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1 Introduction

Defining a measure of energy in general relativity has a long and diverse history. Tra-

ditional definition of energy as the conserved quantity corresponding to time translation

invariance fails in curved spacetimes, because such a symmetry does not exist in general.

Regardless, various proposals for energy in stationary spacetimes have been put forward

such as the Komar mass [1] and the ADM mass [2, 3].1 After the development of black

1Note that the Komar mass is not conserved for all physically reasonable solutions [4]. The author

thanks S. Deser for pointing this out.
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hole thermodynamics, the formulation of energy is also relevant from the perspective of

the black hole first law (see for example [5, 6]).

ADM mass is defined as the on-shell value of the Hamiltonian of general relativity

[2, 3]. It measures the total energy content of a spacetime as measured by an observer

located far away from the source. If one wants to measure the energy contained within a

subset C of the Cauchy slice, a new quantity is needed. Such a quasi-local energy MB was

first proposed by Brown and York [7], and it is defined as an integral over the codimension-

two surface ∂C ≡ B of the boundary stress-energy tensor projected onto the Cauchy slice.

The result is normalized by subtracting the corresponding energy of flat space. When the

surface is taken to be arbitrarily large, the energy is expected to approach the ADM mass,

which is indeed the case as shown in [8] (see also [9]).

Lovelock gravity is the unique theory of gravity constructed out of the Riemann tensor

that has equations of motion second order in the derivatives of the metric (see [10] for an

introduction). Its action is a linear combination of Lovelock invariants that reduce to topo-

logical invariants in their corresponding critical dimensions [11, 12]. Lovelock invariants

are constructed out of higher powers of the Riemann tensor and contain Ricci scalar as

the special case. Pure Lovelock gravities are a subset of Lovelock gravity theories labeled

by a non-negative integer m that contain a single Lovelock invariant in the action. They

are very similar to Einstein gravity m = 1 and extend many of its properties to higher

dimensions [13–16].

The asymptotic behavior of solutions of pure Lovelock gravity is not the same as in

Einstein gravity, but depends on m. This means that the standard ADM mass formula

no longer applies, because it is finite (and thus well defined) only for asymptotic fall-off

conditions of Einstein gravity. A generalization is hence needed. In [17], a generalization

to Lovelock gravity was derived by generalizing the Einstein gravity derivation of [3]. They

applied the resulting mass formula to asymptotically AdS spaces and found that it is

simply proportional to the mass in Einstein gravity. Specializing to pure Lovelock gravity,

their result then implies that the mass is independent of m which is expected, because in

AdS space, the asympotic behaviour of solutions is independent of m [18]. The case of

asymptotically flat solutions was not analyzed in [17], which is one of the gaps filled in

this paper. We find that the ADM mass in flat space is not integrable for m ≥ 2, but

for spherically symmetric spacetimes, the mass can be integrated and we find the explicit

formula. When applied to a static black hole solution, the mass agrees with the literature

[14, 19–22].

Pure Lovelock gravity, and Lovelock gravity in general, suffer from the same problem

as Einstein gravity that the variational principle is not well defined in the presence of

boundaries [23, 24]. Hence the action must be supplemented by a generalization of the

Gibbons-Hawking surface term to pure Lovelock gravity. Explicit formulae for the surface

terms were first presented by Myers [25] in the language of differential forms. In the metric

formulation, the surface terms for a spacelike boundary first appeared in [26] where the

Hamiltonian formalism of Lovelock gravity was established. A straightforward derivation

was recently presented in [27] which also directly applies to timelike boundaries.

Given the surface terms, it should be possible to define quasi-local energy in Lovelock
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gravity as anticipated in [27]. We focus on pure Lovelock gravities and try to generalize

the Einstein gravity definition presented in [7]. The idea of [7] is to perform a Hamiltonian

decomposition of the theory in the presence of a timelike boundary and then define the

energy as the on-shell value of the Hamiltonian. What one also needs is a way to regularize

the resulting energy: the flat space value should be zero and the large surface limit should

coincide with the ADM mass of pure Lovelock gravity.

In Einstein gravity, the background subtraction method produces a finite energy with

these properties [8]. In pure Lovelock gravity m ≥ 2, we find that the background subtrac-

tion fails: the large surface limit vanishes for asymptotically flat geometries. However, if

one only considers variations of the energy, then the limit is finite and coincides with the

variation of the ADM mass. This is the main result of our paper and it generalizes the

corresponding statements proven before in Einstein gravity [8, 9]. In addition, we show

that just like in Einstein gravity [7], the resulting quasi-local energy can be defined in terms

of the boundary stress-energy tensor. These results further extend the list of similarities

between Einstein gravity and pure Lovelock gravity.

Instead of using background subtraction, there are also other ways to renormalize

the quasi-local energy: one example is the use of counterterms [28, 29]. Another method

was presented in [30] where it was proven that the large surface limit of the resulting

renormalized energy is proportional to the ADM mass in spherically symmetric geometries.

However, the exact prefactor of proportionality was not specified. Using the explicit formula

for the ADM mass, we verify their result and determine the exact prefactor. We also

generalize the calculation and show that the proportionality does not extend to arbitrary

geometries.

1.1 Summary of main results

We generalize the Einstein gravity derivations of ADM mass [3] and Brown-York quasi-

local energy [7] to pure Lovelock gravity. The ADM mass in pure Lovelock gravity is

non-integrable and given by

δMADM
(m) = − 1

16π

∫
∞

√
σ 2P̄ abcd(m)naD

cδγ̃db (1.1)

where γ̃ab is the asymptotic correction to the flat metric. This is finite given asymptotically

flat fall-off conditions specialized to pure Lovelock gravity. For asymptotically AdS solu-

tions, the mass is integrable and proportional to the Einstein value MADM
(1) for all values of

m.

The main result of the paper is a perturbative formula for the quasi-local energy in

pure Lovelock gravity:

δM
(m)
B =

m

4π

∫
B

√
σ Êij(m−1)δK̂

j
i . (1.2)

The non-perturbative version is not well-defined as it has a vanishing limit for large surfaces.

We show that the limit of (1.2) for large surfaces coincides with (1.1):

δMADM
(m) = lim

B→∞

m

4π

∫
B

√
σ Êij(m−1)δK̂

j
i . (1.3)
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This formula provides a simple method for calculating the mass of a given solution, which

we demonstrate explicitly in section 4.

The paper is structured as follows. In section 2 we introduce pure Lovelock gravity and

derive the generalization of the ADM mass. Next in section 3, we review the generalization

of the Gibbons-Hawking surface term and define the quasi-local energy which is renormal-

ized using the background subtraction prescription. The derived formulas are then applied

to spherically symmetric geometries in section 4. Up to this point only asymptotically

flat geometries were considered, leaving the analysis of asymptotically AdS geometries to

section 5.

1.2 Notation conventions

We collect our notation here for convenience. We work with a D-dimensional spacetimeM
with the metric gab and indices a, b, . . . = 0, 1, . . . , D− 1. The spacelike Cauchy slice Σ has

the metric γab and the timelike normal ua. The spatial metric satisfies γabu
b = 0 and can

be written as γab = gab+uaub. Spatial indices are denoted by α, β = 1, 2, . . . , D−1. IfM is

taken to have a timelike boundary, it is denoted by Γ and it has the metric hab = gab−nanb
with the spacelike normal na. The indices of Γ are denoted by µ, ν, . . . = 0, 1, . . . , D − 2.

We also denote B = Γ∩Σ which has the metric σab = gab +uaub−nanb and its indices are

denoted i, j, . . . = 1, 2, . . . , D − 2. The covariant derivative of M is denoted by ∇a and of

B by Da.

For generalized Kronecker deltas we assign specific notation. The spacetime generalized

Kronecker delta is δ
a1...ap
b1...bp

= p!δa1[b1
· · · δapbp]. We define the projections

δ̄
a1...ap
b1...bp

= p!δ̄a1[b1
· · · δ̄apbp], δ̃

a1...ap
b1...bp

= p!δ̃a1[b1
· · · δ̃apbp], δ̂

a1...ap
b1...bp

= p!δ̂a1[b1
· · · δ̂apbp] (1.4)

where δ̄ab = δab + uaub, δ̃
a
b = δ̃ab − nanb, and δ̂ab = δab + uaub − nanb. They satisfy

δ̄
a1...ap
b1...bp

= −uaubδ
aa1...ap
bb1...bp

, δ̃
a1...ap
b1...bp

= nan
bδ
aa1...ap
bb1...bp

, (1.5)

and

δ̂
a1...ap
b1...bp

= nan
bδ̄
aa1...ap
bb1...bp

= −uaubδ̃
aa1...ap
bb1...bp

. (1.6)

A tensor T projected onto Σ, Γ, or B is indicated as T̄ , T̃ , or T̂ respectively. The spatial

metric is usually expanded in inverse powers of the radial coordinate as γαβ = δαβ + γ̃αβ
where γ̃αβ is not to be confused with the notation T̃ for projections onto Γ.

2 Pure Lovelock gravity and ADM mass

Lovelock gravity is the unique theory constructed out of the Riemann tensor whose equa-

tions of motion are second order in the derivatives of the metric. A general Lovelock

action is a sum of Lovelock invariants that contain higher powers of contractions of the

Riemann tensor. Simple examples of Lovelock gravity are Einstein gravity in three or four
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dimensions, and Gauss-Bonnet gravity in five or six dimensions.2 Pure Lovelock gravity

in D-dimensions is the theory that contains only a single Lovelock invariant labeled by an

integer m. Let M be a D-dimensional spacetime. The action is

Ibulk
(m) =

1

16πGN

∫
M

√
−g c(m)L(m) (2.1)

where the Lovelock invariant

L(m) =
1

2m
δa1b1...ambmc1d1...cmdm

Rc1d1a1b1
· · ·Rcmdmambm

(2.2)

such that L(0) = 1.3 The generalized Kronecker delta (gKd) is defined as

δ
a1...ap
b1...bp

≡ εa1...apεb1...bp = p!δa1[b1
· · · δapbp] (2.3)

where εa1...ap is the Levi-Civita symbol. The parameter c(m) has length dimension 2(m−1)

to compensate for the additional Riemann tensors in the Lagrangian. From here on out,

we will set c(m)/GN = 1 which in the case of Einstein gravity coincides with the convention

GN = 1.

The Lagrangian (2.2) leads to non-trivial dynamics only in D > 2m + 1 dimensions.

In the critical dimension D = 2m+ 1, the Lagrangian is a total derivative [11, 12] and for

D < 2m+ 1 it is identically zero. In this paper, we will be working in dimensions strictly

greater than the critical dimension D = 2m+ 1.

Suppose now that M has a timelike boundary Γ. The variation of the pure Lovelock

action is given by (see Appendix A)

δIbulk
(m) =

1

16π

∫
M

√
−g Eab(m)δgab +

1

16π

∫
Γ

√
−hΘ(m) (2.4)

where the equation of motion tensor

Eab(m) = −1

2

1

2m
δaa1b1...ambmbc1d1...cmdm

Rc1d1a1b1
· · ·Rcmdmambm

(2.5)

and the boundary term

Θ(m) = −2P abcd(m)na∇
cδgdb . (2.6)

Here na is the spacelike unit normal of Γ and δgab = gacδgcb = (g−1δg)ab . The tensor P abcd(m)

is the derivative of the Lagrangian with respect to the Riemann tensor

P abcd(m) ≡
∂L(m)

∂Rcdab
=
m

2

1

2m−1
δ
aba1b1...am−1bm−1

cdc1d1...cm−1dm−1
Rc1d1a1b1

· · ·Rcm−1dm−1

am−1bm−1
. (2.7)

It is divergence-free in all of its indices ∇aP abcd(m) = 0, which is the reason why the equations

of motion are of second order in the metric.

2The Lagrangian of Lovelock gravity is usually defined as
∑bD/2c

m=0 c(m)R(m) where bD/2c is the floor

function. For D = 4 the sum also contains R(2), but it is a total derivative and does not contribute to the

equations of motion. Hence in D = 4 one obtains general relativity. Similarly in D = 6, R(3) is a total

derivative and the equations of motion are that of Gauss-Bonnet gravity.
3The indices a, b = 0, 1, . . . , D − 1 label the D spacetime coordinates.
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2.1 Hamiltonian decomposition

The ADM mass of pure Lovelock gravity can be obtained by the same method as in

Einstein gravity [3]. However, there are subtleties that did not exist in Einstein gravity.

These subtleties are absent in asymptotically AdS spacetimes which was the case studied

in [17]. In that case, it was found that the mass in Lovelock gravity is actually proportional

to the Einstein one [17]. We will first focus on asymptotically flat spacetimes not studied

in [17], and reconsider the simpler asymptotically AdS spacetimes in section 5.

Let us now formulate the theory in the Hamiltonian formalism. To do this, we foliate

the spacetime with spacelike constant-t slices Σt that have a timelike unit normal ua.

We are solely interested in static spacetimes so we assume that the shift vector vanishes

everywhere. As a result, the metric has the ADM decomposition

ds2 = −N2dt2 + γαβdx
αdxβ (2.8)

where N is the lapse and γαβ is the spatial metric. The canonical coordinate is taken to

be the spatial metric, whose velocity γ̇ab = £uγab is proportional to the extrinsic curvature

of the spacelike slice Σ0 ≡ Σ.

The Hamiltonian formulation of Lovelock gravity was laid out first time in [26] where

no timelike boundary was assumed. In the ADM decomposition (2.8) of the metric, the

bulk action (2.1) can be written as [26]

Ibulk
(m) =

1

16π

∫
dt

∫
Σt

√
γ
[
2πab(m)γ̇ab −NH(m)

]
(2.9)

where we assumed that there is no timelike boundary. Here πab(m) is the canonical momentum

and

H(m) = −2Eab(m)uau
b = − 1

2m
δ̄a1b1...ambmc1d1...cmdm

Rc1d1a1b1
· · ·Rcmdmambm

. (2.10)

where the extra minus sign is due to the contribution of the signature in δ̄ (1.5). Here

the spacetime Riemann tensors depend on the extrinsic curvature of the spacelike slice

Σ through the Gauss-Codazzi equation. The canonical momentum πab(m) is a complicated

polynomial expression in the extrinsic curvature of Σ [26]. This means that one cannot

invert the relation to obtain a unique expression for the extrinsic curvature (velocity) in

terms of πab(m). This is not an issue for deriving an ADM mass, but is a problem for the

Hamiltonian formulation as the Hamiltonian is not single valued in the momentum.

From (2.9) the bulk Hamiltonian can be identified to be

Hbulk
(m) =

1

16π

∫
Σ

√
γ NH(m). (2.11)

2.2 Hamilton’s equations and the ADM mass

We now have the necessary ingredients to derive the ADM mass of pure Lovelock gravity

along the lines of [3] where it is defined as the on-shell value of the Hamiltonian.4 However,

4See [31–34] for related work on conserved charges of higher curvature theories of gravity that extend

the results of [35] derived in Einstein gravity.
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(2.11) is not the correct Hamiltonian, and has to be modified, as it does not lead to the

correct Hamilton’s equations which are equivalent to the equations of motion. Let us see

how the Hamilton’s equations are violated by calculating the variation δHbulk
(m) with respect

to the canonical coordinate γab. To calculate the variation, we expand (2.10) using the

Gauss-Codazzi equation as

H(m) = −L̄(m) + extrinsic curvatures of Σ, (2.12)

where L̄(m) is the Lagrangian (2.2) constructed out of the spatial metric γab. We focus

on static spacetimes with a timelike isometry so the terms proportional to the extrinsic

curvature vanish.5 Hence we only keep the first term in (2.12) and similarly to the spacetime

variation of L(m) (2.4), we get

δHbulk
(m) = − 1

16π

∫
Σ

√
γ NAab(m)δγab +

1

16π

∫
∞

√
σ 2P̄ abcd(m)naD

cδγdb (2.13)

where the form of Aab(m) is not relevant. The bar indicates that the gKd in P̄ abcd(m) is the

spatial one δ̄. We also assumed asymptotic flatness N = 1 at infinity. The boundary term

is interpreted as an integral over a cut-off surface with the cut-off taken to infinity. Its

vanishing depends on the asymptotic fall-off conditions of the metric. For the asymptot-

ically flat fall-off conditions specified below, it is non-vanishing and cannot be neglected.

The variation (2.13) has almost the correct form of a Hamilton’s equation

−
δHbulk

(m)

δγab
= Aab(m) + a boundary term, (2.14)

but the additional boundary term spoils it. We can define a new Hamiltonian H(m) that

obeys the correct Hamilton’s equations by subtracting the boundary term as

δH(m) = δHbulk
(m) −

1

16π

∫
∞

√
σ 2P̄ abcd(m)naD

cδγdb . (2.15)

The equation cannot be integrated for H(m) in general as we see below. Regardless, defining

the perturbative ADM mass δMADM
(m) as the on-shell value of this Hamiltonian, we get by

the diffeomorphism constraint Hbulk
(m) = 0 that

δMADM
(m) = − 1

16π

∫
∞

√
σ 2P̄ abcd(m)naD

cδγ̃db (2.16)

where we have expanded the spatial metric as γαβ = δαβ + γ̃αβ (the tilde here does not

refer to a boundary projection). Equation (2.16) is not integrable in general, with the

non-integrable piece proportional to the variation of P̄ abcd(m):

δMADM
(m) = − 1

16π
δ

∫
∞

√
σ 2P̄ abcd(m)naD

cγ̃db −
1

16π

∫
∞

√
σ 2δ

(
P̄ abcd(m)

)
naD

cγ̃db . (2.17)

5The analysis goes through also for stationary spacetimes that have a timelike isometry at infinity. In

that case, all the additional boundary terms (ones that do not come from L̄(m)) are multiplied by at least

one factor of extrinsic curvature which vanishes at infinity. Hence the only boundary term that survives

comes from L̄(m) as in (2.13).
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For Einstein gravity m = 1, the non-integrable piece vanishes since P̄ abcd(1) = (1/2)δ̄abcd and

the mass can be integrated:

MADM
(1) =

1

16π

∫
∞

√
σ na

(
Dbγ̃

b
a −Daγ̃

)
. (2.18)

This is the usual expression for the ADM mass in general relativity [3, 8].

Obtaining a non-perturbative expression for MADM
(m) in pure Lovelock gravity of order

m ≤ 2 cannot be done in general. However, in the presence of a cosmological constant,

P̄ abcd(m) is asymptotically a constant and (2.17) becomes integrable (see section 5). The

formula (2.16) is also integrable for asymptotically flat spacetimes that are spherically

symmetric, which is seen explicitly in section 4. Regardless of this issue, (2.16) is a formula

for the perturbation of the ADM mass and it is exactly the quantity that appears in the

black hole first law of pure Lovelock black holes.6

2.3 Asymptotic fall-off conditions

The mass (2.16) is finite given a generalization of asymptotic flatness to pure Lovelock

gravities. For these theories, the decay of the metric is required to be slower than in

Einstein gravity

γ̃ab = O
(
r−β

)
, β =

D − (2m+ 1)

m
, (2.19)

because of the decaying Riemann tensors in P̄ abcd(m). (Note that δγ̃ab has the same asymp-

totic behaviour as γ̃ab since δ only acts on the parameters of the metric.) Indeed given this

behaviour, the spacetime Riemann tensor goes as

Rabcd = O
(
r−(β+2)

)
(2.20)

so that P̄ abcd(m) ∼ r
−(β+2)(m−1). The exponent β has the non-trivial property that

− (β + 2)(m− 1) = (β + 1)− (D − 2) (2.21)

so that P̄ abcd(m) ∼ r(β+1)−(D−2). The first factor cancels the contribution coming from the

derivative of the metric Dcδγ̃db ∼ r−(β+1) in (2.16), while the second factor cancels the

contribution rD−2 coming from the integration measure.

3 Boundary terms and quasi-local energy

We saw how the bulk Hamiltonian Hbulk
(m) obtained form the bulk action Ibulk

(m) does not lead

to the correct Hamilton’s equations, because an additional boundary term arises. This

problem already appears in the Lagrangian formulation as the variational principle is not

well defined due to the boundary term in (2.4): the Dirichlet variation δIbulk
(m) = 0, with the

boundary metric kept constant, is not equivalent with the equations of motion Eab(m) = 0.

This problem is fixed by adding to the action a generalized Gibbons-Hawking surface

term Isrf
(m) that cancels the boundary terms arising from the variation. The existence of such

6By demanding a first law, a formula for black hole entropy in Lovelock gravity was derived in [36].
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surface term lies in the fact that the bulk action Ibulk
(m) is equal to the Euler characteristic

in the critical dimension D = 2m + 1: it is a topological invariant of a manifold without

a boundary. If the manifold also has a boundary, an additional term, the Chern-Simons

form, has to be added to create a topological invariant. The Chern-Simons form is then

the generalized Gibbons-Hawking term Isrf
(m). This is because a topological invariant is

invariant under metric perturbations that keep the boundary metric fixed. Thus any oc-

curring boundary terms have cancelled. The cancellation is independent of the dimension,

providing us with the Gibbons-Hawking term also in higher dimensions D > 2m+ 1 [10].

3.1 Gibbons-Hawking surface term in the metric formulation

The first construction of the Gibbons-Hawking term in Lovelock gravity was done by My-

ers [25] in the vielbein formulation, where it is given by the Chern-Simons differential

form. Here we will stay in the metric formulation, in which a particularly straightforward

derivation of the Gibbons-Hawking term was given in [27], which we now review.

First it is shown that the boundary term (2.6) can be written as7

Θ(m) = 2Aµν(m)δK
ν
µ +Bµ

ν(m)δh
ν
µ (3.1)

where hµν is the induced metric of the timelike boundary Γ and Kµν = (1/2)£nhµν is the

extrinsic curvature of Γ.8 Here

Aµν(m) = −2P aµbν(m)nan
b (3.2)

and the expression for Bµ
ν(m) can be found in [27]. There is also a total derivative term

that we do not write explicitly.

Including the volume element, (3.1) can be manipulated to the final form [27]

√
−hΘ(m) = −δ

(√
−hB(m)

)
+ τµν(m)δh

µν . (3.3)

Again the total derivative term has been neglected as it can be integrated to the future

and past boundaries.9 The quantities in (3.3) are [27, 29, 38, 39]

B(m) = 2m

∫ 1

0
du δµµ1ν1...µm−1νm−1

νρ1σ1...ρm−1σm−1
Kν
µRρ1σ1µ1ν1 · · ·R

ρm−1σm−1
µm−1νm−1

(3.4)

and

τµν(m) = m

∫ 1

0
du δµρµ1ν1...µm−1νm−1

νσρ1σ1...ρm−1σm−1
Kσ
ρRρ1σ1µ1ν1 · · ·R

ρm−1σm−1
µm−1νm−1

, (3.5)

with

Rρσµν =
1

2
R̃ρσµν − u2Kρ

[µK
σ
ν]. (3.6)

7We have a different overall sign in (3.1), (3.3) and (3.4) compared to [27]. This choice is consistent with

standard Einstein gravity formulas, namely, our conventions are such that (3.4) and (3.9) reduce to them

for m = 1.
8The Greek indices µ, ν, . . . = 0, 1, . . . , D − 1 label the coordinates of the boundary Γ.
9This total derivative term has recently been incorporated in the covariant phase space formalism [37]

where it appears as the exterior derivative dC.
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R̃ρσµν is the boundary Riemann tensor (constructed from the boundary metric). The Gibbons-

Hawking surface term in pure Lovelock gravity is defined to be

Isrf
(m) =

1

16π

∫
∂M

√
−hB(m). (3.7)

The variation of the total action I(m) = Ibulk
(m) +Isrf

(m), where the bulk action is given in (2.1),

becomes

δI(m) =
1

16π

∫
M

√
−g Eab(m)δgab +

1

16π

∫
Γ

√
−h τµν(m)δh

ν
µ . (3.8)

Keeping the boundary metric fixed δhµν = 0, the equations of motion are thus obtained

from the variation δI(m) = 0 of the total action. The Gibbons-Hawking surface term has

cancelled the first term of (3.3). From (3.8) we also see that τµν(m) is proportional to the

boundary stress-energy tensor

2√
−h

δI(m)

δhµν

∣∣∣∣
on-shell

=
1

8π
τµν(m). (3.9)

3.2 Hamiltonian decomposition with a timelike boundary

Above in the derivation of the ADM mass, we considered the Hamiltonian decomposition

when there is no timelike boundary present. This time we will include the timelike boundary

Γ in the analysis, and see how the Hamiltonian decomposition is modified by the inclusion

of the Gibbons-Hawking term in the action. When there is no boundary, the bulk action

has the form (2.12). We propose that the decomposition of the total action should then

have the form

I(m) =
1

16π

∫
dt

∫
Σ

√
γ
[
2πab(m)γ̇ab −NH(m)

]
+

1

16π

∫
B

√
σN

[
B̂(m) +K(m)

]
(3.10)

where we have added two additional boundary terms. K(m) contains terms proportional to

the extrinsic curvature of the Cauchy slice Σ and thus vanishes when evaluated on static

spacetimes. The relevant boundary piece in static spacetimes is B̂(m) which is the general-

ized Gibbons-Hawking surface term (3.4) of the codimension-two surface B. Explicitly

B̂(m) = 2m

∫ 1

0
du δ

ii1j1...im−1jm−1

jk1l1...km−1lm−1
K̂j
i R̂

k1l1
i1j1
· · · R̂km−1lm−1

im−1jm−1
(3.11)

where

R̂klij =
1

2
R̂klij − u2K̂k

[iK̂
l
j] . (3.12)

Here R̂klij is the Riemann tensor and K̂ij is the extrinsic curvature of B.10

For the Lagrangian and Hamiltonian formulations to be consistent, the Hamilton’s

equations should not contain any boundary terms. We can check this for (3.10) by calcu-

lating the Hamiltonian (dropping the K(m) which is not relevant for static spacetimes):

H(m) =
1

16π

∫
Σ

√
γ NH(m) −

1

16π

∫
B

√
σNB̂(m) (3.13)

10The latin indices i, j = 1, 2, . . . , D − 2 label the D − 2 coordinates of B.
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The first term is the bulk Hamiltonian (2.11) encountered before, but now there is an

additional boundary term that cancels all the resulting boundary contributions of the

variation in static spacetimes. This follows from the fact that the static piece ofH(m) (2.12)

is the spatial Lagrangian L̄(m) (constructed out of the spatial metric) whose variation is

cancelled by B̂(m). The boundary term B̂(m) is the unique term that ensures consistency

between the two formulations for static spaces.

3.3 Quasi-local energy

Now one could define a quasi-local energy as the on-shell value of the Hamiltonian which

would be the integral
∫
B
√
σNB̂(m). However, this integral does not have a finite limit

when the surface is taken to spatial infinity. Thus the Hamiltonian has to be regulated

in some way, while at the same time preserving the form of the Hamilton’s equations.

This can be done using the so called background subtraction [7, 8]. The idea is to take a

reference spacetime, which in the case of asymptotically flat spacetime is simply Minkowski

space, and calculate the corresponding value of the Hamiltonian H|(0). Then one defines a

physical Hamiltonian Hphys
(m) with the reference value subtracted:11

Hphys
(m) = Hbulk

(m) −
1

16π

∫
B

√
σN

(
B̂(m) − B̂(m)|(0)

)
. (3.14)

Here B̂(m)|(0) is the boundary term of the surface B in flat spacetime and we used the

diffeomorphism constraint Hbulk
(m) |(0)= 0. We also assumed that the lapse and the induced

metric of the surface is the same in both spaces.

The background subtraction requires that the surface B can be embedded in flat space

in the first place, which is not possible in general. However, when the surface is sufficiently

large in an asymptotically flat spacetime, its intrinsic geometry is close to a sphere and

an embedding to flat space becomes possible. Regardless, the subtraction regularization

satisfies δHphys
(m) = δH(m) so the Hamilton’s equations are intact.

Brown-York quasi-local energy is finally defined as the on-shell value of this physical

Hamiltonian [7]:

M
(m)
B = − 1

16π

∫
B
N
√
σ
(
B̂(m) − B̂(m)|(0)

)
. (3.15)

This is a generalization of quasi-local energy to pure Lovelock gravity and contains the

familiar Einstein gravity formula as a special case m = 1.

In Einstein gravity there is a second way to arrive at this formula, which utilizes the

boundary stress-energy tensor [7]. This turns out to be true in pure Lovelock gravities as

well and it works as follows.12 Given a boundary Killing vector ξµ, the vector τµν(m)ξν has

a vanishing divergence where the boundary stress-energy tensor τµν(m) is given in (3.9). The

11In quantum theory such differences are natural. The physical Hamiltonian corresponds to the physical

action Iphys(m) = I(m)−I(m)|(0) and in the canonical quantization, it is only this difference that has observable

consequences since absolute values of the phase are not observable.
12Brown-York boundary stress-energy tensor is related to the covariant Hamiltonian in an arbitrary

diffeomorphism invariant theory of gravity [37, 40].
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corresponding conserved quantity on the boundary is an integral over the codimension-2

surface B:

Q[ξ] =
1

8π

∫
B
N
√
σ uµτµν(m)ξ

ν . (3.16)

In our case, the boundary has a timelike isometry ξµ = uµ (static geometry) and the

corresponding charge Q[u] is interpreted as energy. The energy density is given by13

ε ≡ uµuντµν(m) = −1

2
B̂(m). (3.17)

where we used the fact that the spacetime is static so that Kij = K̂ij . Again Q[u] diverges

in the large surface limit and has to be regulated. The background subtraction prescription

yields a quasi-local energy

M
(m)
B =

1

8π

∫
B
N
√
σ (ε− ε|(0)) (3.18)

which agrees with (3.15). The background subtraction is equivalent to defining a renor-

malized boundary stress-energy tensor τ ren
µν(m) = τµν(m) − τµν(m)|(0). There are other ways

of regularizing the charges like the counterterm method [28].

A problem with the large surface limit

The formula (3.15) for quasi-local energy looks fine at first, but there is a problem: the

quasi-local energy vanishes in the limit B → ∞ for any solution satisfying the asymptoti-

cally flat boundary conditions (2.19):

− 1

16π

∫
∞

√
σ
(
B̂(m) − B̂(m)|(0)

)
= 0, m ≥ 2. (3.19)

To see this, we expand the extrinsic curvature tensor as K̂ij = K̂ij |(0) + δK̂ij where the

perturbation is due to γ̃ab in the asymptotic expansion of the metric γαβ = δαβ + γ̃αβ. The

variation of B̂(m) under γ̃αβ can be obtained from the spatial version of (3.3):

−
√
σ 2P̄ abcd(m)naD

cδγdb = −δ
(√

σ B̂(m)

)
+ τ̄ij(m)δσ

ij . (3.20)

The contribution of the perturbation γ̃αβ to σij vanishes asymptotically so we can set

δσij = 0. We get the asymptotic expansion

B̂(m) = B̂(m)|(0) + 2P̄ abcd(m)

∣∣
(0)
naD

cγ̃db (3.21)

where P̄ abcd(m)

∣∣
(0)

is evaluated on the flat background. Because the Riemann tensor of flat

spacetime vanishes, the large surface limit of (3.15) vanishes:

M (m)
∞ = − 1

16π

∫
∞

√
σ 2P̄ abcd(m)

∣∣
(0)
naD

cγ̃db = 0. (3.22)

Einstein gravity m = 1 is the only theory that avoids this problem, because in that case

P̄ abcd(0) is independent of the spatial metric (and the Riemann tensor). In asymptotically

AdS spaces this problem is also avoided, which is the subject of section 5.

13Note the extra minus sign due to the signature in the definition of the gKd δ̂
a1...ap

b1...bp
= −uau

bδ̃
aa1...ap

bb1...bp
.
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Perturbative quasi-local energy and ADM mass

Regardless of the problem, (3.15) defines a weakened form of quasi-local energy: the per-

turbation of the quasi-local energy δM
(m)
B with respect to the parameters of the metric,

approaches the perturbation of the ADM mass δMADM
(m) . Taking the variation of (3.15),

and using (3.20) applied to this variation (while keeping σij), gives

δM
(m)
B = − 1

16π

∫
B

√
σ 2P̄ abcd(m)naD

cδγ̃db (3.23)

where we used δγab = δγ̃ab. Clearly taking B → ∞ gives the non-integrable ADM mass

δMADM
(m) (2.16). This is the pure Lovelock gravity generalization of the Einstein gravity

statement saying that Brown-York quasi-local energy approaches ADM mass in the large

surface limit.14

We can further simplify (3.23) by writing it in terms of intrinsic quantities of B and

extrinsic curvature. Using (3.20) and the spatial version of (3.1), we get (while keeping σij
fixed)

2P̄ abcd(m)naD
cδγdb = −4mÊij(m−1)δK̂

j
i (3.24)

where the equation of motion tensor is projected onto B:

Êij(m) = −1

2

1

2m
δii1j1...imjmjk1l1...kmlm

Rk1l1i1j1
· · ·Rkmlmimjm

. (3.25)

Substituting to (3.23) gives

δM
(m)
B =

m

4π

∫
B

√
σ Êij(m−1)δK̂

j
i . (3.26)

By the limit of (3.23), this formula provides a simply way to calculate the ADM mass of

asymptotically flat metrics by taking the limit B → ∞:

δMADM
(m) = lim

B→∞

m

4π

∫
B

√
σ Êij(m−1)δK̂

j
i . (3.27)

We demonstrate this explicitly in section 4.

3.4 Chakraborty-Dadhich quasi-local energy

In [30], a definition of quasi-local energy in pure Lovelock gravity was proposed. For m = 1

it correctly reduces to the Einstein version [8], however for m ≥ 2, the regularization does

not preserve the form of the Hamilton’s equations. Regardless, it defines a type of energy

in pure Lovelock gravity whose limit is proportional to the ADM mass for asymptotically

flat and spherically symmetric spacetimes. For generic metrics, the limit differs from the

ADM mass (2.16) as we will now show.15

14Note that the B → ∞ of (3.23) does not vanish in contrast to (3.22). The reason is that P̄ ab
cd(m) in

(3.23) is not evaluated on the flat background, but instead interpreted as a limit, like in the ADM mass

(2.16).
15A schematic proof of the limit for spherically symmetric metrics was presented in [30]. We will prove

this explicitly and find the exact prefactor in section 4.
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The regularization presented in [30] involves replacing all the extrinsic curvatures in

the boundary term B̂(m) (3.11) with the vacuum subtracted ones ∆K̂ij = K̂ij − K̂ij |(0).

Clearly it is a non-linear procedure, which is the reason why the form of the Hamilton’s

equations is not preserved. Explicitly the definition is16

MCD
B = − 1

16π

∫
B

√
σ B̂(m)|K̂ij→∆K̂ij

. (3.28)

To calculate the limit when the surface is large, we need to expand the product in B̂(m)

(3.11). First we use the Gauss-Codazzi equation to write the intrinsic Riemann tensors R̂ijkl
in terms of the spacetime tensors Rijkl and extrinsic curvatures of B (the extrinsic curvatures

of Σ are zero for static spacetimes). Expanding the product and integrating term by term

gives [29]

B̂(m) =
m!

2m
δ
ii1j1...im−1jm−1

jk1l1...km−1lm−1
∆K̂j

i

m−1∑
s=0

C(m)
s Rk1l1i1j1

· · ·Rkslsisjs
∆K̂

ks+1

is+1
∆K̂

ls+1

js+1
· · ·∆K̂km−1

im−1
∆K̂

lm−1

jm−1

(3.29)

where

C(m)
s =

4m−s

s!(2m− 2s− 1)!!
. (3.30)

The s = 0 term in the sum of (3.29) has no Riemann tensors and the s = m− 1 term has

no extrinsic curvatures in the product.

A product ∆K̂ij∆K̂kl ∼ r−2(β+1) decays faster than a single Riemann tensor Rklij ∼
r−(β+2).17 Therefore in the limit B → ∞, the leading contribution to (3.29) comes from

the term s = m− 1 with a single factor of the extrinsic curvature.18 By noting that

C
(m)
m−1 =

4

(m− 1)!
, (3.31)

the leading asymptotic contribution to (3.29) is given by

4m

2m
δ
ii1j1...im−1jm−1

jk1l1...km−1lm−1
Rk1l1i1j1

· · ·Rkm−1lm−1

im−1jm−1
∆K̂j

i (3.32)

= −4mÊij(m−1)∆K̂
j
i . (3.33)

Thus the large surface limit of (3.28) is

MCD
∞ = lim

B→∞

m

4π

∫
B

√
σ Êij(m−1)

(
K̂j
i − K̂

j
i |(0)

)
. (3.34)

This is finite for the asymptotic fall-off (2.19) and agrees with the integrable part of (3.27),

but does not include the non-integrable part. Therefore it does not agree with the ADM

mass exactly. However for spherically symmetric metrics, the limit is proportional to the

ADM mass as we see in the next section.
16CD stands for Chakraborty-Dadhich.
17See equations (4.2) and (4.9).
18Note that the non-regularized product K̂ijK̂kl decays at the same rate as a Riemann tensor. Hence it

is crucial that all the extrinsic curvatures are replaced by ∆K̂ij .
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4 ADM masses of spherically symmetric spacetimes

In this section, we explicitly calculate the ADM masses of static spherically symmetric

solutions of pure Lovelock gravity that are asymptotically flat. We will be using the simple

formula (3.27) defined as a limit. All we need to do is to calculate the necessary quantities

for a constant-radius surface and then take the radius to infinity. The results agree with the

previous calculations in the literature that used different methods specialized to spherically

symmetric spaces. For general asymptotically flat metrics we were only able to define the

perturbative form of the ADM mass (2.16), or equivalently (3.27), but we will see that

in the spherically symmetric case, the definition can be integrated to yield the full non-

perturbative mass.

4.1 General static spherically symmetric spacetime

A static spherically symmetric metric can be written as

ds2 = −[1−G(r)]dt2 +
1

1− F (r)
dr2 + r2dΩ2

D−2 (4.1)

where G(r) and F (r) are some functions that go to zero as r → ∞ (asymptotic flatness).

To calculate the ADM mass, we use the formula (3.27). We choose B to be a constant-r

surface and calculate the limit r → ∞. The angular components (components of dΩ2
D−2)

of the Riemann tensor and of the extrinsic curvature are

Rklij =
F (r)

r2
δklij , K̂i

j =
1

r

√
1− F (r)δij . (4.2)

Using F (r)→ 0 as r →∞, we get19

Êij(m−1)δK̂
i
j ∼

1

4

(D − 2)!

(D − 2m− 1)!

F (r)m−1

r2m−1
δF (r), r →∞. (4.3)

The angular integral contributes ΩD−2r
D−2 so that (3.27) becomes

δMADM
(m) =

m

16π
ΩD−2 a(m) lim

r→∞

[
rmβF (r)m−1δF (r)

]
, a(m) =

(D − 2)!

(D − 2m− 1)!
. (4.4)

This can be further integrated to give

MADM
(m) =

1

16π
ΩD−2 a(m) lim

r→∞

[
rmβF (r)m

]
. (4.5)

From this expression it is clear that the mass is finite if F (r) ∼ r−β as r → ∞, which is

the behaviour discussed before (2.19).

19The gKd contractions are calculated using (A.6) with n = D − 2.
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Spherically symmetric black hole solution

A static asymptotically flat black hole solutions is given by [14, 19–22]

G(r) = F (r) = αr−β. (4.6)

Clearly the solution is asymptotically flat in the pure Lovelock sense (2.19) and therefore

has a finite mass. Plugging into the formula (4.5) gives

MADM
(m) =

1

16π
ΩD−2 a(m)α

m. (4.7)

The proportionality to αm agrees with literature [14]. For m = 1 we get the familiar mass

of a Schwarzschild black hole

MADM
(1) =

D − 2

16π
ΩD−2 α. (4.8)

Chakraborty-Dadhich quasi-local energy

We can also compute the limiting behaviour of the Chakraborty-Dadhich quasi-local energy

MCD
B (3.28) for a spherically symmetric metric as B → ∞. The large surface limit is given

by the formula (3.34). Using (4.2) we have

K̂i
j − K̂i

j

∣∣
(0)

=
1

r

(√
1− F (r)− 1

)
δij (4.9)

so that

Êij(m−1)

(
K̂j
i − K̂

j
i

∣∣
(0)

)
∼ 1

4

(D − 2)!

(D − 2m− 1)!

F (r)m

r2m−1
, r →∞. (4.10)

The result is

MCD
∞ =

m

16π
ΩD−2 a(m) lim

r→∞

[
rmβF (r)m

]
. (4.11)

This differs from the ADM mass (4.5) by a factor of m.

5 Energies in asymptotically AdS spaces

Above we focused on asymptotically flat spaces and found that the ADM mass is not

integrable in pure Lovelock gravities with m ≥ 2. In addition, only a perturbative definition

of quasi-local energy is consistent with the asymptotically flat fall-off (2.19) of the metric.

In asymptotically AdS geometries these issues disappear, because the asymptotic behaviour

of solutions coincides with that of solutions of Einstein gravity.

Pure Lovelock gravity action in the presence of a cosmological constant is

Ibulk
(m) =

1

16π

∫
M

√
−g

(
L(m) − 2Λ(m)

)
(5.1)

where we have again set c(m)/GN = 1. Requiring an AdS vacuum fixes Λ(m). Calculating

the equations of motion from this action and substituting the AdS Riemann tensor

Rcdab
∣∣
AdS

= −(1/`2)δcdab (5.2)

gives

Λ(m) =
1

2

(D − 1)!

(D − 2m− 1)!

(
− 1

`2

)m
(5.3)

where we used (A.5) to calculate the contractions.
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5.1 ADM mass in AdS space

The Hamiltonian decomposition of the action is exactly the same as before (with the

addition of the constant Λ(m)). When calculating δHbulk
(m) , the only relevant difference

is that the lapse is not unity at infinity. This means that when transforming the total

derivative term to a boundary term, there will be additional contributions proportional to

DcN and DaD
cN . However their contributions will be subleading given the asymptotic

fall-off conditions of the metric. Neglecting the vanishing extra contributions, the result is

δHbulk
(m) = − 1

16π

∫
Σ

√
γ NAab(m)δγ

ab +
1

16π

∫
∞

√
σN2P̄ abcd(m)naD

cδγdb (5.4)

where the form of Aab(m) is not relevant. At spatial infinity, the spatial metric goes as

γαβ = γAdS
αβ + γ̃αβ so all the Riemann tensors can be replaced by the AdS ones (5.2). Hence

the tensor P̄ abcd(m) is a constant:20

P̄ abcd(m)

∣∣
AdS

= b(m)δ̄
ab
cd , b(m) =

m

2

(D − 3)!

(D − 2m− 1)!

(
− 1

`2

)m−1

. (5.5)

The ADM mass (2.16) gives

δMADM
(m) = −

b(m)

8π

∫
∞
N
√
σ δ̄abcd naD

cδγ̃db (5.6)

which is integrable:

MADM
(m) =

b(m)

8π

∫
∞
N
√
σ na

(
Dbγ̃

b
a −Daγ̃

)
. (5.7)

This has the same form as the Einstein ADM mass (2.18) in flat space for all m (but with

N 6= 1). Therefore it is finite given the asymptotic behaviour (setting m = 1 in β)

γ̃ab = O
(

1

rD−3

)
. (5.8)

This behaviour is identical to solutions of Einstein gravity, which is expected, because

in AdS space, the linearized equations of motion of pure Lovelock gravity are equal to

the linearized Einstein’s equations [18]. Thus all the solutions have the same asymptotic

behaviour regardless of the value of m.21

5.2 Quasi-local energy in AdS space

For asymptotically flat metrics, the non-perturbative quasi-local energy (3.15) defined using

the background subtraction method is problematic as discussed above: its limit for large

surfaces is zero. The reason behind this result is that the curvature of the flat background

20The gKd contractions are calculated using (A.7) with n = D − 1.
21Note that one can construct Lovelock theories of gravity that are not asymptotically Einstein in the

presence of a cosmological constant. These theories have a degenerate AdS vacuum and the simplest

example (with maximal degeneracy) is the Lovelock unique vacuum theory [13]. See [41–43] for a definition

of (conformal) mass in these theories.
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vanishes. On the other hand for an AdS background, the Riemann tensor does not vanish

meaning that the problem is avoided and (3.15) has a non-zero large surface limit.

Quasi-local energy (3.15) of an asymptotically AdS metric is

M
(m)
B = − 1

16π

∫
B
N
√
σ
(
B̂(m) − B̂(m)|AdS

)
. (5.9)

Note that the background subtraction is now respect to the AdS background.

The asymptotic correction to B̂(m)|AdS can be calculated as before when we analyzed

quasi-local energy in flat space. Using (3.20) and (3.24) the result is

δB̂(m) = −4mÊij(m−1)

∣∣
AdS

δK̂j
i (5.10)

where δ is the variation under the asymptotic perturbation γ̃ab around AdS space. We get

M (m)
∞ =

1

4π

∫
∞
N
√
σmÊij(m−1)

∣∣
AdS

(
K̂j
i − K̂

j
i

∣∣
AdS

)
(5.11)

where the spatially projected equation of motion tensor is given in (3.25). Substituting the

AdS Riemann tensor (5.2), it becomes explicitly22

mÊij(m−1)

∣∣
AdS

= −b(m)δ
i
j (5.12)

with b(m) defined in (5.5). We get

M (m)
∞ = −

b(m)

4π

∫
∞
N
√
σ
(
K̂ − K̂|AdS

)
(5.13)

where K̂ is the trace of the extrinsic curvature. This can be shown to match with the ADM

mass (5.7) as in [8]. Hence quasi-local energy defined using the background subtraction

method has the correct ADM mass limit in asymptotically AdS spacetimes.

Finally, we mention that the Chakraborty-Dadhich quasi-local energy (3.28) also has

the correct ADM mass limit (5.13) in asymptotically AdS spaces. This follows by plugging

(5.12) into the large surface limit (3.34).

6 Summary and discussion

In this paper, we studied how the Einstein gravity derivations of ADM mass [3] and Brown-

York quasi-local energy [7] generalize to pure Lovelock gravity. We focused on asymptoti-

cally flat geometries and found that the ADM mass is not integrable in general. We regu-

larized the quasi-local energy using the background subtraction prescription and found that

only the perturbative definition is well defined: the limit of the non-perturbative energy

for large surfaces vanishes. Then we proved that the perturbative version has the correct

ADM mass limit for large surfaces. In asymptotically AdS spaces, there is no problem

and the (non-perturbative) quasi-local energy is proportional to the standard Brown-York

energy of Einstein gravity for all values of m.

22The gKd contractions are calculated using (A.6) with n = D − 2.
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The vanishing of the large surface limit of the non-perturbative quasi-local energy is

related to the non-integrability of the ADM mass: only perturbative energies appear to be

well defined in pure Lovelock gravities. This is good enough from the perspective of the

black hole first law and the ADM mass used in this paper should appear in the first law of

pure Lovelock black holes [36].

The problem might also be related to the background subtraction prescription itself

which is unsatisfactory for other reasons. First, it requires an ad hoc auxiliary spacetime

whose geometry might depend on the situation at hand. Second, the embedding of the

surface into the auxiliary spacetime is not possible in general. A more viable method

of renormalization for asymptotically AdS spaces is provided by the counterterm method

[28] developed in Einstein gravity. Counterterms have been calculated and applied to

asymptotically AdS solutions of Lovelock gravity [29, 44, 45]. However, the application to

asymptotically flat spacetimes is less explored [46] especially in Lovelock gravity. It would

be interesting to apply the counterterm method to asymptotically flat geometries in pure

Lovelock gravity.
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A Generalized Kronecker delta (gKd) identities

In this Appendix, the Euclidean Latin indices i, j, k, l take values over a set of size n. The

generalized Kronecker delta (gKd) is defined as

δ
i1...ip
j1...jp

≡ εi1...ipεj1...jp = p!δi1[j1 · · · δ
ip
jp]. (A.1)

and ε12...p = 1. Contraction of a single pair of indices:

δ
i1...ipip+1

j1...jpjp+1
= (n− p)δi1...ipj1...jp

. (A.2)

Contraction of multiple pairs of indices:

δ
i1...ipip+1...iq
j1...jpip+1...iq

=
(n− p)!
(n− q)!

δ
i1...ip
j1...jp

. (A.3)

Contraction of a gKd of size p with another of size 2:

δ
i1...ipip+1ip+2

j1...jpjp+1jp+2
δ
jp+1jp+2

ip+1ip+2
= 2!δ

i1...ipip+1ip+2

j1...jpip+1ip+2
= 2(n− p)(n− p− 1)δ

i1...ip
j1...jp

. (A.4)

Applying (A.4) multiple times and using (A.3) with p = 1 and q = 2m+ 1 we get

δii1j1...imjmjk1l1...kmlm
δi1j1k1l1

· · · δimjmkmlm
=

2m(n− 1)!

(n− 2m− 1)!
δij . (A.5)
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Similarly with p = 1 and q = 2m− 1 we get

δii2j2...imjmjk2l2...kmlm
δi2j2k2l2

· · · δimjmkmlm
=

2m−1(n− 1)!

(n− 2m+ 1)!
δij . (A.6)

Finally with p = 2 and q = 2m we get

δiji2j2...imjmklk2l2...kmlm
δi2j2k2l2

· · · δimjmkmlm
=

2m−1(n− 2)!

(n− 2m)!
δijkl. (A.7)

B Variation of the pure Lovelock action

The pure Lovelock Lagrangian is given by

L(m) =
1

2m
δa1b1...ambmc1d1...cmdm

Rc1d1a1b1
· · ·Rcmdmambm

. (B.1)

Let us calculate its metric variation

δIbulk
(m) =

1

16π

∫
M

√
−g Eab(m)δgab +

1

16π

∫
∂M

√
−hΘ(m). (B.2)

We have

δ
(√
−gL(m)

)
=

1

2m
√
−g
(
−1

2
δab δ

a1b1...ambm
c1d1...cmdm

δgbaR
c1d1
a1b1

+mδa1b1...ambmc1d1...cmdm
δRc1d1a1b1

)
Rc2d2a2b2

· · ·Rcmdmambm
.

(B.3)

The first term comes from acting on
√
−g and the remaining terms result from acting on

the m Riemann tensors. Now apply the formula δRcdab = −2∇[a∇[cδg
d]
b] + R

e[c
ab δg

d]
e , where

δgba = gbcδgac. This gives

δ
(√
−gL(m)

)
= −
√
−g 1

2m

(
1

2
δab δ

a1b1...ambm
c1d1...cmdm

Rc1d1a1b1
δgba −mδ

a1b1...ambm
c1d1...cmdm

Rc1aa1b1δg
d1
a

)
Rc2d2a2b2

· · ·Rcmdmambm

− 2m

2m
√
−g δa1b1...ambmc1d1...cmdm

(
∇a1∇c1δg

d1
b1

)
Rc2d2a2b2

· · ·Rcmdmambm
(B.4)

where we have removed all the anti-symmetrizations based on the anti-symmetricity of the

generalized Kronecker delta. Focus on the first line of (B.4) for the time being. It can be

written as

−
√
−g δgba

1

2m

(
1

2
δab δ

a1b1...ambm
c1d1...cmdm

Rc1d1a1b1
−mδd1b δ

a1b1...ambm
c1d1...cmdm

Rc1aa1b1

)
Rc2d2a2b2

· · ·Rcmdmambm
. (B.5)

In terms of the tensor

P abcd(m) ≡
∂L(m)

∂Rcdab
=

m

2m
δaba2b2...ambmcdc2d2...cmdm

Rc2d2a2b2
· · ·Rcmdmambm

, (B.6)

(B.5) is

−
√
−g δgba

(
1

2
δabL(m) − P a1b1bc1(m)R

ac1
a1b1

)
. (B.7)
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Focus now on the second line of (B.4). It can be written as

−
√
−g 2P abcd(m)∇a∇

cδgdb = −∇a
(

2P abcd(m)∇
cδgdb

)
+ 2∇aP abcd(m)∇

cδgdb . (B.8)

The divergence of P abcd(m) vanishes by the Bianchi identity of the Riemann tensor:

∇aP abcd(m) =
m(m− 1)

2m
δaba2b2...ambmcdc2d2...cmdm

(
∇[a1R

c2d2
a2b2]

)
· · ·Rcmdmambm

= 0 (B.9)

which is the reason why the equations of motion of pure Lovelock gravity are second order.

Combining (B.7) and (B.8) gives

δ
(√
−gL(m)

)
=

1

16π

∫
M

√
−g δgba

(
P a1b1bc1(m)R

ac1
a1b1
− 1

2
δabL(m)

)
− 1

16π

∫
∂M

√
−h 2P abcd(m)na∇

cδgdb .

(B.10)

From this we can identify the equation of motion tensor

Eab(m) = Rab(m) −
1

2
δabL(m), (B.11)

where Rab(m) ≡ P
a1b1
bc1(m)R

ac1
a1b1

, and the boundary contribution

Θ(m) = −2P abcd(m)na∇
cδgdb . (B.12)

The equation of motion tensor can also be written in another form. From (B.5) it follows

that

Eab(m) = −1

2

1

2m

(
δab δ

a1b1...ambm
c1d1...cmdm

− 2mδad1δ
a1b1...ambm
c1b...cmdm

)
Rc1d1a1b1

· · ·Rcmdmambm
. (B.13)

Now consider the identity

δa1...anb1...bn
=

n∑
k=1

(−1)k+1δakb1 δ
a2...a1...an
b2...bk...bn

. (B.14)

When applied to (B.13) and using the symmetries of Rc1d1a1b1
· · ·Rcmdmambm

, we get

Eab(m) = −1

2

1

2m
δaa1b1...ambmbc1d1...cmdm

Rc1d1a1b1
· · ·Rcmdmambm

. (B.15)
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