difference between Eastern and
Western Finland. While UKBB predicted only a 0.6 cm difference,
FINRISK predicted a 1.7 cm difference and GIANT over a 3.5 cm
difference. Furthermore, we compared additional polygenic scores
utilizing different p-value thresholds and number of variants, and we
were able to show that, especially GIANT-PS accumulated differences
between East and West when the number of variants in PS increased.
These results suggested that the existing summary statistics from large
GWAS can contain subtle biases that can lead to unrealistically large PS
differences between closely related populations.

To easily identify such biases in the summary statistics, we
developed a new approach. The approach built additional PS using a
random set of weakly associated variants from the original summary
statistics and compared the accumulation of difference between
populations when the number of variants was increased. We applied the
approach to all eight PS and Figure 20 shows bias accumulation in all
quantitative traits, HG, BMI, and WHR, that were based on the summary
statistics from the GIANT consortium (2015). In addition, a bias
accumulation was detected for summary statistics of CAD but not for
other diseases in this analysis.
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Figure 20. Accumulation of differences between Eastern Finland (EF) and

Western Finland (WF) in polygenic scores (PS) built on weakly associated variants.
The dots represent the absolute value of the PS difference between EF and WF with
different numbers of independent, weakly associated variants (mean and the range
of 10 scores are shown). The solid region shows the 95% probability interval above
which PS are interpreted as showing a bias accumulation. The figure is reproduced
from AJHG 104(6), Kerminen ef al. (2019) Geographic Variation and Bias in the
Polygenic Scores of Complex Diseases and Trait in Finland with permission from the
publisher.
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6 DISCUSSION

The genetic structure of a population is routinely controlled as a
confounder in genome-wide association studies and the growing interest
to utilize polygenic scores, derived from those analyses, has forced the
genetic community to better understand the role of genetic structure in
current analyses. In Finland, a large-scale biobank study, the FinnGen
Project, is currently analyzing hundreds of thousands of samples and
aims to translate the genomic information into health-care solutions. To
ensure the success and equally distributed benefits between genetically
diverse populations, a thorough understanding of genetic structure in
Finland is required. This thesis presents the fine-scale genetic structure
in Finland, illustrates the regional changes in the genetic structure during
the 20™ century, and underlines a comprehensive understanding of the
connection between the genetic structure and polygenic scores.

6.1 GENETIC STRUCTURE IN FINLAND

In the real-world, natural populations are rarely discrete but show
continuous genetic variation across geographic regions. Here, in Study
I, the fine-scale genetic structure of Finland was modeled using only
individuals whose parents were born close to each other and by utilizing
a clustering-based FineSTRUCTURE program. Such an approach limits
our understanding of the real-world genetic structure, first, by excluding
a large part of the sample whose parents are not from the same
geographic background, and second, by giving an unrealistically discrete
picture of the genetic populations highlighting boundaries between the
populations. However, the clustering-based approach enables clear
visualization of results, and, together with admixture-type analyses, can
simplify the interpretation of results. In the following, the fine-scale
genetic structure of Finland is discussed as it appeared in the results,
while acknowledging that the underlying structure is more continuous
and diverse than the results are able to easily summarize.

Eastern and Western populations
The genetic division into Eastern and Western Finland has been
acknowledged for decades'!0: 139, 140, 147-149, 153, 154, 161 Kyt a purely
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genetically defined location of that borderline between East and West
has been missing. Here, by utilizing genome-wide SNP data, a
geographically comprehensive sample and modern haplotype-based
methods, we were able to accurately locate the borderline between
Eastern and Western populations. Comparing to the prehistoric, historic,
and dialect regions demonstrated several similarities to the genetic
borderline, and in Study |, the border of the Treaty of Noteborg was
highlighted as a particularly close match to the genetic borderline.
However, the genetic borderline shares features with most East-West
borderlines, from the Corded Ware culture in the Stone Age to the main
dialect regions today. Therefore, it is unlikely that the genetic borderline
we see today is a result of a single historical event but rather a result of
a long-term process with consecutive influences from East and West that
have been reinforced by the population growth. Considering also the
results presented in Study I, it should also be emphasized that the
genetic borderline between East and West is not a strict division into two
separate populations, but a gradual transition between the two
populations.

The analyses, repeated with different sample sizes,
demonstrated that the individuals in Lapland were clustered into West
with the smaller sample sizes and into East with the larger sample. This
could be explained by the fact that, in the smaller data sets, Lapland had
a limited and western-biased sample. However, the northern Finns also
showed rather independent genetic characteristics as they were the next
to separate after the East-West split in both PCA and FineSTRUCTURE
analyses, and they have been shown to exhibit strong internal
structure'®. Thus, it can be artificial to model the Northern Finns as only
Eastern or only Western Finns, but instead, their own particular genetic
characteristics should be considered, also including the possible
ancestry from the Sami. Thus, the clustering of Lapland is heavily
affected by the relative proportions of the ancestry of the sampled
individuals, and the region would benefit from a larger haplotype-based
study of its own.

Fine-scale genetic populations

The identification of fine-scale populations revealed dozens of previously
unseen genetic populations from which 17 higher-level populations were
geographically tightly clustered and covered mainland Finland evenly,
and agree well with the results of other haplotype-based analyses®! 163,
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The result reflects the known population history of Finland as a relatively
young population with a long-standing isolation-by-distance within the
country. This observation is emphasized when our results are compared
to the similar analyses in other countries, e.g., in the UK®® and in
Denmark'®?, where notable genetic homogeneity was found. For
example, while the first FineSTRUCTURE analysis from the UK
identified 53 fine-scale genetic populations, it still clustered almost half
of the individuals into one population covering most parts of England,
excluding only the southwestern parts. The difference to our results is
striking when it is considered that, in the UK study, they examined the
genetic structure of individuals whose all four grandparents were born
near each other, while in our analysis, the genetic structure was
examined only at the level of the parents.

In the analyses of Middle and Southern European countries,
such as in France®, Spain®' and the Netherlands'®, the fine-scale
population structure has been partly explained by physical barriers such
as rivers and hills. In our analyses, we did not recognize similar
geographic explanations for the fine-scale structure, which highlights the
importance of the isolation-by-distance phenomenon. Contrary to the
European countries mentioned above, in Finland the rivers and lakes
have most likely been important passageways connecting regions
dominated by forests and wilderness. For example, the population P12
in Figure 15 seems to be distributed along the river li. However, the
resolution of this study is not sufficient for more than a speculative
interpretation of the role of geographic barriers in Finland because the
location information was at the municipality level only.

While the fine-scale genetic structure presented here provides a
good foundation for the ongoing genetic studies, the increasing sample
size in the future will provide new opportunities to detect even more
details. However, | consider it more interesting to study the current
results together with genetic data from neighboring populations
(Sweden, Estonia, Russia), as is already studied in the populations of
Estonia’®*, France®® and the Neatherland®?, to gain a broader context on
the relationships of the populations within and outside of Finland.
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6.2 CHANGES IN THE REGIONAL GENETIC
STRUCTURE

Genetic structure is often seen as a static snapshot of the sample at
hand. Nonetheless, gene flow due to migration can shape the genetic
composition of a population substantially and rapidly. An evident
example is the migration to the Americas starting from the 1500s, both
due to the forced slave trade and voluntary immigration across the globe
that has transformed the native American gene pool into a
heterogeneous mixture of global ancestries over the last five hundred
years*® 4% 19 |n Finland, the migration and admixture patterns have
been much subtler but, by combining modern haplotype-based methods
with birth-year and birth-place information, we were able to track detailed
changes in the regional genetic structure in Finland within the last
century. While our results mirrored closely the recent population history,
they also demonstrated that the genetic composition on small
geographic areas can change surprisingly rapidly.

The changes in the regional genetic structure within Finland
demonstrated a general trend of a decrease in the dominant ancestry
component. With refset 2, this trend was strongest in the central and
southern parts of Finland and weakest in the northern and eastern
regions, suggesting that the direction of the gene flow during the 20"
century has headed from East to West. While a confirmation for this
observation would require a detailed investigation of the Finnish
migration records, it is at least supported by the fact that the four largest
cities, Helsinki (including the entire capital region), Tampere, Oulu, and
Turku, are located in the western parts of the country. Along with the
decrease in the dominant ancestry component, the proportions of other
ancestry components increased steadily, implying that the genetic
ancestry profiles have diversified in many regions during the century.
This diversification is assumed to have continued along with the
expansion of urbanization and immigration towards the end of the 20"
century'®,

On top of the general trends, the ancestry curves revealed some
very rapid changes that, in some cases, could be detected with an
annual accuracy. The most prominent example was the increase in the
Evacuated ancestry in the 1940s, which matched well with the actual
migration of the WWII evacuees from the ceded Karelian regions. The
increase in the Evacuated component was the strongest in the southern,
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western, and central parts of Finland, and weakest in northern Finland,
which was consistent with the historical records'?’. Although there
seemed to be a slight overestimation in the genetic ancestry of R10-
Evacuated reference group. In the regions genetically most closely
related to the evacuated Karelian people, such as in South and North
Karelia, the estimates of war-related migration could not be reliably
inferred with the genetic approach presented here. Together, the results
concretely demonstrate the power of genetics to reveal historical events
and argue that a collection of older and/or more diverse samples may
uncover already forgotten events. As the genetic structure continues to
develop, a younger sample with individuals born in the 1990s and after
would provide an exciting extension for the period covered here and offer
a glimpse of today’s the genetic structure.

6.3 GENETIC ANCESTRY ESTIMATION

Here, the genetic ancestry was estimated as a genetic similarity to
predefined reference groups. The main limitation of such an approach is
that the results are always heavily dependent on the references used
and can even ignore major sources of ancestries that are not included in
the reference set. In Study Il, the reference groups covered most
geographic regions of Finland well, and in refset 10, only regions near
the cities of Helsinki, in Southern Finland, and Oulu, in North
Ostrobothnia, were without a representative reference population.
Indeed, the regions of Southern Finland and North Ostrobothnia, lacking
a clear reference population of their own, showed considerably diverse
ancestry profiles. In addition, Study Il did not include reference samples
from minority groups within Finland, e.g., the Sami people, and hence
additional studies would be needed to examine the contribution of
minority groups to the Finnish gene pool. Also, the future studies
combining modern and ancient data both from Finland and abroad would
shed light on the population history more broadly.

Despite the possible limitations, the simulations with real-world
data showed that the given references groups were able to accurately
estimate the expected geographic origin. With refset 2, the ancestry from
East or West was confidently detected, if 1 out of 16 grandparents
(corresponding to around 6% of ancestry) 4 generation back originated
from that reference group. With refset 6 and 10, the detectability was
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weaker but permitted identifying the source of ancestry coming from at
least 1 out of the 4 grandparents.

Estimation of an individual’s genetic ancestry is of great interest
among the general public, but it is also useful in genetic studies of
disease and traits. A recent study has, for example, shown that ancestry
estimation can improve the genetic prediction in recently admixed
individuals by modeling partial polygenic scores based on the
individual’s local ancestry'?'. Thus, in addition to detecting the historical
events discussed above, the ancestry estimation presented here could
be employed to improve the genetic risk estimation in Finland.

6.4 POLYGENIC SCORES IN FINLAND

Polygenic scores (PSs) are currently extensively used in genetic studies
and their utilization in health care settings is anticipated''®. PSs could be
used to better identify individuals at high risk but also to motivate patients
toward better lifestyle choices. Nonetheless, PSs are criticized for being
weak in individual risk assessment. Also, PSs have been shown to be a
poor tool for quantifying genetic risk differences between distant
populations, such as Europeans and Africans® '?°. In Study lIl, we
assessed the polygenic score variation within Finland, and the results
demonstrated that similar problems of comparing genetic risk differences
between populations can manifest even between much more closely
related populations.

By focusing on height as a model trait, we showed that PSs
derived from different summary statistics can predict varying differences
between the Finnish subpopulations. In particular, the PS derived from
the results of the GIANT consortium''® showed the most exaggerated
differences. A more detailed examination revealed a substantial
accumulation of differences along with the increasing number of variants
in GIANT-PS, suggesting a small but consistent directional bias in effect
estimates that aligns with the main genetic structure in Finland. Further
analyses showed that an exclusion of the Finnish samples from the
GIANT meta-analysis approximately halved the differences but a
considerable bias still remained. Two other studies have also reported
serious biases in the same GIANT data’'® "7, but the exact mechanism
of such a bias still remains unexplained. Our approach to detect a bias
accumulation in PS between two populations revealed that also waist-
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hip ratio and body mass index from the GIANT consortium and coronary
artery disease from CARDIoGRAMplusC4D'® suffered from
considerable biases. Nonetheless, it should be noted that possible new
analyses of these consortiums and traits may not entail such biases and
the existing and future summary statistic should be separately tested for
possible biases.

Although PS of coronary artery disease and the quantitative
traits showed considerable bias accumulation, the same was not
observed for the other diseases even though some of them showed
geographic differences in their disease incidence. PS of schizophrenia
did not show a considerable bias accumulation but it showed some
geographic variation. The extensive prevalence information of
schizophrenia’®2% in Finland shows the lowest rates in the
southwestern corner of Finland consistent with the PS distribution,
suggesting that population-genetic factors behind the regional variation
in schizophrenia prevalence should not be excluded. The regional
prevalence and incidence information for the other diseases is however
more limited. For rheumatoid arthritis, PS again showed higher risk in
Eastern than in Western Finland, and a study?® looking at the incidence
of the disease itself reports higher incidence rates in North Karelia (in
the East) and lower in Ostrobothnia (in the West), but does not include
the northern or southwestern parts of Finland in the analysis. For
ulcerative colitis and Crohn’s disease, the geographic differences in PS
were not significant and only a subtle difference between the South and
the North'' and between urban and rural regions?** have been reported
before. Together these examples indicate both the challenge but also
the potential of polygenic scores in helping us understand the role of
genetic structure in the regional differences of diseases and traits.
Further studies combining comprehensive prevalence information with
genetic and environmental data, as well as unambiguous methods for
translating PS difference into a prevalence scale, are needed to reveal
the role of genetic factors in regional heath differences.

6.5 POPULATION GENETICS AND THE GENERAL
PUBLIC

Population genetics is of interest to the general public, because it can
provide new and sometimes unexpected answers to the fundamental
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questions of our origin and identity. Indeed, millions of people have
already taken commercial ancestry tests provided by private
companies®®. People are often using these tests to discover their
genetic origin and for tracking unknown relatives to build personal
genealogies. However, the companies are also providing information
about customers’ genetic health and disease risk, and both the private
and public large-scale data repositories are being collected and further
used both for commercial and scientific purposes?®®. Therefore, the
interface of population genetics and the general public is tightly linked to
the current challenges of human genetics in general. Three main
challenges are summarized below.

First, privacy and data protection have become a central part in
genetics research. Similar to any personal data, genetic data are
sensitive information, potentially identifying individuals. However, a
special feature of genetic data is that they may also lead to identifying
relatives. Along with the growing number and size of public and private
databases, also the risks of misuse and information leakage increase.
To maintain the trust and the personal safety of both patients and
customers and their relatives, the field of human genetics has worked—
and needs to continue working hard—to develop trustworthy and
transparent procedures for data management.

Second, ancestry and other genetic testing can reveal
unexpected results that are not always considered positive and thus can
cause serious distress. For example, the tests can unintentionally reveal
that the expected father is not the biological father or that an individual
has a substantial predisposition to a disease without any effective
treatment options. At the same time, such tests also reveal information
about the relatives of the tested person even though the relatives have
not themselves consented to any tests. Thus, a careful consideration of
the possible benefits contrasted with the possible disadvantages should
be done both by the professionals designing the tests and by the target
audience.

Third, genetics has been and is being misused to justify
discrimination, stigmatization, and even physical harm towards specific
groups of people, often minorities. The misuse often aims to explain
physical or behavior differences between groups but, as has been
demonstrated by multiple studies® "% 120 207 gnd by this thesis, it is
extremely challenging to robustly link phenotypic differences and genetic
differences between populations. This is because other factors, such as
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geographic location and related environmental factors—such as income
and education, as well as the possible technical problems—can
confound the results. Additionally, population genetics is misused to
pseudo-scientifically justify a hard classification of people. However,
such hard classification is rarely scientifically motivated because, while
showing geographic patterns, genetic variation is not a discrete variable
but a continuum?%® 209 While this continuum could be artificially split, as
is also done in academic studies for practical reasons, there is no
naturally motivated break or split points between populations. This is one
reason why the results of this thesis do not provide a definition of, e.g.,
a Karelian individual, an Eastern Finn, or a Finnish individual. To ensure
the understanding of these issues among the general public, the
research community needs to educate and openly communicate about
their research.

As part of the studies presented in this thesis, we have
communicated our science to the general public to promote open
research and learning, both of which are also part of the strategic plan
of the University of Helsinki 2021-2030%'°. In addition to the articles
published as open access, we published (as a part of the studies | and
II) web pages where the results of our research could be examined. The
web page for Study | (https://www.fimm.fi/en/research/projects/
finnpopgen) received 20,000 visitors within a month after the study was
published and attracted also media attention from large Finnish
newspapers such as Helsingin Sanomat?!" and lita-Sanomat?'2. | believe
that this demonstrates the great interest of the general public towards
population genetics, which will hopefully translate into active
participation in future research.
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7 CONCLUSIONS

Genetic studies have entered the biobank era, in which hundreds of
thousands of samples are automatically analyzed and the utilization of
the results in a health-care setting is anticipated. Polygenic scores are a
state-of-the-art tool for translating the genetic information into
interpretable measures. However, polygenic scores suffer from issues
closely related to population genetics. The lack of diversity in GWAS
studies, poor translation between populations as well as biased effect
estimates can endanger the quality of these tools and hinder their
adoption in health care. A thorough understanding of population genetics
and genetic structure is a key component for solving these challenges.
At the same time, population genetic data can provide us a fascinating
insight into the population history.

This doctoral thesis characterized novel details about the genetic
structure of Finland during the 20th century and argues that the
geographic variation and bias in polygenic scores of complex diseases
are often tightly connected to this structure in Finland.

The results of the genetic structure provide fine-scale details in
terms of both the geographic and temporal structure. The work identified
17 geographically clustered and robust populations within Finland and
mapped the changes in the regional structure with annual accuracy. The
results brought our understanding of Finland’s genetic structure into the
age of haplotype-based methods. The work also serves as an example
of estimating genetic ancestry within a single country as well as a
platform for biobank-scale ancestry estimation in Finland. In the future,
the results can be used as a basis for improved control of genetic
structure in genome-wide association studies. However, to gain richer
insight into the population history further back in time, comparative
studies including a wide range of neighboring populations and ancient
DNA samples are needed.

Moreover, the work demonstrated that the geographic variation
in polygenic scores, at least partly, arises from population-genetic biases
that are not yet fully understood. Thus, polygenic scores should not be
used to explain health differences between populations before the exact
mechanism of population-genetic biases in polygenic scores are
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understood. Nevertheless, the results do not exclude genetic factors as
a component underlying the geographic variation in diseases and traits.
To understand and overcome the challenges of polygenic risk prediction
for the benefit of human health, the increase in sample sizes and
methodological improvements, alone, are not sufficient. For efforts to
truly overcome these challenges, a thorough understanding on the
general genetic variation in human populations is needed.
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