
 1 

KIT pathway upregulation predicts dasatinib efficacy in acute myeloid leukemia   1 

 2 

Disha Malani1, Bhagwan Yadav1, Ashwini Kumar1, Swapnil Potdar1, Mika Kontro1,2,3, 3 

Matti Kankainen2, Komal K. Javarappa1, Kimmo Porkka2,3, Maija Wolf1, Tero 4 

Aittokallio1,4, Krister Wennerberg1,5, Caroline A. Heckman1, Astrid Murumägi1, Olli 5 

Kallioniemi1,6 6 

 7 

1. Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 8 

Helsinki, Finland 9 

2. Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Finland 10 

3. Department of Hematology, University Hospital Comprehensive Cancer Center, 11 

Helsinki, Finland 12 

4. Department of Cancer Genetics, Institute for Cancer Research, Oslo University 13 

Hospital, and Oslo Centre for Biostatistics and Epidemiology, University of Oslo, 14 

Oslo, Norway 15 

5. Biotech Research & Innovation Centre, BRIC and Novo Nordisk Foundation Center 16 

for Stem Cell Biology, DanStem, University of Copenhagen, Copenhagen, Denmark 17 

6. Science for Life Laboratory, Department of Oncology and Pathology, Karolinska 18 

Institutet, Solna, Sweden 19 

 20 

Keywords: acute myeloid leukemia, dasatinib, molecular profiling, high-throughput 21 

drug testing, pathway dependency, RNA-sequencing  22 



 2 

Corresponding author:  Disha Malani 23 

Institute for Molecular Medicine Finland (FIMM), University of Helsinki,  24 

Address: Biomeducum 2U, Tukholmankatu 8,  25 

FIN-00290 Helsinki, Finland 26 

Email: disha.malani@helsinki.fi  27 

Phone: +358440341101 28 

 29 

Text word count: 1486/1500 30 

Figures: 2/2 31 

References: 15/15 32 

Supplementary Figures: 7 33 

Supplementary Tables: 9 34 

 35 

Conflicts of Interest: 36 

The authors declare no competing financial interests for this work. The senior authors 37 

have received collaborative research grants for other projects as listed: OK received 38 

research funding from Vinnova for collaboration between Astra-Zeneca, Takeda, 39 

Pelago and Labcyte. OK is also a board member and a co-founder of Medisapiens and 40 

Sartar Therapeutics and has received a royalty on patents licensed by Vysis-Abbot. KP 41 

received honoraria and research funding from Bristol-Myers Squibb, Celgene, Novartis 42 

and Pfizer. CH received honoraria from Celgene, Novartis and Roche and research 43 

funding from Celgene, Novartis, Oncopeptides, Pfizer and the IMI2 project 44 

HARMONY. KW received research funding from Novartis and Pfizer. MKo: research 45 

funding from AbbVie.  46 

mailto:disha.malani@helsinki.fi


 3 

Acute myeloid leukemia (AML) is an aggressive malignant disease with a poor 47 

prognosis. Although the recent approval of several new targeted drugs provides new 48 

treatment options for subsets of patients, molecular heterogeneity in AML still poses a 49 

major challenge for the patient treatment1. Novel treatments are needed to cover the 50 

entire molecular spectrum of the disease. We and others have previously shown that 51 

functional ex vivo drug testing of patient-derived primary AML cells provides 52 

additional insights on the potential utility of e.g. dasatinib, venetoclax and 53 

dexamethasone for treatment of subsets of AML patients2-5. However, in most cases, 54 

the mechanism of action and the specific subgroups and biomarkers associated with the 55 

drug effects have remained unknown. Cell lines originating from different cancer types 56 

have provided valuable information about the complexity of cancer at the genomic, 57 

epigenomic, transcriptomic and drug response level6-9, including observations in 58 

AML10, 11. However, the representability of the AML cell lines of patient AML 59 

specimens has remained unclear. Here, we aimed to i) integrate and compare 60 

pharmacological profiles between AML cell lines and patient samples to identify 61 

differential drug sensitivities; and ii) define molecular determinants and biomarkers of 62 

drug response by the integration of in vitro, ex vivo and in vivo patient data, focusing 63 

on KIT pathway and its inhibitors. 64 

 65 

We compared drug response profiles between ex vivo AML patient samples (n=45) 66 

(Table S1) and established AML cell lines (n=28) (Table S2) using high-throughput 67 

drug sensitivity and resistance testing (DSRT) with 290 approved and investigational 68 

oncology compounds (Table S3). Drug responses were quantified as drug sensitivity 69 

score (DSS)12. Briefly, DSS is a quantitative measurement of drug response to define 70 

drug efficacy using dose-response parameters. The differential drug sensitivity score 71 
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(dDSS) for each sample was based on comparing the DSS for that sample with the mean 72 

over all patient samples (Table S4) or mean over all cell lines (Table S5). The mutation 73 

spectrum of the AML cell lines was obtained from cancer gene panel sequencing (Table 74 

S6) while exome sequencing was applied to the patient samples and analyzed as 75 

described previously2. RNA-seq data for the AML patient specimens were generated 76 

and analyzed as described previously13 and for the AML cell lines obtained from a 77 

published study9. 78 

 79 

We first compared drug sensitivity patterns between ex vivo AML patient samples and 80 

cell lines using the Wilcoxon rank-sum test to reveal differential sensitivity across all 81 

drugs (Table S7). Higher efficacy for many cytotoxic chemotherapeutic drugs in the 82 

cell lines (Fig 1a) was likely due to the higher proliferation rate during drug testing as 83 

compared to the patient cells (Fig S1a). Therefore, we focused on targeted drugs 84 

exhibiting higher efficacy in the patient samples. We observed significantly higher 85 

efficacy of both multi tyrosine kinase inhibitors masitinib and dasatinib (Fig S1b) in 86 

patient samples compared to the cell lines. These two drugs inhibit KIT among other 87 

target genes, and hence belong to the same drug class, thus increasing the confidence 88 

of the finding. 89 

 90 

We next explored drug sensitivities of targeted drugs in relation to common driver 91 

mutations in AML. Some of the common AML-related mutations e.g., KRAS, NRAS, 92 

EZH2, TP53 were more common in cell lines whereas FLT3-ITD, DNMT3A, NPM1, 93 

IDH1, IDH2 mutations were more common in the patient samples (Fig S2). 94 

Unsupervised hierarchical clustering of 114 targeted sensitive drugs demonstrated 95 

mutation-based subgroups among the patient samples (Fig S3a) and the cell lines (Fig 96 
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S3b). Dasatinib was found to be in the same cluster as other tyrosine kinase inhibitors 97 

e.g. axitinib, imatinib, masitinib in patient samples. However, the dasatinib response 98 

was distinct from the other tyrosine kinase inhibitors in AML cell lines. 99 

 100 

Next, the percentage of responders was calculated for individual drugs in both cell lines 101 

and patient samples to estimate drug efficacy in individual samples. A drug was defined 102 

as effective if its dDSS value exceeded the 95% quantile (8.5) of the overall dDSS 103 

distribution (Fig S4a). We then compared the percentage of responders (dDSS  8.5) 104 

in both patient samples and cell lines across 224 targeted drugs (Fig 1b). The analysis 105 

revealed that dasatinib was one of the drugs that exhibited remarkable differential 106 

sensitivity in AML patient samples compared to the cell lines. We found 20% (9 out of 107 

45) AML patient samples and 11% (3 out of 28) of cell lines were sensitive to dasatinib. 108 

Next, we assessed whether the dasatinib sensitivity was dependent on cell viability 109 

during assay but found no remarkable association using the patient samples (Figure 110 

S4b). Thus, dasatinib exhibited consistently higher efficacy in the patient samples as 111 

compared to the cell lines. 112 

 113 

Next, we sought to identify molecular biomarkers for dasatinib sensitivity. We found 114 

no significant association between the ex vivo efficacy of dasatinib and the presence of 115 

any of the common driver mutations in the AML patient samples (Figure S5a). None 116 

of the AML patient samples had a mutation in the dasatinib target gene KIT (Fig S3a). 117 

Neither did we see any associations of ex vivo dasatinib response with clinical features 118 

of the disease (Figure S5b). We analyzed gene expression levels of dasatinib target 119 

proteins and found no significant correlation with dasatinib response either in the 120 

patient samples (Fig S5c) or in cell lines (Fig S5d). We then analyzed gene expression 121 
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levels in terms of deregulated pathways using gene set variation analysis (GSVA)14 and 122 

applied FDR to define KIT enrichment scores and their confidence levels (Fig 2a, Table 123 

S8). The KIT pathway gene signature derived from the REACTOME pathway database 124 

included 16 genes; FYN, KITLG, CBL, SH2B3, PTPN6, SOS1, PRKCA, KIT, SH2B2, 125 

SOCS6, YES1, GRB2, LCK, SOCS1, SRC, LYN. The majority of the genes encode for 126 

tyrosine kinases and signaling adaptor proteins (Table S9). Comparison of dasatinib 127 

sensitive and non-sensitive AML patients showed that the KIT pathway upregulation 128 

was a strong predictor for ex vivo dasatinib efficacy in AML (Fig 2b), stronger than the 129 

expression of any of the dasatinib targets alone. While KIT pathway upregulation is a 130 

stronger molecular determinant of ex vivo dasatinib efficacy than mutations or clinical 131 

features, its potential utility to assign dasatinib treatment for AML needs additional 132 

information.   133 

 134 

Given the strong relationship between dasatinib sensitivity and KIT pathway 135 

upregulation, we then assessed if this effect is mediated through KIT as one of the 136 

targets. KIT gene is one of the sixteen genes of the KIT pathway. KIT (CD117) is a 137 

receptor tyrosine kinase expressed on the cell surface. We investigated the effect of 138 

dasatinib treatment on KIT protein expression and the induction of apoptosis to further 139 

define the effects of dasatinib in AML cell lines. The KIT targeting drugs dasatinib, 140 

masitinib, axitinib and imatinib (Fig S6a) was strongly effective in GDM-1, where the 141 

KIT pathway was also strongly and significantly upregulated (Fig S6b). We found 142 

reduced surface levels of KIT in dasatinib-treated GDM-1 cells as well as in KIT-143 

mutant KASUMI-1 cells (positive control). In contrast, no such effect was seen after 144 

dasatinib treatment in MOLM-16 cells that are dasatinib-resistant and have no KIT 145 

pathway upregulation (Fig 2c). We also observed increased intracellular levels of 146 
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cleaved caspase 3 in KASUMI-1 and GDM-1 upon dasatinib treatment, compared to 147 

the responses in MOLM-16 cells (Fig 2d), indicating that dasatinib treatment-induced 148 

apoptosis (Fig S6c). Our findings are consistent with an earlier report suggesting 149 

dasatinib treatment reduces cell surface expression of KIT due to endocytosis in AML 150 

cells15. These results, therefore, suggest that the effects of dasatinib on AML cell 151 

viability and apoptosis could be mediated via the downregulation of the KIT protein. 152 

However, the overall gene expression profiles linked to the entire KIT pathway 153 

provided the strongest value as a drug response biomarker for predicting dasatinib 154 

response. 155 

 156 

We also assessed KIT pathway enrichment scores in three chemo-refractory AML 157 

patients (AML_11, AML_36 and AML_41) treated with dasatinib to further explore 158 

the clinical relevance of the finding. Dasatinib was selected for clinical translation as a 159 

drug of choice for these patients based on leukemia-selective dasatinib response in ex 160 

vivo DSRT (Fig S7a) at Helsinki University Hospital2. In two patients characterized by 161 

ex vivo dasatinib sensitivity and significant KIT pathway upregulation, dasatinib 162 

treatment led to complete remission (AML_36) and complete remission with 163 

incomplete hematological recovery (AML_41). In patient case AML_11, which also 164 

showed ex vivo dasatinib sensitivity but no upregulation of KIT pathway, no response 165 

to dasatinib was observed during a short treatment period which was limited by toxic 166 

side effects. (Fig 2e, S7b, c). Therefore, the patient data is also suggestive that KIT 167 

pathway activity could define AML patients who are most likely to respond to and 168 

benefit from dasatinib treatment.  169 

 170 
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Taken together, the combination of in vitro, ex vivo and clinical data suggest that gene 171 

expression-based KIT pathway upregulation could act as a biomarker of dasatinib 172 

efficacy in AML. We suggest that the upregulation of the KIT pathway in combination 173 

with ex vivo dasatinib sensitivity testing could help to define patients who are most 174 

likely to benefit from this treatment, a hypothesis to be tested in the form of a clinical 175 

study.176 
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Figure legends 201 

Figure 1. Dasatinib has high sensitivity in AML patient samples compared to AML 202 

cell lines. A) Comparison of 290 drug responses between 45 AML patient samples and 203 

28 AML cell lines. The median values of drugs plotted on the x-axis and negative log10 204 

of p-values plotted on the y-axis, where the statistical significance was calculated using 205 

the Wilcoxon rank-sum test. Dot colors indicate significant drugs (FDR <0.1) with 206 

high sensitivity in patient samples (orange) and cell lines (blue). B) Correlation of 207 

percent responders for 224 targeted drugs between 28 AML cell lines (x-axis) and 45 208 

AML patient samples (y-axis). The highlighted drugs depict outliers based on percent 209 

responders above 15 percentage for AML patient samples and below 15 percentage for 210 

AML cell lines (the red dotted lines).  211 

 212 

Figure 2. KIT pathway enrichment is associated with dasatinib efficacy. A) KIT 213 

pathway enrichment scores aligned to dasatinib response (dDSS). The dotted line 214 

represents sensitivity cut-off at 8.5 based on overall dDSS distribution. The asterisk 215 

marks represent significance levels as false discovery rates (FDR). B) KIT pathway 216 

enrichment scores in dasatinib sensitive (dDSS>8.5) and non-sensitive (dDSS<8.5) 217 

patient samples. C) Flow cytometry analysis represents the percentage of KIT positive 218 

cells in untreated (DMSO control) and 500nM dasatinib treated KASUMI-1, GDM-1 219 

and MOLM-16 cells. D) Flow cytometry analysis represents the percentage of cleaved 220 

caspase 3 positive cells in untreated (DMSO control) and 500nM dasatinib treated 221 

KASUMI-1, GDM-1 and MOLM-16 cells. E) Ex vivo dasatinib response and matched 222 

KIT pathway in three AML patient cases who were given dasatinib treatment. The 223 

clinical outcomes of the treatment defined as a resistant disease (RD), complete 224 



 11 

remission (CR) and complete remission with incomplete hematological recovery (CRi) 225 

for all patients.  226 
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Supplementary figure legends: 17 

Figure S1. A) Percentage increment at 72h compared to 0h in terms of luminescence-based cell 18 

viability during drug testing experiment for ex vivo AML patient samples and AML cell lines. B) 19 

Comparison of drug sensitivity scores (DSS) for dasatinib between 45 AML patient samples and 28 20 

AML cell lines. The Wilcoxon rank-sum test was applied to calculate p-value. 21 

 22 

Figure S2. Mutation frequencies of 23 AML related driver genes in 45 patient samples and in 28 23 

AML cell lines where FLT3-ITD represents internal tandem duplication and FLT3-PM represents 24 

point mutations in FLT3 gene. 25 

 26 

Figure S3. Unsupervised hierarchical clustering responses of 114 targeted sensitive drugs and A) 45 27 

AML patient samples or B) 28 AML cell lines. The key AML related mutations annotated for both 28 

patient samples and cell lines. 29 

 30 

Figure S4. A) Distribution of differential drug sensitivity scores (dDSS) of 290 drug responses from 31 

45 AML patient samples and 28 AML cell lines. Significant dDSS cut off 8.5 was defined as a 95% 32 

quantile of the overall distribution. B) Upper panel depicts response to dasatinib (dDSS and lower 33 

panel illustrates cell viability measured during drug testing assay in absence of drug (72 hours) for 34 

37 AML patient samples. 35 

 36 

Figure S5. A) Comparison of dasatinib response (DSS) between wild type and mutated samples for 37 

FLT3-PM (point mutation), FLT3-ITD (internal tandem duplication), NPM1, NRAS, PTPN11, 38 

DNMT3A using nonparametric Mann-Whitney test, where ns represents non-significant p-values. B) 39 

Pearson correlation of age with dasatinib response. Comparison of the clinical features with dasatinib 40 

responses using Mann-Whitney test, where ns represents non-significant p-values. C) Expression of 41 
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dasatinib target genes aligned to dasatinib response in 45 AML patient samples. The bar plot on the 42 

right side depicts the Pearson correlation values between dasatinib response (dDSS) and RNA-seq 43 

derived expression values (log2 count per million (CPM)) of individual genes D) Expression (log2 44 

CPM) of dasatinib target genes aligned to dasatinib response (dDSS) in 21 AML cell lines. 45 

 46 

Figure S6. A) dDSS for tyrosine kinase inhibitors (dasatinib, masitinib, axitinib and imatinib) in 47 

AML cell lines GDM-1, KASUMI-1 and MOLM-16. B) Enrichment score for the KIT pathway 48 

aligned to dasatinib response in 21 AML cell lines. The asterisk marks represent significance as false 49 

discovery rates (FDR). c. The fluorescence signal of KIT antibody, cleaved caspase 3 antibody and 50 

respective isotype control antibodies used for flow cytometry experiments. 51 

 52 

Figure S7. A) Drug response profile of AML patient cases AML_11, AML_36 and AML_41 53 

depicting the range of selective DSS (healthy bone marrow normalized DSS). Dasatinib is 54 

highlighted in red. B) KIT pathway enrichment scores of AML patient samples where the patients 55 

treated with dasatinib highlighted in red. c. Clinical information on drug treatment, disease status, 56 

ex vivo dasatinib response and KIT pathway enrichment score for patients AML_11, AML_36 and 57 

AML_41.  58 



 4 

Supplementary Text 59 

 60 

AML patient samples and cell lines 61 

The samples were collected from AML patients (n=45) after signed informed consent using protocols 62 

approved by local ethical committees (approvals 239/13/03/00/2010 and 303/13/03/01/2011). 63 

Mononuclear cells were isolated from bone marrow aspirates and peripheral blood samples by Ficoll-64 

Paque (GE Healthcare) density gradient centrifugation. Twenty-eight AML cell lines were selected 65 

across French American British (FAB) classes, ranging from M0 to M7 subtypes. The cell lines were 66 

purchased from German collection of microorganisms and cell cultures (DSMZ), expect for HL-60 67 

cell line that was purchased from American type tissue culture collection (ATCC) and HL-60_TB, a 68 

subline of HL60, was purchased from NCI-Frederick cancer DCTD tumor/cell line repository.  69 

 70 

Chemical compound collection 71 

The collection of 290 chemical compounds including 144 FDA (U.S. Food and Drug Administration) 72 

or EMA (European Medical Agency) approved drugs, 112 investigational compounds and 34 73 

chemical probes. The collection consists of conventional chemotherapy drugs, kinase inhibitors, 74 

apoptosis modifiers, epigenetic modifiers, differentiating agents, metabolic modifiers, hormonal 75 

therapeutics, and immunomodulators. The annotation for mechanism of actions or molecular targets 76 

are given for each drug. The drugs were defined as sensitive if the dDSS was >8.5 for at least one cell 77 

line or patient sample.   78 

 79 

Drug Sensitivity and Resistance Testing (DSRT)  80 

All cell lines were cultured in vendor specified media, except for HL-60 and HL-60_TB, which were 81 

cultured in 90% RPMI 1640 with 10% FBS and Penicillin/Streptomycin. DSRT was performed with 82 

the cell lines and freshly isolated mononuclear cells from bone marrow or blood of 45 diagnostic and 83 
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relapsed AML patients in mononuclear cell medium (Promocell) using the protocol described earlier1. 84 

Briefly, the 290 compounds were dissolved in DMSO and dispensed in 384 well cell culture plates 85 

using an Echo 550 acoustic liquid handling system (Labcyte). Each compound was plated at five 86 

increasing concentrations, covering 10 000-fold range, mostly from 1-10 000nM. The drug plates 87 

were stored in nitrogen gas pressurized pods (Roylan Development Ltd.) before use. Cell seeding 88 

density was optimized prior to DSRT experiments for each cell line whereas patient samples were 89 

plated at 10000 cells per well. Cells were plated in pre-drugged plates and incubated for 72h at 37°C 90 

in 5% CO2. Cell viability was measured using CellTiter Glo (Promega) reagent with PHERAstar FS 91 

(BMG Labtech) plate reader. Negative control DMSO and positive control benzethonium chloride 92 

were included in each assay plate for normalization of cell viability readouts (inhibition %). 93 

 94 

Drug response data analysis 95 

The drug response data was analyzed using FIMM in-house Breeze pipeline2. Individual dose 96 

response curves and IC50 values were calculated for each drug using the FIMM DSRT data analysis 97 

pipeline. Drug sensitivity scores (DSS), a modified area under dose-response curve, was calculated 98 

as described previously3. Differential drug sensitivity scores (dDSS) were calculated for each drug 99 

separately by subtracting the mean DSS over all the samples or over all the cell lines from the sample-100 

specific DSS. The dDSS were calculated separately for cell lines and patient samples. Drug response 101 

data quality was assessed with Z-prime score, where variation was calculated between multiple 102 

positive and negative controls from the same plate. 103 

 104 

Wilcoxon rank-sum test was performed with DSS to identify the drugs with significant differential 105 

efficacy between AML patient samples compared to the cell lines. The false discovery rates (FDR) 106 

were calculated using Benjamini & Hochberg method4. Median DSS difference <-4 or >4 and FDR 107 

<0.1 were considered significant for differential efficacy of drugs. The sensitivity was defined if 108 
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dDSS was above 8.5, which corresponds to the 95% quantile of the overall dDSS distribution over 109 

all the cell lines and patient samples. The percentage responders were calculated for a given drug 110 

with percent sensitive cell lines or patient samples. Targeted sensitive drugs (n=114) were defined if 111 

dDSS value were above 8.5 in at least one of the samples, which corresponds to the 95% quantile of 112 

the overall dDSS distribution over all the cell lines and patient samples.  Unsupervised hierarchical 113 

clustering with complete linkage was performed using Euclidean distance for cell lines and patient 114 

samples, and correlation distance for dDSS profiles of compounds. 115 

 116 

DNA sequencing and somatic variant analysis 117 

Exome sequencing was performed using DNA isolated from mononuclear cells of AML patient 118 

samples (n=45) and matching skin biopsies from the same patients using Agilent or Roche 119 

NimbleGen exome capture kits and a HiSeq 2500 instrument (Illumina). The data processing and 120 

variant calling was performed using same pipeline as described previously1. Genomic DNA was 121 

isolated from the cell lines (n=28) using the DNeasy Blood and Tissue Kit (Qiagen). Massive parallel-122 

targeted sequencing of 578 genes was performed using Nimblegen´s SeqCap EZ Designs kit (Roche). 123 

2 μg of DNA was used for library preparation, enrichment and sequencing using HiSeq 2500 124 

(Illumina).  125 

 126 

Genetic variants in each cell line were called and annotated as described earlier5. Briefly, variants 127 

were called using a modified GATK best-practice and annotated using Annovar tool against RefGene 128 

database. Subsequently, the variants called from the cell lines were filtered by removing variants not 129 

passing variant calling filters, not located in exonic or splice region synonymous SNVs and frameshift 130 

insertion and deletions. Furthermore, variants were removed if not found in hematopoietic 131 

malignancies in the COSMIC version 87 (https://cosmic-blog.sanger.ac.uk/cosmic-release-v87), or 132 

not annotated in the BeatAML dataset, which includes variants detected in 600 AML patient 133 
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samples6. Finally, variants were removed if the variant’s frequency was > 1% in gnomAD database 134 

of healthy individuals when considering all populations (https://gnomad.broadinstitute.org), if 135 

supported by <10 reads in total and <2 reads in either direction, having a variant allele frequency 136 

<2%, and having a strand odd ratio for SNVs ≥ 3.00, and strand odd ratio for indels ≥ 11.00 and 137 

quality <40.   138 

 139 

RNA-sequencing                   140 

RNA-sequencing was performed for 45 AML patient samples. Total RNA (2.5-5 µg) was extracted 141 

from bone marrow or peripheral blood mononuclear cells from AML patients using the miRNeasy or 142 

AllPrep kit (Qiagen) and depleted of ribosomal-RNA (Ribo-ZeroTM rRNA Removal Kit, Epicentre) 143 

after purification, reverse transcribed to double stranded cDNA (SuperScriptTM Double- Stranded 144 

cDNA Synthesis Kit, Thermo Fisher). Library quality was evaluated on high sensitivity chips using 145 

the Agilent Bioanalyzer (Agilent Technologies). Paired-end sequencing with 100 bp read length was 146 

performed using HiSeq 2500 (Illumina) as described previously7.  147 

 148 

Gene expression analysis  149 

RNA-seq data pre-processing including, quality control, alignment, normalization, feature count and 150 

count per million (CPM) calculation were performed as described previously7. Briefly, Trimmomatic8 151 

was used to correct reads for low quality, Illumina adapters, and short read-length. Filtered paired-152 

end reads were aligned to the human genome (GRCh38) using STAR aligner9 with the guidance of 153 

EnsEMBL v82 gene models. Feature counts were computed using SubRead10 R-package and 154 

converted to expression estimates using Trimmed Mean of M-values (TMM) normalization method 155 

11. Default parameters were used with exception that reads were allowed to be assigned to overlapping 156 

genome features in the feature counting. The published RNA-seq data (raw read counts) for 21 AML 157 

https://gnomad.broadinstitute.org/
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cell lines was obtained from the CCLE resource12. Raw reads were further normalized by TMM 158 

method and log2 CPM values were calculated similar to the patient samples.  159 

 160 

Pathway enrichment analysis 161 

To get the pathway enrichment scores, the gene expression values (log2 CPM) for the protein coding 162 

genes were subjected to the gene set variation analysis (GSVA) using a R-package (GSVA 163 

version  1.18.0)13 for both 45 AML patient samples and 21 cell lines. The GSVA analysis calculates 164 

the relative enrichment of a gene set across the sample set. We applied GSVA analysis separately for 165 

patient samples and cell lines. The pathway gene set signatures were obtained from the Molecular 166 

Signatures Database (MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp#C1) 167 

database version “c2.cp.reactome.v6.2.entrez.gmt”. The canonical pathways were derived from 168 

REACTOME database (n=674 gene sets), where we specifically focused on 169 

“REACTOME_REGULATION_OF_KIT_SIGNALING” based on prior knowledge. A high 170 

enrichment score represents upregulated pathway, whereas low or negative scores represent 171 

downregulated pathways. We applied 1000 bootstrap iterations on GSVA scores in order to get the 172 

significance levels. Next, the p-values were adjusted across the patient sample or across the cell lines 173 

by applying Benjamini and Hochberg (BH) method to get false discovery rates (FDR). The FDR < 174 

0.05 was considered significant. The KIT pathway gene signature consists of 16 genes; FYN, KITLG, 175 

CBL, SH2B3, PTPN6, SOS1, PRKCA, KIT, SH2B2, SOCS6, YES1, GRB2, LCK, SOCS1, SRC, LYN. 176 

The KIT pathway enrichment scores ranged from -0.482 to 0.437 in case of AML patient samples 177 

(n=45) and from -0.431 to 0.525 in AML cell lines (n=21).  178 

 179 

Flow cytometry analysis 180 

Dasatinib and venetoclax were purchased from LC Laboratories and ChemieTek, respectively, and 181 

dissolved in DMSO to prepare 10 mM stocks. The KASUMI-1, GDM-1 and MOLM-16 cells were 182 
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treated with 100 nM and 500 nM dasatinib and 100 nM venetoclax (a positive control for apoptosis 183 

induction) for 24 h in V-bottom 96 well plates (Nunc). After the incubation, the plate was centrifuged 184 

at 600 g for 4 min and supernatant was discarded. The cells were stained with 1:1000 dilution of 185 

zombie violet (BioLegend) as per the vendor’s instructions. The cells were washed with 1X PBS and 186 

stained with 1:50 dilution of CD117(cKIT)-BV605 antibody (562687, BD Biosciences). The cells 187 

were washed with 1X PBS and fixed using 2.5% formaldehyde for 10 min at 37°C and permeabilized 188 

using 70% cold methanol for 20 min at 4°C. Subsequently the washed cells were stained with 1:50 189 

dilution of cleaved caspase 3-A647 antibody (9602, Cell Signaling Technology). The isotype control 190 

antibodies BV605 (562652, BD Biosciences) and A647(612599, BD Biosciences) were used at same 191 

concentration as the CD117 and cleaved caspase 3 antibodies. CD117 antibody stained UltraComp 192 

beads (01-2222-41, Invitrogen) and cleaved caspase 3 stained venetoclax treated Kasumi-1 cells were 193 

used for compensation. An iQue Plus (Intellicyte) flow cytometer was used to measure florescence 194 

of the stained cells and beads. The compensated data were analyzed using FlowJo™ software 195 

(https://www.flowjo.com/). 196 

 197 

Clinical Translation in AML patients 198 

We have established leukemia precision medicine program to tailor targeted therapies based on top 199 

selective drug responses using functional testing and molecular profiles1. The program is a 200 

collaborative effort involving biologists, bioinformaticians and clinicians at Institute for Molecular 201 

Medicine Finland (FIMM) and Helsinki University Hospital. The program is primarily for end-stage 202 

chemo-refractory AML patients and in exceptional conditions for diagnostic primary AML patient 203 

cases. The treatment regimens comprised of approved non-AML drugs were used as a single agent 204 

or in combinations for clinical translation in individual AML patient cases, including serial therapy 205 

with different regimens in some of the patients. The drugs classified as signaling molecule inhibitors, 206 

immunomodulator, proteasome inhibitor and epigenetic modifier, were approved for cancer 207 

https://www.flowjo.com/
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indications and patients were treated under off label compassionate usage. The regimens resulted in 208 

either complete remission (CR), complete remission with incomplete hematological recovery (CRi) 209 

or resistant disease (RD) defined by ELN2017 creiteria14. Patient AML_11 was given dasatinib in 210 

combination with azacytidine and was resistant to the therapy. Patient AML_36 was given dasatinib-211 

azacitidine therapy and the patient was MDR positive after the therapy, however the blast count 212 

decreased after the therapy was defined as CRi as per ELN2017 criteria. Patient_41 was given 213 

combination of dasatinib (multi-tyrosine kinase inhibitor), temsirolimus (mTOR inhibitor) and 214 

sunitinib (tyrosine kinase inhibitor) and achieved complete remission with the therapy. We assumed 215 

that dasatinib response associated with KIT pathway, considering ex vivo association and KIT being 216 

one of the target genes, gave biological meaningful hypothesis.   217 

 218 

Statistical Analyses 219 

The statistical analyses were performed and figures were generated using Prism software version 8 220 

(GraphPad) and R version 3.3.3 (2017-03-06). Statistical dependence between two variables was 221 

calculated using Pearson’s correlation coefficient. The Wilcoxon rank-sum test was applied to assess 222 

differences between drug responses.  223 
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