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Plants live in a world where they are challenged by abiotic and biotic stresses. In response to unfavorable 

conditions or an acute challenge like a pathogen attack, plants employ various signaling pathways that 

regulate expression of defense genes and other mechanisms to provide resistance or stress adaptation. 

Identification of the regulatory steps in defense signaling has seen much progress in recent years. Many of 

the identified signaling pathways show interactions with each other, exemplified by the modulation of the 

jasmonic acid response by salicylic acid. Accordingly, defense regulation is more appropriately thought of as 

a web of interactions, rather than linear pathways. Here we describe various regulatory components and how 

they interact to provide an appropriate defense response. One of the common assays to monitor the output of 

defense signaling, as well as interaction between signaling pathways, is the measurement of altered gene 

expression. We illustrate that, while this is a suitable assays to monitor defense regulation, it can also 

inadvertently provide overstated conclusions about interaction among signaling pathways.        

 

Abbreviations: – 1O2, singlet oxygen; ABA, abscisic acid; aba3, abscisic acid deficient3; abi1, abscisic acid 

insensitive1; acd, accelerated cell death; agb1, GTP binding protein beta1; ARGOS, AUXIN-

REGULATED GENE INVOLVED IN ORGAN SIZE; BAK1, BRI1-ASSOCIATED RECEPTOR 

KINASE1; BIK1, BOTRYTIS-INDUCED KINASE1; BOI1, BOS1 INTERACTOR1; BOS1, BOTRYTIS 

SENSITIVE1; CERK1, CHITIN ELICITOR RECEPTOR KINASE1; COI1, CORONATINE 

INSENSITIVE1; DAMP, damage associated molecular pattern; EDS1, ENHANCED DISEASE 

SUSCEPTIBILITY1; EFR, ELONGATION FACTOR-TU RECEPTOR; EIN2, ETHYLENE 

INSENSITIVE2; ERF6, ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR6; ET, ethylene; ETI, 

effector triggered immunity; FLS2, FLAGELLIN-SENSITIVE2; GA, gibberellic acid; H2O2, hydrogen 

peroxide; HO•, hydroxyl radical; HR, hypersensitive response; HSFA4, HEAT SHOCK FACTOR A4A; JA, 

jasmonic acid; JAZ, JASMONATE-ZIM-DOMAIN; lsd, lesions simulating disease resistance; MAP, 
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MITOGEN ACTIVATED PROTEIN; MeJA, methylJA; NADPH, nicotinamide adenine dinucleotide 

phosphate; NO, nitric oxide; NPR1, NONEXPRESSER OF PR GENES1; O2
•-, superoxide; O3, ozone; 

OPDA, oxo-phytodienoic acid; PAD4, PHYTOALEXIN DEFICIENT4; PAMP, pathogen associated 

molecular pattern; PDF1.2, PLANT DEFENSIN1.2; PR-1, PATHOGENESIS-RELATED GENE1; PTI, 

PAMP-triggred immunity; qPCR, real time quantitative reverse transcription PCR; RAP2.6, RELATED TO 

AP2 6; RBOH, RESPIRATORY BURST OXIDASE HOMOLOGUE; RLK, receptor like kinase; ROS, 

reactive oxygen species; SA, salicylic acid; SAG101, SENESCENCE-ASSOCIATED GENE101; SID2, 

SALICYLIC ACID INDUCTION DEFICIENT2; TF, transcription factor; XLG2, EXTRA-LARGE GTP-
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Introduction 

Signaling pathways interact in controlling and integrating all aspects of plant biology including plant 

development and stress signaling. In their natural environment plants experience a multitude of different 

growth conditions including fluctuating temperature, light, water and nutrient availability, air pollutants, and 

attack by pathogens and insects. In response to a sudden environmental change, plants rely on multiple 

signaling pathways to mount efficient defense responses with the ultimate aim to adapt and survive under 

suboptimal conditions. Different proteins and small molecules participate in defense signaling including 

MITOGEN ACTIVATED PROTEIN (MAP) kinases, transcription factors (TFs), reactive oxygen species 

(ROS), nitric oxide (NO) and Ca2+, and the hormones abscisic acid (ABA), ethylene, jasmonic acid (JA) and 

salicylic acid (SA; (Mignolet-Spruyt et al., 2016). Each of these components regulate specific branches in 

defense signaling, thus for optimized defense responses to occur it is likely that several signaling pathways 

are activated and interact to execute appropriate responses. Furthermore, the defense responses to one stress 

(e.g. pathogen infection) may be inappropriate for another (e.g. insect attack). Perhaps the best characterized 

output from defense signaling is altered gene expression, full genome transcriptome data is available for a 

vast number of biotic and abiotic experiments and can be studied in databases like Genevestigator 

(https://genevestigator.com/gv/). Furthermore, a small number of marker genes including PR-1 

(PATHOGENESIS-RELATED GENE1), a pathogen and SA induced gene, have gained near universal status 

as a marker to test for activation of SA signaling (van Loon et al., 2006), nowadays often done with real time 

quantitative reverse transcription PCR (qPCR). Typically, a full genome gene expression experiment will 

identify hundreds to thousands of differentially expressed genes. However, we know comparably less about 

the signal transductions pathways and TFs that regulate these changes in gene expression.   

While progress has been made in the identification of regulatory components for many different stress signal 

pathways, there is still a lack of information especially for the first perception of a stress and how signal 

pathways are initially activated. Here, the best documented defense signaling response is probably the 

response to pathogen attack, where both initial perception of the pathogen by receptor like kinases (RLKs) as 

well as activation of ROS, hormonal and kinase signaling cascades has been studied in great detail (Asai et 

al., 2002; Kim et al., 2014b; Kimura et al., 2017; Sun et al., 2013). The principle of multi-layered defense 

signaling is also illustrated by the response to pathogens: initial defense responses depend on pathogen 

associated molecular patterns (PAMP)-triggered immunity (PTI), where conserved structures, such as the 

bacterial flagellin peptide, flg22, are recognized by RLKs. Similar to PAMPs, molecular signatures of the 

damaged plant structures, so called damage associated molecular patters (DAMPs), can also be recognized 

by RLKs and trigger immunity. Some pathogens have developed effectors to block PTI responses, and in 

turn plants can recognize these effectors leading to effector triggered immunity (ETI) and mounting of 

efficient defenses (Dong et al., 2015; Li et al., 2016).  
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Interaction points must also exist between different abiotic stresses and between abiotic-biotic stresses, since 

for example the stress hormone ABA, a critical component in defenses related to cold, drought, and osmotic 

stress (Zhu, 2016), is also a regulator in the defense against the necrotrophic fungi Botrytis cinerea (Liu et 

al., 2015). Indeed, several plant hormone signaling pathways feature prominently in stress interactions. Our 

knowledge of plant stress signaling pathways is to a large extent derived from the model plant Arabidopsis 

thaliana, and especially mutant screens have yielded key insights. This includes the identification of the JA 

receptor COI1 (CORONATINE INSENSITIVE1), the essential ethylene signaling component EIN2 

(ETHYLENE INSENSITIVE2) and the SA co-transcriptional regulator NPR1 (NONEXPRESSER OF PR 

GENES1) (Robert-Seilaniantz et al., 2011). Here we review interaction points in defense signaling and 

components that integrate and regulate different signaling pathways, with a focus on what we have learned 

from Arabidopsis. 

ROS – a common signal molecule in defense signaling 

ROS are highly reactive molecules that include hydrogen peroxide (H2O2), superoxide (O2
•-), singlet oxygen 

(1O2), and hydroxyl radical (HO•). Inside the cell ROS are produced during photosynthesis in chloroplasts 

and in metabolic reactions in the mitochondria and peroxisomes. In these basic metabolic reactions ROS are 

quickly quenched in order to protect compounds including lipids, protein and DNA from harmful oxidation. 

In the apoplast ROS are mainly produced by NADPH oxidases (in plants known as RESPIRATORY BURST 

OXIDASE HOMOLOGUEs, RBOHs) and cell wall peroxidases. Although the traditional view of ROS is as 

harmful agents, they are now acknowledged as critical signaling intermediates in regulation of development 

and stress (Vaahtera et al., 2014). ROS signaling rarely functions alone; rather acting together with other 

signaling pathways, especially those mediated by plant hormones SA, JA, ABA and ethylene (Mignolet-

Spruyt et al., 2016). Many of the regulatory proteins in ROS signaling are the same as those identified from 

e.g. pathogen-induced signaling pathways and include MAP (MITOGEN ACTIVATED PROTEIN) kinases 

MPK3 and MPK6 (Ahlfors et al., 2004), and TFs including ERF6 (ETHYLENE RESPONSIVE ELEMENT 

BINDING FACTOR6) (Meng et al., 2013; Xu et al., 2015a). Importantly, ROS are regulators in both 

intracellular signaling and long distance cell to cell signaling (Fig. 1); (Miller et al., 2009).  

The large overlap between ROS- and pathogen-induced signaling can at least partially be explained by the 

ROS burst induced by the plant upon recognition of an ongoing pathogen attack (Vaahtera et al., 2014). One 

convenient tool to study the regulatory role of this ROS burst is to treat plants with the air pollutant ozone 

(O3) – which breaks down to O2
•- and H2O2 in the apoplast, and thus mimics a pathogen induced RBOH 

and/or peroxidase mediated ROS burst (Vaahtera et al., 2014). O3 treatments allow the study of apoplastic 

ROS and downstream signaling without the confounding factors of pathogen derived effectors, which would 

inevitably be part of an experimental design using a pathogen to initiate ROS signaling pathways. 

Early events after O3 treatment include activation of MPK signaling and altered gene expression (Ahlfors et 

al., 2004; Xu et al., 2015a). Furthermore, O3 initiates cell death signaling, which in sensitive genotypes 
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ultimately leads to large scale tissue collapse (Brosche et al., 2010; Xu et al., 2015a). The extent of cell death 

is experimentally easy to measure, hence through the use of Arabidopsis mutants defective in one or more 

signaling components it becomes possible to determine how different signaling components interact with 

ROS signaling. SA and ROS can form a positive interaction loop that promotes cell death, but at the same 

time SA is required to initiate defense signaling (Xu et al., 2015b). Hence, SA can be thought to act at the 

balance between too little and too strong activation of defenses. In O3-activated cell death, ethylene promotes 

cell death and JA protects against it, both showing mutual inhibitory effects (Fig. 1); (Tuominen et al., 2004; 

Xu et al., 2015a). The inhibition of JA signaling by ethylene is also observed during PTI signaling (Kim et 

al., 2014). Further highlighting the complexity in signal interaction, ethylene and JA also need to act together 

to regulate expression of some marker genes (Penninckx et al., 1998).  In addition, the extent of the 

interaction between ROS and hormones also depends on which experimental parameter is measured. In 

contrast to the clear interplay between ROS, JA and ethylene in the regulation of cell death, if instead gene 

expression is measured, the majority of transcriptome changes elicited by O3 are hormone independent (Xu 

et al., 2015a). This indicates that ROS also directly activate signal transduction pathways through e.g. 

oxidative posttranscriptional modifications (mostly on cysteine groups) and activation of kinases (Kimura et 

al., 2017). 

Interactions between SA – JA and beyond 

In plant defense signaling the interactions between the hormones SA and JA are probably the most well 

studied (Caarls et al., 2015). Typically, SA-mediated defenses are effective against pathogens with a 

biotrophic lifestyle, which require live host cells, whereas JA mediated defenses protect against insects or 

pathogens with a necrotrophic lifestyle, which kill host cells and derive nutrients from dead tissues.  

Multiple lines of evidence demonstrate that activation of SA signaling leads to the inhibition of JA signaling, 

both at the level of gene expression and ultimately plant immunity (Caarls et al., 2015; Spoel et al., 2007). A 

commonly used assay relies on treatments with MeJA (methylJA) to activate increased expression of the JA-

responsive marker gene PDF1.2. Simultaneous application of MeJA with SA blocks the induction of PDF1.2 

expression, and based on mutant analysis several proteins have been shown to regulate this interaction either 

directly, e.g. ORA59, or indirectly e.g. WRKY70, MYB44, TGA2, TGA5, TGA6 and NPR1 (Caarls et al., 

2015). Most of the regulators identified to date are either TFs or co-transcriptional regulators. Furthermore, 

the GCC-box promoter element bound by ORA59 is important for SA inhibition of JA signaling. A change 

in the redox balance of the cell is required as a signal up-stream from TFs for the SA-JA inhibition, since 

treatments with a glutathione biosynthesis inhibitor, as well as overexpression of a glutaredoxin GRX480 can 

interfere with PDF1.2 regulation (Caarls et al., 2015). Furthermore, the co-transcriptional regulator NPR1, 

essential for proper SA responses, is regulated by the cellular redox balance and numerous post-translational 

modifications including S-nitrosylation, sumoylation, and phosphorylation (Withers and Dong, 2016). 
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Intriguingly, another stress hormone, ABA, also directly targets the accumulation of NPR1, hence 

representing an inhibitory action of ABA on SA signaling (Ding et al., 2016a). 

Beyond the inhibitory action of SA on JA signaling, recently a positive interaction between these hormones 

was described. Activation of ETI signaling after infection with Pseudomonas syringae pv maculicola 

ES4326/avrRpt2 leads to increased production of both SA and JA (Liu et al., 2016). The increase in 

expression of JA-responsive genes required SA biosynthesis and the SA receptors NPR3 and NPR4 could 

directly regulate the stability of the JA repressor JAZ (JASMONATE-ZIM-DOMAIN) proteins (Liu et al., 

2016). Thus, SA can directly modify JA signaling by bypassing the classical JA – COI1 signaling pathway 

and instead act on the JAZ repressors to initiate JA signaling.  

To fully explore the interaction between SA and JA, as well as their interaction with ethylene and a defense 

regulator PAD4 (PHYTOALEXIN DEFICIENT4) a quadruple mutant (dde2 ein2 pad4 sid2) deficient in SA 

(sid2), JA (dde2), ethylene (ein2) and pad4 was analyzed in response to PTI, ETI and a necrotrophic fungi 

(Alternaria brassicicola; (Hillmer et al., 2017; Kim et al., 2014; Tsuda et al., 2009). In parallel all possible 

single, double and triple mutants were also analyzed. Strikingly, while all three hormones contribute to 

robust plant-immunity, the interaction is synergistic in PTI, which possibly facilitates signal amplification, 

whereas in ETI the interaction between hormones is compensatory, i.e. when one hormone signal pathway is 

lost – the remaining active signaling pathways can still activate defenses (Tsuda et al., 2009). Interactions 

between the hormones were also found, ethylene acts as an inhibitor of JA (and PAD4) signaling (Kim et al., 

2014), which is similar to the inhibitory effect of ethylene on JA signaling seen in O3-regulated cell death 

(Tuominen et al., 2004; Xu et al., 2015a). Furthermore, JA signaling can also activate SA signaling (Kim et 

al., 2014), highlighting that both co-operation and antagonism between signaling pathways are possible. 

High resolution time series analysis of flg22 transcriptome changes in the same set of single and higher order 

mutants was used to estimate the degree of co-operation and interactions among the stress hormones and 

PAD4 (Hillmer et al., 2017). Strikingly, flg22 activation of SA signaling is indirect, and requires prior 

activation of JA, ethylene and PAD4 signaling (Hillmer et al., 2017). The specific interaction seen in 

response to any given treatment is likely context dependent. Presumably, the interaction between different 

signaling pathways (like the SA-JA interaction) is dependent on the specific stress or growth conditions and 

provides plants with a robust defense-signaling network, capable of adapting to the environment.  

Fig. 1 reveals both the complexity of hormonal interactions and an inherent limitation of interaction studies. 

It seems with a broad enough literature search, it is likely to find at least one example of a given interaction 

going the opposite way to what was initially expected. One challenge in this research area, is the 

deconvolution of this apparent complexity, which is likely caused by several factors including differences in 

read outs and methods used, different experimental designs, and importantly, studies considering different 

time scales. 

The role of kinases 
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One of the earliest events after perception of abiotic and biotic stress is increased activity of mitogen-

activated protein (MAP) kinase cascades consisting of a MAPKKK (MAPK kinase kinase), a MAPKK 

(MAPK kinase) and a MAP kinase (Fig. 1). Especially MPK3, MPK4 and MPK6 are activated in response to 

many stresses (Meng and Zhang, 2013). Furthermore, MPK kinases are also regulated by subcellular re-

localization, for example MPK3 and MPK6 are rapidly activated by O3 treatment and translocated from the 

cytosol to the nucleus (Ahlfors et al., 2004). The increased MPK activity seen in response to most stresses 

indicate that they perform a general function required for plant defenses. Activated MAP kinases 

phosphorylate and regulate the activity of target proteins. Several MPK target-proteins are TFs, including 

MPK4-WRKY33, MPK3/MPK6-WRKY33, MPK3/MPK6-ERF6, MPK3/MPK6-HSFA4 (HEAT SHOCK 

FACTOR A4A) and MPK6-ZAT6, implying that one important role for MPK signaling is regulation of 

transcriptional responses in response to stress (Li et al., 2016; Liu et al., 2013; Meng et al., 2013; Perez-

Salamo et al., 2014). This is supported by the identification of numerous mis-regulated transcripts in mpk3, 

mpk4 and mpk6 mutants (Frey et al., 2014). Furthermore, signaling through MPK3 can confer both SA-

dependent and -independent regulation of SA-responsive genes (Genot et al., 2017; Tsuda et al., 2013). 

However, since MPKs are activated in response to most stresses, this also raises the question of how stress-

specific responses are achieved? Most likely several signaling pathways are activated in parallel in response 

to stress, and the interactions among the signaling pathways leads to a stimulus specific response. 

Initial stress perception is often mediated by receptor-like kinases (RLKs). In Arabidopsis there are > 600 

RLKs and they are involved in perception of both abiotic and biotic stresses (Bourdais et al., 2015; Kimura 

et al., 2017). The best characterized defense-related RLK is probably FLAGELLIN-SENSITIVE 2 (FLS2) 

that detects bacterial flagellin as part of pathogen perception that leads to PTI signaling. A co-receptor BRI1-

ASSOCIATED RECEPTOR KINASE1 (BAK1) is required for FLS2, as well as several other RLKs, to 

initiate down-stream signaling (Sun et al., 2013). Perception of flg22 by FLS2 leads to activation of MPK3, 

MPK4 and MPK6, raising the possibility that an RLK (FLS2), directly or indirectly activates MPK cascades 

(Asai et al., 2002). Recently, FLS2 was shown to interact with and phosphorylate the MAPKKK MKKK7 

(Mithoe et al., 2016). However, MKKK7 was shown to be a negative regulator of MPK activity and defense 

signaling, hence direct mechanistic insight into how MPK cascades are activated and the possible role of 

RLKs is missing. 

Activation of FLS2 also leads to a ROS burst through BIK1 (BOTRYTIS-INDUCED KINASE1) and 

activation of RBOHD (Li et al., 2014). Activation of RBOHs is one common signal interaction point since 

multiple other kinases, including several activated by Ca2+ also regulate RBOHD and RBOHF activity 

(Wrzaczek et al., 2013). Furthermore, other proteins also influence ROS production including EXTRA-

LARGE GTP-BINDING PROTEIN2 (XLG2) that interacts with FLS2 and BIK1 to regulate ROS production 

(Liang et al., 2016). Overall kinases from different gene families appear to be crucial both in the initial 

perception of stress, integrating information from several sources, and transmitting the signal onto TFs to 

regulate gene expression (Fig. 1). 
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EDS1 and PAD4 – coordinators of defense signaling 

ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and PAD4 are two sequence related proteins that 

regulate pathogen responses, cell death, abiotic-stress tolerance, and SA-dependent and -independent defense 

signaling (Cui et al., 2017; Wituszynska et al., 2013). Initial characterization placed EDS1 as a crucial 

regulator of signaling in ETI (Wiermer et al., 2005). This also includes regulation of SA accumulation after 

pathogen infection. However, the function of EDS1 goes far beyond the regulation of ETI signaling. For 

example the eds1 mutation alone or in combination with the SA biosynthesis mutant sid2 reduced cell death 

in a variety of signaling contexts (Kaurilind et al., 2015; Straus et al., 2010; Venugopal et al., 2009), placing 

EDS1 as a prominent regulator of cell death together with SA. EDS1 forms alternate complexes with PAD4 

or SENESCENCE-ASSOCIATED GENE101 (SAG101), separately in the cytosol and in the nucleus (Fig. 

1).  The direct molecular function of EDS1 is thought to be associated with transcriptional regulation in the 

nucleus and cell-death regulation in the cytosol (Heidrich et al., 2011). SA can also increase the expression 

of EDS1 and PAD4, leading to an enhanced signal output (Cui et al., 2017). Furthermore, EDS1 and PAD4 

can regulate pathogen-induced gene expression both in parallel to, and cooperatively with SA. This ensures 

robust activation of defense gene expression, i.e. if one of the pathways would be blocked redundancy 

between the pathways would still ensure that defenses are activated (Cui et al., 2017).  In abitotic stress 

responses EDS1, PAD4 and SAG101 are required for proper responses to freezing stress through regulation 

of SA, ROS and lipid levels (Chen et al., 2015). Since functional EDS1 is needed for proper defense 

responses in several different contexts (Kaurilind et al., 2015; Straus et al., 2010; Wang et al., 2013; 

Venugopal et al., 2009), it represents one important signal interaction point (Fig. 1).  

Transcription factors as signal integrators 

As the direct regulators of gene expressions, TFs are often found to integrate signals from different signaling 

pathways. As an example of this, below, we consider the role of TFs in mediating the sometimes surprising 

hormone- and stress-interactions between wounding, immunity, and cell death.  

The TF WRKY33 regulates expression of ABA biosynthesis genes to influence the outcome of Botrytis 

infection (Liu et al., 2015). In addition, WRKY33 is a target of MPK signaling (Qiu et al., 2008; Rasmussen 

et al., 2012).  BOS1 (BOTRYTIS SENSITIVE1) encodes a R2R3 type MYB transcription factor (MYB108) 

and was first characterized for its role in susceptibility to Botrytis infection (Mengiste et al., 2003). In 

addition to Botrytis sensitivity, loss of BOS1 function results in enhanced symptom formation (cell death) in 

response to abiotic stress, ROS treatments, and infection with virulent and avirulent bacterial pathogens 

(Mengiste et al., 2003). Furthermore, BOS1 modulates a wound-induced spreading cell death program 

involved in sealing wounds (Cui et al., 2013). Wounding the bos1 mutant resulted in a run-away spreading 

cell-death phenotype eventually spreading throughout the whole plant, while in wild-type Col-0 plants only a 

small number of cells died, encompassing only a few rows of cells immediately adjacent to the cells 

disrupted by the wound. This cell death program is reminiscent of lesions simulating disease resistance (lsd) 
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and accelerated cell death (acd) mutants that ectopically activate hypersensitive response (HR)-like cell 

death and immune signaling pathways (Bruggeman et al., 2015). In particular, bos1 is similar to the lsd1 

mutant; both of these mutants have runaway cell-death phenotypes indicating that they encode negative 

regulators of cell-death propagation. However, in contrast to the lsd and acd mutants, cell death in bos1 is 

independent of SA, metacaspases and ROS from RBOHs but requires both ABA biosynthesis and signaling. 

Indeed, ABA was necessary and sufficient to drive the propagation of wound induced cell death (Cui et al., 

2013). BOS1 interacts with and is regulated by the E3 ligase BOS1 INTERACTOR1 (BOI1), the defining 

member of a small subclade of functionally redundant proteins (Luo et al., 2010). Plants bearing RNAi 

constructs that target the members of the BOI1 subclade exhibited transcriptional profiles indicative of an 

enhanced gibberellic acid (GA) response. Taken together, the above results suggest that BOS1 regulates cell 

death via modulation of the balance between GA and ABA signaling, two hormones known to regulate cell 

death in several plant tissues in a mutually antagonistic fashion (Weiss and Ori, 2007). 

Studies with both WRKY33 and BOS1 implicate a role for ABA in the response to Botrytis infection. As a 

necrotrophic pathogen, Botrytis has the lifestyle and virulence strategy to use toxins and ROS to kill host 

cells and derive nutrients from dead host tissues. Immunity against necrotrophs is primarily mediated by JA- 

and ethylene-signaling and involves modulation of both defenses and cell death control. Since BOS1 

transcription is JA-dependent, it is reasonable to assume that bos1 Botrytis-susceptibility is due to loss of 

some JA-dependent defense responses. Alternatively, loss of cell death control may also explain the 

susceptibility of bos1. Here ABA plays an important role, since it promotes cell death and double mutants 

with bos1 and ABA signaling (abi1, abscisic acid insensitive1) or biosynthesis (aba3, abscisic acid 

deficient3) limit the extent of cell death (Cui et al., 2013). This suggests that the plant wound-response can 

be hijacked by Botrytis to promote virulence. Indeed, Botrytis essentially creates a wound at the primary 

infection site by deploying toxins and cell wall degrading enzymes to kill and macerate host tissue. ABA- 

and OPDA-responsive specific marker genes, known to have a role in the wound response, are induced 

during the Botrytis infection (Sham et al., 2015. Remarkably, Botrytis itself is well known to produce ABA 

(Sharon et al., 2007; Siewers et al., 2006; Siewers et al., 2004; Taki et al., 2005; Windram et al., 2012) and 

its biosynthesis is induced upon contact with host plants (Kettner and Dorffling, 1995). Furthermore, several 

studies support the role of ABA in promoting virulence in plant-Botrytis interactions. ABA overproduction 

has been associated with enhanced virulence in some strains (Ding et al., 2016b; Gong et al., 2014; Siewers 

et al., 2004) and treatment with exogenous ABA was shown to promote virulence (Shaul et al., 1996). The 

WRKY33 transcription factor is required for the downregulation of plant ABA biosynthesis and thus 

promote immunity against Botrytis (Liu et al., 2015). The ABA-deficient sitiens mutant of tomato exhibits 

enhanced immunity against Botrytis infection (Asselbergh et al., 2007). Botrytis immunity in sitiens tomato 

was proposed to involve the known antagonism between ABA and SA, due to de-repression of SA-mediated 

basal defenses. ABA may also directly target components of SA-signaling (Ding et al., 2016a). Further 

illustrating the complexity in signal interaction (Fig. 1), ABA also inhibits JA and ethylene signaling, and 
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reciprocally ethylene inhibits ABA signaling (Anderson et al., 2004). One complicating issue in the study of 

the role of ABA and its interaction with other signaling pathways is its role in formation of the cuticle that 

covers leaves and forms the primary protective barrier to the environment. For reasons that are not yet 

entirely understood, plants with permeable cuticles are highly immune against Botrytis infection (Bessire et 

al., 2007). Both ABA-biosynthesis and -signaling are required for cuticle formation (Cui et al., 2016; Serrano 

et al., 2014), thus mutants with deficient ABA-responses are all cuticle permeable and Botrytis resistant. 

Cuticle permeable mutants also exhibit enhanced ROS production (Serrano et al., 2014). It has been 

suggested that components of the unassembled cuticle may act as DAMPs and activate immunity (Serrano et 

al., 2014).  In support of this, wounding, mechanical stimulation, or treating plants with cutinase, result in 

ROS production and immunity (Serrano et al., 2014). Interestingly, ROS and the cuticle appear to have 

mutual roles in the regulation of each other. Overexpression of the Arabidopsis extracellular peroxidase, 

PEROXIDASE57, resulted in ROS overproduction and impaired cuticle development and immunity against 

Botrytis (Survila et al., 2016). Furthermore, application of ABA reduced ROS production and reduced cuticle 

permeability, thus the interaction between these components is important for proper defense regulation.     

Information from transcriptional regulatory networks  

As outlined above many of the proteins that integrate signals from different sources ultimately regulate 

transcription and include co-transcriptional regulators (e.g. NPR1) and MPKs that regulate the location or 

activity of TFs. In addition, measuring whole genome transcriptional responses with arrays or RNA-seq is a 

comparatively easy experimental technique, thus a wealth of transcriptome data is available in various 

databases (Vaahtera et al., 2014). On their own, these experiments are already useful to find genes 

differentially expressed in response to a single treatment, however, the full power of these datasets is 

revealed when they are combined to identify stimulus specific responses or to predict regulatory networks 

(Vaahtera et al., 2014; Willems et al., 2016). For instance, ROS were identified as signaling molecules in 

response to many abiotic and biotic stresses; but the combined analysis of 79 ROS and redox related array 

experiments identified RBOHF as one key factor in ROS signaling (Willems et al., 2016).  

Due to the complete gene coverage of transcriptome datasets, they are also suitable to combine with other 

“omics” data, including protein-protein interaction, TF-DNA interaction, and chromatin-modification data 

sets to build regulatory networks. One such network, constructed for ETI and PTI (Dong et al., 2015), 

revealed multiple TFs important for immune responses and highlighted the crucial role of kinases in defense 

signaling. 

Sequential or simultaneous stress combinations 

Most large scale gene expression experiments in Arabidopsis using either arrays or RNA-seq have focused 

on a single treatment in controlled chambers or growth rooms. This situation is very different from the 

environment plants would experience in nature, where growth conditions are more variable and multiple 

stresses may occur simultaneously. Especially events of combined heat and drought stress or heat and high 
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light stress are severely damaging to plants (Zandalinas et al., 2017). In response to multiple stresses at least 

two scenarios are possible, the response to combined treatment could be more similar to one of the individual 

stresses or that the combined treatment will lead to a new response that could not have been predicted from 

the response to a single stress treatment.  

In Arabidopsis several studies have estimated the effect of combined drought and heat stress or other abiotic 

stress combinations on regulation of gene expression (Rasmussen et al., 2013; Zandalinas et al., 2017). 

Several of these stress combinations lead to a transcriptional response that differs substantially from that 

elicited by each single treatment (Rasmussen et al., 2013; Zandalinas et al., 2017). This demonstrates that 

plants have the capacity to integrate multiple signaling pathways to activate an appropriate defense program. 

One possible regulator in multiple stress interactions is ABA, whose production typically is increased in 

diverse abiotic-stresses, and whose signaling can modify SA-dependent defenses (Ding et al., 2016a; Rejeb 

et al., 2014). 

A complementary experiment to combined stress treatments, is to perform sequential treatments. This has 

been done with drought, Botrytis infection, and herbivory (Pieris rapae). Transcriptional responses were 

measured first after the single treatments and again measured after application of the second stress (Coolen et 

al., 2016). In all cases, the transcriptional response of the plant follows the last stress encountered, although 

at early time points there is still some “memory” of the first stress (Coolen et al., 2016). Overall, experiments 

with combined- and sequential-stresses emphasize that plants are able to integrate and prioritize between 

different signaling pathways, suggesting further studies with combined stresses may reveal new regulators 

potentially useful in breeding stress tolerant plants. 

Lessons from the use of marker genes 

Signal interactions can be studied by several experimental methods, including whole plant phenotypes e.g. 

quantification of pathogen growth or the extent of cell death after O3-treatments (Cui et al., 2013; Xu et al., 

2015a). However, due to the technical ease of extracting RNA, one of the most popular methods to study the 

output of signaling pathways is to measure gene expression, either at a global scale with arrays or RNA-seq 

or more targeted with real-time quantitative reverse-transcription PCR (qPCR) (Vaahtera et al., 2014). A key 

issue, if using qPCR, is the selection of appropriate marker-genes. A good marker gene should be as specific 

as possible, that is, show altered expression in response only to the treatment of interest. Unfortunately very 

few stress regulated genes are uniquely regulated by only one stress (Vaahtera et al., 2014). Selection of 

suitable marker genes should take advantage of the extensive microarray and RNA-seq data available in the 

public domain (accessible for example in a user friendly format in Genevestigator; 

https://genevestigator.com/gv/). By comparison of different biotic and abiotic stresses with hormone and 

other treatments, it becomes possible to judge to which signal pathway the intended marker genes belongs to. 

Since Genevestigator also displays data from many different variants of the same experiment (e.g. currently 

there are multiple different ABA experiments in Genevestigator for Arabidopsis), it becomes possible to 

https://genevestigator.com/gv/
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judge how robust the response of a marker gene is across different experimental set-ups. In many cases it 

might not be possible to find a single marker gene that shows the desired expression profile, instead it may 

be possible to use several marker genes that together will show which signal pathways are activated 

(Vaahtera et al., 2014). After carefully selecting marker genes, a gene expression experiment also requires 

careful considerations in the interpretation of the results (Vaahtera et al., 2014). This problem is illustrated in 

Fig. 2 using an example qPCR experiment with wildtype and mutant, in control and treatment. In Fig. 2A the 

qPCR data is presented for all samples scaled to the wildtype control, while in Fig. 2B the same data is 

recalculated to show the fold-change caused by the treatment in the wildtype and in the mutant. 

As presented in Fig. 2B, the data suggests the mutation has no effect on gene expression, while as seen in 

Fig. 2A, the overall level of gene expression is five-fold lower in the mutant. Hence, the better way to 

present such data is to display all samples (as in Fig. 2A) or to display the data both ways. A published 

example of this, was the analysis of transgenic Arabidopsis expressing a gain-of-function variant of the 

ERF6 TF after O3 treatment (Xu et al., 2015a). In gene expression data displayed as fold inductions, this 

mutant appeared to be severely impaired in O3-responses, but the data for both control and O3-treatment 

revealed that this apparent deficiency was due to very high defense gene expression already in control 

conditions. 

To further illustrate this principle and it’s effect on interpretation of signal interactions, we performed a 

qPCR experiment after one hour of O3 to exemplify various interactions between ROS and hormone 

signaling. We used the following mutants: ein2 and etr1-1 (defective in ethylene signaling), coi1-16 

(defective in JA signaling), NahG and npr1 (defective in SA-accumulation or -signaling), tga2 tga5 tga6 

(defective in three TGA TFs involved in SA- and JA-signaling) and the coi1 ein2 sid2 eds1 quadruple mutant 

defective in multiple pathways, (Xu et al., 2015a). As marker genes we used WRKY38 and PR-1 (early and 

late SA marker genes), RAP2.6 (a JA marker gene; (Krishnaswamy et al., 2011), ARGOS (an ethylene 

marker gene; (Xu et al., 2015a), PDF1.2 (a classical JA and ethylene marker gene) and ZAT12 (a general 

ROS marker gene; (Davletova et al., 2005).  

Expression of WRKY38, ARGOS, and RAP2.6 was increased by the 1 hr O3 treatment, directly demonstrating 

that apoplastic ROS activates SA, ethylene and JA signaling (Fig. 3). This activation was blocked by 

mutations that disrupt hormone signaling or accumulation: ARGOS expression was reduced in ein2, WRKY38 

expression in NahG and RAP2.6 expression in coi1-16 (Fig. 3). Expression of WRKY38 is also impaired in 

npr1, but this was more clearly seen at later time points of O3 treatment (Brosche et al., 2014). Flg22 induced 

expression of ARGOS is also abolished in ein2 (Hillmer et al., 2017), indicating the similarities between O3 

and flg22 signaling (Vaahtera et al., 2014). The classically used marker genes PR-1 and PDF1.2 did not have 

significantly altered expression after 1 hr O3 treatment, suggesting that they are not suitable marker genes for 

the study of early ROS signaling.  
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Presenting qPCR data only as fold inductions (Fig. 3) obscures one prominent interaction – the inhibition of 

SA signaling by ethylene. In Fig. 4 (displaying relative expression values scaled to the Col-0 control), the 

expression of the SA markers PR-1 and WRKY38 was substantially higher in the ein2 mutant. Since SA 

marker gene expression was elevated under both control and O3, the fold induction in these mutants appeared 

similar to the wildtype (Fig. 3), hence choices in data presentation may lead to the masking of relevant 

information. Increased SA-responsive gene expression in ethylene-deficient mutants was previously 

observed in the regulation of cell death (Plett et al., 2009). Additionally, Fig. 4 also revealed that the ein2 

mutant appears to be more strongly impaired in ethylene signaling than the etr1 mutant (as also seen in the 

ARGOS fold induction in Fig. 3). Also, the inhibition of SA responsive genes by ethylene was no longer 

observed when both ethylene and SA signaling was impaired in the coi1 ein2 sid2 eds1 mutant. Further 

complicating the issue, SA may also be required for stress induced activation of ethylene signaling (Fig. 1); 

(Rao et al., 2002). 

The general ROS marker ZAT12 was very highly induced independent of the mutant background, including 

the quadruple coi1 ein2 sid2 eds1. The hormone independent regulation of ZAT12 expression is not a special 

case, in RNA-seq analysis approximately 70% of O3-regulated genes were found to have hormone-

independent regulation (Xu et al., 2015a). Similarly, investigation of flg22 responsive genes revealed that 

one third of them (2659 genes) had hormone-independent regulation (Hillmer et al., 2017).  Hence, we face a 

challenge, but also an opportunity, in finding and understanding the currently unknown signaling pathways 

that regulate many ROS- and defense-responsive genes. 

Conclusions and future directions 

In response to a given stress multiple signaling pathways are activated and the sum of interactions between 

these lead to a final output that is specifically tailored to counter that stress. Depending on the assay used and 

genetic background, inhibitory and synergistic interactions can be found between most signaling pathways, 

especially when considering analyses over different time scales. A future challenge is to determine the 

relevance of these interactions. The popular qPCR assay, while easy to perform, should be treated cautiously 

– depending on which marker gene and the genetic background are used and how the data are displayed, this 

method can be used both to gain insight into signal interaction points, but may also be inadvertently 

misrepresented to overstate the importance of specific interactions.  

In the future it will also be important to determine where the interaction between different signal pathways 

takes place: Is it through selective import of a transcriptional or co-transcriptional regulator to the nucleus 

(e.g. EDS1 or NPR1)? Through regulation of protein levels (like ethylene signaling can regulate the 

accumulation of the FLS2 receptor, (Mersmann et al., 2010))? Or via differential accumulation of stress 

hormones (Gupta et al., 2017)? It will also be important to evaluate the purpose of the signal interaction. Is it 

to allow priority between potentially conflicting defense signal pathways or is the interaction aimed at 

providing flexibility and redundancy to allow timely execution of defense signaling?  



 

14 
 

 

Acknowledgements 

Our research is supported by the Academy of Finland Center of Excellence in Molecular Biology of Primary 

Producers 2014-2019 (Decisions no. 271832 and 307335) and the University of Helsinki. K.V. is a member 

of the University of Helsinki Doctoral Programme in Plant Sciences (DPPS). The Scandinavian Society of 

Plant Physiology (SPPS) support for the early career principle investigator (ECPI) network is gratefully 

acknowledged. 

Figure legends 

Fig. 1. Examples of signal interaction points. At the plasma membrane initial pathogen perception is 

mediated by receptors (exemplified by FLS2) that recognize conserved pathogen structures (e.g. flg22) to 

initiate down-stream signaling. This includes activation of ROS-production through RBOHs via XLG2 and 

various kinases including BIK1. In addition, Ca2+ and Ca2+-activated kinases also regulate RBOH activity. In 

turn, ROS can activate both inter- and intra-cellular signaling pathways. In parallel, MPK signaling is also 

activated, where the targets include phosphorylation of TFs as well as transport of MPKs into the nucleus. 

Selective transport of various TFs and co-transcriptional regulators is a prominent regulatory step, 

exemplified by the redox regulated oligomer to monomer step required for import of NPR1 into the nucleus. 

For EDS1 to act as a transcriptional regulator it also needs to be nuclear localized (Heidrich et al., 2011). 

Interaction between stress hormones include both positive and negative interactions, but exactly how positive 

and negative interactions are mediated at the molecular level remains to be fully explored, but is likely to 

include the selected nuclear transport of transcriptional regulators or their activation, including NPR1, where 

SA regulates the monomer status of NPR1 via redox modifications (Withers and Dong, 2016). The 

interaction among hormones is complex, possibly all possible combinations of positive and negative 

interactions among SA, JA, ABA and ethylene (ET) can be found in the literature. All signal interaction 

models come with caveats: (1) Due to the ease of experimentally measuring altered gene expression, a large 

proportion of proposed signal interactions are based mostly only the use of gene expression data with a few 

selected marker genes. (2) For simplicity the interaction among hormones is often drawn as direct 

interactions as in Fig. 1, but the interactions may be direct (e.g. two different signaling pathways targeting 

the same TF) or indirect (e.g. regulation of the amount of a receptor or signaling protein, exemplified by 

ethylene signaling that regulates the amount of the FLS2 receptor (Mersmann et al., 2010)). (3) In a static 

model it is difficult to accurately represent the role of time. In this model, events at the plasma membrane 

and activation of kinases takes place within minutes, whereas gene expression is often measured within a few 

hours, and later events e.g. outcomes in pathogen tolerance or extent of cell death is measured many hours to 

days after a treatment. Hence a given interaction, between two or more components, may be positive at early 

time points but can change to something else at later time points. 
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Fig. 2. The raw data from a qPCR experiment consists of cycle values (typically Ct or equivalent), which are 

subsequently re-calculated into relative expression (A) or fold induction (B) taking into account reference (or 

normalization) genes and primer efficiencies. When working with mutants, presenting only treatment fold 

induction data may inadvertently give misleading information about the mutant phenotype.  

Fig. 3. Gene expression was measured with qPCR after a 1 hr O3-treatment as previously described and fold 

induction calculated with qBase (Brosche et al., 2014; Xu et al., 2015a). Fold change of selected marker 

genes in ein2 and etr1 (ethylene signaling), coi1-16 (JA signaling), NahG and npr1 (SA signaling), a triple 

TGA TF mutant tga256, and the quadruple mutant coi1 ein2 sid2 eds1 (abbreviated quad) deficient in 

multiple signaling pathways. The bars represent average and standard deviation of four biological replicates. 

Statistical analysis was performed with one-way ANOVA and Dunnets multiple comparison test (GraphPad 

Prism 6.0 on log2 transformed data), * >0.05; ** > 0.01 denote significant differences from Col-0 wildtype. 

Fig. 4. Gene expression was measured with qPCR after a 1 hr O3-treatment as previously described and 

relative expression calculated with qBase (Brosche et al., 2014; Xu et al., 2015a). Expression of PR-1 and 

WRKY38 was scaled to the Col-0 control in ein2 and etr1 (ethylene signaling) and the quadruple mutant coi1 

ein2 sid2 eds1 (abbreviated quad) deficient in multiple signaling pathways. The bars represent average and 

standard deviation of four biological replicates. Statistical analysis was performed with one-way ANOVA 

and Dunnets multiple comparison test (GraphPad Prism 6.0 on log2 transformed data), ** > 0.01 denote 

significant differences from Col-0 control. 
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