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Abstract

Soil quality (SQ) indicators such as plant available water (PAW), organic carbon (SOC), and 

microbial biomass carbon (MBC) can reveal agroecological functions; however, their spatial 

variabilities across contrasting land uses need to be better understood. This study examined the 

spatial variation of these key SQ indicators as a function of two land-use systems and using 

topography covariates. We sampled a total of 116 point-locations in a native grassland (NG) site 

and an irrigated cultivated (IC) site located near Brooks, Alberta. Compared to NG, cultivation 

altered soil pore-size distribution by sharply reducing macroporosity by 25%. However, conditions 

in the IC soil supported greater accrual of microbial growth (MBC of 601 vs. 812 nmol 

Phospholipid fatty acids g-1 soil) probably due to more availability of water and nutrients. Focusing 

on the effects of topography on SQ indicators, terrain elevation (by light detection and ranging, 

LiDAR) and estimated depth-to-water were found to be key controllers of SQ at the two land-use 

systems. Also, there were gradual increases in both SOC and MBC where estimated water table 

was deeper, and higher SOC also associated with lower elevation. A comparison of ordinary 

kriging (OK) and cokriging (coK) geostatistical mapping indicated that the coK method performed 

better as demonstrated by improvements in the accuracies of spatial estimations of PAW, SOC 

concentration, and MBC. Thus, implementing coK using the aforementioned topography 

covariates enhances the capability for predictive mapping of SQ, which is particularly useful when 

spatial data for key SQ indicators are sparse and challenging to measure. 

Keywords: cokriging; depth-to-water table; geostatistics; grassland; microbial community 

composition; topography
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Introduction

Land-use changes has been shown to impact the soil properties at the field scale (Hebb et 

al., 2017; Burst et al., 2020). Grasslands compared to croplands reported to have a well-

developed hierarchical soil structure derived from extensive root growth of diverse perennial 

plants combined with low soil disturbance (Elliot, 1986; Hebb et al., 2017). However, inadequate 

grassland grazing may decrease soil fertility and productivity, whereas balanced nutrient 

management may sustain it (Chantigny, 2003; Burst et al., 2020). Similarly, changes in soil 

physical and chemical properties can affect the soil microbial community (Juma, 1994) across 

different land uses. Geisseler et al. (2016) reported higher gram-negative bacteria in natural 

grassland, and higher gram-positive bacteria in cropland. This interaction among different soil 

properties highlights the need for identifying several soil quality (SQ) indicators that may 

provide robust metrics of soil quality in contrasting land-uses. New information on responses of 

soil quality indicators to land use will play a vital role in preserving soil functions and improving 

land management and stewardship practices.

In addition to these land-use effects, topography is another soil-forming factor which 

dominantly affects soil properties at local scales (Jenny, 1941) through regulating soil 

hydrological regimes and controlling the gravity-driven soil movements (Speight, 1980; Li and 

McCarty, 2019). Accordingly, topography has been identified as one of the important sources of 

the heterogeneity of soil properties (Zhao et al., 2015; Burst et al., 2020). Wang et al. (2009) 

found that SOC and soil total nitrogen (STN) varied with topography in terms of slope and 

elevation. At lower landscape positions, soils are better supplied with water and nutrient-richer 

than on slopes and uplands (Hook and Burke, 2000). Likewise, it has been also reported that the 

depth-to-water-table index (DTW) can capture soil properties, such as the soil moisture regime, 
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which are closely influenced by the water table (Oltean et al., 2016). Consequently, applications 

of topographic information for mapping spatial patterns of soil properties would improve the 

prediction accuracy and benefit the understanding of the mechanisms underlying the land-use 

impacts on soil properties.  

Heterogeneity in soil properties across the landscape can represent a management 

challenge to producers and policymakers, in particular in fields where land-use changes commonly 

occur (Robertson et al., 1993; Nyamadzawo  et al., 2008). Compared to uniform land management, 

information on spatial pattern of soil properties that are linked to relevant ecosystem functions can 

greatly improve land management practices including the identification of fertility management 

zones (Qiu et al., 2016). Therefore, there is a need for a more comprehensive understanding of the 

spatial structure of soil properties across competing land-use types (e.g., native grassland versus 

cultivated land). Different geostatistical methods have been applied to interpolate soil properties 

from sparse sampling points into continuous surfaces by modeling the spatial correlation with 

minimum variance (Cambardella et al., 1994; Hengl et al., 2004; Wang et al., 2009; Yang et al., 

2016). Ordinary kriging (OK) uses weighted averages to estimate unsampled locations as a linear 

combination of statistically-neighboring observations (Mirzaee et al., 2016; Wang et al., 2013). 

When the spatial distribution of a secondary variate (e.g., a terrain covariate such as elevation) has 

been sampled more intensely than the primary variate, the cokriging (coK) method can be 

implemented (Davis, 1986; Chen et al., 2016; Yang et al., 2016). Incorporating terrain co-variables 

into interpolation procedures may provide an opportunity to obtain higher prediction accuracy 

while using the existing data of the primary variate. Moreover, if the primary variate is difficult or 

expensive to measure, coK can greatly improve interpolation estimates without the need for more 

intense measurements of the primary variate (Wang et al., 2013). The advantage of coK with 
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different auxiliary variables has been reported with a focus on soil attributes (Wang et al., 2013; 

Ceddia et al., 2015; Chen et al., 2016). 

More precise maps of the spatial variability of soil attributes in native prairie and cultivated 

lands may facilitate the strategic implementation of best management practices, which can lead to 

sustainable production systems embedded in multifunctional landscapes (Knotters et al., 1995). 

Aligned with previous studies, we initially hypothesized that: i) the selected soil quality indicators 

are significantly affected by land-use type and topography attributes, and ii) the implementation 

of topographic variables with the coK mapping technique enhances prediction of spatial 

distribution of SQ indicators. To test our hypotheses, we: i) determined the comparative effects of 

two common land-use systems (native grassland and cultivated land) on functional SQ indicators 

(i.e., PAW, SOC concentration, and MBC) and identified topography attributes that may best 

enable robust spatial prediction of the SQ status, and ii) interpolated and interpreted the spatial 

variabilities of these key SQ indicators from point measurements to field landscapes by extracting 

their spatial patterns while using and comparing ordinary kriging and coK geostatistical methods. 
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Materials and Methods

Study sites

This study was conducted at two sites: a native grassland (NG; north-west corner: 50º 53' 

54.4'' N, 111º 57' 40.2'' W), and an irrigated cultivated (IC) land (north-west corner: 50º 54' 26.5'' 

N, 111º 58' 41.1'' W) located at the University of Alberta Mattheis Research Ranch within the dry, 

mixed-grass prairie natural sub-region of Alberta, Canada. The climate is continental, sub-humid, 

characterized by long, cold winters and short summers (Mollard et al., 2014). Mean annual 

precipitation and temperature are 354 mm and 4.2 °C, respectively (Hewins et al., 2016).  Soil at 

both sites was classified as a Rego Brown Chernozem based on the Agricultural Region of Alberta 

Soil Inventory Database (AGRASID, 2015), and had a loamy sand texture. The particle size 

analysis followed the hydrometer method. The granulometric distribution for the native grassland 

soil was sand (2000–50 μm size diameter) 865, silt (50–2 μm) 75, and clay (<2 μm) 60 g kg-1 soil. 

For the IC land soil, the distribution was sand 831, silt 101, and clay 68 g kg-1 soil.

The native grassland (NG) was dominated by crested wheat grass (Gropyron cristatum), 

smooth brome grass (Bromus inermis), and Kentucky blue grass (Poa pratensis). This NG site also 

had various native species present such as Poa sandbergii, Stipa comate, Carex praticola, 

Equisetum hyemale, Artemesia frigida, Artemesia ludoviniaca, Heterotheca villosa, and Achillea 

millefolium. The land is currently used as cattle ranch on a rotational grazing basis for 

approximately six months each year, beginning in early May. The cultivated land (IC) site is 

irrigated by a center pivot system and planted with annual crops such as wheat and oat grown 

under conventional tillage practices for at least two decades. This site was seeded in spring 2014 

to introduce pasture for grazing (one year prior to soil sample collection). The dominant plant 
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species in this recently established pasture were alfalfa, red clover, Kentucky blue grass, and 

crested wheat grass.

Nested cyclic sampling design 

All field samples were collected on June 6 and 7, 2015, at both sites. Using a cyclic 

sampling design (Burrows et al., 2002; Hudelson and Clayton, 2015; Orr et al., 2014), a 170 m×100 

m (1.7 ha) plot was established at each site (Fig. 1) and a pattern of sampling was used to provide 

information about all lag distances (i.e., the range over which autocorrelation will be calculated). 

From the right upper corner to the left upper corner, the sampling intervals were 10, 35, 85, and 

100 m, and from the top boundary of the field plot to the bottom boundary, the intervals were 10, 

35, 85, 95, 120, and 170 m (for a total of 36 measurement points). A cyclic design can increase the 

sampling efficiency by optimizing the placement of sampling points to provide the most 

information for geostatistical analysis with the lowest number of samples possible (Bogaert and 

Russo, 1999). This design maximizes efficiency by reducing over-sampling at small lag distances 

(Orr et al., 2014). Moreover, allowing for the possibility of important variability occurring and 

very fine spatial scales, a nested design was also employed within the overall cyclic sampling 

pattern. For this nest, a cycle of 0.5, 2, 4.5 m was applied in both cardinal directions (i.e., west to 

east and north to south) (n = 20). We assumed that our nested sampling locations provided a good 

representation of the micro-scale spatial variations within each of the field sites. There were also 

two additional sampling points that were strategically located in the plot to increase the sampling 

efficiency and capture the most information for geostatistical analysis. They were strategically 

located near other points in a way to increase pairs of lag classes between 20 to 25 m. This yielded 

a total of 58 sampling points at each site for a total of 116 measured points in this study. A 

differential global positioning system device was used to locate the sampling points (latitude and 
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longitude) with more than 20 cm accuracy. This sampling protocol enabled us to have lag distances 

between 0.5 and 197 m in the plot. 

Soil sample analysis

One undisturbed soil sample was collected using stainless steel cylindrical cores with an 

inner diameter of 8 cm and a height of 5 cm (~250 cm3 volume) in each sampling point to quantify 

water retention and hydraulic conductivity. With the 5-cm height sampling cylinders, we collected 

the soil samples at the depth increment of 5 to 10 cm as soil biochemical activities are 

representative and dominant within this soil layer; moreover, the shallow 0-5 cm soil surface was 

preclude as it can be impacted by crusting, excess dryness and other extreme effects. For chemical 

and microbial analyses, we used a push probe (2 cm inner diameter) to collect and composite four 

soil-core samples (~60 cm3 volume) at the same depth increments. The push probe was co-located 

within a 10 cm radius of the undisturbed soil-core sampling point. It is worth mentioning that the 

degree of spatial heterogeneity in soil properties is dependent on the support of the observations 

(i.e., the volume of soil material). In this study, we used composited samples (n: 4) for chemical 

and microbial analysis. These samples are known to be more heterogeneous by nature. Disturbed 

samples were put in Whirl-Pak® (Nasco, Fort Watkins, Wisconsin) sterile sampling bags and 

preserved and transported in an icebox to the laboratory. Samples for microbial characterization 

were kept frozen at −86 °C until they were freeze-dried in preparation for analysis. 

Using the undisturbed cores, water retention was determined with the evaporation method 

(Schindler et al., 2010) using a HYPROP device (UMS GmbH, Munich, Germany). Matric 

potential was automatically recorded by two tensiometers at two depths within the saturated soil 

cores. The gravimetric water content of the samples was recorded twice daily for up to 14 days. 

Data points of the retention and unsaturated hydraulic conductivity curves were calculated with 
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the HYPROP 2011 software (UMS GmbH, Munich, Germany) based on the mean tension potential 

of the two tensiometers and water contents as detailed in Kiani et al. (2017).

The soil water retention for moderate-to-dry moisture ranges was evaluated with a WP4-T 

potentiometer (Decagon Devices, Inc., Pullman WA, USA) based on the chilled-mirror dew-point 

technique (Schelle et al., 2013).  Seven different amounts of water were added to 5 g dry weight 

of soil in plastic cups. The cups were closed tightly, and the samples were allowed to equilibrate 

for 24 hours. When the water potential of each sample was in equilibrium with the vapor pressure 

of the WP4-T measurement chamber, water tension was recorded. Sample weight was determined 

immediately after measurement and related to the oven-dry weight (at 105 °C) to obtain the 

corresponding water content. The constrained van Genuchten (1980) model was fitted to the results 

from the evaporation method (HYPROP) and WP4-T measurements. At the end of each 

measurement campaign, the soil samples were oven dried at 105 °C for 24 h to derive bulk density 

and total porosity assuming a particle density of 2.65 g cm-3.

Macroporosity was computed from the soil water retention data by subtracting the saturated 

water content from the water content at field capacity (FC; -33 kPa water potential), which 

corresponds to pore diameters larger than 9 μm. PAW capacity was also calculated as the 

differential volumetric water content between field capacity (-33 kPa) and the permanent wilting 

point (PWP; -1500 kPa).

With the aim of extracting an integrated indicator of soil physical quality, the S-index was 

calculated as the magnitude of the slope of the soil water retention curve at the inflection point 

when the curve was expressed as gravimetric water content versus the natural logarithm of the 

pore water tension head (Dexter, 2004).
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After grinding a portion of the composited, disturbed samples, we determined the 

concentrations of SOC and STN with a dry combustion method using a Costech ECS 4010 

Elemental Analyzer (Costech Analytical Technologies Inc., Valencia, CA, USA). The SOC 

density was calculated by multiplying the SOC concentration (g C kg-1 soil) × bulk density (g 

cm−3) × soil thickness (cm) × 10 (conversion factor). The soil pH was measured using a 1:2 soil-

to-water ratio (Mclean, 1982).

Using composited samples, we characterized soil microbial communities using 

phospholipid fatty acid (PLFA) analysis. Polar lipids were extracted from freeze-dried samples 

using a modified Bligh and Dyer protocol (Hannam et al., 2006). The standardized X: Y ω Z 

nomenclature for fatty acids was used to identify PLFAs, where X is the number of carbon atoms, 

Y is the number of double bonds, and Z is the position of the first double bond from the aliphatic 

end (ω) of the molecule (Quideau et al., 2016).  Prefixes “i” and “a” indicate branching at the 

second and third carbon atom, respectively, from the ω end, and the suffix “c” corresponds to a c 

transfiguration. Adding them together, all of the PLFA biomarkers with 14 to 20 carbon atoms 

were considered to be representative of the total PLFA concentration of the microbial community 

in our soils. The total of the PLFAs was used as an index of microbial biomass carbon.

Candidate terrain covariates were derived from airborne LiDAR (Light Detection and 

Ranging) measurements with vertical accuracy of 30 cm. Available LiDAR spatial resolution was 

2 m x 2 m with a horizontal accuracy of 50 cm. The LiDAR method uses light in the form of a 

pulsed laser to measure variable distances to the Earth. A LiDAR measurement system basically 

consists of a laser, a scanner, and a specialized GPS receiver. Topographic LiDAR typically uses 

a near-infrared laser to map the land (Gatziolis and Andersen, 2008). The LiDAR-derived data in 

our study included terrain elevation, curvature, slope, aspect, hill shade, and DTW using ArcGIS 
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10.3 (ArcGIS©). DTW was obtained from the wet-areas delineation algorithms across the 

landscape, using the flow channels and shorelines (Murphy et al., 2011). The values of terrain 

covariates at each sampling point were obtained based on the nearest LiDAR data according to the 

point coordinate.

Classical statistical analysis

The datasets were analyzed to determine the following descriptive parameters: maximum, 

minimum, mean, median, and standard deviation (SD). Determining whether the means of soil 

properties differed significantly between the two land-use types, the Kruskal–Wallis test on ranks 

was used because the residuals did not follow normal distribution although they met the 

assumption of variance homogeneity. Spearman rank correlations were used to initially explore 

the existence and strength of relationships among soil properties and with terrain covariates. 

The PLFAs with 14 to 20 carbons were used to analyze the microbial communities except 

for rare PLFAs which were found in merely one or two samples. Data groupings were tested for 

significant differences in the NMS analysis using a multi-response permutation procedure 

(MRPP). The MRPP test generates P, T, and A values indicating probability value, separation 

among groups, and within-group homogeneity compared to random expectation. The indicator 

species analyses were performed on the data groupings which were different in the MRPP test. 

This statistical method generates an indicator value based on the abundance and frequency of a 

particular PLFA in a given data grouping. A larger indicator value represents a stronger 

relationship between the PLFA and the given data grouping. The statistical significance of the 

indicator value was tested against a randomized Monte Carlo test. All analyses were conducted 

using PCORD software (version 5, MjM Software Design, Gleneden Beach, OR, USA). 
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Geostatistical analysis

Geostatistics uses a semivariogram to quantify and model spatial autocorrelation and, 

subsequently, to provide parameters for optimal spatial interpolation, which is known as the  

kriging method (Webster and Oliver, 2007). Our measured data were used to calculate the 

experimental semivariogram, which was then fitted by authorized theoretical models, i.e. linear, 

gaussian, spherical, and exponential. Three major parameters could be derived from the fitted 

model, i.e. nugget (C0), sill (C+C0), and autocorrelation range. All three can characterize the 

spatial structure of variables of interest at a given scale. The total variance (sill, C+C0) is expressed 

as the summary of the structural variance (C, variance explained by spatial autocorrelation) and 

the nugget effect (C0, variance occurring at a smaller scale than the field sampling and from the 

experimental error) (Liu et al., 2013). The spatial autocorrelation range represents the maximum 

distance within which variables exhibit internal spatial dependence. To determine the magnitude 

of spatial dependence, the percentage of total variance (sill) explained by random variance (C0) 

was calculated as a nugget ratio (Cambardella et al., 1994). 

Considering the availability of ancillary information, the level of required expertise, and 

the constraints on the size of the data set, OK and coK methods were used for the spatial 

interpolation of the PAW, SOC concentration, and MBC in the 5–10 cm soil depth increment 

across our native grassland and cultivated land sites. The general equations of the OK (Eq. 1) and 

coK (Eq. 2, Fig. 4) methods are (Webster and Oliver, 2007):

𝑍 (𝑥0) = ∑𝑛

𝑖 = 1
𝜆𝑖 𝑍(𝑥𝑖) [1]

𝑍 (𝑥𝑖0) = ∑𝑁𝑛

𝑖 = 1
𝑎𝑖 𝑍(𝑋𝑥𝑖) +  ∑𝑛 + 𝑁

𝑖 = 𝑛 + 1
𝑏𝑖 𝑌(𝑥𝑖) [2]
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where , , , and n are the predicted value, primary variable, secondary variable, 𝑍 (𝑥𝑖0) 𝑍(𝑥𝑖) 𝑌(𝑥𝑖)

and the number of samples, respectively. The , , and , are kriging weights. 𝜆𝑖  𝑎𝑖 𝑏𝑖

The leave-one-out cross-validation analysis was used to evaluate how effective the fitted 

variograms were (Fig. 3). In cross-validation analysis, each measured point in the spatial domain 

is individually removed from the domain one at a time, and its value estimated as though it were 

never there. Subsequently, the original data point is placed back in the dataset, and the next point 

is removed and estimated, and so forth (Robertson, 2008). This recurrent, systematic approach 

generates an array of actual versus estimated data values which can be compared against the 1:1 

agreement line by means of a least square linear regression. The criteria used for contrasting the 

performance of the evaluated geostatistical methods were Nash-Sutcliffe efficiency  (NSE ), mean 

prediction error (MPE), standard error of prediction (SE predict), and root mean square prediction 

error (RMSPE) calculated as follows:

𝑁𝑆𝐸 = 1 ―
∑𝑛

𝑖 = 1[𝑍 (𝑥𝑖) ― 𝑍(𝑥𝑖)] 2

∑𝑛
𝑖 = 1[𝑍(𝑥𝑖) ― 𝑥] 2

[3]

𝑀𝑃𝐸 =
1
𝑁 ×  ∑𝑁

𝑖 = 1
[𝑍 (𝑋𝑖) ― 𝑍(𝑋𝑖)] [4]

𝑆𝐸 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑆𝐷 1 ― 𝑟2 [5]

𝑅𝑀𝑆𝑃𝐸 =
1
𝑁 ×  ∑𝑁

𝑖 = 1
[𝑍 (𝑋𝑖) ― 𝑍(𝑋𝑖)] 2 [6]

where  is the mean of the primary variable, SD is the standard deviation of the measured data, 𝑥

and r2 is the proportion of variation explained by the best-fitted line. The geostatistical analysis 

was performed with the GS+ software (version 10.0) and the distribution contour plots were 

produced with SigmaPlot software (version 11.0) without using any data-smoothing function.
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Results

Classical statistical analyses of soil properties 

The overall means of Van Genuchten (VG) parameters for our soil-moisture retention 

curves consistently differed between native grassland and irrigated cultivated land (Table 1). The 

saturated water content was 11% higher in NG (P < 0.05), while PAW was found to be three times 

greater in the cultivated land; this outcome was driven by a 1.3-times significantly higher water 

content at field capacity (FC) for IC than that found in the NG samples (Table 1). Additionally, a 

reciprocal 1.3-times greater presence of draining pores (macropores; > 9 μm diameter) in these 

sandy soils under perennial native grasses (NG > IC) implies faster water infiltration, conductivity, 

redistribution, and percolation across the NG soil profiles. A clear significant difference was also 

found in the S-index data (i.e., the slope of moisture curves at their inflection point) between NG 

and IC lands, with magnitudes of 0.11 for NG vs. 0.06 for IC (P < 0.05; Table 1). Regarding the 

fitting performance of the VG models, root mean square errors for the moisture curve of each land-

use system ranged from 0.003 to 0.020 cm3 cm-3 indicating an effective fitting of the VG models 

to the measured data.

The NG soil exhibited a two-fold faster hydraulic conductivity under unsaturated 

conditions (unsat. K at -10 kPa water tension) than the IC soil (P < 0.05; Table 1). Conversely, 

this clear effect of land use on water movement capacity did not translate into differences in 

hydraulic conductivity at saturation. Root mean square error values of modelled hydraulic 

conductivity (K) were high across all data sets (0.21 cm day-1; data not shown), indicating modest 

fitting, which is probably in part a result of extrapolation into the saturated zone of the water 

retention curve. Although both SOC concentration and SOC density showed no statistical 

differences linked to land use, STN concentrations were significantly higher in the cultivated land 
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(Table 1).  The soil C/N ratio mirrored this difference; it was 12% narrower in IC than in NG (P < 

0.05; Table 1).

Soil microbial biomass was significantly greater in the cultivated land with a concentration 

of 812 nmol PLFA g-1 versus 601 nmol PLFA g-1 in the NG soil samples (P < 0.05; Table 1). 

Separation in the composition of the microbial communities between the NG and the IC lands was 

statistically significant as evidenced by the MRPP analysis of the PLFA data (P < 0.001; data not 

shown). Similarly, the A value, which indicates within-group homogeneity, was 0.04 for the 

microbial communities between the two sampling sites. Although the A value shows that within-

group variability is considerable, the large T value (15.6) indicates distinctive separation between 

two groups. The indicator species analysis detected six significant PLFAs preferentially present in 

the NG soils, but no specific biomarker was detected for the IC (Table 2). More specifically, the 

15:1i, 17:1a, and 17:1ω8c PLFAs indicative of Gram-negative bacteria, and also a unique 

actinobacterial biomarker (17:0 10 methyl), were associated with the NG.

Significant negative correlations were found between the DTW and the following 

biophysical soil properties (Fig. 2) in NG:  SOC, STN, and MBC. Also, DTW was positively 

correlated with bulk density (r < 0.3; P < 0.05). Similar to the NG, the DTW had negative 

correlations with MBC (P < 0.05) in IC. It was also positively correlated with the C/N ratio (r = 0. 

505; P < 0.01). Among all topography variables, the elevation was significantly correlated with 

the majority of biophysical soil properties in cultivated land with negative correlations with FC 

water content, PAW, hydraulic conductivity, SOC, C/N ratio, fungal-to-bacteria ratio, and pH. 

Geostatistical modeling

The mean and median were used as central tendency estimates, while the minimum, 

maximum, skewness, kurtosis, and standard deviation (SD) values were used as descriptors of 
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variability from each separate site. We observed that water content at FC, PAW, sat. K, SOC, and 

STN were highly positively skewed (Table 1), as shown by the distinctive asymmetry in their 

distributions. In addition, the distribution of water content at FC, PAW, sat. K, SOC, and STN 

peaked more than a Gaussian distribution according to the Kurtosis values. The highly skewed 

distributions of PAW and SOC, particularly in our native grassland may, in part, be considered 

evidence of spatial heterogeneity with extreme values characteristic of landscapes where 

agricultural management (e.g., tillage, irrigation) have not fully smoothed underlying natural 

variation features. The relatively high variability of curvature (at 2 m-by-2 m resolution and using 

eight surrounding neighbors) and elevation in the NG site can support this notion (Table 1). The 

addition of cattle manure during field grazing events in NG may also have led to accumulation 

patches of enriched SOC.

With the aim of selecting suitable terrain covariates, we assessed the three soil properties 

of interest (i.e., SQ indicators: SOC concentration, PAW, and MBC) alongside highly correlated 

terrain variables (Fig. 2) to examine which candidate covariate(s) led to the lowest residual sums 

of squares (RSS) and highest R2 as derived through fitted cross-variograms. Using covariates 

consistently resulted in a substantial reduction in the RSS of the variographies for all assessed soil 

properties. Of the assessed terrain attributes, the best covariate for PAW was terrain slope in NG 

and elevation in IC (Table 3; Fig. 2 and Supplementary Fig. S1). Interestingly, DTW was the 

optimal covariate for both the SOC concentration and MBC in both land-use systems (Table 3; 

Fig. 2, 4, and Supplementary Fig. S2), implying an overarching influence of terrain wetness on 

these two key soil biological responses irrespective of the land management scenarios. 

The autocorrelation range was typically 40 to 126 m (Table 3), and the longest 

autocorrelation ranges were observed with the coK method where terrain covariates contributed to 
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these longer range spatial predictions. Congruently, the nugget ratio exhibited prominent 

reductions when applying the terrain covariates (Table 3), likely indicating tighter spatial structure 

and increased predictability. The standard error of the predictions had the lowest value in coK for 

all soil variables (Table 3). Furthermore, the coK method had low RMSPE (Table 3), which 

suggests that this approach is good interpolator. The goodness of fit (R2 values) between the 

measured and predicted data also indicated that coK performed best across all variables at both 

land uses. 

The mapped means of SOC concentration, PAW, and MBC  amply changed within the 

different distance ranges over NG and IC fields (Fig. 4, Supplementary Figs. S1 and S2), which 

indicates that the correlations of the covariates with the primary variate vary with spatial locations 

in this relatively heterogeneous prairie site. We also found that the OK and coK approaches 

differed with respect to their spatial patterns of prediction errors. The estimated uncertainty of soil 

SOC concentration, PAW, and MBC was very high with the OK method, but clearly reduced with 

the coK (Fig. 5, Supplementary Figs. S3 and S4). As indicated above, the selected SQ indicators 

exhibit high spatial variability by nature and, hence, approaches that demonstrate systematic 

reductions in their uncertainty are avidly sought after for improving predictive mapping.
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Discussion

Soil quality as a response to contrasting land use systems.

Compared to the cultivated land, the native grassland had greater saturated water content 

and doubled the hydraulic conductivity (at -10 kPa water potential). This outcome directly reflects 

the higher abundance of macropores in NG soils (Table 1), which can readily intake, store, and 

transport ample amounts of water at low tensions. However, in an apparent incongruency, PAW 

was almost triple in the IC land (0.069 vs. 0.024 m3 m-3), which can be largely attributed to a 

greater volume of smaller-size pores in these IC soils. For more than two decades this cultivated 

land was continuously used as cropland, and it had recently (in the summer prior to our field 

sampling) been converted to pasture. Our results imply that previous annual cropping activities, 

including tillage and recurrent equipment traffic, led to soil compaction, which is known to alter 

soil pore distribution by reducing macroporosity (Pagliai et al., 2004). Moreover, animal treading 

may further compress large pores into relatively smaller pores near the ground surface (Drewry et 

al., 2008). Hence, we postulate that the creation of smaller and more frequent size pores as a long-

term response to management change could have increased PAW in the cultivated land.

A greater MBC in the cultivated land could further support our hypothetical explanation 

for a higher volume of smaller pores in IC (Table 1). Even in coarse-textured soils, microorganisms 

can influence the formation of aggregates and stabilization of structure (Six et al., 2004), provided 

that microbes inhabit the pore space between microaggregates (20-250 μm size; Chenu, 1989). It 

seems plausible that a facilitation of increased microaggregation mediated by microbial activity in 

combination with small pores derived from soil compaction resulted in higher PAW and higher 

water content at field capacity in our cultivated land. Daynes et al. (2013) also showed that PAW 

increased in the presence of living plant roots and soil microbes because of maximization in the 
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distribution of relatively finer pores that are capable of holding water available for vegetation. Our 

study extends the existing literature by documenting clear differences in soil pore water 

interactions and microbial functions across competing land-use types.

Differences in microbial community structure between grassland and cultivated land are 

most likely related to variations in the quantity and quality of nutrients being supplied to the soil 

(Juma, 1994; Grayston et al., 2004; Khalili et al., 2016). Although the SOC concentration did not 

differ between the two land-use sites, the irrigated cultivated land had significantly higher nitrogen 

content leading to a lower C/N ratio (P < 0.05). The narrower C/N ratio in our cultivated soils may 

have revealed less limiting nitrogen status (Quideau et al., 2013) in the IC soil after decades of 

intense cropping history, including N fertilization and the introduction of legumes, which caused 

the greater MBC in the IC land (Li et al., 2018). Moreover, the NG soil was characterized by a 

higher abundance of Gram-negative bacteria, actinobacteria, and anaerobic bacteria as main 

microbial biomarkers (Table 2). Previous studies also indicated Gram-negative bacteria as unique 

biomarkers of grazed perennial grassland (Steenwerth et al., 2002; Geisseler et al., 2016) and a 

greater abundance of Gram-positive bacteria in cultivated sites. It seems that converting the native 

grassland to cultivated land decreased the relative abundance of Gram-negative bacteria while 

increasing the proportion of Gram-positive bacteria. Gram-positive bacteria can mineralize 

recalcitrant organic compounds when requiring available inorganic N to invest in synthetizing 

extracellular enzymes, while Gram-negative bacteria target labile C compounds requiring fewer 

extracellular enzymes and can therefore invest in transport proteins that target organic N (Treseder 

et al., 2011). Shifting from Gram-negative bacteria to Gram-positive bacteria corresponded with 

increasing litter quality and N availability in irrigated cultivated land with possible greater contents 

of stable soil C. These results further support the interaction between microbial functions and 
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higher volume of smaller pores in the cultivated land. Recurrent tillage cultivation breaks up soil 

aggregates which would expose labile organic C (protected inside of soil aggregates) to microbial 

decomposition reducing the labile C concentration, and any remaining C from these processes can 

be transformed into more stable C (Figueiredo et al., 2010; Li et al., 2018).

When the S-index value as an indicator of soil physical quality is greater than 0.05, 

indicates a “very good” physical or structural quality, and 0.035 ≤ S-index < 0.050 indicates “good 

physical quality” (Dexter, 2004). Although our S-index results showed good to very good 

structural quality (0.031 ≤ S-index ≤ 0.197; Table 1) in the NG, this might mainly reflect soil 

matrix attributes rather than structural characteristics for soils with a narrow pore-size distribution 

(Dexter et al., 2008) as found in our field sites. Consequently, it appears that the S-index should 

be interpreted cautiously, and needs to be assessed along other SQ indicators when attempting to 

quantify the physical quality of rigid to moderately expansive soils (Reynolds et al., 2009). 

Topography variables in relation to soil quality indicators in different land-uses 

Among the six topography variables, DTW and elevation had both the greatest association 

with the assessed soil quality indicators (Fig. 2). The mean DTW in native grassland was 1.03 m 

depth while in irrigated pasture it was only 0.36 m, which could be another reason that conditions 

were more favorable for microbes and greater MBC in the cultivated land. Both MBC and SOC 

concentration were significantly related to DTW in both land use systems (P < 0.01), perhaps 

indicating the sensitivity of the formation of soil organic matter and microbial activity to the 

capacity of the soil to hold available water. Soil moisture availability directly impacts the activity 

of microorganisms in a way that their activity decreases as the soil becomes dry (Curtin et al., 

2012). With regards to SOC, previous studies also showed a significant positive relationship 

between water availability and SOC (Kiani et al., 2017). Water availability could increase the 
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production of plant biomass, root exudation, and residues that can be incorporated into the soil. It 

could, over the long term, also feedback into additional organic carbon accrual (Dinwoodie and 

Juma, 1988). The highest SOC concentration (> 25 %) was observed at a low estimated water table 

depth (< 0.2 m) and elevation, where the mass of the fungi community was in a higher range (> 

110 nmol g–1 soil) in both lands. In grassland, the lower capacity of water availability for plants 

was significantly related to the deeper water table while a similar relationship was not observed in 

the irrigated pasture. The correlation implies that in the native grassland, which does not receive 

regular irrigation, DTW is a key geomorphology controller of soil quality. Model developers of 

soil quality in grasslands should take this into account. 

Overall, a relationship (r > – 0.36; P < 0.01) between SOC and terrain elevation was 

observed for both land-uses with a decrease in SOC when elevation increased (Fig. 2). A similar 

relationship was observed between STN and elevation in native grassland (r = – 0.39; P < 0.01). 

Our results are in agreement with earlier studies which reported relatively low values of SOC and 

STN at higher terrain elevations (Zhao et al., 2015). It is plausible that as terrain elevation 

decreases, soil moisture content and availability tend to increase (Hook and Burke, 2000), and 

consequently, increasing plant productions which in turn increases SOC input and accumulation 

(Pei et al., 2010; Li and McCarty, 2019). It is also possible that the accumulation of SOC at the 

lower position could be caused by soil erosion which leads to residue deposition and redistribution 

of labile organic carbon in the surface soil (Lal, 2003; Li et al., 2017). 

Improving mapping of soil quality indicators using the topography variables 

 The PAW, SOC concentration, and MBC were strongly spatially dependent in cultivated 

land (nugget ratio < 18%; Table 3) compared to the native grassland. Glendell et al. (2014) also 

found a stronger degree of spatial dependence of total carbon and the C/N ratio in agricultural land 
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(< 24%) than in grasslands (37 to 71%). The stronger degree of spatial dependence and longer 

autocorrelation range in cultivated lands indicates a homogenization of the spatial variability of 

soil properties (Glendell et al., 2014; Qiu et al., 2016). This effect could be a result of intensive, 

long-term agricultural activities such as tillage, irrigation, fertilization, and harvest, which have 

been applied uniformly across this field.

In our study, we systematically explored two geostatistical methods to provide a detailed 

spatial-resolution prediction and visualization of PAW, SOC concentration, and MBC in soils of 

native grasslands and cultivated lands. A direct way to check the interpolation performance is by 

plotting the predicted values against the observed values. A comparison of the cross validation of 

the OK and coK approaches indicated that the coK method had the best performance (Table 3; Fig. 

3). In line with this finding, Chen et al. (2009) reported that compared to ordinary kriging, the coK 

method was useful for reducing requirements of sampling quantities and intensity. It also made it 

possible to save sample collection time under the premise of maintaining interpolation accuracy. 

The coK method demonstrated a clear improvement in the accuracy of spatial estimations of the 

SOC concentration and MBC when DTW was incorporated as a covariate (Table 3). Furthermore, 

when focusing on PAW, the coK method also had the best performance when terrain slope and 

elevation were the selected covariates for the NG and IC fields, respectively. The MPE also 

showed that bias estimation was considerably reduced when the coK was applied for spatial 

prediction (Table 3). Our results are consistent with earlier reports showing a clear advantage of 

coK over OK for predicting the spatial variation of SOC stock (Ceddia et al., 2015; Guenette and 

Hernandez-Ramirez, 2018), saturated hydraulic conductivity (Motaghian and Mohammadi, 2011), 

heavy metals (Chen et al., 2009) and topsoil gravel and subsoil clay (Odeh et al., 1995). 
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Graphic visualization of the mean and uncertainty for predicted values across our field sites 

provides opportunities to identify spatial patterns and to conduct comparisons amongst 

geostatistical approaches (Hengl et al., 2004). Overall, our mean maps for selected soil properties 

(PAW, SOC concentration, and MBC) showed similarities in estimated values when comparing 

OK with the coK method; however, a major difference became evident when contrasting standard 

deviation maps derived from OK versus those from coK (Fig. 5, Supplementary Figs. S3 and S4). 

It is noticeable that the incorporation of topographic variables as covariates substantially reduces 

the estimated uncertainty of the predictions by about half. Furthermore, the OK uncertainty maps 

showed abrupt textural changes with sharp increases in predicted standard deviation, particularly 

in field areas that were distant from our measured points. Conversely, the coK maps exhibited 

much lower, coherent uncertainty patterns across the space, and even in areas away from our 

measured sampling points. Our strategy of soil samples collection (nested cyclic sampling design) 

could increase the sampling efficiency by reducing over-sampling at small lag distances. However, 

in our case, due to the large unsampled area in some field areas, the kriging variance for these 

spatial estimations particularly MBC in the IC field had high uncertainty which could be improved 

by strategically implementing sampling at targeted field locations. 

Our geostatistical analyses suggest that the combination of specific topographic covariates 

in coK techniques provided an enhanced ability to incorporate ancillary information into predictive 

soil mapping of SQ indicators. We suggest undertaking additional validation of our findings in 

new, independent field sites; such efforts will evaluate the robustness and usefulness of our derived 

spatial models over comparable landscapes and lead to the optimization of these predictive 

mapping tools. 
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Conclusion

This study examined the spatial variation of sensitive SQ indicators in two contrasting land-

use systems along with their relationships with several topography variables. Overall, converting 

native grassland to cultivated lands detrimentally altered the soil structural characteristics. 

However, a number of factors contributed to better conditions for microbial growth in cultivated 

land including more availability of water and nutrients. This interaction emphasizes the interest of 

assessing several SQ indicators simultaneously to infer multiple soil functions and the status of 

ecosystem services in land-use systems. In addition, we observed different relationships between 

SQ indicators and topographic variables in our study. In general, DTW (~water table depth) and 

terrain elevation variables were key geomorphology controllers of SOC and MBC in both lands 

suggesting that SQ model developers can take these relationships into account. 

Also, we examined two common geostatistical methods for capturing and predicting field 

spatial variability of PAW, SOC concentration, and MBC. Our results showed that integrating high 

spatial-resolution topographic information (e.g., DTW, elevation, or slope) derived from remote 

sensing into the geostatistical coK method improved the prediction ability substantially compared 

to the OK method. Such improved mapping applications would benefit studies in areas with limited 

data access or where there is need to extrapolate findings from representative sites to larger regions.

Overall, the identification of spatial patterns of soil properties in agricultural lands provides 

holistic visualization tools to landowners for implementing and improving management practices 

that will eventually lead to more sustainable production. There is a need to continue developing 

explicit spatial upscaling information about specific soil properties that are linked to key ecosystem 

functions under a broader variety of land-use systems at other soil depths than in our study and in 

finer-textured soils.
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Figure captions

Figure 1. Nested cyclic sampling design. The sampling intervals were every 10, 35, 85, and 
100 m for the west-to-east direction and every 10, 35, 85, 95, 120, and 170 m for the north-to-
south direction (n = 36; main panel). A 0.5, 2, 4.5 m cycle was applied in both directions for 
the smaller scale nest (n = 20) as showed in the inset. There are also two additional sampling 
points (highlighted in green) that were strategically located in the field plots to increase the 
sampling efficiency.

Figure 2. Correlation network based on Spearman correlation coefficients among soil 
properties and topography variables in native grassland (NG) and irrigated cultivated land (IC). 
The black lines indicate positive correlations; the red lines indicate negative correlations. The 
thickness of the line shows the strength of the correlation. Only significant correlations with r 
> 0.3 are shown. Also, correlations between variables with high co-linearity (dependency) were 
not shown. The abbreviations for the variables are translated as follows: BD (bulk density), 
SatW (saturated volumetric water content), FC (field capacity water content), PAW (plant 
available water), ResW (residual water content), Sidx (S-index),  Ks (saturated hydraulic 
conductivity), K (hydraulic conductivity at -10 kPa water potential), SOC (soil organic carbon) 
concentration, STN (soil total nitrogen) concentration, C.N (carbon-to-nitrogen ratio), MBC 
(microbial biomass carbon) concentration, F.B (fungal-to-bacteria ratio), Elev (terrain 
elevation), Curv (curvature), Aspt (aspect), Hill (hill shade), DTW (depth-to-water table).

Figure 3. Relationship between observed and predicted data of plant available water (PAW), 
soil organic carbon (SOC), and microbial biomass carbon (MBC) using cross-validation for 
ordinary kriging (OK) and cokriging (coK) methods in native grassland (NG) and irrigated 
cultivated land (IC). The cross-validation panels display both the 1:1 agreement line (dotted 
line) and the least-squared linear regression (continuous line).

Figure 4. Spatial distributions of soil organic carbon concentration (SOC; % m/m) by ordinary 
kriging (OK) and cokriging (coK) methods in native grassland (NG) and irrigated cultivated 
land (IC) using a nested cyclic sampling design. A LiDAR-derived depth-to-water table 
(DTW) was used as the covariate for the coK method.

Figure 5. Generalized visualization of the uncertainty prediction [standard deviation (SD)] for 
soil organic carbon (SOC; % m/m) using ordinary kriging (OK) and cokriging (coK) methods 
in native grassland (NG) and irrigated cultivated land (IC). The inverse distance weighting 
(IDW) interpolation were used. The green dots are the 58 measured field locations.
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Tables

Table 1. Descriptive statistics of soil properties at native grassland (NG) and irrigated cultivated land (IC).

Attributes Sites Mean Median Min Max Kurtosis Skewness SD

NG 1.44 a 1.44 1.14 1.63 -0.30 -0.41 0.11Bulk density 
(g cm-3) IC 1.43 a 1.43 1.09 1.65 -0.40 -0.39 0.14

NG 0.455 a 0.46 0.38 0.57 -0.24 0.42 0.042Porosity 
(m3 m-3) IC 0.460 a 0.46 0.38 0.59 -0.37 0.34 0.051

NG 0.474 a 0.47 0.34 0.57 1.81 -0.50 0.041Sat. WC
(m3 m-3) IC 0.422 b 0.43 0.29 0.56 -0.20 -0.20 0.058

NG 0.118 b 0.11 0.08 0.37 29.85 4.82 0.039ӨFC
(m3 m-3) IC 0.154 a 0.14 0.07 0.36 3.89 1.63 0.051

NG 0.094 a 0.10 0.00 0.16 5.18 -1.07 0.023ӨPWP
(m3 m-3) IC 0.085 a 0.08 0.01 0.17 0.04 0.57 0.034

NG 0.024 b 0.01 0.00 0.21 12.09 3.08 0.035PAW
(m3 m-3) IC 0.069 a 0.05 0.01 0.27 1.95 1.25 0.053

NG 0.355 a 0.36 0.20 0.44 3.78 -1.36 0.044Macroporosity 
(m3 m-3) IC 0.268 b 0.27 0.14 0.45 2.59 0.20 0.075

NG 0.020 b 0.02 0.01 0.02 2.81 1.29 0.002α 
(hPa-1) IC 0.024 a 0.02 0.01 0.07 6.17 1.98 0.011

NG 3.04 a 3.06 1.22 4.72 -0.22 0.08 0.77n
IC 1.97 b 1.97 1.24 3.16 -0.54 0.37 0.48
NG 0.091 a 0.10 0.00 0.14 5.12 -1.90 0.025Θr 

(m3 m-3) IC 0.072 b 0.07 0.00 0.17 -0.77 0.20 0.046
NG 0.468 a 0.47 0.34 0.56 1.62 -0.62 0.041Θs 

(m3 m-3) IC 0.427 b 0.44 0.30 0.53 -0.29 -0.30 0.053
NG 0.106 a 0.106 0.031 0.197 0.82 0.37 0.031S-index
IC 0.055 b 0.054 0.023 0.099 -0.84 0.26 0.019
NG 6.70 a 3.68 0.46 52.20 13.81 3.36 8.75Ks 

(cm d-1) IC 8.36 a 2.39 0.30 120.20 24.92 4.64 18.60
NG 0.18 a 0.19 0.05 0.35 0.29 0.14 0.06Unsat. K 

(cm d-1) IC 0.08 b 0.03 0.00 0.40 2.50 1.85 0.10
NG 1.05 a 0.97 0.66 3.13 19.42 3.75 0.36SOC concentration

(% m/m) IC 1.09 a 1.03 0.70 2.65 10.11 2.56 0.32
SOC density NG 748 a 698 497 1878 12.17 2.94 220
(g m-2 soil) IC 779 a 737 473 1961 15.21 2.7 242

NG 0.09 b 0.08 0.05 0.28 9.68 2.51 0.04STN 
(% m/m) IC 0.11 a 0.10 0.06 0.24 7.92 2.13 0.03

NG 11.47 a 11.85 9.17 14.20 -1.18 0.05 1.36C/N
IC 10.15 b 9.91 8.18 13.50 0.90 1.10 1.22
NG 5.97 a 5.94 5.08 7.42 3.23 0.89 0.37pH
IC 6.03 a 6.02 5.18 6.86 -0.38 -0.17 0.40
NG 601 b 527 178 1223 0.91 1.01 212MBC 

(nmol PLFA g-1 soil) IC 812 a 621 268 2388 2.05 1.49 481
NG 722.0 721.9 720.6 723.2 -0.88 -0.04 0.5Elevation 

(m) IC 723.1 723.1 722.5 724.0 -0.19 0.20 0.3
NG 0.01 0.00 -14.0 31.75 13.52 1.24 2.54Curvature (m−1)
IC 0.01 0.00 -6.5 8.75 0.61 0.16 1.87
NG 2 1 0 8 3.66 1.71 1.1Slope (◦)
IC 1 1 0 4 3.71 1.54 0.6
NG 155 131 0 360 -1.04 0.41 100Aspect (◦)
IC 177 167 0 360 -1.14 0.12 100
NG 179 179 161 194 1.66 -0.34 4Hill shade (◦)
IC 180 179 172 191 1.22 0.20 2
NG 1.03 1.02 0.00 2.36 -0.54 0.12 0.46DTW 

(m) IC 0.36 0.33 0.00 1.36 1.23 1.03 0.24
Notes: Mean values between the land-use systems followed by a different letter are significantly different at P < 0.05. NG: native grassland; IC; 
irrigated cultivated land; SD: standard deviation; θFC: field capacity water content; θPWP: permanent wilting point water content; PAW: plant 
available water; θs: saturated volumetric water content; θr: residual water content; n: a shape parameter related to the curve smoothness; α: a 
negative inverse of the air-entry potential; S-index: the slope at the inflection point; Ks: saturated hydraulic conductivity; Unsat. K: hydraulic 
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conductivity at 10 kPa; SOC: soil organic carbon; STN: soil total nitrogen; C/N: carbon to nitrogen ratio; MBC: microbial biomass carbon; DTW: 
depth to water. Number of samples (N) for soil properties is 58 per site, while N for terrain covariates is 7162 in the NG site and 6194 in the IC 
site.
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Table 2. Distinctive phospholipid fatty acid (PLFA) indicator species analysis associated with either the native 
grassland (NG) or the irrigated cultivated land (IC). Each value represents the mean indicator, with standard deviation 
in parentheses. The highest indicator value is in bold. Only PLFAs that were found to be significantly different among 
groups are presented.

Indicator Value Monte Carlo
PLFA Taxa biomarker

Mean NG IC P < 0.05
14:00 Bacteria in general 41.8 (2.65) 53 26 0.0012
15:1 i Gram - 41.8 (2.62) 50 28 0.0044
17:1 a Gram - 15.5 (2.86) 31 2 <0.001
17:1ω8c Gram - 50.4 (0.84) 54 45 <0.001
17:0 10 methyl Actinobacteria (Gram+) 49.7 (1.31) 53 43 <0.001
16:1 2OH Anaerobic bacteria 50.3 (1.11) 52 46 0.0226
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Table 3. Variographic (semivariogram and cross-semivariogram) models, fitting statistical indicators, and resulting 
validation parameters as a function of geostatistical approaches in both native grassland (NG) and irrigated cultivated 
land (IC).

Variography Validation ParametersAttributes Prediction
Method Model Residual 

SS r2 Autocorrelation 
Range (m) Sill C0/(C0+C) 

(%) NSE SE predict MPE RMSPE

NG 
PAW OK G 116.0 0.70 50 19.16 29.4 0.04 1.57 -0.14 3.56

coK G 1.43 0.63 90 -1.662 18.0 0.85 0.97 -0.02 1.53

SOC OK G 0.03 0.43 47 0.164 16.0 0.06 0.15 -0.01 0.35
coK G 2.4×10-3 0.73 99 -0.076 9.3 0.92 0.08 -0.01 0.12

MBC OK G 5.4×108 0.70 99 50760 41.0 0.11 94.97 -8.41 202
coK G 673.0 0.91 113 -73.20 2.2 0.74 63.47 -4.37 121

IC
PAW OK G 497.0 0.63 64 28.96 13.9 0.40 2.80 -0.40 4.12

coK G 0.82 0.72 90 -1.140 0.1 0.94 1.12 -0.08 1.33

SOC OK S 0.05 0.31 63 0.117 0.1 0.74 0.14 0.00 0.16
coK G 1.05×10-3 0.20 70 0.014 10.1 0.76 0.18 -0.01 0.18

MBC OK G 1.9×1011 0.07 35 218800 17.7 0.53 235.00 42.49 330
coK G 1042.0 0.77 80 -47.85 0.2 0.87 141.74 5.88 184

Notes: Units for all presented variables are as detailed in Table 1. C0/(C0+C) : nugget to sill ratio; G: gaussian; S: spherical ; OK: ordinary 
kriging; coK: cokriging; PAW: plant avail
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Figure 1. Nested cyclic sampling design. The sampling intervals were every 10, 35, 85, and 100 m for the west-to-east direction and every 10, 35, 85, 95, 120, and 170 m for the 
north-to-south direction (n = 36; main panel). A 0.5, 2, 4.5 m cycle was applied in both directions for the smaller scale nest (n = 20) as showed in the inset. There are also two 
additional sampling points (highlighted in green) that were strategically located in the field plots to increase the sampling efficiency. 
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NG site IC site

Figure 2. Correlation network based on Spearman correlation coefficients among soil properties and topography variables in native grassland (NG) and irrigated cultivated land
(IC). The black lines indicate positive correlations; the red lines indicate negative correlations. The thickness of the line shows the strength of the correlation. Only significant
correlations with r > 0.3 are shown. Also, correlations between variables with high co-linearity (dependency) were not shown. The abbreviations for the variables are translated as
follows: BD (bulk density), SatW (saturated volumetric water content), FC (field capacity water content), PAW (plant available water), ResW (residual water content), Sidx (S-
index),   Ks  (saturated  hydraulic  conductivity),  K (hydraulic  conductivity  at  -10  kPa water  potential),  SOC (soil  organic  carbon)  concentration,  STN (soil  total  nitrogen)
concentration, C.N (carbon-to-nitrogen ratio), MBC (microbial  biomass carbon) concentration, F.B (fungal-to-bacteria ratio),  Elev (terrain elevation), Curv (curvature),  Aspt
(aspect), Hill (hill shade), DTW (depth-to-water table).
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Figure 3. Relationship between observed and predicted data of plant available water (PAW), soil organic carbon (SOC), and microbial 
biomass carbon (MBC) using cross-validation for ordinary kriging (OK) and cokriging (coK) methods in native grassland (NG) and 
irrigated cultivated land (IC). The cross-validation panels display both the 1:1 agreement line (dotted line) and the least-squared linear 
regression (continuous line). 
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Figure 4. Spatial distributions of soil organic carbon concentration (SOC; % m/m) by ordinary kriging (OK) and cokriging (coK) 
methods in native grassland (NG) and irrigated cultivated land (IC) using a nested cyclic sampling design. A LiDAR-derived depth-to-
water table (DTW) was used as the covariate for the coK method. 
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Figure 5. Generalized visualization of the uncertainty prediction [standard deviation (SD)] for soil organic carbon (SOC; % m/m) using 
ordinary kriging (OK) and cokriging (coK) methods in native grassland (NG) and irrigated cultivated land (IC). The inverse distance 
weighting (IDW) interpolation were used. The green dots are the 58 measured field locations. 
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