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We investigate the temperature dependence of the shear viscosity to entropy density ratio η/s using a piecewise
linear parametrization. To determine the optimal values of the parameters and the associated uncertainties,
we perform a global Bayesian model-to-data comparison on Au + Au collisions at

√
sNN = 200 GeV and

Pb + Pb collisions at 2.76 TeV and 5.02 TeV, using a 2 + 1D hydrodynamical model with the Eskola-Kajantie-
Ruuskanen-Tuominen (EKRT) initial state. We provide three new parametrizations of the equation of state
(EoS) based on contemporary lattice results and hadron resonance gas, and use them and the widely used s95p
parametrization to explore the uncertainty in the analysis due to the choice of the equation of state. We find that
η/s is most constrained in the temperature range T ≈ 150–220 MeV, where, for all EoSs, 0.08 < η/s < 0.23
when taking into account the 90% credible intervals. In this temperature range the EoS parametrization has only
a small ≈10% effect on the favored η/s value, which is less than the ≈30% uncertainty of the analysis using
a single EoS parametrization. Our parametrization of (η/s)(T ) leads to a slightly larger minimum value of η/s
than the previously used parametrizations. When we constrain our parametrization to mimic the previously used
parametrizations, our favored value is reduced, and the difference becomes statistically insignificant.

DOI: 10.1103/PhysRevC.102.044911

I. INTRODUCTION

The main goal of the ultrarelativistic heavy-ion collisions
at the Large Hadron Collider (LHC) and the Relativistic
Heavy-Ion Collider (RHIC) is to understand the properties
of the strongly interacting matter produced in these colli-
sions. In recent years the main interest has been in extracting
the dissipative properties of this QCD matter from the ex-
perimental data (e.g., [1–5]), in particular its specific shear
viscosity: the ratio of shear viscosity to entropy density η/s
(for a review, see Refs. [6–9]). The field has matured to a
level where a global Bayesian analysis of the parameters can
provide statistically meaningful credibility ranges to the tem-
perature dependence of η/s [10–12]. These credibility ranges
agree with earlier results like those obtained using the Eskola-
Kajantie-Ruuskanen-Tuominen (EKRT) model [13].

However, with the exception of papers like Refs. [14–16],
the equation of state (EoS) is taken as given in the models used
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to extract the η/s ratio from the data. Recent fluid-dynamical
studies generally use an EoS based on contemporary lat-
tice QCD results, but during the last decade many studies
in the literature used the EoS parametrization s95p [17].
This parametrization is based on by now outdated lattice
data [18], and recent studies have reported an approximate
60% [16] or 30% increase [19] in the extracted value of η/s
when switching from s95p to a contemporary lattice-based
EoS. Furthermore, even if the errors of the contemporary
lattice QCD calculations overlap, there is still a small ten-
sion between the trace anomalies obtained using the highly
improved staggered quark (HISQ) [20,21] and stout [22,23]
discretization schemes. Consequently the EoSs differ, and if
the procedure to extract η/s from the data is as sensitive to the
details of the EoS as Refs. [16,19] claim, this tension may lead
to additional uncertainties in the η/s values extracted from the
heavy-ion collision data.

In the previously mentioned Bayesian analysis [10,11],
where the EoS is based on contemporary lattice data [20], the
temperature dependence of η/s was assumed to be monoton-
ically increasing above the QCD transition temperature Tc. In
a Bayesian analysis the slope parameter of such parametriza-
tion is always constrained to be non-negative, and limiting
the final slope parameter to zero would require extremely
strong constraints from the experimental data. Therefore, by
construction, the analysis leads to an η/s increasing with
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temperature above Tc, even if there is no physical reason to
exclude a scenario where η/s is constant in a broad temper-
ature range above Tc. A more flexible parametrization, which
does not impose such constraints, is thus needed to determine
the temperature dependence of η/s.

In this work we address both the sensitivity of the ex-
tracted η/s to the EoS used in the model calculation and the
temperature dependence of η/s in the vicinity of the QCD
transition temperature. We perform a Bayesian analysis of
the results of EKRT + hydrodynamics calculations [13,24],
and the data obtained in

√
sNN = 200 GeV Au + Au colli-

sions [25–27] and Pb + Pb collisions at 2.76 TeV [28–30]
and 5.02 TeV [30,31]. To study the temperature dependence
of η/s we use a piecewise linear parametrization in three
parts: linearly decreasing and increasing regions at low and
high temperatures are connected by a constant-value plateau
of variable range. With this parametrization, data favoring a
strong temperature dependence will lead to large slopes and
a narrow plateau; conversely, an approximately constant η/s
can be obtained with small slope parameter values and a wide
plateau. To explore the sensitivity to the EoS, we use four
different parametrizations: the well-known s95p parametriza-
tion, and three new parametrizations based on contemporary
lattice QCD results. A comparison of the final probability
distributions of the parameters will tell whether the most prob-
able parameter values depend on the EoS used, and whether
that difference is significant when the overall uncertainty in
the fitting procedure is taken into account.

II. EQUATION OF STATE

In lattice QCD the calculation of the equation of state (EoS)
usually proceeds through the calculation of the trace anomaly,
�(T ) = ε(T ) − 3p(T ), where ε and p are energy density
and pressure, respectively. Thermodynamical variables are
subsequently derived from it using the so-called integral
method [32]. Therefore we base our EoS parametrizations on
the trace anomaly and obtain pressure from the integral

p(T )

T 4
− p(Tlow)

T 4
low

=
∫ T

Tlow

dT ′

T ′5 �(T ′). (1)

Once the pressure is known, the energy and entropy den-
sities can be calculated, ε(T ) = �(T ) + 3p(T ) and s(T ) =
[ε(T ) + p(T )]/T , respectively. To make a construction of
chemical freeze-out at T ≈ 150 MeV temperature possible,
we use the hadron resonance gas (HRG) trace anomaly at
low temperatures instead of the lattice QCD result. Equally
important is that this choice allows for energy and momentum
conserving switch from fluid degrees of freedom to particle
degrees of freedom without any nonphysical discontinuities
in temperature and/or flow velocity.1 Furthermore, it gives

1Energy and momentum conservation require that the fluid EoS is
that of free particles, and that the degrees of freedom are the same in
the fluid and particles [33]. If the dissipative corrections are small,
switch from fluid consistent with the contemporary lattice QCD
results [34] to particles in the UrQMD [35] or SMASH [36] hadron

us a consistent value for the pressure at Tlow required for the
evaluation of pressure [see Eq. (1)].

As a baseline, we use the s95p parametrization [17], where
HRG containing hadrons and resonances below M < 2 GeV
mass from the 2004 Particle Data Group (PDG) summary
tables [37] is connected to the parametrized hotQCD data
from Ref. [18]. To explore the effects of various develop-
ments during the last decade, we first connect the HRG
based on the PDG 2004 particle list [37] to parametrized
contemporary lattice data obtained using the HISQ discretiza-
tion scheme [20,21]. The lattice spacing, a, is related to the
temperature and temporal lattice extent, Nt , as a = 1/(Nt T ).
Since the lattice spacing (Nt ) dependence is small for this
action, we use these results at fixed lattice spacing Nt = 8, 10,
and 12. We name our parametrizations according to the con-
vention used to name s95p, and label this parametrization
s87h04. Here “s87” signifies entropy density reaching 87% of
its ideal gas value at T = 800 MeV, the letter “h” refers to
the HISQ action, and the subscript “04” to the vintage of the
PDG particle list (2004). Note that even if our parametrization
differs from the lattice trace anomaly in the hadronic phase, it
agrees with the contemporary lattice calculations which show
that at T = 800 MeV the entropy density reaches 87%–88%
of the ideal gas value (cf. Fig. 8 of Ref. [21]).

The number of well-established resonances has increased
since 2004, so we base our parametrization s88h18 on HRG
containing all2 strange and nonstrange hadrons and reso-
nances in the PDG 2018 summary tables3 [40], and on the
same HISQ lattice data [20,21] we used for s87h04. Further-
more, there is a slight tension in the trace anomaly between the
HISQ and stout discretization schemes. To explore whether
this difference has any effect on hydrodynamical modeling,
we construct the parametrization s83s18 using PDG 2018 res-
onances, and the continuum extrapolated lattice data obtained
using the stout discretization [22,23]. The second letter “s”
in the label refers now to the stout action, and the subscript
“18” to the vintage of the particle list. The details of these
parametrizations are shown in Appendix A.

In the top and middle panels of Fig. 1, we show the
parametrized trace anomalies, and the lattice data as used to
make them: continuum extrapolated for the stout action, and
at fixed lattice spacing for the HISQ action, since its lattice
spacing (Nt ) dependence is small. As seen in the topmost
panel, the most noticeable change in the lattice results dur-
ing the last decade is the reduction of the peak of the trace
anomaly (cf. s95p to others). Also, as mentioned, the lattice
results obtained using the HISQ and stout actions slightly

cascades at T = 150 MeV temperature leads to roughly 9%–10% or
6%–7% loss in both total energy and entropy, respectively.

2With the exception of f0(500). See Refs. [38,39].
3Note that the PDG Meson Summary Table and Baryon Summary

Table contain (almost) all states listed by the PDG, and are different
from the PDG Meson Summary Tables and Baryon Summary Tables
we use [41]. The PDG Baryon Summary Tables contain the three and
four star resonance states. The PDG does not assign stars to meson
states, but the Meson Summary Tables contain the states not labeled
“Omitted from summary table” in the individual listings.
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FIG. 1. The trace anomaly (top and middle) and the speed of
sound squared (bottom) as functions of temperature in the four
parametrizations of the EoS compared to the lattice data obtained
using the HISQ [20,21] and stout [22,23] discretization schemes.

differ around the peak, and consequently s83s18 differs from
s87h04 and s88h18. The higher peak does not, however, mean
a lower speed of sound. As shown in the lowest panel of
Fig. 1, the speed of sound in the s95p parametrization is
not significantly lower than in the other parametrizations, but
the temperature region where it is low is broader than in the
other parametrizations. Thus we expect s95p to be effectively
softer than the other EoSs. On the other hand, the speed of

sound in s88h18 depicts a characteristic dip below the speed
of sound in the other parametrizations. This is a consequence
of the parametrization of the trace anomaly in that temperature
region.

As known, the HRG trace anomaly is below the lattice
results [20,22,23] at low temperatures. This difference has
been interpreted to indicate the existence of yet unobserved
resonance states [34,42]. The need for further states has also
been seen in the study of the strangeness baryon correlations
on the lattice [43], and confirmed by the S-matrix-based virial
expansion [44]. However, we do not include predicted states
from any model4 in this work, since we do not know how
they would decay, but use the states from the PDG summary
tables only. Consequently the parametrized trace anomaly is
slightly below even the most generous error bars of the lattice
results around T ≈ 150–160 MeV temperature, as shown in
the middle panel of Fig. 1.

On the other hand, whether we use the PDG 2004 or
2018 particle list causes only a tiny difference in the trace
anomaly. The main difference between the s87h04 and s88h18

parametrizations arises from the connection of the HRG to
the lattice parametrization. When parametrizing s88h18 we
wanted the trace anomaly to reach its lattice values soon
above Tc = 155 MeV, whereas we allowed s87h04 to agree
with lattice at larger temperature where the lattice trace
anomaly drops below the HRG trace anomaly; for details, see
Appendix A. Consequently the s88h18 parametrization rises
above the HRG values leading to the characteristic dip in the
speed of sound (lowest panel in Fig. 1). Note that the s83s18

parametrization does not depict a similar dip in the speed of
sound, since the lower peak and larger errors of the continuum
extrapolated stout action result allow the parametrized trace
anomaly to drop below the HRG values immediately.

III. HYDRODYNAMICAL MODEL

We employ a fluid-dynamical model used previously in
Refs. [13,24,46–48]. The spacetime evolution is computed
numerically in (2 + 1) dimensions [49], and the longitudinal
expansion is accounted for by assuming longitudinal boost
invariance. We also neglect here the bulk viscosity and the
small net-baryon number. The evolution of the shear-stress
tensor πμν is described by the second-order Israel-Stewart
formalism [50], with the coefficients of the nonlinear second-
order terms obtained by using the 14-moment approximation
in the ultrarelativistic limit [51,52]. The shear relaxation time
is related to the shear viscosity by τπ = 5η/(ε + p), where ε

is energy density in the local rest frame, and p is thermody-
namic pressure.

Transverse momentum spectra of hadrons are computed
by using the Cooper-Frye freeze-out formalism at a constant-
temperature surface, followed by all 2- and 3-body decays
of unstable hadrons. The chemical freeze-out is encoded into
the EoS as described in Ref. [53], and the fluid evolves from
chemical to kinetic freeze-out in partial chemical equilibrium
(PCE) [54]. The kinetic and chemical freeze-out temperatures

4As done in, e.g., Refs. [34,45].
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Tdec and Tchem are left as free parameters to be determined
from the experimental data through the Bayesian analysis. The
dissipative corrections δ f to the momentum distribution at the
freeze-out are computed according to the usual 14-moment
approximation δ fk ∝ f0kkμkνπμν , where f0k is the equilib-
rium distribution function, and kμ is the four-momentum of
the hadron.

The remaining input to fluid dynamics are the EoS, ini-
tial conditions, and shear viscosity. The different options for
EoS were discussed in the previous section, and the initial
conditions will be detailed in the next section. The temper-
ature dependence of the shear viscosity η/s is parametrized in
three parts, controlled by TH, the lower bound of the tempera-
ture range where η/s has its minimum value, (η/s)min, and the
width of this temperature range, Wmin:

(η/s)(T ) =

⎧⎪⎨
⎪⎩

SHG(TH − T ) + (η/s)min, T < TH.

(η/s)min, TH � T � TQ,

SQGP(T − TQ) + (η/s)min, T > TQ,

(2)

where the additional parameters are the linear slopes below
TH and above TQ = TH + Wmin, denoted by SHG and SQGP,
respectively.

We note that bulk viscosity and chemical nonequilibrium
are related [55,56]. Even if we ignore the bulk viscosity, some
of its effects are accounted for by the fugacities in a chemi-
cally frozen fluid: At temperatures below Tchem the isotropic
pressure is reduced compared to the equilibrium pressure
due to the different chemical composition. Thus, introducing
the chemical freeze-out changes not only the particle yields
with respect to evolution in equilibrium, but similarly to the
bulk viscosity, reduces the average transverse momentum of
hadrons too. However, this affects the evolution only when
temperature is below Tchem, and in contrast to the bulk vis-
cosity, there is, e.g., no entropy production associated with
the chemical freeze-out and subsequent chemical nonequilib-
rium [58].

Finally, we emphasize that we solve the spacetime evolu-
tion from the hot quark-gluon plasma (QGP) all the way to
the kinetic freeze-out as a single continuous fluid-dynamical
evolution. This is different from the hybrid models used, e.g.,
in Refs. [10–12], where the evolution below some switching
temperature is solved with a microscopic hadron cascade.
The advantage of the fluid-dynamical evolution without a cas-
cade stage is that the transport properties are continuous in the
whole temperature range. Note that in the hybrid models the
switching from fluid dynamics to hadron cascade introduces
an unphysical discontinuity in, e.g., η/s that is O(1) in the
cascade [57], but O(0.1) in fluid-dynamical simulations at
switching. Another advantage of our approach is that we can
freely parametrize the viscosity in the hadronic matter too, and
constrain it using the experimental data.

IV. INITIAL CONDITIONS

The initial energy density profiles are determined using
the EKRT model [59–61] based on the next-to-leading-order
(NLO) perturbative QCD computation of the transverse en-

ergy, and a gluon saturation conjecture. The latter controls
the transverse energy production through a local semihard
scale psat (TATA,

√
sNN, A, Ksat ), where TA(x, y) is a nuclear

thickness function at transverse location (x, y). The essential
free parameters in the EKRT model are the proportionality
constant Ksat in the saturation condition, and the constant
β controlling the exact definition of the minijet transverse
energy at NLO [60]. The setup used here is identical to the
one used in Refs. [13,24,48], where β = 0.8, and Ksat is left as
a free parameter to be determined from the data. We note that
Ksat is independent of the collision energy

√
sNN and nuclear

mass number A, so that once Ksat is fixed the
√

sNN and A
dependence of the initial conditions is entirely determined
from the QCD dynamics of the EKRT model. With a given
psat the local energy density at the formation time τp = 1/psat

can be written as

ε(x, y, τp) = Ksat

π
[psat (x, y)]4. (3)

This we further evolve to the same proper time τ0 = 1/pmin,
where pmin = 1 GeV, at every point in the transverse plane
where psat > pmin by using 0 + 1 dimensional Bjorken hydro-
dynamics with the assumption ε = 3p.

In the EKRT model, fluctuations in the product of the
nuclear thickness functions, TATA, give rise to the event-
by-event fluctuations in the energy density through psat in
Eq. (3). Moreover, the centrality dependence of the initial
conditions arises from the centrality dependence of TATA. A
full treatment of the dynamics in heavy-ion collisions would
take the event-by-event fluctuations into account by evolving
each event separately. However, to make the present study
computationally feasible, we omit the evolution of such fluc-
tuations here; instead, for each centrality class, we average a
large number of these fluctuating initial states, and compute
the fluid-dynamical evolution only for the averaged initial
distributions.

The computed energy densities are not linear in Ksat

or in TATA, and different averaging procedures can lead to
significantly different event-averaged initial conditions. In
the previous event-by-event EKRT studies [13,24,48] a fair
agreement was obtained between the data and the computed√

sNN, A, and centrality dependencies of the charged hadron
multiplicity. To preserve as much as possible of this agree-
ment, we average the initial conditions by averaging the initial
entropy distributions: We compute first a large set of initial en-
ergy density profiles using the procedure detailed in Ref. [13].
Each of the generated energy density profiles is converted to
an entropy density profile by using the EoS which will be
used later during the evolution. The entropy density profiles
are then averaged, and the average entropy density profile is
converted to an average energy density profile using the same
EoS.

In the event-by-event framework the centrality classes were
determined from the final multiplicity distribution. However,
this way of classifying events is not available here, as it would
require fluid-dynamical evolution of each of the fluctuating
initial conditions. Instead, we predetermine the centrality
classes according to the number of wounded nucleons in
the sampled Monte Carlo nuclear configurations, which were
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used to construct the event-by-event initial conditions. The
number of wounded nucleons is computed using the nucleon-
nucleon cross section σNN = 42, 64, and 70 mb for 200 GeV,
2.76 TeV, and 5.02 TeV collisions, respectively. We note
that the nucleon-nucleon cross section does not enter in the
computation of the initial conditions, but they are used here
only in the centrality classification. In the context of the full
event-by-event modeling we have tested that the final results
are only weakly sensitive to the precise way of the centrality
classification.

V. STATISTICAL ANALYSIS

The eight free parameters of our model, {Ksat,

(η/s)min, TH,Wmin, SHG, SQGP, Tdec, Tchem}, were introduced
in Secs. III and IV. We want to tune them to achieve the
best possible fit to an experimental data set of 90 data points.
This set consists of the following observables at (10–20)%,
(20–30)%, (30–40)%, (40–50)%, and (50–60)% centrality
classes:5

(i) The charged particle multiplicity at midrapidity,
dNch/dη, and 4-particle cumulant pT -averaged el-
liptic flow, v2{4}, in Au + Au collisions at

√
sNN =

200 GeV (RHIC) [25,27] and Pb + Pb collisions at√
sNN = 2.76 [28,30] and

√
sNN = 5.02 TeV [30,31]

(LHC).
(ii) The multiplicities at midrapidity, dNi/dy, and average

transverse momenta 〈pT 〉i, of pions (π+), kaons (K+),
and protons6 (p) in Au + Au collisions at RHIC [26]
and in Pb + Pb collisions at the lower LHC en-
ergy [29].

Let us consider each combination of the free parameters
as a point �x in the 8-dimensional input (parameter) space,
the model output �y(�x) as a corresponding point in the 90-
dimensional output space (space of observables), and the
experimental data �y exp as the target point in the space of
observables. With these definitions we can formulate the
posterior probability distribution P(�x|�y exp) of the best-fit pa-
rameter values by utilizing Bayes’ theorem:

P(�x|�y exp) ∝ P(�y exp|�x)P(�x), (4)

where P(�x) is the prior probability distribution of input pa-
rameters and P(�y exp|�x) is the likelihood function

P(�y exp|�x)

= 1√|2π�| exp

{
− 1

2
[�y(�x) − �y exp]T �−1[�y(�x) − �y exp]

}
.

(5)

5Charged particle multiplicities at RHIC are averages over two
adjacent PHENIX centrality classes; for example, at (10–20)% cen-
trality Nch is an average over (10–15)% and (15–20)% classes,
(20–30)% is an average over (20–25)% and (25–30)% classes, and so
on. This applies also for RHIC identified particle data at (10–20)%
centrality.

6We consider an average of measured protons and antiprotons as
the target value for the proton multiplicity at RHIC.

Here � is the covariance matrix representing the uncertainties
related to the model-to-data comparison.

As a function with an eight-dimensional domain, the pos-
terior probability distribution P(�x|�y exp) is too complicated to
evaluate and analyze fully. Instead, we produce samples of
it with a parallel tempered Markov chain Monte Carlo [62]
based on the EMCEE sampler [63]. An ensemble of random
walkers is initialized in the input parameter space based on
the prior probability7 and each proposed step in parameter
space is accepted or rejected based on the change in the value
of the likelihood function. At a large number of steps, the
distribution of the taken steps is expected to converge to the
posterior distribution.

Evaluating the output �y(�x) of the fluid-dynamical model
at every point �x where the random walker might enter is
a computationally impossible task. Therefore we approxi-
mate the output using Gaussian process (GP) emulators [64]
(see Appendix B). Each GP is able to provide estimates
for only one observable, so to keep the number of required
emulators manageable, we perform a principal component
analysis (PCA) to reduce the dimension of the output space
from 90 observables into k = 6 most important principal
components. Further details about the PCA are described in
Appendix C. We utilize the “scikit-learn” Python module [65]
and in particular the submodules “sklearn.gaussian_process”
and “sklearn.decomposition.PCA” in the model emulation.

Thus, in our likelihood function (5), we replace �y(�x) with
the GP estimate in the principal component space �z GP(�x)
(likewise �y exp is transformed to �z exp), and include the emulator
estimation error into the covariance matrix:

�z = �exp
z + �GP

z , (6)

where �
exp
z is the (originally diagonal) experimental error

matrix transformed to principal component space, and

�GP
z = diag

[
σ GP

z,1 (�x)2, σ GP
z,2 (�x)2, . . . , σ GP

z,k (�x)2
]

(7)

is the GP emulator covariance matrix obtained from the emu-
lator (see Appendix B).

To work, the GP emulators must be conditioned with
a set of training points, {�z(�xi )}, created by running the
fluid-dynamical model with several different parameter com-
binations {�xi}. For the present investigation, we have produced
170 training points for each EoS, distributed evenly in the
input parameter space8 using minmax Latin hypercube sam-
pling [66]. The emulation quality was then checked by using
the trained emulator to predict the results at 30 additional test
points, which were not part of the training data. An example of
the results of this confirmation process is shown in Fig. 2 for
2.76 TeV Pb + Pb collisions using the s95p parametrization.

7In the present case, the shape of the prior is a uniform hyper-
cube with an additional restriction Tdec < Tchem. The prior ranges are
shown in Figs. 3 and 4.

8The restriction Tdec < Tchem does not apply to the training points.
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FIG. 2. Illustration of the quality of the Gaussian process emu-
lation for 30 test points for simulations with the s95p EoS. Upper
panel: Charged particle multiplicity in (20–30)% most central Pb +
Pb collisions at

√
sNN = 2.76 TeV. Lower panel: Elliptic flow v2{RP}

in (20–30)% most central Pb + Pb collisions at
√

sNN = 2.76 TeV.

VI. RESULTS

The marginal posterior probability distributions for each
parameter are obtained from the full 8-dimensional probabil-
ity distribution (see Sec. V) by integrating over the other seven
parameters. The resulting distributions when using the four
investigated EoSs are shown in Figs. 3 and 4. In these figures
the range of the x axis illustrates the prior range of values,
with the exception of Tchem, the range of which depends on
the EoS.9 The median values of these distributions provide
a good approximation for the most probable values, and are
listed both in the legends of the figures and in Table I. The
90% credible intervals—i.e., the range which covers 90% of
the distribution around the median—are shown as errors in
Table I. Two-dimensional projections of the probability dis-
tribution depicting correlations between parameter pairs are
shown in Appendix D.

9For s83s18, s87h04, and s88h18, the prior range is 120 MeV <

Tchem < T0, where T0 is the temperature where the parametrization
deviates from the HRG (see Appendix A). For s95p the range is
120 < Tchem/MeV < 180.

A. Nuisance parameters

The analysis involves three parameters which are not di-
rectly related to the transport properties of produced matter:
Ksat, Tdec, and Tchem. The probability distributions for these
three “nuisance” parameters, shown in Fig. 3, are nicely
peaked, and the parameters have well defined constraints. For
the chemical freeze-out temperature, the median is Tchem =
153–155 MeV, which is compatible with the values obtained
using the statistical hadronization model [67]. Note that the
difference in the median is not due to the resonance content
of the EoS, but due to a complicated interplay of the softness
of the EoS, shear, and build-up of the flow. Nevertheless, the
particle ratios are the dominant factor in constraining Tchem.

For Ksat and Tdec, we see a common trend where s95p gives
a distribution which peaks at the lowest value of the four EoSs,
followed by s87h04, and the highest peak values are shared
by s83s18 and s88h18 with almost identical distributions. The
obtained values for the EKRT normalization parameter, Ksat ≈
0.5, are compatible with the values found previously [13], and
the small differences between different EoS parametrizations
result from slightly different entropy production during the
evolution. Differences seen in the kinetic freeze-out temper-
ature Tdec = 126–132 MeV are also small, and seem to follow
the conventional rule of thumb: a softer EoS requires a lower
freeze-out temperature to create hard enough proton pT distri-
butions. On the other hand, differences in the median values
of all these three parameters are smaller than the credibility
intervals, and thus not statistically meaningful.

B. (η/s)(T )

At first sight (η/s)min depicts the behavior described in
Refs. [16,19]: the favored value is lower for s95p than for
the newer parametrizations (see Fig. 3 and Table I). However,
the effect is noticeably smaller than seen in those studies—
only ≈10%–20%—and well within the 90% credible intervals
(± ≈ 30%) of the analysis. The comparison of η/s for dif-
ferent EoSs is further complicated by the large number of
parameters controlling the temperature dependence of η/s.
The probability distributions of parameters TH,Wmin, SHG, and
SQGP, shown in Fig. 4, are very broad extending to the whole
prior range in most cases, and thus do not possess any clearly
favored values. However, the wide posterior distributions of
the (η/s)(T ) parameters are partly caused by the inherent
ambiguity in the chosen parametrization: for a given tempera-
ture T , multiple parameter combinations can generate similar
values of η/s. For example, at low temperatures (η/s)(T )
is mostly determined by SHG and TH, but it is better con-
strained than either of these parameters. The reason is that
SHG and TH are not independent, but slightly anticorrelated:
the correlations between the pairs of parameters are shown
in Appendix D. Thus it is more illustrative to construct the
probability distribution for η/s values with respect to tem-
perature, and plot the median and credibility intervals of this
distribution as shown in Figs. 5 and 6.

In the upper panel of Fig. 5 we show the median of
(η/s)(T ) for each EoS parametrization, and the union and
intersection of the 90% credible intervals of all four distri-
butions. The union of the credibility intervals provides insight
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FIG. 4. As Fig. 3, but showing the marginal posterior probability distributions of TH, Wmin, SHG, and SQGP.
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FIG. 5. Temperature dependence of η/s. Upper panel: Median of
η/s with respect to T for each EoS with the union and intersection of
the 90% credible intervals of the distributions. Lower panel: Median
of η/s with respect to T for the s83s18 and s88h18 parametrizations
with corresponding credibility intervals compared with two results
from Ref. [13] (η/s = 0.2 and param1) and a recent quasiparticle
model prediction by Mykhaylova et al. [68].

on the total uncertainty in the analysis including the uncer-
tainty from the EoS parametrization, whereas the difference
between the union and intersection illustrates how much of
the uncertainty comes from the EoS parametrizations. To
emphasize the result using state-of-the-art EoSs, the lower
panel of Fig. 5 depicts the median and credibility intervals
for the parametrizations s83s18 and s88h18 only. In the same
panel two older results from Ref. [13], and a recent theoretical
prediction from Ref. [68], are shown as well. To make it
possible to distinguish the credibility intervals for each EoS
separately, η/s for each EoS at various temperatures with
associated uncertainties is shown in Fig. 6.

We obtain well constrained η/s in a temperature range
150 <∼ T/MeV <∼ 220, where the median values of η/s are
practically constant for all contemporary EoSs, and s95p leads
to modest temperature dependence well within the credibility
intervals. Within this temperature range η/s is constrained
between 0.08 and 0.23 by the 90% credible intervals. In

TABLE I. Estimated parameter values (medians) and uncertain-
ties (90% credible intervals) from the posterior distributions.

Parameter s83s18 s87h04 s88h18 s95p

Ksat 0.52+0.15
−0.12 0.46+0.12

−0.09 0.53+0.11
−0.10 0.43+0.10

−0.09

(η/s)min 0.18+0.04
−0.06 0.17+0.03

−0.07 0.17+0.04
−0.06 0.15+0.03

−0.07

TH (GeV) 0.13+0.05
−0.03 0.13+0.06

−0.03 0.13+0.06
−0.03 0.15+0.06

−0.04

Wmin (GeV) 0.19+0.10
−0.17 0.12+0.15

−0.11 0.14+0.13
−0.12 0.12+0.10

−0.10

SHG (GeV−1) 2.9+4.0
−2.7 3.0+4.5

−2.8 3.4+4.2
−3.2 3.9+3.7

−3.6

SQGP (GeV−1) 2.4+4.9
−2.1 3.1+4.2

−2.5 3.2+4.1
−2.7 5.2+2.5

−3.5
Tdec (MeV) 132+14

−11 130+16
−12 132+15

−10 126+15
−12

Tchem (MeV) 155+4
−4 154+4

−3 153+2
−3 154+4

−4

particular, for the state-of-the-art EoSs (s83s18 and s88h18),
we obtain even tighter limits 0.12 < η/s < 0.23 within this
range, and the well constrained region extends to slightly
higher temperature. For further details see Fig. 5 and Table II.
Interestingly η/s at 130 MeV (or at 150 MeV in the case of
s95p) temperature differs from the favored value (median) of
the (η/s)min parameter (compare Tables I and II), even if the
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FIG. 6. Median values (filled markers) and 90%
credible intervals (error bars) for η/s at temperatures
T = 130, 150, 200, 250, 300, 350, 400, and 450 MeV.
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TABLE II. Median values of η/s at various temperatures with
associated uncertainties (90% credible intervals) from the posterior
distributions. Values rounded to two significant figures.

T (MeV) s83s18 s87h04 s88h18 s95p

130 0.19+0.09
−0.04 0.19+0.10

−0.05 0.19+0.07
−0.06 0.21+0.13

−0.07

150 0.18+0.05
−0.04 0.17+0.05

−0.04 0.17+0.05
−0.05 0.17+0.06

−0.04

200 0.18+0.04
−0.05 0.17+0.03

−0.05 0.17+0.04
−0.05 0.15+0.04

−0.07

250 0.19+0.07
−0.05 0.19+0.12

−0.04 0.18+0.08
−0.04 0.16+0.10

−0.03

300 0.20+0.19
−0.05 0.27+0.27

−0.11 0.23+0.21
−0.07 0.28+0.25

−0.13

350 0.23+0.33
−0.08 0.40+0.42

−0.24 0.35+0.36
−0.18 0.51+0.34

−0.34

favored value of the TH parameter is 130 MeV (or 150 MeV)
(see Fig. 4 and Table I). This seemingly counterintuitive be-
havior is due to the fat tails of TH distributions extending to
larger temperatures, and thus broadening the region where
SHG affects the η/s values. Consequently we see the lowest
η/s values at T ≈ 200 MeV temperature (Fig. 5 and Table II),
where the effect of the lower (η/s)min value of the s95p
parametrization is also visible.

It is not surprising that we get the best constraints on
η/s in the temperature range 150 <∼ T/MeV <∼ 220. As was
shown in Ref. [46], the temperature range where v2 is most
sensitive to the shear viscosity is only slightly broader than
this, and higher order anisotropies are sensitive to shear at
even narrower temperature ranges.10

Even if the uncertainties remain large, we can see qual-
itative differences in the high-temperature behavior of η/s,
where s95p seems to favor earlier and more rapid rise of
η/s with increasing temperature (Figs. 5 and 6), a difference
which is visible in the SQGP parameter as well (Fig. 4).

Considering earlier results in the literature, this is intrigu-
ing. Alba et al. [16] used an EoS based on contemporary stout
action data called PDG16+/WB2 + 1, and observed that the
reproduction of the LHC data (

√
sNN = 5.02 TeV) required

larger constant η/s for this EoS than for s95p. On the other
hand, they were able to use the same value of constant η/s
for both EoSs to reproduce the RHIC data. They interpreted
this to mean that at large temperatures s95p would necessitate
lower values of η/s, but we see an opposite behavior. In a sim-
ilar fashion we see a difference between the high-temperature
behavior obtained using the HISQ (s88h18 and s87h04) and
stout-action-based EoSs (s83s18), but the differences are much
smaller than the credibility intervals, and thus cannot be con-
sidered meaningful.

At temperatures below 150 MeV we again see expand-
ing credibility intervals, and a tendency of η/s to increase
with decreasing temperature, but hardly any sensitivity to the
EoS. Anisotropies measured at RHIC energy are sensitive to
the shear viscosity in the hadronic phase [46,47], and since
Schenke et al. in Ref. [19] saw sensitivity to the EoS using
RHIC data only, we would have expected some sensitivity to

10Note that the studies in Ref. [46] were carried out using the s95p
EoS. We have not checked how sensitive those results are to the EoS
parametrization.

the EoS at low temperatures. The difference may arise from
the bulk viscosity which depended on the EoS as well in
Ref. [19], or from a different EoS in the hadronic phase. As
mentioned, our EoSs are based on known resonance states,
whereas the EoSs in Refs. [16,19] follow the lattice results
closely. A better fit to lattice results can be obtained by
including predicted but unobserved resonance states in the
HRG. We plan to study how the inclusion of these states
might affect the results, once we have concocted a plausible
scheme for their decays, so that we can evaluate their con-
tribution to the EoS after chemical freeze-out in a consistent
manner.

Furthermore, unlike in Ref. [19] where a hadron cascade
was used to describe the evolution in the hadronic phase, in
our approach the change in the EoS can also be partly com-
pensated by a change in the freeze-out temperature instead of
shear viscosity. As shown in Appendix D, there is indeed an
anticorrelation between Tdec and (η/s)min. Therefore forcing
the system to freeze out at the same temperature, indepen-
dently of the EoS, would increase the difference in (η/s)min.
However, the anticorrelation is rather weak ≈ − 0.4 (−0.2)
for s88h18 (s95p), and thus requiring EoS independent Tdec

would not change (η/s)min very much.
Our result of a very slowly rising η/s with decreasing

temperature in the hadronic phase (i.e., below T ≈ 150 MeV)
may look inconsistent with microscopic calculations predict-
ing relatively large η/s ∼ 1 in the hadronic phase [57,69,70].
However, our result is for a chemically frozen HRG, while
the microscopic calculations usually give η/s in chemical
equilibrium. In the transport model study of Ref. [71], it was
shown that nonunit pion and kaon fugacities, i.e., chemical
nonequilibrium, can significantly reduce η/s in hadron gas.
Since, as a first-order approximation, η depends only weakly
on the chemical nonequilibrium [72], the main effect is due
to s: At a given temperature the entropy density sPCE in a
chemically frozen HRG can be significantly larger than the
entropy density in chemical equilibrium sCE, and as a con-
sequence (η/s)PCE can be much smaller than (η/s)CE. We
may thus obtain an approximation for the η/s in a chemically
equilibrated system as (η/s)CE = (η/s)PCE(sPCE/sCE) [13]. In
our case, where Tchem = 154 MeV, the ratio of entropies in a
chemically frozen to a chemically equilibrated system is ≈3.5
at T = 100 MeV (≈1.8 at T = 130 MeV), which is sufficient
to bring our results to the level described in Ref. [70].

In Fig. 5 we also made a comparison to the earlier results of
Ref. [13] and the recent quasiparticle model prediction from
Ref. [68]. As expected, the earlier results from Ref. [13,24]
are not far from the present analysis, and param1 is practically
within the 90% credible interval in the whole temperature
range. On the other hand, constant η/s = 0.2 is below the
s95p limits at high temperatures, but as discussed, the overall
sensitivity to η/s at high temperatures is low. Interestingly
the prediction of the quasiparticle model of Ref. [68] comes
very close to our values for η/s around Tc, although the re-
gion where η/s is low is narrower than what we found here.
This is intriguing, since the quasiparticle model was tuned to
reproduce the stout action EoS, i.e., our EoS s83s18, which in
our analysis leads to the broadest region where η/s is almost
constant.
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The small value of η/s and its weak temperature depen-
dence in the temperature range 150 <∼ T/MeV <∼ 220 may
indicate that the QGP is strongly coupled not only in the
immediate vicinity of Tc but in a broader temperature region.
This was first proposed in Ref. [73], and agrees with the
lattice QCD calculations that indicate the presence of hadron-
like resonances in the QGP in a similar or slightly broader
temperature interval [74–77]. The strongly coupled nature of
the QGP can also be seen in the large value of the coupling
constant defined in terms of the free energy of static quark-
antiquark pairs [78]. In any case, our result for (η/s)(T ) is
compatible with the lattice QCD calculations, which indicate
that the weakly coupled QGP picture may be applicable only
for T > 350 MeV [78–81].

C. The effect of the parametric form

When we use the state-of-the-art EoSs (s88h18 and s83s18),
our result for the minimum value of η/s is higher than the
result obtained in an earlier Bayesian analysis of Ref. [10]:
0.12 < η/s < 0.23 vs η/s = 0.07+0.05

−0.04. While the equations
of state in both analyses are based on the latest lattice re-
sults, an important difference is that Ref. [10] assumed the
minimum of η/s to occur at fixed T = 154 MeV temperature,
and η/s to rise linearly above that temperature. Moreover,
below T = 154 MeV they used a hadron cascade to model the
evolution, and the transport properties of the hadronic phase
were thus fixed.

To explore how much the results depend on the form of the
(η/s)(T ) parametrization, we mimic the parametrization used
in Ref. [10] by constraining the plateau in our parametrization
to be very small (0 < Wmin/MeV < 2), and the minimum
to appear close to Tc (150 < TH/MeV < 160). The result-
ing temperature dependence of η/s for the s88h18 and s95p
parametrizations is shown in Fig. 7, and compared to our full
result (the behavior of the s87h04 and s83s18 parametrizations
is similar to s88h18).

The change in parametrization reduces the minimum value
of η/s to 0.12+0.03

−0.03 for s88h18, which is closest to the EoS
used in Ref. [10]. The credibility interval now overlaps with
the result from the earlier analysis [10], and the results are
thus consistent. The remaining difference may result from the
bulk viscosity, event-by-event-fluctuations, differences in the
EoS parametrization scheme, or the transport description of
the hadronic phase. As mentioned earlier, switching to the
hadron cascade creates a discontinuity in (η/s)(T ). Enforcing
a similar discontinuity in the (η/s)(T ) parametrization might
bring closer the minimum values of η/s obtained using hybrid
models and continuous fluid dynamics. For s95p the minimum
value drops to 0.06+0.04

−0.04, but since the s95p parametrization is
based on the older lattice data, comparing this value against
Ref. [10] is not straightforward. However, due to the signif-
icant overlap of the credibility intervals, we consider both
results consistent with Ref. [10], demonstrating the weak sen-
sitivity of the extracted η/s to the EoS used in the calculations.

Another interesting change is seen in the high-temperature
behavior. In the full analysis the s95p parametrization leads
to the largest η/s at large temperatures, but the restricted
parametrization causes s95p to favor the lowest η/s at large
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FIG. 7. Temperature dependence of η/s for the s88h18 (top) and
s95p (bottom) EoSs using the full parametrization and a parametriza-
tion constrained to have a minimum at a fixed point in temperature
(“fixed min point”).

temperatures. As seen previously, s95p favors the lowest η/s
at 200 < T/MeV < 250 temperatures (see Fig. 6 and Ta-
ble II), which in the restricted parametrization dictates the
behavior at much higher temperatures as well.

Nevertheless, even if the results depend on the form of
the parametrization, the credibility intervals overlap and the
results are consistent. The only deviation from this rule is for
the s95p parametrization around T = 160 MeV temperature
where the difference is statistically significant (see Fig. 7). We
have also checked that when we use the favored parameter
values, the typical differences in the fit to the data due to
different parametric forms are only ≈(1–3)%.

Similarly, we can mimic temperature-independent η/s by
constraining the priors of the SHG and SQGP parameters close
to zero. We have checked that such a choice does not increase
the sensitivity of η/s to the EoS parametrization, and that
the median values of the constant η/s = (η/s)min were only
≈10% larger than the median values for η/s at T = 200
MeV for the full parametrization—again, a sign of v2 being
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FIG. 8. Charged particle multiplicity at various centralities using
1000 samples from the posterior distribution of each EoS. Marker
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most sensitive to shear viscosity in the 150 <∼ T/MeV <∼ 220
temperature range [46].

Thus, in the Bayesian analysis the parametric form of η/s
does affect the results, and is therefore a kind of prior whose
effects are difficult to quantify. On the other hand, the credibil-
ity intervals overlap in all the cases, which emphasizes their
importance: The “true” value could be anywhere within the
credibility interval, and there is still a 10% chance that it is
outside of it.

D. Comparison with the data

Finally, as an overall quality check, we show how well the
favored parameter combinations reproduce the experimental
data. This is done by drawing 1000 samples from each pos-
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FIG. 9. Pion (upper panels), kaon (middle panels), and pro-
ton (lower panels) multiplicities at various centralities using 1000
samples from the posterior distribution of each EoS. Marker cen-
ters indicate median values, and error bars 90% credible intervals.
Left panels: Au + Au at

√
sNN = 200 GeV compared to PHENIX

data [26]. Right panels: Pb + Pb at
√

sNN = 2.76 TeV compared to
ALICE data [29].

terior distribution and using the Gaussian process emulator to
predict the simulation output for these values. The results for
charged and identified particle multiplicities, identified parti-
cle 〈pT 〉, and the elliptic flow v2{4} are shown in Figs. 8–11,
respectively.

The overall agreement with the data is quite good for all
observables, and the analysis is able to find equally good
data fits for all four EoSs. As normal for thermal models, the
charged particle multiplicities tend to be underestimated due
to the tension between pion multiplicity on one hand, and kaon
and proton multiplicities on the other hand. As the analysis
makes a compromise between too few pions and too many
kaons and protons, the overall charged particle multiplicity
(which is dominated by pions) will remain below the data.
Also the mean transverse momentum of pions is slightly too
large, which may prove difficult to alleviate without the in-
troduction of bulk viscosity [4] and/or improved treatment of
resonances during the hadronic phase [82].

VII. SUMMARY

In this work, we have introduced three new parametriza-
tions of the equation of state based on the contemporary lattice
data:
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FIG. 10. As Fig. 9 but for the mean transverse momentum.

(i) s87h04 connects the HRG based on the PDG 2004
particle list to parametrized lattice data obtained using
the HISQ discretization scheme.

(ii) s88h18 is based on the HRG containing all strange and
nonstrange hadrons and resonances in the PDG 2018
summary tables, and the same HISQ lattice data as
s87h04.

(iii) s83s18 is constructed using the PDG 2018 resonances,
and the continuum extrapolated lattice data obtained
using the stout discretization.

We used these new parametrizations and the older s95p
parametrization to examine how sensitive the shear viscosity
over entropy density ratio η/s is to the equation of state. We

assumed a piecewise linear parametrization for (η/s)(T ), and
determined the probability distributions of the best-fit param-
eter values within the EKRT framework using a Bayesian
statistics approach.

Using charged and identified particle multiplicities, iden-
tified particle mean transverse momenta, and elliptic flow at
three different collision energies as calibration data, we were
able to constrain the value of η/s to be between 0.08 and
0.23 with 90% credibility in the temperature range 150 <∼
T/MeV <∼ 220 when all EoS parametrizations are taken into
account. When we constrain the EoSs to the most contem-
porary parametrizations s83s18 and s88h18, we obtain 0.12 <

η/s < 0.23 in the above mentioned temperature range. As the
differences between the EoSs are well covered by the 90%
credible intervals, the earlier results obtained using the s95p
parametrization remain valid. The weak sensitivity to the EoS
is consistent with the old ideal fluid results for flow and EoS:
Based on flow alone, it is difficult to distinguish an EoS with a
smooth crossover from an EoS without phase transition [83].
Thus when the differences between EoSs are just details in the
crossover, the differences in flow, which should be compen-
sated by different shear viscosity, are small, and consequently
differences in the extracted η/s are small.

The overall agreement with the data is quite good, and
similar to Refs. [13,24], where event-by-event fluctuations
were included to the framework of EKRT initial conditions
and fluid dynamics, albeit without the Bayesian analysis. The
good agreement achieved here is partly due to the EKRT
initial conditions. In particular the centrality and

√
sNN depen-

dence of hadron multiplicities follow mainly from the QCD
dynamics of the EKRT model. A noticeable difference to the
earlier event-by-event analysis is that here we used identified
hadron multiplicities as constraint, which led to the chemical
freeze-out temperature Tchem ≈ 154 MeV, and a slight over-
shoot of the pion average pT compared to the data. In the
earlier analysis Tchem ≈ 175 MeV was used to reproduce the
average pT data, which in turn led to too large proton multi-
plicity. It is possible to solve this tension by introducing bulk
viscosity [4], but that is left for a future work. We emphasize
that compared to the (in principle) more detailed hydro +
cascade models our hydro + partial chemical equilibrium ap-
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FIG. 11. Charged particle elliptic flow v2{4} at various centralities using 1000 samples from the posterior distribution of each EoS. Marker
centers indicate median values, and error bars 90% credible intervals. Left panel: Au + Au at

√
sNN = 200 GeV compared to STAR data [27].

Middle panel: Pb + Pb at
√

sNN = 2.76 TeV compared to ALICE data [30]. Right panel: Pb + Pb at
√

sNN = 5.02 TeV compared to ALICE
data [30].
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TABLE III. The values of parameters for different fits of the trace anomaly.

d0 d1 (GeV2) d2 (GeV4) d3 (GeVn3 ) d4 (GeVn4 ) d5 (GeVn5 ) n3 n4 n5 T0 (MeV)

s83s18 5.688 × 10−3 0.3104 −6.217 × 10−3 −6.680 × 10−32 1.071 × 10−32 41 42 166
s87h04 5.669 × 10−2 0.2974 −4.184 × 10−3 −5.146 × 10−8 1.420 × 10−33 10 42 172
s88h18 4.509 × 10−2 0.3082 −5.136 × 10−3 −1.150 × 10−10 2.076 × 10−32 −3.021 × 10−33 13 41 42 155
s95p 0.2660 2.403 × 10−3 −2.809 × 10−7 6.073 × 10−23 10 30 183.8

proach has two major advantages: It allows us to parametrize
(η/s)(T ) so that it is continuous in the whole temperature
range, and at the same time it gives us a possibility to constrain
the viscosity also in the hadronic phase.

Inclusion of event-by-event fluctuations to the analysis
would provide access to several new flow observables such
as higher flow harmonics vn, and flow correlations, which
may give tighter constraints in broader temperature interval
on (η/s)(T ). However, within the current uncertainties of
the fitting procedure, we cannot exclude the possibility that
the effect of the EoS remains negligible even when η/s at
T > 220 MeV becomes better under control.

Since the sensitivity of flow to shear viscosity at high
temperatures is low, observables based on high-pT particles
may be useful to constrain not only the pre-equilibrium dy-
namics [84–86] but also the properties of the fluid when it is
hottest.
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APPENDIX A: EOS PARAMETRIZATION

At high temperature the trace anomaly can be well
parametrized by the inverse polynomial form. Therefore we
will use the following ansatz for the high-temperature region:

ε − 3p

T 4
= d0 + d1

T 2
+ d2

T 4
+ d3

T n3
+ d4

T n4
+ d5

T n5
. (A1)

This form does not have the right asymptotic behavior in
the high-temperature region, where we expect (ε − 3p)/T 4 ∼
g4(T ) ∼ 1/ ln2(T/�QCD), but it works well in the temperature
range of interest. Furthermore, it is flexible enough to match
the HRG result in the low-temperature region. We match this
ansatz to the HRG model at temperature T0 by requiring that
the trace anomaly and its first and second derivatives are
continuous. This requirement provides constraints for three

parameters, d0, d1, and d2, and leaves the remaining seven,
d3, d4, d5, n3, n4, n5, and T0, to be fixed by minimizing a χ2

fit to the data. Fitting the powers n3–n5 would be a highly
nonlinear problem, but we simplify the problem by requiring
that the powers be integers, and using brute force: We make
a fit with all the integer values 5 � n3 � 40, n3 < n4 � 41,
and n4 < n5 � 42, and choose the values n3, n4, and n5 which
lead to the smallest χ2. When the powers and T0 are kept
fixed, minimizing χ2 requires only a simple matrix inversion.
Thus to fix T0 we are able to cast χ2 as a function of only a
single parameter, T0. We require that 155 � T0/MeV � 190,
and search for the value of T0 which minimizes χ2.

To obtain the continuum limit in the lattice calculations
of the trace anomaly, one has to perform interpolation in the
temperature, and then perform continuum extrapolations (see,
e.g., [23]). This procedure can introduce additional uncer-
tainties when providing parametrization of the lattice results.
As mentioned in the main text, the lattice spacing (Nt ) de-
pendence of the lattice results is small in the case of the
HISQ discretization scheme for Nt � 8. In fact, for T > 230
MeV and T < 170 MeV there is no statistically significant
Nt dependence, so in these temperature ranges we can use
the HISQ lattice results with Nt = 8, 10, and 12. In the peak
region, 170 < T/MeV < 230, the Nt = 8 HISQ results are
slightly higher than the Nt = 10 and Nt = 12 results, and
therefore have been omitted from the fits. At temperatures
above 800 MeV only lattice results with Nt = 6 and 4 are
available [20,21]. To take the larger discretization errors of
the Nt = 6 and 4 results into account, we follow Ref. [21],
scale them by factors 1.4 and 1.2, and include systematic
errors of 40% and 20%, respectively. Contrary to the HISQ
action results, we employ the continuum extrapolated stout
action results [22,23] for simplicity. The resulting parameters
are shown in Table III. We find that only the parametrization
s88h18 requires the use of all six terms in Eq. (A1). In the
cases of s83s18 and s87h04 we are able to obtain equally
good fits with only five terms, and thus set d5 to zero by
hand.

For the sake of completeness, we also parametrize the HRG
part of the trace anomaly as

ε − 3p

T 4
= a1T m1 + a2T m2 + a3T m3 + a4T m4 . (A2)

To carry out the fit we evaluate the HRG trace anomaly in
the temperature interval 70 < T/MeV < Thigh, where Thigh

depends on the parametrization, with 1 MeV steps assuming
that each point has equal “error.” The limits have entirely
utilitarian origin: in hydrodynamical applications the system
decouples well above 70 MeV temperature and only a rough
approximation of the EoS, p = p(ε), is needed at lower tem-
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TABLE IV. The values of parameters for different fits of the HRG trace anomaly.

a1 (GeV−m1 ) a2 (GeV−m2 ) a3 (GeV−m3 ) a4 (GeV−m4 ) m1 m2 m3 m4 Thigh (MeV)

s83s18 0.1850 1.985 × 104 1.278 × 105 −1.669 × 107 0 5 7 10 170
s87h04 4.654 −879 8081 −7.039 × 106 1 3 4 10 190
s88h18 0.1844 2.043 × 104 8.550 × 105 −2.434 × 107 0 5 8 10 169
s95p 4.654 −879 8081 −7.039 × 106 1 3 4 10 190

peratures. On the other hand we expect to switch to the lattice
parametrization below Thigh, and the HRG EoS above that
temperature is not needed either. We fix the powers in Eq. (A2)
again using brute force. We require them to be integers, go
through all the combinations 0 � l1 < l2 < l3 < l4 � 10, fit
the parameters a1, a2, a3, a4 to the HRG trace anomaly eval-
uated with 1 MeV intervals, and choose the values l1, l2, l3,
and l4 which minimize the χ2. We end up with parameters
shown in Table IV. To obtain the EoS, one also needs the
pressure at the lower limit of the integration [see Eq. (1)]
Tlow = 0.07 GeV: p(Tlow)/T 4

low = 0.1661. Our EoSs are avail-
able in a tabulated form at arXiv as ancillary files for this
paper, and at Ref. [87]. These tables also include the option
of a chemically frozen hadronic stage, and a list of resonances
included in the hadronic stage with their properties and decay
channels.

APPENDIX B: PREDICTING MODEL OUTPUT
WITH GAUSSIAN PROCESSES

Let us assume that we do not know exactly what the
model’s output y for a particular input parameter �x is, but
we know its most probable value μ(�x). We postulate that the
probability distribution for the output value P(y) is a normal
distribution with mean μ(�x) and so far unknown width σ .
Thus the probability distribution for a set Ya of N model
outputs for observable a, corresponding to a set X of N points
in the parameter space, is a multivariate normal distribution:

G : X → Ya ∼ N (μ,C), (B1)

where μ = μ(X ) = {μ(�x1), . . . , μ(�xN )} is the mean of the
distribution, and C is the covariance matrix defined by the
covariance function c(�x, �x′):

C = CX,X =

⎛
⎜⎝

c(�x1, �x1) . . . c(�x1, �xN )
...

. . .
...

c(�xN , �x1) . . . c(�xN , �xN )

⎞
⎟⎠. (B2)

As we are only interested in interpolating within the train-
ing data, we may set μ(X ) ≡ 0, and construct the covariance
function c(�x, �x′) in such a way that the probability distribution
is narrow at the training points nevertheless. This way we
minimize our a priori assumptions about the model behavior
in regions of parameter space not covered by the training
data.11 Our chosen covariance function is a radial-basis func-

11Note that we use Gaussian process to estimate the model output
of the principal components, not the actual observables; see Ap-
pendix C.

tion (RBF) with a noise term

c(�x, �x′) = θ0 exp

(
−

n∑
i=1

(xi − x′
i )

2

2θ2
i

)
+ θnoiseδ�x�x′ . (B3)

The hyperparameters �θ = (θ0, θ1, . . . , θn, θnoise), where n is
the dimension of the input parameter space, are not known
a priori and must be estimated from training data, consisting
of simulation output U computed at training points T , by
maximizing the log-likelihood (see Chapter 5 of [64])

log P(U |T, �θ ) = − 1

2
U T C−1(T, �θ )U − 1

2
log |C(T, �θ )|

− N

2
log(2π ). (B4)

Emulator prediction for the model output y0 at a point �x0

can then be determined by writing a joint probability distribu-
tion for the output at various points in parameter space:(

y0

U

)
∼ N

((0

�0

)
,

(C0,0 C0,T

CT,0 CT,T

))
, (B5)

from which we can derive the conditional predictive mean
yGP( �x0) and associated variance σ GP( �x0)2 as (see, e.g., Ap-
pendix A.2 of [64])

yGP( �x0) = C0,T C−1
T,T U,

σ GP( �x0)2 = C0,0 − C0,T C−1
T,T CT,0. (B6)

Note that we use the training data U twice: first in Eq. (B4)
to determine the hyperparameters �θ of the covariance func-
tion c(�x, �x′) and then in Eq. (B6) as a condition for the GP
prediction.

APPENDIX C: PRINCIPAL COMPONENT ANALYSIS

We reduce the number of Gaussian processes needed for
model emulation with principal component analysis (PCA),
which transforms the data in the directions of maximal vari-
ance.

We represent the model output with an N × m matrix Y ,
where N is the number of simulation points and m the number
of observables. In preparation for the PCA, the data columns
are normalized with the corresponding experimental values to
obtain dimensionless quantities, and centered by subtracting
the mean of each observable from the elements of each col-
umn; we denote this scaled and shifted data matrix by Ŷ .

We then want to find an eigenvalue decomposition of the
covariance matrix Ŷ T Ŷ :

Ŷ T Ŷ = V �V T , (C1)
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FIG. 12. Posterior probability distribution for the s88h18 (lower triangle, green color) and s95p (upper triangle, blue color) EoSs. Diagonal
panels: Marginalized 1-D distributions for each parameter. Solid blue line: s95p. Dash-dotted green line: s88h18. Dashed lines and numbers
indicate median value, with upper number corresponding to s95p and lower number to s88h18. Off-diagonal panels: 2-D projections of the
posterior distributions. Dashed lines indicate median values for each parameter, while the framed numbers refer to Spearman rank correlation
coefficients for each parameter pair.

where � is the diagonal matrix containing the eigenvalues
λ1, . . . , λm and V is an orthogonal matrix containing the
eigenvectors of the covariance matrix.

The eigenvalue decomposition is found by factorizing Ŷ
via the singular value decomposition:

Ŷ = USV T , (C2)

where S is a diagonal matrix containing the singular values
(square roots of the eigenvalues of Ŷ T Ŷ ) and V contains the

right-singular vectors of Ŷ (eigenvectors of Ŷ T Ŷ ); these are
the principal components (PCs). Matrix U contains the left-
singular vectors of Ŷ , which are eigenvectors of Ŷ Ŷ T .

The eigenvalues are proportional to the total variance
of the data. Since λ1 � λ2 � . . . � λm, the fraction of
the total variance explained by the kth principal compo-
nent, λk/(

∑m
j=1 λ j ), becomes negligible starting from some

index k < m. This allows us to define a lower-rank ap-
proximation of the original transformed data matrix Z =
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ŶV as Zk = ŶVk , where Vk contains the first k columns
of V .

The transformation of a vector �y from the space of ob-
servables to a vector �z in the reduced-dimension principal
component space is thus defined as

�z = �y Vk, (C3)

while for matrices [such as the covariance matrix in the like-
lihood function (5)] the transformation is

�z = V T
k �y Vk . (C4)

To compare an emulator prediction �z GP against physical
observables, we use the inverse transformation

�y GP = �z GP V T
k . (C5)

APPENDIX D: CORRELATIONS BETWEEN
THE MODEL PARAMETERS

Figure 12 provides a more detailed view of the 8-
dimensional posterior probability distribution, using the

analysis results for the s88h18 and s95p EoSs as an example.
The diagonal panels show the marginalized one-dimensional
distributions for each parameter, which were summarized in
Figs. 3 and 4 in Sec. VI. The off-diagonal panels illustrate the
correlations between each parameter pair (X,Y ). The correla-
tion strength is quantified with the Spearman rank correlation
coefficient [88], which is the Pearson correlation coefficient
between the rank values rX and rY :

ρ = C(rX , rY )

σ (rX )σ (rY )
, (D1)

where C refers to covariance and σ to standard devia-
tion. This relaxes the assumption of a linear relationship,
present in the Pearson correlation coefficient, and is instead
a measure of the monotonic relationship between the two
parameters.
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