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In this review, we outline the growing role that molecular dynamics simulation is able
to play as a design tool in drug delivery. We cover both the pharmaceutical and
computational backgrounds, in a pedagogical fashion, as this review is designed
to be equally accessible to pharmaceutical researchers interested in what this new
computational tool is capable of and experts in molecular modeling who wish to pursue
pharmaceutical applications as a context for their research. The field has become
too broad for us to concisely describe all work that has been carried out; many
comprehensive reviews on subtopics of this area are cited. We discuss the insight
molecular dynamics modeling has provided in dissolution and solubility, however, the
majority of the discussion is focused on nanomedicine: the development of nanoscale
drug delivery vehicles. Here we focus on three areas where molecular dynamics
modeling has had a particularly strong impact: (1) behavior in the bloodstream and
protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle
interaction with both model and biological membranes. We conclude with some
thoughts on the role that molecular dynamics simulation can grow to play in the
development of new drug delivery systems.

Keywords: pharmaceutics, nanomedicine, molecular dynamics, drug delivery, nanoparticle

INTRODUCTION

The exponential advance of the computational power available to us has led to related approaches
attaining a prominent, one can argue now dominant, position within pharmaceutical research.
The majority of this toolkit, as we will elaborate below, are methodologies that fit experimental
data to a mathematical model that provides a numerical answer, for example a specific drug
molecule structure or delivery system formulation. A subset of computational methodologies
provide something further: mechanistic understanding; in place of just an answer, i.e., an optimum
value or set of values, mechanistic understanding means an elucidation of what is actually occurring
in the system that produces the results: in simple terms, a model of the system, expressed as a
cartoon in three dimensions, of what is happening. Such an output, often referred to as a simulation,
has power far beyond that provided by a mere result of what is optimal for the specific application
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sought; it can lead to an informed design process that is
more efficient, allows for broader intuitive leaps from its
interpretation and provides insight that transcends the specific
application studied.

An extremely successful computational scheme for attaining
mechanistic understanding is molecular dynamics simulation
(MD), a methodology that models the system as a set of particles
that interact through classical mechanics. An intuitive choice
for these particles, particularly for those with a background in
chemistry, is for them to represent atoms, with interactions
between the atoms producing the intramolecular forces that
govern the structure of molecules and the intermolecular forces
that govern interactions between molecules. This is, however,
not the only choice that can be made, as particles can be
chosen to represent larger structures than single atoms; they can
represent groups of atoms, whole molecules, or even groups of
molecules. Such models can obtain insight into the system on
a larger length and time scale than can be achieved through a
model with atomistic resolution and are known as coarse grained
(Ingólfsson et al., 2014).

In this review we will highlight the growing role that MD has
played and will continue to play in drug delivery, what has been
referred to as computational pharmaceutics by Ouyang and Smith
(2015), using computational methods to address issues related
to drug delivery including dissolution, solubility, protection
from the bodies defense mechanisms, controlled release and
targeted delivery. The development of advanced mechanisms
for drug delivery based on nanoscale drug delivery vehicles, a
field known as nanomedicine (Riehemann et al., 2009; Lammers
and Ferrari, 2020; Moghimi et al., 2020), is a particular area
where MD methods have borne fruit. This review paper has two
target audiences: (1) pharmaceutical researchers, intrigued by the
rapid rise of computational methods applicable to their research,
who are interested in learning what kind of insight MD can
provide and (2) computational physicists and chemists, with a
background in MD methods, atomistic and coarse grained, who,
for reasons I most probably do not need to inform the reader of,
realize that at this point in history pharmaceutical applications
are an extremely desirable context for their research. Both of the
target audiences will find certain elements of this review to be
trivially basic and may even bristle at some oversimplifications;
one should keep in mind the dual audience focused nature
of this review. As the subject matter is extremely broad, with
several areas covered by comprehensive reviews themselves, this
publication can, to some extent, be seen as a meta-review, to
be used as an initial jumping off point leading to many further
review papers, in addition to original work.

At its core, pharmaceutical science is roughly (1) the search
for small molecules that, over the scale of the entire organism,
do more good than harm under certain conditions: drug design
and (2) development of the means by which these molecules can
enter the body and reach their target tissue intact: drug delivery
or pharmaceutics. Pharmaceutical science begins with Paracelsus,
the man who is to pharmacy what Isaac Newton is to physics
and his maxim “the dose makes the poison" (Rozman and Doull,
2001); substances exist that, at too high a dose are a poison
that will kill you, but when taken at a certain dose can actually

help you. The substance enters the body, dissolution occurs and
the drug molecules within the substance are freed and diffuse
through the body and enough reaches, intact, the desired location
in sufficient quantity to induce the desired effect. Any drug
molecule will reach other parts of the body and have different
effects which are undesirable: the toxicity, i.e., side effects, of the
drug. The conventional drug design paradigm is thus a balancing
act between efficacy, toxicity and solubility. A very efficacious
drug can be found that either has intolerable toxicity or too poor
solubility to be carried through the bloodstream or, due to the
nature of the target tissue, insufficient quantities of the drug reach
it to have the desired effect.

Initially drugs were found through trial and error, however,
the search space is gigantic: the number of different small
organic molecules that are theoretically possible to synthesize
is ∼1063 (Bohacek et al., 1996; Hoffmann and Gastreich,
2019) a number that dwarfs such quantities as Avogadro’s
number and the number of stars in the universe; drug design
can be seen as searching this discrete "drug structure space."
The latter half of the twentieth century saw the onset of a
systematic approach to searching this space based on the "lock
and key" paradigm: drug molecules were designed to fit a
certain active site on a certain protein to either inhibit or
activate them. This was propelled by advances in three areas
(1) robotics to enable massive simultaneous parallel screening
experiments, (2) increasing numbers of high resolution protein
structures, determined first through X-ray crystallography, but
now increasingly through cryo-EM, and (3) the computational
power and advanced algorithms to analyze the massive data sets
produced. The computational component of this, computational
drug design, can be divided into two methodologies: (1) ligand-
based (Acharya et al., 2011) where the target protein structure is
not known and (2) structure based (Alonso et al., 2006; Sousa
et al., 2006; Sliwakosky et al., 2014; Ferreira et al., 2015), where
the binding free energy of potential drug molecules is calculated,
using the experimentally determined high resolution protein
structure, a calculation known as "ligand docking and scoring."
Ligand based methods use pattern recognition, now trendily
referred to as "machine learning," algorithms where elements
of the structural properties are mapped to either (1) high
throughput screening results for activity, i.e., efficacy and other
desirable properties, e.g., solubility parameters: Quantitative
Structure Activity Relationship/Quantitative Structure Property
Relationship (QSAR/QSPR) (Liu and Long, 2009; Nantasenamat
et al., 2009; Ghasemi et al., 2018; Toporov and Toporova, 2020)
or (2) elements of three dimensional structure of the molecule:
pharmacophore modeling (Acharya et al., 2011).

Apart from the pharmacological research to determine
appropriate target protein active sites, the above mentioned
methodologies for drug discovery together are a fixed, simplified,
purely empirical, paradigm: fitting data without insight. As is
the case with research carried out using a fixed paradigm,
metaphorically speaking continuing to turn the crank on the
same machine, one reaches a point of diminishing returns; this is
exactly what has occurred for the case of pharmaceutical research:
as the resources spent globally on pharmaceutical research
increase exponentially, the number of new drugs approved each
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year remains constant, a phenomenon referred to as "Eroom’s
law" (Scanell et al., 2012) the reverse of the famous Moore’s law
regarding the exponential increase in computational technology
we have witnessed over the past half century: pharmaceutical
research is slowing down exponentially; moving forward requires
moving beyond this oversimplified model.

The situation for drug delivery, i.e., pharmaceutics, is
similar. When a given molecule is designed, using the above
methodology, a set of rules of thumb are applied regarding
its properties, known as "Lipinski’s rule of 5” (Lipinski et al.,
2001; Lipinski, 2004). This determines whether the molecule
is "drug-like," i.e., a molecular structure likely to have a
sufficiently optimal solubility profile, or not. Behavior of the
drug in the body apart from its drug action, known as its
Absorption, Distribution, Metabolism, and Excretion (ADME)
properties, is a critical aspect that partially determines both
efficacy and toxicity. This is modeled using numerical solutions
to complex sets of coupled differential equations that represent
the interactions of drugs and drug metabolites, as their
distribution varies in time in the different tissues of the organism;
this form of numerical computational modeling is known
as pharmacokinetic/pharmacodynamics modeling (Craig, 1998;
Ruiz-Garcia et al., 2008; Belfo and Lemos, 2021). While this
form of modeling is not entirely empirical, as it is dependent on
known metabolic relations, it still remains a method to calculate
a quantitative result from experimentally measured parameters.

Given that the global pharmaceutical industry is estimated to
have a turnover in excess of 1 trillion USD, there is obviously
a substantial continuing effort to break out of the rut of
diminishing returns it finds itself in. Regarding pharmaceutics,
the last 30 years has seen the development of increasingly
sophisticated mechanisms for enhancing the solubility profile,
carrying/protecting drugs in the bloodstream and targeting them
to the desired tissue (Zhang W. et al., 2017): the aforementioned
nanomedicine (Moghimi et al., 2020). These involve either
covalently bonding the drug to a molecule or packaging the drug
into a nanoscale (diameter 100nm or less) vehicle that performs
this function. As this field has developed, these means have
become increasingly complex and intricate and, as a result, this
avenue has also become stuck (Park, 2016): while increasingly
complex devices make for engaging narratives leading to well
cited publications, the greater the complexity the more that
can go wrong, resulting in a field of research that is far
better at producing publications than real approved therapies;
as Venditto and Szoka have put it "so many papers and so few
drugs!" (Venditto and Szoka, 2013); the resulting system, coupled
to the human physiological environment, is far too complex
to be developed through the above described limited, mostly
empirical, paradigm.

It can be argued that what is missing is mechanistic
understanding: insight into what is actually physically happening,
i.e., what are the molecules actually doing? The above described
computational methods do not provide this; what they provide
is a numerical answer. Mechanistic understanding is obtained
by a computational method that can, given knowledge of the
structure of molecules, provide insight into how the molecules
interact, i.e., what structures they form and how they move

with respect to each other with time: a three dimensional
movie of what is happening on the molecular length scale.
A molecule, or system of molecules, is a set of nuclei and
electrons interacting in a specific way. How this interaction
affects the motion of the atoms, i.e., the physics of the system,
is quantum mechanics. Exact calculation is impossible, however,
the discipline of theoretical quantum chemistry has developed
many methods for approximating the behavior of molecules
governed by quantum mechanics (Cramer, 2002). While these
calculations can be simplified through the use of semi-empirical
methods (Thiel, 2014), we are still left with a calculation that is too
computationally intensive to simulate the length and time scales
that are of interest to us. Making a set of approximations and
accepting certain limitations of the variety of phenomena that
can be observed, we arrive at the molecular mechanics paradigm:
the molecule modeled as a set of particles with their interactions
governed by classical mechanics.

THE MOLECULAR MECHANICS
PARADIGM AND MOLECULAR
DYNAMICS SIMULATION

The molecular mechanics paradigm is based on a combination
of insight from the quantum mechanical interactions of atoms
and empirical physical chemistry. The resulting model, illustrated
in Figure 1, can be intuitively pictured as a set of sticky rubber
balls (the short range attractive van der Waals (Israelachvili,
1985) and repulsive Pauli exclusion forces modeled through
what is known as the Lennard-Jones potential term) that are
charged (electronegativity of atoms and H-bonding behavior
modeled through partial charges) connected by springs (the
bond forces) with hinges (angular interactions), axels (proper
dihedral potentials) and other 4-body interactions to produce
correct structure (improper dihedral potentials); the atoms and
molecules follow Newton’s equations of motions, knocking into
each other and rattling about in response to these forces; the
result is a three dimensional movie of the system with atomistic
resolution: molecular dynamics simulation (Allen and Tildesley,
1989; Frenkel and Smit, 2001). This has been referred to as a
“computational microscope" by Lee E. H. et al. (2009), however,
we feel this analogy is misleading as this is not a visualization
of a piece of a real system but rather the isolation and study
of a specific aspect of the system that we have assembled the
appropriate set of models of molecules to study. Discussion of
the methods used to determine the parameters of this model can
be found elsewhere (Plimpton, 1995; Karplus and McCammon,
2002; Case et al., 2005; Phillips et al., 2005; Hess et al., 2008; van
Gunsteren et al., 2008; Brooks et al., 2009; Abraham et al., 2015).

Several competing potential sets exist and for simulating any
system with new molecules that have never been simulated
before, often the case in pharmaceutical as opposed to biological
research since we deal with unique man-made molecules,
quantum chemistry calculations must be performed; choosing
and building potential sets for the model to obtain the correct
result requires significant expertise. While molecular dynamics
simulation with an all atom model has seen significant success
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FIGURE 1 | The set of interactions that are the molecular mechanics paradigm that defines the forces that drive the motion of atoms in a molecular dynamics
simulation with all atom resolution. The bond, angle and dihedral potentials are the intramolecular interactions that define molecule structure and the interactions
between covalently bound atoms. Each atom has a partial charge that interacts with all other atoms through electrostatic forces to model electronegativity and
H-bonding behavior; short range attractive and repulsive forces due to the Van-der-Waals and Pauli Exclusion Principle, respectively, are modeled through the
Lennard-Jones interaction.

in the study of a wide range of biophysical systems, it is still
limited to a length scales of ∼15 nm and time scales of ∼1–2
µs: too small to obtain insight into several phenomena we wish
to study. Here we return to the aforementioned coarse grained
models (Figure 2). While several phenomena cannot be observed
as they are dependent on specific interatomic interactions, e.g.,
salt bridges and H-bonds, with good judgment such models allow
for the metaphorical camera to zoom out and study behavior on
larger length and timescales, however, with reduced resolution.

While several schemes for the development of coarse grained
models have been proposed (Miyazaki et al., 2020) the two that
have been most frequently used are the MARTINI potential set
(Marrink et al., 2007), where the coarse grained particles are
groups of ∼3 atoms with the potential sets developed based
on the solubility parameters of these groups and Dissipative
Particle Dynamics (DPD) (Groot and Warren, 1997; Español
and Warren, 2017) where the degree of coarse graining is
greater still, where the particles are soft "momentum carriers"
and temperature is controlled through a thermostat designed

to conserve local momentum as the effects of hydrodynamics
become important at this larger length and time scale. Another
scheme is incorporating the effect of the solvent through
adjustment to the interactions between particles in the molecules
of interest, i.e., simulating with adjusted potentials in a vacuum;
this is known as the “implicit solvent” model (Murtola et al.,
2009). An ideal that is often sought and discussed is "multiscale
simulation"—combining the insight from simulations carried
out with different methodologies on different length and time
scales (Haddish-Berhane et al., 2007; Murtola et al., 2009;
Meier et al., 2013); in 2013 The Nobel Prize in Chemistry was
awarded to Arieh Warshel, Martin Karplus and Michael Levitt
for "development of multiscale models for complex chemical
systems" (The Nobel Prize in Chemistry 2013, 2013). From the
literature search for this review, it can, however, be surmised
that this ideal, for the most part, remains an ideal: for the recent
original research found, in our literature search for this review,
that applied MD simulation in the field of drug delivery, the
number of publications that use more than one methodology

Frontiers in Molecular Biosciences | www.frontiersin.org 4 November 2020 | Volume 7 | Article 604770

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-604770 November 19, 2020 Time: 16:40 # 5

Bunker and Róg MD for Drug Delivery

FIGURE 2 | Illustration of coarse graining: the same system, a PEGylated
membrane, modeled with an all atom and a MARTINI model is shown along
with the decrease in number of particles and acceleration in the simulation
time. Figure taken from Bunker: (Bunker et al., 2016) with permission.

remain a small minority. Several reviews cover the use of coarse
grained methods for the simulation of systems composed of
lipids, polymers and proteins (Bennun et al., 2009; Loverde, 2014;
Cascella and Vanni, 2016; Brancolini and Tozzini, 2019).

Now that we have this three-dimensional movie of our system,
known as a trajectory, beyond just visualization there are several
techniques to analyze this result and obtain useful insight into the
system. Here we provide a few examples of frequently calculated
properties from the trajectory. Considering pharmaceutical
applications of MD simulations, a description of a binding
mode (hydrogen bonds, salt bridges, stacking interaction, and
hydrophobic interactions) of a drug in the protein binding
cavity is the first key information to examine. Unlike binding
modes obtained from experimental structural studies or docking
predictions, MD simulations provide a dynamic description of
the interaction between drug and protein (e.g., Kaszuba et al.,
2012; Chen J. et al., 2019); this allows additional insight regarding
the importance of individual interactions. Moreover, simulations
provide explicit information concerning water participation in
the binding mode (e.g., Kaszuba et al., 2010; Postila et al., 2013;
Aguayo-Ortiz and Dominguez, 2019; Figure 3A), typically not
resolved in structural studies and not considered in docking
calculations. Analysis of intermolecular interactions is not
limited to drug-protein interactions but can also be performed
for any type of molecule/macromolecule studied, e.g., drug-
lipid interactions are frequently studied (Cramariuc et al.,
2012; Mayne et al., 2016; Pasenkiewicz-Gierula et al., 2016;
Postila and Róg, 2020).

Additional observable properties used to evaluate
intermolecular interactions are the radial distribution function
(RDF) (Figure 3C) and the number of contacts. The RDF for
the pairs of particles P1 and P2 gives us the normalized density
of particle P2 at a given distance from particle P1. For the
shortest distances the RDF value is 0 due to steric repulsion and
converges to a constant value in the limit of infinite distance;
for homogenous systems this value will always be 1. For an

interacting pair of two particles, the RDF value initially rises with
increasing distance to a maximum followed by a subsequent
minimum (Figure 3C). E.g., for a pair of heavy atoms that form
an H-bond, the maximum position is at ∼0.25 nm, and the
minimum at ∼0.325 nm (Pasenkiewicz-Gierula et al., 1997). The
number of contacts is the number of pairs of heavy atoms of two
molecules located at a distance shorter than the selected cutoff.
The most frequent choice for a cutoff length is the position of
maximum or minimum at the RDF for carbon atoms in the liquid
hydrocarbons. Calculations of numbers of contact are useful to
evaluate equilibration in the simulations where self-assembly is
studied. When a stable number of contacts is reached one can
assume the end of the self-assembly process.

For interactions of larger molecules, MD simulations provide
an area of contact (Acont). To obtain this, the solvent accessible
surface area (SASA) (Connolly, 1983) for the considered
molecule is first calculated separately (Amol1 and Amol2), and
next, the same calculations are performed for the dimer (Adimer);
this results in an area of contact:

Acont = (Amol1 + Amol2)− Adimer)/2 (1)

Extensive MD simulation, either performed over a long time
(Hurst et al., 2010; Dror et al., 2011) or as many multiple parallel
simulations (Lolicato et al., 2020), are capable of elucidating the
process of ligand entry into the binding pocket, however, the most
frequent steered MD simulation methods (Izrailev et al., 1997)
or randomly accelerated MD (RAMD) simulations (Lüdemann
et al., 2000; Kokh et al., 2018) are used to reveal the entry/exit
patch as they are more computationally efficient. For the case
of functionalized proteins, their stability can be evaluated via
calculations of secondary protein structure (Figure 3B). Other
standard measurable properties provided by MD simulations
include root mean square deviation (RMSD) and root mean
square fluctuations (RMSF). The RMSD describes the similarity
between the structures at the given time with the initial structure;
thus, a large increase of this parameter can indicate a lack
of protein stability. In studies of the interaction of drugs and
nanoparticles with lipid bilayers, one can obtain insight into the
xenobiotic degree of membrane perturbation.

The most frequently used tools to study lipid bilayer properties
are surface area per lipid molecule, bilayer thickness and the order
parameter. The most frequently calculated order parameters
are the deuterium order parameter, SCD and molecular order
parameter Smol (Vermeer et al., 2007; Figure 3D). The position in
the membrane of any given xenobiotic molecule is quantitatively
described by so-called density plots, which show the density of
selected atoms, atom groups or whole molecules, along the bilayer
normal. As a reference point, selected atoms of lipid molecules
can be used, e.g., headgroups, glycerol moiety, or the last carbon
of the acyl tails (Figure 3E). The next parameter describing drug
behavior in the lipid bilayer is the drug molecule orientation with
respect to the bilayer normal. Location and orientation of the
drug in the lipid bilayer can be important for the entry of the
drug into a protein binding cavity (e.g., Magarkar et al., 2018).
Next, simulations describe the physicochemical properties of
nanoparticles, including their size (quantitatively measured as the
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FIGURE 3 | Results of MD simulations. (A) Snapshot showing involvement of water in binding mode of nebivolol to β2-adrenergic receptor, reproduced with
permission from Kaszuba et al. (2010), Copyright (2010) American Chemical Society. (B) Time evolution of secondary structure of PEGylated insulin molecules,
reproduced with permission from Yang et al. (2011), Copyright (2011) American Chemical Society. (C) An example of radial distribution functions (RDF) for interacting
particles (black line) and non-interacting particles, data taken from Roìg and Pasenkiewicz-Gierula (2004). (D) Example of order parameter profile along the lipids acyl
chain, reproduced from Mobarak et al. (2018) (CC BY 4.0). (E) An example of density profile showing position of atoms of lipid headgroups (phosphorus and
nitrogen) and PEGylated tetra-phenyl-porphyrin (PEG and porphyrin densities are shown separately), at the presence (dashed line) and absence (solid line) of salt in
solution, reproduced with permission from Rissanen et al. (2014), Copyright (2014) American Chemical Society. (F) Distribution of counter ions around gold
nanoparticle functionalized with hydrocarbons capped with amine group, reproduced with permission from Heikkilä et al. (2014a), Copyright (2014) American
Chemical Society, (G) electrostatic potential profile around PEGylated Biochanin (BIOH) and tetra-phenyl-porphyrin (p-THPP) in the presence and absence of salt in
solution, reproduced with permission from Rissanen et al. (2014), Copyright (2014) American Chemical Society; (H) free energy landscape for the process of
insertion of dendrimer into lipid bilayer, reproduced from Van Lehn and Alexander-Katz (2019), Copyright: 2019 Van Lehn, Alexander-Katz.
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radius of gyration), nanoparticle hydration, interaction with ions
(see Figure 3F) and electrostatic potential at the given distance
from the nanoparticle center (Figure 3G). Finally, one should
consider the statistical significance of results to avoid over-
interpretation (Gapsys and Groot, 2020), carefully validate results
against experimental data (Botan et al., 2015; Ollila and Pabst,
2016), and be critical as simulations are prone to methodological
artifacts (Wong-ekkabut and Karttunen, 2016).

Sometimes the unbiased trajectory is not sufficient to obtain
the insight we seek. The phenomenon we wish to study may
occur in a region that is not sampled so frequently or we wish
to calculate the free energy difference between two separate
conformations of the system. For this we need the ability to
apply a bias to the simulation to push it artificially toward a
certain region of conformation space that we wish to examine.
From calculating the bias needed along a path between two
conformations one can obtain the free energy difference between
then, an important measure of such quantities as the binding
affinity of a drug for a specific active site of a protein (Michel
and Essex, 2010). Two methods to calculate this free energy
are umbrella sampling (Roux, 1995; Frenkel and Smit, 2001;
Neale and Pomès, 2016; Figure 3H), where the path taken is
through conformation space and what is known as a potential of
mean force (PMF) (Roux, 1995) is calculated along this path and
thermodynamic integration (Matos et al., 2017), an analogous
calculation but where the path is through parameter space.
The free energy calculations are computationally demanding
and sensitive to force field details. Also one should consider
possible artifacts due to a bias force, e.g., deformation of the lipid
bilayers was observed in a few studies during umbrella sampling
calculation of the profile of PMF of the studied compound along
the bilayer normal (Neale et al., 2011; Filipe et al., 2014; Neale
and Pomès, 2016). Metadynamics (Bussi and Laio, 2020) is an
adaptive means to explore conformation space in an enhanced
fashion by constantly biasing the system away from the regions
of conformation space that have already been explored.

The remainder of this review paper will cover examples of
how this tool, molecular dynamics simulation, has been and can
continue to be, used in the context of drug delivery research
(pharmaceutics). We will discuss applications across the breadth
of the field, including obtaining insight relevant to dissolution
and solubility, however, the majority of the discussion will
cover the recent explosion in publications that use molecular
dynamics simulation to study the more advanced drug delivery
mechanisms, collectively known as nanomedicine.

MECHANISTIC INSIGHT INTO DRUG
DISSOLUTION AND SOLUBILITY FROM
MD SIMULATION

The simplest application of MD simulation in drug delivery
is gaining mechanistic insight into the universal processes of
dissolution and solvation (Figure 4). Drugs often enter the body
in crystalline form and dissolution of these crystals is the first
step. Larsen et al. (2017a,b, 2019) have used MD simulation to
study alteration to the crystal structure with varying levels of

hydration. For systems with long range order such as this, a more
accurate and computationally intensive COMPASS force field
(Sun, 1998) is required, instead of the potential sets normally used
for simulations of systems in the liquid state. The Ouyang group
has studied the dissolution of drug molecules complexed with
solid dispersions as a remedy for poor solubility using MD (Chen
and Ouyang, 2017; Chan and Ouyang, 2018; Han et al., 2019a)
in addition to machine learning techniques (Han et al., 2019b).
Coarse grained simulations using the DPD protocol have been
used by Otto et al. to study the release of the drug quercetin from
poly(ethylene-glycol) (PEG) solid dispersions (Otto et al., 2013).

As stated above, simplified QSAR/QSPR (Mathieu, 2020) or
related machine learning models (Hutchinson and Kobayashi,
2019) are generally used to correlate drug structure to solubility
using pattern recognition to relate structure to experimental
solubility data; MD simulation can, however, be used to
obtain both a more accurate result and, additionally, provide
mechanistic understanding. The partition coefficient between
water and octanol can be calculated for the specific molecule
through MD simulation (Bannan et al., 2016) using the
aforementioned techniques for free energy calculation, either by
(1) using umbrella sampling to physically pull the candidate
drug molecule structure through the boundary between a
water and an octanol phase and calculate the free energy
change along this path, the aforementioned PMF (example of
a PMF calculation shown in Figure 3H) or (2) performing
thermodynamic integration between the drug solvated in water
and the drug solvated in octanol. Such a calculation is not the
mechanistic insight advertised in the introduction; here we are
using MD simulation as a tool to obtain a numerical estimate of
a quantitative result. It is possible, however, to examine the MD
simulation output further to obtain mechanistic insight regarding
the relation between the structure of the molecule and the solvent;
for example, Zhang et al. have investigated the H-bond network
of the drug ibuprofen in water and ethanol (Zhang M. et al.,
2020). Erlebach et al. (2020) have used a different technique
combining simulations with atomistic resolution with solubility
calculations based on Flory-Huggins theory. Other examples of
MD used for solubility prediction also exist (Lüder et al., 2007,
2009; Westergren et al., 2007; Patel et al., 2010a; Gupta et al.,
2011; Paluch et al., 2015; Matos et al., 2017; Matos and Mobley,
2019; Dasari and Mallik, 2020). To aid in the delivery of drugs
that are otherwise too lipophilic, they are administered not alone
but in a formulation with other molecules, known as excipients.
Optimizing this drug formulation can be performed through
combining screening experiments with pattern recognition and
optimization algorithms, however, here too, MD simulation can
play a powerful role in complementing other computational
methods (Mehta et al., 2019), for example MD simulations
of cyclodextrin-drug complexes (Zhao et al., 2018; Huang
et al., 2019); cyclodextrin is a common agent for assisting
the delivery of poorly soluble drugs. Persson et al. (2013)
have used MD simulation to study drug solubility in excipient
formulations and MD has been used to study polymeric
excipients. Benson and Pleiss (2014) have used MD to study
self-emulsifying drug delivery systems and Hathout et al. have
modeled drug loading in the gelatin matrix (Ahmad et al., 2010;
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FIGURE 4 | Dissolution and solubility. (A) Formation of clusters of fullerene with organic solvents, for the final structures clusters full view (left side) and its cross
section (right side) are shown, organic solvent covers fullerene from outside and are present in small quantities inside the cluster, reproduced from Lehto et al. (2014),
Copyright: 2014; (B) formation of lutein and cyclodextrin complexes (Zhao et al., 2018), Copyright (2018) American Chemical Society; (C) Aggregates of piroxicam
formed in water and lipid bilayer, and piroxicam molecules dispersed in PEG corona of PEGylated lipid bilayer, reproduced with permission from Wilkosz et al. (2017).

Warren et al., 2013; Jha and Larson, 2014; Hathout et al., 2020).
Several comprehensive review papers have been written on the
synergistic use of MD with other computational techniques to
determine the solubility and dissolution characteristics of drugs
and drug formulations (Johnson and Zheng, 2006; Bergström and
Larsson, 2018; Li et al., 2018; Hossain et al., 2019; Das et al., 2020).

Describing the ease with which a drug travels through the body
to reach its target through this one parameter, solubility, alone, is
of course an extreme oversimplification: in addition to dissolving
in the blood, drugs must traverse a variety of biological barriers,
in particular cell membranes and perfect solubility will not insure
this (Smith et al., 2018). Building systems to deliver drugs through
these barriers requires an extra level of complexity; we now cross
from simple formulation with the goal to optimize solubility
into nanomedicine: nanoscale vectors designed to transport the
drug through the bloodstream while protecting it from the body’s
defense mechanisms and targeting the desired tissue.

NANOMEDICINE

Nanomedicine is officially defined as pharmaceutical applications
of nanotechnology. Since "nanotechnology" is a meaningless

buzzword quickly fading from fashion (Park, 2019) this is not a
concise definition; in practical terms this encompasses all drug
delivery systems that involve packaging the drug in structures
with diameters =100 nm but larger than a single drug molecule:
one or more drug molecules combined with one or more carrier
molecules. For example, even merely grinding a crystal of the
drug into pieces smaller than this size officially fits this definition,
the result known as "nanocrystals" (Song et al., 2011) and
recognized as the simplest form of nanomedicine. A very broad
range of mechanisms have been developed that fit this definition
and the nomenclature is cluttered, i.e., the language used to
define different varieties, and how components are described
is inconsistent; we will now describe the nomenclature and
definitions we intend to use, but be warned: when you read the
cited publications, the nomenclature may not be consistent.

When the drug and carrier are combined, the result is referred
to as a nanoparticle. Nanoparticles are formed in one of two
ways: (1) directly functionalizing a molecule to the drug, i.e.,
chemically bonding a molecule to the drug to alter its behavior
in the bloodstream (Ekladious et al., 2019) or (2) combining
one or more drug molecules with one or more carrier molecules
that self-assemble to form the nanoparticle; I will refer to this
as the functionalization and self-assembly routes of nanoparticle
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FIGURE 5 | Nanoparticles. (A) Liposome simulated with dry MARTINI model, reproduced with permission from Arnarez et al. (2015), Copyright (2015) American
Chemical Society; (B) carbon nanotube used for delivery of vinblastine (Li et al., 2016a), Copyright (2016) American Chemical Society; (C) nanodiscs formed of
POPC and membrane scaffold protein MSP1D1 (Left), MSP1E3D1 (middle), and lipid bilayer (right), protein is shown as blue ribbon, phosphate groups of lipids
shown as red sphere, and acyl tail as gray sticks, reproduced with permission from Stepien et al. (2020); (D) PAMAM dendrimer in water phase (top), at the lipid
bilayer in gel phase (middle), and at the lipid bilayer in fluid phase (down), reproduced with permission from Kelly et al. (2008), Copyright (2008) American Chemical
Society.

formation. The functionalization route to nanoparticle creation
can also lead to the formation of a nanoparticle composed of
more than one drug molecule, for example functionalizing a
hydrophobic drug with a polymer could result in the formation
of micelles with the drugs at the core. In most cases the direct
functionalization is to a polymer, a long unstructured molecule,
that, as a result, forms a protective sheath around the drug
molecule in the bloodstream, however functionalization to a
smaller molecule is also possible, for example, folic acid (Wolski
et al., 2018; Alinejad et al., 2020) or glycine (Ghadri et al., 2020).
A particularly ingenious idea is functionalization to amphiphilic
"molecular umbrellas" that aid the transfection of hydrophilic
drugs through the hydrophobic core of cell membranes (Janout
et al., 2001, 2002, 2005, 2014; Jing et al., 2003; Janout and
Regen, 2005, 2009; Ge et al., 2009). Drugs functionalized to
polymers where the drug is activated by enzyme cleavage of the
polymer are also referred to as "prodrugs" (Luo et al., 2019).
Functionalization to peptides or small proteins can result in very
specific fine tuning of the behavior of the drug as it interacts
with its environment (Lu et al., 2015). Functionalization of lipids

for a variety of applications is reviewed by Kepczynski and
Róg (2016) and specifically for drug delivery by Kohli et al.
(2014). Regarding nanoparticles formed via the self-assembly
route, a rigorous literature search leads to a subdivision of the
majority according to topology and choice of carrier molecule
into roughly the following 9 categories: (1) solid inorganic,
(2) micelles, (3) vesicles (Figure 5A), (4) lipoprotein based
structures (Figure 5C), (5) other lipid-polymer structures, (6)
carbon architectures (Figure 5B), (7) dendrimers (Figure 5D),
(8) protein/peptide, and (9) the aforementioned nanocrystals.
Bobo et al. (2016) have compiled the list of FDA-approved forms
of nanomedicine, as of 2016.

Solid inorganic nanoparticles are rigid structures formed
from inorganic substances. These include gold (Ghosh et al.,
2008; Charchar et al., 2016; Rossi and Monticelli, 2016), silver
(Eckhardt et al., 2013; BurduŞel et al., 2018), titanium dioxide
(Aranha et al., 2020), silica (Santos et al., 2014) nanoparticles,
and boron nitride oxide nanoflakes (Duverger and Picaud, 2020).
Gold and silver nanoparticles are solid structures that can be
associated with drugs, or can be functionalized themselves to
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perform a specific function: the nanoparticle itself is a drug. For
the case of silica nanoparticles they can be porous and contain
drugs and can even have complex multi-compartment structure,
carrying many different drug molecules (Torchilin, 2007; Pattni
et al., 2015; Bulbake et al., 2017; El-Hammadi and Arias, 2019;
Bhardwaj et al., 2020; Crommelin et al., 2020), for example for
applications like theragnostics (Janib et al., 2010). In the same
fashion as solid inorganic nanoparticles, carbon architectures are
contiguous solid structures, however, due to its unique chemistry,
composition from carbon allows for a wide variety of forms,
including carbon dots (Peng et al., 2017; Ghosal and Ghosh,
2019), nanotubes (Sun et al., 2014), nanodiamonds (Barnard,
2016; Ge and Wang, 2017), nanographene (Zhang L. et al., 2013;
Sun et al., 2014; Sgarlata et al., 2016; Ghadari and Kashefi, 2017;
Hasanzade and Raissi, 2017; Moradi et al., 2018; Alinejad et al.,
2020; Mahdavi et al., 2020), and graphene oxide (Duverger and
Picaud, 2020; Shahabi and Raissi, 2020).

Micelles and vesicles are both formed from amphiphilic
organic molecules but differ in topology: micelles have a
hydrophobic core surrounded by a hydrophilic shell while in
vesicles the amphiphilic molecules form a bilayer that itself forms
into an enclosed pocket. In both cases they can be formed from
a wide range of molecules, usually surfactants, lipids or diblock
copolymers, however, other amphiphilic molecules are possible,
for example, janus dendrimers (Nummelin et al., 2017; Yang Y.-
L. et al., 2019). The most common micellar nanoparticle is the
polymeric micelle (Cagel et al., 2017), composed of diblock co-
polymers with hydrophobic drugs carried in the micelle core.
The most common form of vesicular nanoparticle is the liposome
(Bunker et al., 2016), a vesicle formed from naturally occurring
phospholipids. Other amphiphilic molecules formed into vesicles
are, however, also used in drug delivery, including ethosomes
(Touitou et al., 2000), niosomes (Marianecci et al., 2014; Khan
and Irchhaiya, 2016; Chen S. et al., 2019; Kapoor et al., 2019;
Khalkhali et al., 2019; Inglut et al., 2020), polymersomes (Aibani
et al., 2020; Khan et al., 2020), exosomes (Antimisiaris et al.,
2018; Villa et al., 2019; Chung et al., 2020; Rahmati et al.,
2020), ufasomes (Han, 2013), and drimersomes (Nummelin
et al., 2017), comprehensive reviews have been written about
vesicle formation (Šegota and Durdica, 2006) and application
in drug delivery (Kapoor et al., 2019) in a general context.
Polymers and lipids can be formed into other structures than
micelles or vesicles, for example two different polymers can be
used to form core-shell structures (Ramli et al., 2013; Abbott
et al., 2017; Chen G. et al., 2018), for example a solid outer
shell with a liquid polymer with drug encapsulated inside;
solid lipid nanoparticles (Beloqui et al., 2016; Gordillo-Galeano
and Mora-Huertas, 2018; Subramaniam et al., 2020), chitosan
(Bernkop-Schnürch and Dünnhaupt, 2012), lipoplex (Scheideler
et al., 2020) and other lipid-polymer nanoparticles (Date et al.,
2018) have also been proposed. Another form of polymer based
nanoparticle is dendrimers (Tomalia et al., 1990; Fatemi et al.,
2020) and pseudodendrimers (Ghadari and Sabri, 2019), hyper-
branched polymers with a fractal structure that results in a
molecule that is, qualitatively, in the form of a fuzzy ball and can
store molecules in their interior or bind nucleic acids to form
a dendrimerplex. A particularly common form of dendrimer

that has been proposed for drug delivery is poly(amidoamine)
(PAMAM) dendrimers (Xiao et al., 2020).

Lipoproteins are used as the body’s mechanism for lipid
transport. These are structures of several different lipids with
proteins that control the form of the structure and the
composition of the lipid types within the structure. As they
transport lipids they undergo structural change upon deposition
of their cargo from a spherical structure to a disk-like structure.
Taking these structures as a starting point and modifying them
to work as drug carriers, or building structures inspired by
lipoproteins, is a novel avenue of nanomedicine that is currently
being explored (Bricarello et al., 2011; Huang et al., 2015;
Kuai et al., 2016a; Simonsen, 2016; Aranda-Lara et al., 2020;
Chuang et al., 2020). The disk-like form of lipoprotein, known
as nanodiscs have proven to be an extremely useful structure
for a variety of applications, including nanomedicine (Denisov
and Sligar, 2017). Nanodiscs were successfully used as a drug
delivery vehicles to treat viral lung infections (Numata et al.,
2013) and were used as a platform accommodating antigens and
adjuvants in personalized cancer vaccines (Kuai et al., 2016b). Use
of nanodiscs for simultaneous delivery of antigen and adjuvant
has been found to increase the response of the immunological
system by orders of magnitude in comparison to traditional
vaccines. Due to the variety of possible applications of nanodiscs,
their properties are the subject of intensive study (Debnath
and Schäfer, 2015; Siuda and Tieleman, 2015; Stepien et al.,
2015, 2020; Martinez et al., 2017; Pourmousa and Pastor, 2018;
Bengtsen et al., 2020; Schachter et al., 2020); they are tuned via
modification of their lipid composition (Augustyn et al., 2019) or
alterations to the sequence, thus structure, of the scaffold proteins
(Denisov et al., 2004; Nasr et al., 2016).

All of these structures can have their properties fine-tuned
by being functionalized to polymers or smaller molecules
themselves, in the same fashion as described above for the drug
molecule itself. For example functionalizing poly(ethylene glycol)
(PEG) (Israelachvili, 1997), a process known as "PEGylation"
(Bunker, 2012, 2015; Pasut and Veronese, 2012; Bunker et al.,
2016; Zhang Z. et al., 2020) has been proposed and studied for
virtually all of these nanoparticle forms and, as we will discuss
in further detail in the next section, alternate polymers to PEG
are under investigation. The extent to which these systems can
be fine-tuned is limitless, for example formulation alteration of
liposomes offer an extremely broad pallet (Bunker et al., 2016;
Li et al., 2019). We are thus left with several variables for their
formulation in addition to the extremely complex environment
of human physiology with which they interact, the topic that we
will now discuss.

NANOPARTICLE DESIGN AND
FUNCTION

Nanoparticles have been developed to assist in drug delivery in a
very broad range of pharmaceutical contexts, for example treating
atherosclerosis (Lobatto et al., 2011; Chen J. et al., 2020; Ramalho
et al., 2020) and other neurodegenerative diseases (Goldsmith
et al., 2014), cardiovascular disease (Godin et al., 2010), diabetes
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(Veiseh et al., 2015), infections disease (Zhu et al., 2014; Zazo
et al., 2016), protein drugs (Qin et al., 2019), and vaccine
delivery (Pison et al., 2006; Zhao et al., 2014) in fact vaccine
adjuvant development involves many of the same mechanisms as
nanomedicine (Copland et al., 2005; Wang et al., 2019); it can be
argued that it is only for historical reasons that it is not referred
to as nanomedicine. The main application of nanomedicine is,
however, cancer therapy (Tong and Kohane, 2016; Youn and Bae,
2018), particularly chemotherapy agent delivery, as this involves
drugs with extremely high toxicity; targeted delivery, where the
drug is kept from the rest of the body and the greatest possible
fraction is delivered to the target tissue, in this case the tumor,
is extremely desirable. The nanoparticle is designed to have
features that protect the drug, in the context of nanomedicine
commonly referred to as the "payload" of the nanoparticle.
Targeting is achieved through either active or passive means.
Active targeting (Nag and Delehanty, 2019) involves a specific
ligand functionalized to the nanoparticle exterior that binds to
receptors that are overexpressed in the outer cell membrane of
cells of the target tissue and passive targeting involves global
properties (Ogawara et al., 2013) of the nanoparticle that lead
to a greater percentage becoming lodged in the target tissue in
comparison to other tissues. An example of passive targeting is
what is referred to as the enhanced permeability and retention
(EPR) effect (Maeda et al., 2013); liposomes can be designed
to take advantage of the leaky vasculature of tumor tissue to
become preferentially lodged there; PEGylation is a common
means to achieve this. It must, however, be stated that whether
or not the EPR effect is an effective passive targeting strategy in
practical nanomedicine applications, has recently been brought
into question (Danhier, 2016).

The nanoparticle thus carries and protects its drug payload
through the bloodstream and preferentially delivers it to its target
tissue. In the bloodstream, foreign particles in the size range
of nanoparticles are removed (uptaken) by the mononuclear
phagocyte system (MPS) (Chow et al., 2011); this involves an
extremely complex and specific cascade of proteins: complement
activation (Ricklin et al., 2010; Sarma and Ward, 2011).
The efficiency with which a nanoparticle is removed through
complement activation is determined by its surface properties.
The nanoparticle can be designed to have a surface that inhibits
uptake, thus prolonging circulation in the bloodstream and, as a
result, the amount of the drug that reaches the target tissue per
administered dose; such a nanoparticle surface is referred to as a
"stealth sheath" and the aforementioned PEGylation is the gold
standard to achieve a this (Pasut and Veronese, 2012; Bunker,
2015; Parray et al., 2020). While PEGylation is an extremely
successful strategy, it is not perfect and the investigation of
alternate polymers to PEG is an active field of research (Knop
et al., 2010). Alternatives that have been proposed and studied
include polyoxazolines (Sedlacek et al., 2012; Lorson et al., 2018),
PASylation R© (Viegas et al., 2011; Schlapschy et al., 2013; García
et al., 2014; Binder and Skerra, 2017; Gebauer and Skerra, 2018),
zwitterionic polymers (García et al., 2014), hydroxyethyl starch
(Liebner et al., 2014), and polypeptides (Hou and Lu, 2019).

PEGylation, or the creation of an alternate polymer
stealth sheath, is achieved though functionalizing the

polymer to a component of the nanoparticle. For the case
of the functionalization route to nanoparticle creation,
functionalization to the protective polymer itself can be the
nanoparticle. It is also possible to functionalize the drug to
a copolymer where one of the copolymer constituents is the
hydrophilic stealth sheath and the other performs another
function, e.g., a hydrophobic polymer that encapsulates the drug.
Examples of this include PEGylated boron nitride (Farzad and
Hashemzadeh, 2020), folic acid (Wolski et al., 2017b; Alinejad
et al., 2020), interferon (Xu et al., 2018), insulin (Yang et al.,
2011; Figure 6E), other PEGylated peptides (Xue et al., 2011;
Hamed et al., 2015; Ma et al., 2016; Figure 6F) and protein drugs
(Katre, 1993; Jevševar et al., 2010; Yang et al., 2011; Zhang et al.,
2012; Mu et al., 2013; Wu et al., 2014; Lawrence et al., 2014;
Nischan and Hackenberger, 2014; Lawrence and Price, 2016;
Xu et al., 2018; Wilding et al., 2018; Gupta et al., 2019; Zaghmi
et al., 2019; Munasinghe et al., 2019; Kaupbayeva and Russell,
2020; Figure 6B); the broader context of polymer-protein drug
molecules is covered in several reviews (Pelegri-Oday et al., 2014;
Wang et al., 2019). As far back as 1977, long before "nano" was
a word, functionalizing PEG to proteins was proposed to alter
their immunological properties (Abuchowski et al., 1977). For
the self-assembly route to nanoparticle creation the polymers
are functionalized to constituent molecules of the nanoparticle.
PEGylation has been proposed for virtually every one of the
nanoparticle types described in the previous section. This
includes PEGylated carbon nanotubes (Pennetta et al., 2020),
gold nanoparticles (Oroskar et al., 2016; Lin et al., 2017; Sun et al.,
2019), silver nanoparticle (Pinzaru et al., 2018), silver-graphene
nanoparticles (Habiba et al., 2015), nano-graphene (Zhang et al.,
2014; Zhang Z. et al., 2020; Mahdavi et al., 2020), lipid micelles
(Arleth et al., 2005; Viitala et al., 2019; Figure 6D), nanodiscs
(Zhang et al., 2014), dendrimers (Kojima et al., 2000; Lee and
Larson, 2009, 2011; Zhang et al., 2014), and a topic covered
comprehensively in our previous review, liposomes (Bunker
et al., 2016; Figures 6A,C).

For the case of inorganic nanoparticles, in particular gold
nanoparticles, various alternatives to PEG coatings have been
considered. Gold nanoparticles can be functionalized via a
thiol group with hydrocarbons capped with a methyl group
(Bolintineanu et al., 2014; Potdar and Sammalkorpi, 2015; Giri
and Spohr, 2018), hydroxyl group (Potdar and Sammalkorpi,
2015; Villarreal et al., 2016; Yamanaka et al., 2019), carboxylic
group (Heikkilä et al., 2014b; Giri and Spohr, 2018; Figure 7A),
amine group (Heikkilä et al., 2014a,b; Giri and Spohr, 2018; Das
et al., 2019; Lolicato et al., 2019), choline sulfate (Yamanaka et al.,
2019), or a para-mercaptobenzoic acid (Figure 7B; Salorinne
et al., 2016). Also, bulky branched coatings have been used
to functionalize gold nanoparticles (Giri and Spohr, 2018;
Yamanaka et al., 2019). The alternative coating can also be
used to direct the nanoparticle to a selected environment, e.g.,
Potdar and Sammalkorpi proposed using a hydrophobic coating
to cause the particle to locate to the hydrophobic core of the
bilayer and a coating ended with a hydroxyl group to anchor
the particle to the lipid headgroups (Potdar and Sammalkorpi,
2015). A coating composed of two types of moieties one a
hydrophobic 1-octanethiol and the other a negatively charged
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FIGURE 6 | PEGylation. (A) Snapshot showing PEGylated lipid bilayer, reproduced with permission from Dzieciuch et al. (2015), Copyright (2015) American
Chemical Society; (B) PEGylated biochanin (upper) and tetra-phenyl-porphyrin (lower), with salt (left) and without salt (right), reproduced with permission from
Rissanen et al. (2014), Copyright (2014) American Chemical Society; (C) Snapshots showing DSPC, cholesterol and DSPE-PEG molecules, reproduced with
permission from Magarkar et al. (2014), Copyright (2014) American Chemical Society; (D) PEGylated bicelle containing 10.5 mol % DSPE-PEG, reproduced from
Viitala et al. (2019), Copyright: 2019; (E) PEGylated insulin, left panel shows position of PEG atoms during simulations, right panel shows snapshots of insulin
PEGylated with PEG of various length, reproduced with permission from Yang et al. (2011), Copyright (2011) American Chemical Society.

11-mercapto-1-undecanesulfonate causes the nanoparticle to
locate to the center of the bilayer with its polar sulfonate
groups exposed to the water at both membrane interfaces;
this induces a local thinning of the bilayer (Van Lehn et al.,
2013; Van Lehn and Alexander-Katz, 2014a, 2019; Simonelli
et al., 2015) (Fi), or possibly even large scale deformation

(Salassi et al., 2017). With the same coating moieties with
polar coating placed on one-half of the particle and non-polar
on the other, one can form an amphiphilic gold nanoparticle
that will locate to the boundary between the water phase
and the hydrophobic membrane core, i.e., the position of
the lipid headgroups (Ou et al., 2020; Figure 7D). Such
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FIGURE 7 | Gold nanoparticles. (A) Gold nanoparticle coated with dodecanoic acid, hydrating water and ions are shown, reproduced with permission from Heikkilä
et al. (2012), Copyright (2012) American Chemical Society; (B) gold nanoparticle coated with para-mercaptobenzoic acid, gold is shown in yellow and sulfur in
orange, reproduced from Salorinne et al. (2016), Copyright: 2016; (C) snapshots of (upper panel) internalizations of a neutral gold nanoparticle and (lower panel)
uptake of a positively charged gold nanoparticle, reproduced with permission from Lunnoo et al. (2019), Copyright (2019) American Chemical Society; (D) snapshots
of the MD trajectory of the insertion of amphipathic janus nanoparticle into lipid bilayers, reproduced with permission from Ou et al. (2020), Copyright (2020)
American Chemical Society.

coating of other solid inorganic nanoparticles has also been
considered, e.g., silver nanoparticles were coated with hydrophilic
polymer poly(N-vinyl-2-pyrrolidone) (Kyrychenko et al., 2015),
graphene nanoflakes with ssDNA (Moore et al., 2019), and silica
nanoparticle with hydrocarbons (Peters et al., 2012).

Proteins will agglomerate to any foreign particle in the
bloodstream in the approximate size range of a nanoparticle
resulting in a shell of proteins surrounding them, known as the
"protein corona" (Walkey and Chan, 2012; Xiao et al., 2013;
del Pino et al., 2014; Kharazian et al., 2016; Mahmoudi, 2016;
Hadjidemetriou and Kostarelos, 2017; Pederzoli et al., 2017;
Brancolini and Tozzini, 2019; Casalini et al., 2019; Nienhaus and
Nienhaus, 2019; Zhadanov, 2019; Berrecoso et al., 2020; Gupta
and Roy, 2020). The stealth sheath modulates the formation
of this corona in a fashion that is not completely understood
and has been a point of contention in the field for several
decades. Regarding PEGylation, it was originally thought that it
inhibits protein adhesion (Du et al., 1997; Bradley et al., 1998)
then others found evidence that it actually accelerates protein
corona formation (Szebeni et al., 2002) and yet others argued
that they found evidence it had no effect (Price et al., 2001). It

has been argued that the PEG sheath preferentially binds the
common bloodstream protein albumin (Vert and Domurado,
2000) creating an albumin protein corona that, itself, acts as the
stealth sheath that inhibits complement activation (Caracciolo,
2015). Alternate protective mechanisms unrelated to the protein
corona have also been proposed, including direct inhibition of
absorption by macrophages (Price et al., 2001). Most recently,
evidence has been found that the formation of the protein corona
is essential for the stealth properties of PEG (Schöttler et al.,
2016). The most recent reviews of this much discussed topic are
found here (Nienhaus and Nienhaus, 2019; Zhadanov, 2019; Li Z.
et al., 2020).

Complement activation and the formation of a protein corona
is only one aspect of the environment that the nanoparticle must
traverse; in addition to the body’s defenses the nanoparticle must
navigate the hydrodynamic environment of the bloodstream
and, in most cases, deliver the payload drug through the cell
membrane. While the surface properties of the nanoparticle play
a role, both of these are heavily influenced by its size, shape
(Truong et al., 2015) and rigidity/elasticity (Geng et al., 2007;
Lee S.-Y. et al., 2009; Toy et al., 2011). Once the nanoparticle
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reaches the bloodstream its environment can be approximated
as laminar flow in a cylinder. In this environment, in addition
being pushed in the direction of the flow, a particle is subject
to a force perpendicular to the flow that causes the particle
to move toward the cylinder wall, a phenomenon known as
margination (Gentile et al., 2008). Evolution has taken advantage
of this: red blood cells are relatively rigid and have a disk-
like form in order to minimize margination, as disk-like and
more rigid particles experience a lesser extent of this force in
comparison to spherical and more elastic particles; leukocytes
have evolved to have the opposite structure, spherical and elastic,
as margination to the blood vessel wall plays an essential role
in their function (Lee S.-Y. et al., 2009). This is one of the
reasons why the previously mentioned nanodiscs are a very
promising form of nanoparticle, however, it is not the only
reason: size, shape and elasticity of the particle also affect the
interaction between nanoparticle and cell membranes (Lin X.
et al., 2010; Zhang et al., 2012; Banerjee et al., 2016). Several
design features of the nanoparticle are involved in tuning its
properties to deliver the payload through biological barriers
(Blanco et al., 2015) like the cell membrane, into the target
cell and in some cases to a specific organelle within the cell;
both surface properties and the size (Lin X. et al., 2010; Lunnoo
et al., 2019), shape (Lin X. et al., 2010; Zhang et al., 2012;
Lunnoo et al., 2019), and elasticity of the nanoparticles play a
role in this. Also presence of negatively charged lipids affects
intake of functionalized, cationic gold nanoparticles (Lolicato
et al., 2019). There are several mechanisms through which this
is possible; nanoparticles can directly permeate the membrane
(Song et al., 2011), in many cases disrupting its structure
(Figure 7C). For the case of liposomes and micelles (De Nicola
et al., 2014), the payload can be delivered through membrane
fusion and the nanoparticle can also be designed to induce
endocytosis (Vácha et al., 2011). As mentioned previously,
nanoparticles can be functionalized with targeting ligands that
trigger preferential uptake by target cells (Bazak et al., 2015).
It, however, must be said that active targeting, while a popular
topic for research, has so far seen limited success; as far as the
authors are aware there is only one approved therapy that features
active targeting: Denileukin Diftox (Turturro, 2014). Finally,
nanoparticles can be designed to release their drug payload
when there is a certain external trigger, a scheme known as
controlled release. This trigger can be pH change that occurs
during endocytosis or an externally applied trigger used to
cause the drug to release in the tissue to which this trigger is
applied, for example a locally applied optical magnetic or thermal
trigger (Table 1).

Altogether, we see that the landscape of nanomedicine is
extremely complex, both with a wide range of directions
that nanoparticle design can take and the extremely complex
environment of human physiology and the body’s natural
defenses. While in vitro experimental insight and clinical studies
can make some progress, one quickly reaches a dead end in a
sea of complexity without the rational design approach made
possible by a mechanistic understanding. The next section shows
how molecular dynamics simulation, alongside complementary
experimental analysis techniques, to some extent provide this.

MOLECULAR DYNAMICS SIMULATION
APPLIED TO NANOMEDICINE

Now that we have outlined the different forms of nanomedicine
and the issues encountered by nanoparticles in their context
as drug delivery agents, we can proceed to showcase many
examples where molecular dynamics simulation, using different
degrees of coarse graining, have provided mechanistic insight that
complements the research program to develop new nanoparticle
based drug delivery mechanisms. The amount of work carried
out in this area has exploded in the past decade, with molecular
dynamics studies being applied to virtually every variety of
nanoparticle discussed above in their context as drug delivery
vehicles, including dendrimers, gel nanoparticles, polymeric
micelles, other polymeric forms of nanoparticles, solid lipid
nanoparticles, other micelles, nanocrystals, carbon dots, carbon
nanotubes, nanographene, DNA nanotubes, nanodiamonds,
peptide nanoparticles, gold nanoparticles, silver nanoparticles,
silica nanoparticles, latex nanoparticle and vesicles, of which
the application of molecular modeling to liposome based drug
delivery systems is covered comprehensively in our previous
review (Bunker et al., 2016); there has, however, been a significant
amount of work performed since its publication, and molecular
modeling has now been applied to the study of other vesicle based
drug delivery systems including niosomes, ufasomes, polymeric
vesicles (polymersomes), and glyceryl monostearate vesicles.
A list of publications that feature the use of molecular dynamics
modeling to study each of these systems if found in Table 2. One
intriguing omission by the scientific community is lipoprotein
based nanoparticles, including nanodiscs. Nanodiscs have been
studied in the context of their possible use as a drug delivery
mechanism and have been studied, in a general context, using
molecular dynamics simulation, however, molecular dynamics
simulation has never been applied in the context of their possible
use in drug delivery.

Regarding the functionalization route to nanoparticle
development, there has also been a considerable amount of
computational study carried out using molecular dynamics
modeling. Protein structures can be downloaded and their
potentials have already been parameterized; attach a polymer
to the protein, solvate in water and you can study its behavior.
Both PASylated (Hedayati et al., 2017) and PEGylated (Cohan
et al., 2011) human recombinant erythropoietin have been
simulated; Munasinghe et al. (2019) used molecular dynamics

TABLE 1 | Triggers used to release drug payload.

Trigger type and references

pH change (Guo et al., 2010; Zheng et al., 2011; Nie et al., 2013, 2014; Wang
et al., 2015a, 2016, Luo Z. et al., 2016; Rungrotmongkol and Poo-arporn,
2016; Min et al., 2017; Wang Y. et al., 2017, Wang Z. et al., 2017; Wolski et al.,
2017b, 2018; Quan et al., 2017; Gao et al., 2019; Wu W. et al., 2019; Wu Z.
et al., 2019; Maleki et al., 2020)

Optical (Lajunen et al., 2016, 2018; Massiot et al., 2017)

Magnetic (Panczyk et al., 2013; Yang C. et al., 2020; Zhang X. et al., 2020)

Thermal (Dhawan et al., 2004; Pérez-Sánchez et al., 2020)
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TABLE 2 | Drug delivery vehicles studied using molecular modeling methods.

Carbon Dots - (Erimban and Daschakraborty, 2020)

Carbon Nanotubes - (Panczyk et al., 2013, 2020; Izadyar et al., 2016; Li et al., 2016a; Rungrotmongkol and Poo-arporn, 2016; Hashemzadeh and Raissi, 2017;
Kamel et al., 2017; Wolski et al., 2017a, 2018, 2020, 2019; Zaboli and Raissi, 2017; Karnati and Wang, 2018; Kavyani et al., 2018a,b; Zhang et al., 2018; Contreras
et al., 2019; Dehneshin et al., 2019; Mortazavifar et al., 2019; Kordzadeh et al., 2019; Ghadri et al., 2020; Maleki et al., 2020; Pakdel et al., 2020; Pennetta et al., 2020)

Dendrimers - (Kojima et al., 2000; Lee et al., 2002, 2011; Maiti and Bagchi, 2006; Lee and Larson, 2008, 2009, 2011; Vasumathi and Maiti, 2010; Nandy and Maiti,
2011; Huynh et al., 2012; Nandy et al., 2012, 2013; Jain et al., 2013, 2016; Kłos and Sommer, 2013; Tian and Ma, 2013; Tu et al., 2013; Martinho et al., 2014; Wen
et al., 2014; Jiang et al., 2015; Kavyani et al., 2016, 2018b,a; Smeijers et al., 2016a,b; Badalkhani-Khamseh et al., 2017, 2019; Yang et al., 2017; Farmanzadeh and
Ghaderi, 2018; Ghadari and Mohammedzadeh, 2018; Gupta and Biswas, 2018; Su et al., 2018; Ghadari and Sabri, 2019; Ramos et al., 2019; He et al., 2020; Kłos
and Paturej, 2020)

DNA Nanotubes - (Liang et al., 2017)

Gel Nanoparticles - (Kasomova et al., 2012; Smith et al., 2020)

Glyceryl Monostearate Vesicles - (Marwah et al., 2018)

Gold Nanoparticles - (Sun and Xia, 2003; Lin J. et al., 2010; Lin et al., 2011; Kyrychenko et al., 2011; Mhashal and Roy, 2014; Gupta and Rai, 2016, 2017; Mhasal
and Roy, 2016; Oroskar et al., 2016; Gupta et al., 2017, 2018; Quan et al., 2017; Yang et al., 2017; Sridhar et al., 2018; Xie et al., 2018; Lunnoo et al., 2019, 2020;
Tavanti et al., 2019; Yamanaka et al., 2019; Exner and Ivanova, 2020)

Latex Nanoparticle - (Li et al., 2016b)

Liposomes - (Dhawan et al., 2016; Lajunen et al., 2016; Pathak et al., 2016; Dzieciuch-Rojek et al., 2017; Laudadido et al., 2017; Magarkar et al., 2017; Wilkosz et al.,
2017; Belubbi et al., 2018; Monpara et al., 2018; Poojari et al., 2020)

Nanocrystals - (Song et al., 2011)

Nanodiamonds - (Chen et al., 2009; Adnan et al., 2011)

Nanodiscs - (Ghosh et al., 2011, 2014; Koivuniemi and Vattulainen, 2012; Zhang et al., 2012, 2014; Pan and Segrest, 2016; Denisov and Sligar, 2017; Pourmousa
and Pastor, 2018; Augustyn et al., 2019; Damiati et al., 2019; Chen Q. et al., 2020; Lundsten et al., 2020; Stepien et al., 2020)

Nanographene - (Zhang L. et al., 2013; Sgarlata et al., 2016; Ghadari and Kashefi, 2017; Hasanzade and Raissi, 2017; Moradi et al., 2018; Alinejad et al., 2020)

Niosomes - (Myung et al., 2016; Ritwiset et al., 2016; Somjid et al., 2018)

Oher Micelles - (De Nicola et al., 2014; Chun et al., 2015; Johnston et al., 2016)

Other Polymeric Forms of Nanoparticles - (Guo et al., 2009a,b; Durbin and Buxton, 2010; Rodríguez-Hidalgo et al., 2011; Macháèková et al., 2013; Buxton, 2014;
Loverde, 2014; Razmimanesh et al., 2015; Esalmi et al., 2016; Ghitman et al., 2019; Mazloom-Jalali and Shariatinia, 2019; Shadrack and Swai, 2019; Golda-Cepa
et al., 2020)

Peptide Nanoparticles - (Lu et al., 2015; Miller et al., 2019; Nikfar and Shariatinia, 2019)

Polymeric Micelles - (Ghosh et al., 2008; Kuramochi et al., 2009; Guo et al., 2010, 2012a; Loverde et al., 2011; Vukoviæ et al., 2011; Zheng et al., 2011; Kasomova
et al., 2012; Luo and Jiang, 2012; Yang et al., 2012, Yang C. et al., 2019, Yang C. et al., 2020; Nie et al., 2013, 2014; Srinivas et al., 2013; Lin et al., 2014, 2019; Wang
et al., 2015b; Luo S. et al., 2016; Luo et al., 2019; Myint et al., 2016; Prhashanna et al., 2016; Ramezani and Shamsara, 2016; Shi et al., 2016; Aziz et al., 2017; Min
et al., 2017; Chang et al., 2017; Hu et al., 2017; Mousavi et al., 2018; Raman et al., 2018; Albano et al., 2019; Alves et al., 2019; Wu W. et al., 2019; Wu Z. et al., 2019;
Gao et al., 2019; Hao et al., 2019; Kacar, 2020; Koochaki et al., 2020)

Polymeric Vesicles (Polymersomes) - (Luo Z. et al., 2016; Wang Z. et al., 2017; Grillo et al., 2018)

Silica Nanoparticles - (Soltani et al., 2010; Mousavi et al., 2019)

Silver Nanoparticles - (Sun and Xia, 2003; Kyrychenko et al., 2015; Blazhynska et al., 2018)

Solid Lipid Nanoparticles - (Hathout and Metwally, 2016)

Ufasomes - (Han, 2013; Csongradi et al., 2017; Bolla et al., 2019)

simulation to study conjugation of PEG to a hydrophobic
pocket of bovine serum albumin using a model with atomistic
resolution and Wilding et al. (2018) used a coarse grained
model to study site specific PEGylation of the protein lysozyme.
Atomistic MD has been used to study the effect of PEGylation
on the stability and potency of interferon (Xu et al., 2018) and
insulin (Yang et al., 2011) and the steric shielding effect that
results from the PEGylation of Staphlokinase (Mu et al., 2013).
A recent comprehensive overview of the application of molecular
simulation to the study of protein-polymer conjugation has been
written by Lin and Colina (2019).

In terms of the delivery of specific drugs using nanomedicine,
a very large number have been simulated incorporated into
a wide variety of nanoparticle types. These drugs include
Alzheimer’s medication, anti-worm drugs, antibiotics, anti-
cancer drugs, including chemotherapy agents, anti-viral agents,
antifungal drugs, anti-inflammatory drugs, antimicrobial

peptides, drug used for diabetes treatment, immunomodulators
and immunosuppressants, local anesthetics, and others; a list is
found, with citations, in Table 3. Altogether, it becomes clear
that there is simply too much work that has been carried out to
concisely summarize in its entirety in this review. We will instead
focus on a few key areas where MD modeling has provided
important insight and discuss review papers that focus on certain
aspects of the use of molecular dynamics in the context of
nanomedicine and some key examples of original research that
demonstrate the power of the technique. The discussion will
include key examples where we show concrete insight gained my
molecular dynamics simulation. We will focus on three areas:
(1) behavior of the nanoparticle in the bloodstream and the
protective polymer corona, (2) drug loading and release and (3)
nanoparticle interaction with lipid membranes and entry into
the cell. We would like to here alert the reader to the fact that
there are other reviews of aspects of the use of computational
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TABLE 3 | List of drugs studied with MD simulations in context of drug delivery.

Drugs, theirs applications, and references

5-flouracil - anti-cancer drug (Barraza et al., 2015; Kacar, 2019)

Albendazole - anti-worm drug (Rodríguez-Hidalgo et al., 2011)

Amphotercin B - antifungal drugs (Mobasheri et al., 2016)

Anakinra - used in arthritis therapy (Liebner et al., 2014)

Camptothecin - chemotherapy agent (Ansari et al., 2018; Alinejad et al., 2020)

Carmustine - chemotherapy agent (Wolski et al., 2017a; Mortazavifar et al., 2019)

Chlortetracycline - antibiotic (Dowlatabadi et al., 2019)

Cisplatin - chemotherapy agent (Panczyk et al., 2013)

Curcurbitacin drug families (Patel et al., 2010a)

Cyclosporine - immunosuppressant (Tokarský et al., 2011)

Dicolofenac - anti-inflammatory agents (Karjiban et al., 2012)

Doxorubicin - chemotherapy agent (Guo et al., 2010, 2012b; Yang et al., 2012; Yang C. et al., 2019; Yang Y.-L. et al., 2019; Zhang et al., 2012, 2014, 2018; Nie et al.,
2013; Shan et al., 2014; Lin et al., 2014, 2019; Izadyar et al., 2016; Rungrotmongkol and Poo-arporn, 2016; Wolski et al., 2017b, 2018, 2019; Hu et al., 2017; Mousavi
et al., 2018; Kordzadeh et al., 2019; Alinejad et al., 2020; Exner and Ivanova, 2020; Maleki et al., 2020; Pakdel et al., 2020; Koochaki et al., 2020; Li J. et al., 2020

Erlotinib - anti-cancer drugs (Hlaváč et al., 2018)

Exemestane - breast cancer drug (Ghadri et al., 2020)

Flavonoid (Myung et al., 2016; Laudadido et al., 2017)

Flutamide - prostate cancer drug (Kamel et al., 2017)

Fluvestrant - breast cancer drug (Ghadri et al., 2020)

Gemcitabine - chemotherapy agent (Razmimanesh et al., 2015; Sgarlata et al., 2016; Ansari et al., 2018; Farzad and Hashemzadeh, 2020)

GF-17 - antimicrobial peptide (Asadzadeh et al., 2020)

Ibuprofen - pain medication and anti-inflammatory (Thota et al., 2016; Kacar, 2020)

Ifofamide - chemotherapy agent (Mazloom-Jalali and Shariatinia, 2019; Shariatinia and Mazloom-Jalali, 2019)

Insulin - diabetes treatment (Yang et al., 2011)

Interferon - immunomodulator (Xu et al., 2018)

Interferon Alpha - anti-cancer and anti-viral agent (Gupta et al., 2018)

Itraconazole - antifungal drugs (Dzieciuch-Rojek et al., 2017; Poojari et al., 2019, 2020)

Letrozole - breast cancer drug (Ghadri et al., 2020),

Metronidazole antibiotic (Kumar et al., 2019)

Nicotine (Zaboli and Raissi, 2017; Li Z. et al., 2020)

Nystatin - antifungal drugs (Mobasheri et al., 2016)

Paclitaxel (taxol) - chemotherapy agent (Guo et al., 2009a, 2012b; Loverde et al., 2011; Wang et al., 2013; Ghadari and Kashefi, 2017; Hasanzade and Raissi, 2017;
Hashemzadeh and Raissi, 2017; Monpara et al., 2018)

Piaglitazone (Zaboli and Raissi, 2017)

Picoplatin - colorectal cancer drug (Farmanzadeh and Ghaderi, 2018)

Piroxicam (Wilkosz et al., 2017)

Prilocane - local anesthetic (Grillo et al., 2018)

Sorafenib - kidney cancer drug (Dehneshin et al., 2019)

Streptozotocin - neuendocrine tumors drug (Dehneshin et al., 2019)

Sunitinib - renal carcinoma medication (Dehneshin et al., 2019)

Tacrine - Alzheimer’s medication (Esalmi et al., 2016)

Vinblastine - chemotherapy agent (Li et al., 2016a)

modeling for nanoparticle design (Angioletti-Uberti, 2017b;
Bouzo et al., 2020).

MD INSIGHT EXAMPLES

Behavior in the Bloodstream and
Protective Polymer Corona
As we discussed previously, when the nanoparticle enters the
bloodstream it encounters hydrodynamic forces and a corona
of bloodstream proteins forms on its surface; a subset of these

proteins form the highly specific complement activation reaction
that leads to removal by macrophages. Regarding behavior in
the bloodstream and the effect of size and shape (Shah et al.,
2011), the most suitable method is not MD, but rather a
combination of theoretical calculation (Decuzzi et al., 2005)
and a discretized continuum model known as computational
fluid dynamics (CFD), described and used to model this by Li
et al. (2014b), Gupta (2016), and Gao et al. (2020) to model
nanoparticle transport in the faulty tumor vasculature (Gao
et al.). As we have mentioned, the formation of the protein
corona is an extremely complex process that still remains poorly
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understood. What is clear, however, is that the surface properties
of the nanoparticle affect this and the mechanism through which
the protective polymer corona increases the bloodstream lifetime
is modulation of the interaction with bloodstream proteins.
Schafer et al. (2017) and Settanni et al. (2017a,b, 2018) combined
experimental analysis with MD to study the interaction between
two protective polymers, PEG and poly-sarcosine, with a set of
proteins found in the bloodstream. They found evidence that
the interactions are not amino acid specific but rather a general
tendency dependent on the charge and polarity of the amino
acid and the nature of the interaction between the polymer
and water, in addition to the direct polymer-protein interaction.
Their methodology, synergistically combined with experimental
work, could provide a route to a rational design approach to
the development of new polymer materials being developed that
may have superior performance as a protective polymer corona.
Lee et al. used the coarse grained MARTINI model to directly
simulate the effect of PEGylation and PEGylation density on the
interaction between the liposome and blood stream proteins; Lee
also used MD simulation with atomistic resolution to study the
effect of nanoparticle electrostatics in protein corona formation
(Lee, 2020a). There are other examples of the use of MD modeling
to study the protein corona of nanoparticles (Dell’Orco et al.,
2010; Vilaseca et al., 2013; Lopez and Lobaskin, 2015; Shao and
Hall, 2016).

In our previous review publication, focused on liposome based
delivery systems (Bunker et al., 2016), we surveyed the work
that had been carried out using molecular dynamics modeling,
particularly with a model with all atom resolution, on the
interaction between the protective PEG corona and the lipid
bilayer (Stepniewski et al., 2011; Magarkar et al., 2012, 2014).
Since this time the methodology has been used to study the effect
of exchanging PEG with two different poly-oxazolines, poly-
ethoxazoline (PEOZ) and poly-methoxazoline (PMOZ), with
the result indicating that several properties of PEG are highly
specific and related to its amphiphilic nature and the ease
with which it acts as a polymer electrolyte (Magarkar et al.,
2017). We also simulated the effect of change in PEG length,
branched structures, and functionalizing PEG to the cholesterol
or cholane in the membrane rather than phospholipids and our
results complemented both in vivo and in vitro experiments
carried out on these novel liposome based delivery systems
(Mastrotto et al., 2020).

PEGylation, in the context of other nanoparticle forms
than liposomes, has also been studied extensively using MD
simulation. Ambrosio et al. (2018) complemented experimental
study by demonstrating, using MD simulation with all atom
resolution, that a 2:1 ratio or greater of PEG-cholane molecules
to the VIP-palm peptide being delivered, is required to form
supramolecular assemblies; these assemblies were shown to
effectively cover the VIP- peptide with a protective corona
of PEG. In previous work we have used MD simulation
to study the PEGylation of small drug molecules (Li Y.-
C. et al., 2012). Two recent reviews, written by Lee, very
comprehensively cover MD simulation work, using coarse
grained in addition to all atom models, to study the structure and
behavior of PEGylated nanoparticles, one covering PEGylated

biomolecules, liposomes and solid nanoparticles (Lee, 2020b)
and the other covering PEGylated peptides dendrimers and
carbon nanotubes (Lee, 2014). Li et al. carried out a coarse
grained MARTINI model simulation to investigate the effect
of PEG chain length on the shielding effect of PEGylated
nanoparticles (Li and Hu, 2014). A comprehensive review
of computational modeling of PEGylation has been written
by Souza et al. (2018).

Drug Loading and Controlled Release
The ability of nanoparticles to hold drugs and release them with
an external trigger has been studied for several nanoparticle
forms by several groups. In most cases the drugs being
considered are hydrophobic and sit within a non-polar region.
Nanoparticles that have been simulated carrying their drug
payload include carbon nanotubes, nanographene, peptide
carriers, PAMAM dendrimers, polymeric nanoparticles,
polymeric micelles, hydrophobic drugs within the membrane
of liposomes, other issues related to drug loading of liposomes
(Cern et al., 2014) and polymersomes (Grillo et al., 2018)
(further citations found in Table 4). Drug cargoes studied
include cucurbitacin, carmustine, 5-flouracil (Barraza et al.,
2015), chacone, picoplatin, porphyrins, ibuprofen, paclitaxel,
and albendazole, however, the most popular drug for these
model systems is doxorubicin (see Table 4 for citations). In
many cases these nanoparticles are designed to release their
drug payload in response to a pH change trigger (see Table 1);
MD simulation is able to model the effect of pH change. In an
MD simulation pH is modeled through the partial charges on
the atoms, so the system can be equilibrated with the partial
charges corresponding to neutral pH and then the partial
charges can be changed to model pH change and the behavior
of the system in response to this, i.e., the drug release, can be
modeled. One interesting aspect of the work carried out using
MD simulation in this area is that use of all three levels of
coarse graining is represented: atomistic MD, MARTINI model
and DPD (Table 4). Reading this literature with this in mind
provides a very good case study of the strengths and weaknesses
of each model and the aspects of the system each are most ideally
suited to investigate.

Studies of itraconazole in a liposome, combining MD
simulation with experiment, provides an example of where MD
simulation was able to provide concrete insight not obtainable
experimentally. Itraconazole is an antifungal drug characterized
by low solubility, which limits its bioavailability. One possible
solution to overcome low solubility is incorporating drugs into
liposomes, which was achieved in a few independent studies.
To optimize the liposome properties, cholesterol is frequently
used as a molecule known to increase the stability of lipid
bilayers (Róg and Vattulainen, 2014). In fact, cholesterol is
used in 9 out of 15 liposome-based formulations approved for
clinical use (Bulbake et al., 2017). Thus, the incorporation of
cholesterol into the liposome-itraconazole formulation was the
next step. MD simulations showed that this is not the right
choice because cholesterol and itraconazole do not mix well
and separate into small domains (Poojari et al., 2020). This
observation was next validated in experimental studies, which
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showed decreased affinity of itraconazole toward liposomes
containing cholesterol (Poojari et al., 2020). The observed
behavior of the itraconazole may be explained by its structure:
it is a long rigid molecule with a few weakly polar groups
distributed along the molecule backbone. Due to this structure,
itraconazole molecules locate to the water membrane interface
oriented parallel to the membrane surface and, in turn, orient
other molecules in the same fashion (Poojari et al., 2019).
On the other hand, cholesterol has strong preferences to
adopt an orientation perpendicular to the membrane surface

and affect the orientation of neighboring molecules; these
opposite preferences lead to the observed demixing of drugs
and cholesterol.

Nanoparticle Interaction With the Lipid
Membrane
Once the nanoparticle has reached the cell, surviving the journey
through the bloodstream with its payload still contained and
intact, there is one final barrier that must be crossed for
the drug delivery system to be efficacious: the cell membrane

TABLE 4 | Nanoparticles, cargo molecules, and methods used to study drug loading and release.

Nanoparticles

Carbon Nanotubes (Wolski et al., 2017a; Kordzadeh et al., 2019; Ghadri et al., 2020)

Liposomes (Cern et al., 2014; Dzieciuch et al., 2015)

Nanographene (Moradi et al., 2018; Mahdavi et al., 2020; Maleki et al., 2020)

PAMAM dendrimers (Kelly et al., 2009; Wen et al., 2014; Barraza et al., 2015; Badalkhani-Khamseh et al., 2017, 2019; Farmanzadeh and Ghaderi, 2018; Fox
et al., 2018)

Peptide Carriers (Thota et al., 2016)

Polymeric Micelles (Patel et al., 2010a,b; Guo et al., 2012a; Kasomova et al., 2012; Nie et al., 2014; Myint et al., 2016; Shi et al., 2016; Gao et al., 2019;
Kacar, 2019; Wu W. et al., 2019)

Polymeric Nanoparticles (Shen et al., 2017; Yahyaei et al., 2017; Ghitman et al., 2019; Styliari et al., 2020)

Polymersomes (Grillo et al., 2018)

Cargo Molecules:

5-flouracil (Barraza et al., 2015)

Albendazole (da Silva Costa et al., 2020)

Carmustine (Wolski et al., 2017a)

Chacone (Badalkhani-Khamseh et al., 2019)

Cucurbitacin (Patel et al., 2010a)

Doxorubicin (Yang et al., 2012; Nie et al., 2013; Kordzadeh et al., 2019; Koochaki et al., 2020; Mahdavi et al., 2020; Maleki et al., 2020)

Ibuprofen (Thota et al., 2016)

Paclitaxel (Wang et al., 2013)

Picoplatin (Farmanzadeh and Ghaderi, 2018)

Porphyrins (Stepniewski et al., 2012; Rissanen et al., 2014; Dzieciuch et al., 2015)

Methods:

Atomistic MD (Patel et al., 2010a; Wang et al., 2013; Barraza et al., 2015; Dzieciuch et al., 2015; Shi et al., 2016; Thota et al., 2016; Badalkhani-Khamseh
et al., 2017, 2019; Dzieciuch-Rojek et al., 2017; Wolski et al., 2017a; Grillo et al., 2018; Moradi et al., 2018; Kordzadeh et al., 2019; Ghadri et al., 2020; Maleki
et al., 2020)

MARTINI model (Grillo et al., 2018; Koochaki et al., 2020)

DPD (Guo et al., 2009a,b, 2010, 2012a; Yang et al., 2012; Nie et al., 2013, 2014; Wen et al., 2014; Myint et al., 2016; Wang et al., 2016, 2015b; Gao et al.,
2019; Wu W. et al., 2019; Kacar, 2019)

TABLE 5 | Nanoparticles and methods used to study theirs interactions with membranes.

Nanoparticles:

Carbon Dots (Erimban and Daschakraborty, 2020)

Graphene (Raczyński et al., 2020), dendrimers (Lee and Larson, 2008; Kanchi et al., 2018; He et al., 2020)

Gold Nanoparticles (Lin et al., 2011; Gkeka et al., 2014; Mhashal and Roy, 2014; Mhasal and Roy, 2016; Oroskar et al., 2016; Quan et al., 2017; Das et al., 2019)

Nanocrystals (Song et al., 2011)

Methods:

Atomistic MD (Mhashal and Roy, 2014; Van Lehn and Alexander-Katz, 2014b; Mhasal and Roy, 2016; Erimban and Daschakraborty, 2020)

MARTINI model (Lin X. et al., 2010; Lin X. et al., 2020; Song et al., 2011, 2012; Lin and Gu, 2014; Oroskar et al., 2015; Shimizu et al., 2016; Quan et al., 2017; Su
et al., 2017; Zhang Z. et al., 2017; Bai et al., 2018; Das et al., 2019; Salassi et al., 2019; He et al., 2020)

DPD (Lee and Larson, 2008; Yang and Ma, 2010; Ding and Ma, 2012, 2014a; Ding et al., 2012; Tian et al., 2014b; Liu et al., 2016; Bai et al., 2018),

Implicit Solvent (Vácha et al., 2011; Schubertová et al., 2015)
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(Smith et al., 2018). It is possible for nanoparticles, particularly
if they are hydrophobic, to directly transfect, also referred
to as translocation, through the cell membrane and many
nanoparticles enter the cell through this route. There is, however,
an alternative: the nanoparticle can be designed to cross the
membrane via receptor mediated endocytosis (Gao et al., 2005).
When a nanoparticle is taken up via endocytosis it is possible
to take advantage of pH triggered release due to the lowered
pH environment on the interior of the endosome (Hu et al.,
2015). Valuable insight in both the context of direct membrane
transfection and endocytosis have been obtained through MD
simulation. As is the case with drug loading and release, MD
simulation of nanoparticle-lipid membrane interactions have
been carried out for different nanoparticle forms, including
carbon dots, graphene, dendrimers, gold nanoparticles (shown
in Table 5), and nanocrystals (Song et al., 2011); examples can
be found of all levels of model resolution being used including
atomistic MD, MARTINI model, DPD, and implicit solvent
(Table 5). An overview of MD simulation of nanoparticle – lipid
membrane interactions has been written by Tian et al. (2014a).

For nanoparticles that enter the cell through direct
transfection, the issue is the direct physical reaction between
the nanoparticle and the membrane; this phenomenon can be
studied directly through an MD simulation of the nanoparticle
interacting with the membrane (Yang and Ma, 2010; Ding
et al., 2012; Liang, 2013; Van Lehn and Alexander-Katz, 2014b;
Shimizu et al., 2016; Zhang Z. et al., 2017; Erimban and
Daschakraborty, 2020; Gupta et al., 2020). When nanoparticles
translocate through the membrane, the membrane structure
can be disrupted and leakage and even pore formation can
occur; this has been studied directly using MD (Song et al.,
2012; Mhashal and Roy, 2014; Van Lehn and Alexander-Katz,
2014b; Oroskar et al., 2015; Ding and Ma, 2018). The effect
of size (Lin X. et al., 2010), shape (Li Y. et al., 2012; Liu et al.,
2016; Yang Y. et al., 2019), and surface properties (Ding and
Ma, 2016) of the nanoparticle on membrane transfection has
also been studied, including effect of PEGylation (Oroskar et al.,
2016; Bai et al., 2018), and other polymer coatings (Liang, 2013;
Xia et al., 2020) as well as protein (Ding and Ma, 2014a) and,
for the study of inhaled nanoparticles, pulmonary surfactant
corona (Bai et al., 2018) and other issues related to translocation
across the pulmonary surfactant monolayer (Chen P. et al.,
2018). Additionally, Gupta et al. used MD simulations to study
transdermal delivery of interferon-alpha using gold nanoparticles
(Gupta et al., 2018).

Regarding receptor mediated endocytosis, the interaction
is more complex; while direct simulation of nanoparticle
endocytosis has been performed and gained important insight
(Vácha et al., 2011; Ding and Ma, 2012; Li et al., 2014a) this only
tells part of the story as many aspects of the specific interaction
between the ligand and the receptors are not elucidated by such
a simulation. Nanoparticles can be designed to actively target
specific cell types through functionalizing targeting ligands onto
the nanoparticle surface. These targeting ligands bind to the
specific receptors that induce endocytosis. There are two issues
that govern the efficacy of this binding: (1) the distribution of the
targeting ligands on the surface, i.e., the pattern of where they

are located and (2) the orientation and, as a result of orientation,
extent of exposure at the nanoparticle surface and thus availability
to the target receptors. The effect of ligand distribution has been
studied by Liu et al. (2016) through direct MD simulation of
nanoparticle-membrane interactions and ligand density has been
studied through a different computational modeling technique:
Monte Carlo simulation (Martinez-Veracoechea and Frenkel,
2011; Wang and Dormidontova, 2012; Angioletti-Uberti, 2017a).

Regarding the orientation, and thus exposure, of the
targeting ligand to the receptor that induces receptor mediated
endocytosis, one needs chemically accurate atomistic simulations
of the nanoparticle surface to investigate the degree to which
the targeting ligand is exposed and available to the receptor.
We have performed such simulations for the case of liposome
based delivery systems, with targeting ligands, in several previous
publications, for example our determination of the cause of
failure of the new AETP moiety (Lehtinen et al., 2012). These
involved simulating a section of the liposome membrane with
the targeting ligands and, in some cases, the protective polymer
corona as well. Our study regarding the AETP moiety was
another example of a specific topic where we were able to
obtain concrete insight, not obtainable experimentally. The
AETP moiety was found to be successful, when its binding affinity
for the target receptor was tested experimentally, however, when
functionalized to a PEGylated liposome the targeting moiety
failed to show any effect. In comparison to the more hydrophilic
RGD peptide, that has been shown to be an effective targeting
moiety for a PEGylated liposome, the AETP moiety is more
hydrophobic; it could be hypothesized, from the experiment
alone, that the moiety is obscured within the membrane core;
our MD simulation, however, showed this not to be the case: it
was rather the PEG corona itself that was obscuring the AETP
moiety; as PEG is soluble in both polar and non-polar solvents it
was thus a more comfortable, i.e., less hydrophilic, environment
for the AETP moiety than the polar solvent (Lehtinen et al.,
2012). Since it was the PEG corona itself that was the culprit we
could propose a solution: replace PEG with a more hydrophilic
polymer that has been approved for internal use. Just such a
polymer exists: Poly-methoxazoline (PMOZ); in a subsequent
study we performed a simulation with the PEG corona replaced
by a PMOZ corona and we saw increased exposure of the
AETP moiety (Magarkar et al., 2017). We have also studied
liposomes functionalized with stearylamine arginine ligands
(Pathak et al., 2016). A comprehensive review of the theoretical
and computational investigation of nanoparticle interactions
with biomembranes has been written by Ding and Ma (2014b).

CONCLUSION

In this review, we have attempted to summarize the role
that molecular dynamics modeling can play as a tool in drug
delivery research in a fashion that is hopefully comprehensible
to both those with an expertise in molecular modeling who
wish to pursue pharmaceutical applications of their research
and pharmaceutical researchers interested in what insight this
new tool can provide. All aspects of the journey that the drug
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molecule takes, from dissolution to solvation or transit through
the bloodstream inside a nanoparticle, to finally crossing the
plasma membrane of the target cell, is a story of molecular
interactions. The interactions involved, however, are not all
interactions. Any chemist reading this review will have noticed
an omission: chemical reactions; these play a very small role in
the story, one dominated by intermolecular interactions. For this
reason, MD simulation is the perfect tool to obtain molecular
level insight as precisely the variety of interaction it is best able
to study are those which play the dominant role: formation of
structure based on lipophilicity and H-bonding. Whether it is
the hydration that occurs during dissolution, interaction between
drug molecule and excipients, behavior of molecules at the
surface of the nanoparticle in the bloodstream, or the interaction
between the nanoparticle and the plasma membrane of the target
cell, these are the interactions that determine the most important
aspects of behavior.

Molecular dynamics modeling is still a new tool in the
design of drug delivery mechanisms; only in the past decade
have we seen the explosion in the number of publications
that make use of this tool. Widespread adoption is hindered
by the fact that, unlike computational drug design tools like
ligand docking and QSAR/QSPR, the calculations involved are,
as of yet, for the most part too expensive to be carried out
anywhere other than national level supercomputing resources.
As the widely available computational power continues to grow
exponentially, this barrier may dissipate. Looking toward the
future and the role that molecular dynamics modeling will be
able to play in the development of drug delivery systems, the
analogy that we feel is most apt is that of computationally
assisted design (CAD) (Narayan et al., 2008), in mechanical
and civil engineering. Before the advent of computational

technology, engineers were forced to build scale models of
systems and experiment with them, testing every aspect with
real experimental models and sometimes varying parameters
empirically. Now, with widespread computational resources
available to all engineers, CAD allows every aspect of a new
machine, or structure, to be examined and tested in silico
with all aspects of mechanical stress, heat dissipation etc. of
the system visible, and the change resulting from any design
alteration straightforward to analyze entirely virtually. While
we clearly do not mean to imply that human physiology is no
more complex than designing a car or a bridge, we foresee
that, in the future, drug delivery devices will be designed in an
analogous fashion, with molecular dynamics modeling playing
the role in pharmaceutics that CAD plays in mechanical and
civil engineering. Our studies of the AETP targeting moiety
and itraconazole in liposome based delivery systems show clear
examples of how the design approach can be applied, using
in silico modeling to test aspects of the delivery system design
in an analogous approach to CAD. Alongside cutting edge
experimental techniques that complement it, molecular dynamics
simulation has the potential to lead the way to a new era of
rational design in the development of drug delivery systems.
Finally, other complementary reviews that cover similar material
can also be found (Thota and Jiang, 2015; Ramezanpour et al.,
2016; Thewalt and Tieleman, 2016; Katiyar and Jha, 2018; Sen
et al., 2018; Shamsi et al., 2019).
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