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ARTICLE INFO ABSTRACT

Keywords: Introduction: Thromboembolism is a serious toxicity of acute lymphoblastic leukemia treatment, and contributes
Thromboembolism to substantial morbidity and mortality. Several single nucleotide polymorphisms have been associated with
Single nucleotide polymorphisms thromboembolism in the general population; however, their impact in patients with acute lymphoblastic leu-

Acute lymphoblastic leukemia kemia, particularly in children, remains uncertain.

Materials and methods: We collected constitutional DNA and prospectively registered thromboembolic events in
1252 patients, 1-45years, with acute lymphoblastic leukemia included in the Nordic Society of Pediatric
Hematology and Oncology ALL2008 protocol in the Nordic and Baltic countries (7/2008-7/2016). Based on
previously published data and a priori power calculations, we selected four single nucleotide polymorphisms: F5
rs6025, F11 rs2036914, FGG rs2066865, and ABO rs8176719.

Results: The 2.5year cumulative incidence of thromboembolism was 7.1% (95% confidence interval (CI)
5.6-8.5). F11 rs2036914 was associated with thromboembolism (hazard ratio (HR) 1.52, 95%CI 1.11-2.07) and
there was a borderline significant association for FGG rs2066865 (HR 1.37, 95%CI 0.99-1.91), but no asso-
ciation for ABO rs8176719 or F5 rs6025 in multiple cox regression. A genetic risk score based on F11 rs2036914
and FGG rs2066865 was associated with thromboembolism (HR 1.45 per risk allele, 95%CI 1.15-1.81), the
association was strongest in adolescents 10.0-17.9 years (HR 1.64).

Abbreviations: ALL, acute lymphoblastic leukemia; CI, confidence interval; CVL, central venous line; GWAS, genome wide association study; HR, hazard ratio;
NOPHO, Nordic Society of Pediatric Hematology and Oncology; OR, odds ratio; RAF, risk allele frequency; SNP, single nucleotide polymorphism; TE, throm-
boembolism
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Conclusion: If validated, a F11 rs2036914/FGG rs2066865 risk prediction model should be tested as a stratifi-
cation tool for prevention of thromboembolism in patients with acute lymphoblastic leukemia.

1. Introduction

Children, adolescents, and adults with acute lymphoblastic leu-
kemia (ALL) are at increased risk of developing thromboembolism (TE),
a common serious toxicity of ALL treatment. A recent study from Nordic
Society of Pediatric Hematology and Oncology (NOPHO) found a 7.9%
cumulative incidence of TE in patients with ALL, with age being the
most important risk factor [1]. The NOPHO ALL2008 protocol has
uniform ALL treatment for both children and adults, 1-45 years old.
The protocol includes mandatory prospective toxicity registration, in-
cluding TE, with high registration compliance [2].

Several genome wide-association studies (GWAS) have been per-
formed on TE in adults. In 2015, a meta-analysis of GWAS on TE found
six well-known genome-wide significant loci that contributed to in-
creased risk of TE (ABO, F2, F5, F11, FGG, and PROCR), and three new
loci of which two were replicated in a validation study (TSPAN15 and
SLC44A2) [3]. In 2012, de Haan et al. [4] tested 31 single nucleotide
polymorphisms (SNP) known to be associated with TE and found that
the top five SNPs F5 rs6025, F2 rs1799963, ABO rs8176719, FGG
152066865, and F11 rs2036914 predicted TE almost as well as a genetic
risk score based on all 31 SNPs. Folsom et al. [5] recently replicated the
five SNP genetic risk score by de Haan in white Americans, with a 1.41-
fold increased risk of venous TE per allele increment.

F5 rs6025 is known as the factor V Leiden mutation, which causes
activated protein C resistance, and F2 rs1799963 is known as the pro-
thrombin mutation, which causes increased prothrombin (factor II)
levels [6]. The major allele of ABO rs8176719 is a deletion that predicts
blood group O [7], and the risk allele has been associated with both
venous TE [8] and with cerebral sinus vein thrombosis [9] in non-
cancer adult studies. Genetic variation in the FGG gene, such as
rs2066865, has been associated with different levels of isoforms of the
fibrinogen gamma chain and with TE development [10]. Several SNPs
in the F11 gene, including rs2036914, have been associated with in-
creased levels of factor XI and TE development [11]. Patients with ALL
are already at increased risk of TE due to the leukemia itself, the che-
motherapy (e.g. asparaginase and steroids), the presence of central
venous lines (CVL), and other well-defined non-genetic prothrombotic

risk factors, including older age. However, little data exists on the im-
pact of the above-mentioned SNPs on TE development in patients with
ALL, particularly in children.

Developing a tool to identify patients with ALL at risk of TE who
would benefit from thromboprophylaxis may have the potential to re-
duce both morbidity and mortality. In this respect, we aimed to identify
the role of well-defined SNPs on the development of TE in children and
adults with ALL. We also studied multi-SNP genetic risk scores for the
detection of TE. We hypothesized that F5 rs6025, ABO rs8176719, FGG
rs2066865, and F11 rs2036914 contributed to the risk of TE develop-
ment in the large cohort of children and adults with ALL treated ac-
cording to the NOPHO ALL2008 protocol.

2. Materials and methods

From 7/2008 to 7/2016 patients with ALL included in the NOPHO
ALL2008 protocol in Denmark, Estonia, Finland, Iceland, Lithuania,
Norway, and Sweden were invited to participate in genetic add-on
studies. The NOPHO ALL2008 protocol was approved by the National
Medicines Agencies and the relevant national or regional ethical com-
mittees in each participating country. The genetic add-on study re-
quired additional informed consent and was approved by the ethical
committees in the participating countries. The study was conducted in
accordance with the Declaration of Helsinki.

The NOPHO ALL2008 protocol has been described in detail else-
where [1,2,12-14]. Data on patient demographics were collected from
the NOPHO ALL registry on October 10th 2017. DNA was sampled from
1812 patients, of which 560 were excluded on genetic or clinical cri-
teria (Fig. 1), resulting in 1252 patients in this genetic study.

The NOPHO ALL2008 protocol has mandatory prospective toxicity
registration, including TE [2]. TE was defined as first symptomatic ar-
terial or venous TE verified by imaging or asymptomatic arterial or
venous TE requiring anticoagulation treatment—diagnosed by imaging
due to other non-TE related symptoms. The date of TE was defined as
the date of diagnostic imaging or the date of death if diagnosed at
autopsy.

SNP profiling of post-remission DNA was done using the Omni

1812 children and adults with ALL treated
according to NOPHO ALL2008, 2008-2016

28 non-consenters ‘

309 failed genetic quality control ‘

]|

143 excluded for non-European ancestry ‘

80 excluded for clinical criteria:

Other protocol/treatment abroad (8)
ALL predisposition syndromes (44)
Ambiguous phenotype/bilineage (19)
Missing clinical data (7)

Age >45 years old (2)

1252 patients in the genetic study cohort

Fig. 1. Flowsheet.
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2.5exome-8-BeadChip arrays (Illumina, San Diego, CA, USA). Standard
quality control procedures were performed according to previously
published criteria (supplementary material) [15]. F2 rs1799963 and
ABO 158176719 were imputed, but the F2 rs1799963 imputation did
not reach the quality threshold of 0.7 (Table 1) and was excluded.

We performed a priori power calculations for cox regression of SNP-
association testing (Table 1) [16]. In cox regression analysis of time to
TE event, patients were censored at end of ALL treatment (120 weeks),
date of hematopoietic stem cell transplantation, loss to follow-up, date
of data collection (October 10th 2017), or date of a competing event
(death, relapse, or second malignant neoplasm), whichever came first.
The continuous variable age was categorized to three groups: 1.0-9.9,
10.0-17.9, and 18.0-45.9 years. The clinical covariates age, sex, pre-
sence of mediastinal mass, and enlarged lymph nodes at diagnosis were
kept as covariates in the genetic analyses, unless otherwise noted, and
we included the first two genetic principal components from the full
[llumina SNP data to control for population stratification. The SNPs
were analyzed using an additive genetic model. A sensitivity analysis
was performed by restricting the analysis to the period of asparaginase
exposure (supplementary material). Separate cox regression models
were set up for the competing events. Cumulative incidence estimates
were compared with Gray's test.

In exploratory analysis, we created unweighted, additive genetic
risk scores defined as the number of risk alleles in each individual. We
explored genetic risk scores using all four SNPs and using only the
nominally significant SNPs in our study. A cox model with an interac-
tion term between age and the genetic risk score was investigated.

For all cox regression analyses the assumption of proportional ha-
zards was examined using Schoenfelt residuals. Hazard rations (HR) are
presented with 95% confidence intervals (CI) and two-sided p-va-
lues < .05 are considered statistically significant. All statistical analyses
were performed using R computing software, version 3.4.3.

3. Results
3.1. Clinical characteristics

During ALL treatment 89 of 1252 patients developed major TE
(2.5 year cumulative incidence 7.1%, 95% CI 5.6-8.5) at a median of
89 days (50% range: 52-127 days) from diagnosis. The 2.5-year cu-
mulative incidence for children 1.0-9.9years was 3.8% (95% CI
2.6-5.1), for adolescents 10.0-17.9 years 14.4% (95% CI 9.9-19.0), and
for adults 18.0-45.9 years 16.7% (95% CI 10.2-23.3). Fifty TE events
(56.2% of all cases) were deep vein thromboses, of which one was a
combined arterial and venous event in the portal hepatic system, 25
(28.1%) were cerebral sinus vein thromboses, and 14 (15.7%) were
pulmonary embolisms. Forty-one TE events (46.1%, 95% CI 35.6-56.9)
were reported to be CVL-related. Seventy-six TE events (85.4%, 95% CI
76.0-91.7) occurred during asparaginase exposure, while six (6.7%,
95% CI 2.8-14.6) occurred during induction therapy. Baseline clinical

Table 1
Chosen SNPs.
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characteristics of patients with and without TE development are pre-
sented in Table 2. In multiple cox regression analysis of time to TE
event, we found significant associations for age and enlarged lymph
nodes, with a trend to association for mediastinal mass. The patient
demographics and the significant associations were comparable to
those previously reported from the NOPHO group by Rank et al. [1].

3.2. Genetic variables

For each of the predefined TE-associated SNPs, we had power ran-
ging from 48% to 96%, assuming the SNP-specific effect sizes and risk
allele frequencies found in the review by Morange et al. [17] from
2015. The risk allele frequencies of the selected SNPS in the study po-
pulation are provided in Table 1. Results of the single SNP and multiple
cox regression analysis are displayed in Table 3. We found a significant
association with TE development for F11 rs2036914 (HR 1.52, 95% CI
1.11-2.07) and a trend to association for FGG rs2066865 (HR 1.37,
95% CI 0.99-1.91). We found no association for F5 rs6025 or ABO
rs8176719 with the point estimates of the HR close to 1. None of the
three patients with two risk alleles of F5 rs6025 (homozygous factor V
Leiden mutation) developed TE. Patients with one risk allele of F5
rs6025 had a cumulative incidence of TE of 6.7% (95% CI 3.8-9.7),
compared to a cumulative incidence of 7.1% (95% CI 5.6-8.6) among
patients with no risk alleles (Table 4).

HR results did not change markedly when only analyzing patients
during asparaginase exposure, with a significant association for F11
rs2036914 (HR 1.66, 95% CI 1.18-2.35) and a trend to association for
FGG rs2066865 (HR 1.36, 95% CI 0.95-1.96), but no association for F5
rs6025 or ABO rs8176719 in multiple cox regression (Supplementary
Table S1).

In the single-SNP analyses we set up one cox model per SNP, while
in the multiple-SNP analysis all four SNPs were included in one cox
model. In all the cox regression analyses we controlled for age, sex,
mediastinal mass, enlarged lymph nodes, and the first two principal
components of the genetic data.

In our study population, competing risks were scarce; the majority
occurring after the TE events (Supplementary Fig. S1). We found no
associations between our individual SNPs and the competing risks; re-
garding F5 rs6025, the numbers became too small for statistical testing.
There were no significant associations between our individual SNPs and
the compound competing risk (Supplementary Table S2).

3.3. Genetic risk score

In exploratory analysis, an unweighted additive 2-SNP genetic risk
score based on F11 rs2036914 and FGG rs2066865 was significantly
associated with TE (HR 1.45 per risk allele, 95% CI 1.15-1.81, p 0.001).
Fig. 2 shows an increasing incidence of TE with increasing number of
risk alleles. Twenty-two of 119 patients with =3 risk alleles of the 2-
SNP genetic risk score developed TE (cumulative incidence 11.1%, 95%

Name Expected RAF® from Estimated OR" from Power” Imputation info Nucleotides Genotype Observed RAF  Missing genotype
literature literature score® distribution® count

F5 rs6025 0.05 3.00 0.96 - CC/CT/TT 1174/75/3 0.03 0

ABO 158176719  0.39 1.50 0.74 0.999 -/-C/CC 450/586/212 0.40 4

FGG rs2066865 0.25 1.47 0.61 - GG/GA/AA  685/478/89 0.26 0

F11 rs2036914  0.52 1.35 0.48 - TT/TC/CC 268/619/365 0.54 0

F2 151799963 0.01 2.50 0.48 0.579 GG/GA/AA  1232/3/0 0.001 17

@ Risk allele frequency (RAF) and estimated odds ratio (OR) from the 2015 review by Morange et al. [17]. The RAF for rs8176719 was taken from the European

population in the 1000 genomes project, Ensembl release 96 [18].

" Power calculation for cox regression of SNP-association testing, estimated total N 1200 and incidence 7%.

¢ Not relevant for directly genotyped SNPs.
4 The genotype distribution is given as 0/1/2 risk alleles.
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Table 2
Clinical characteristics of patients with and without TE development.
Patient characteristics Without TE With TE HR 95% CI p-Value®
N (%) N (%)
Age 1.0-9.9 years 860 (73.9) 34 (38.2) Ref.
1.0-17.9 years 197 (17.0) 34 (38.2) 3.84 2.36-6.24 < 0.0001
18.0-45.9 years 106 (9.1) 21 (23.6) 4.12 2.30-7.40 < 0.0001
Sex Male 644 (55.4) 54 (60.7) Ref.
Female 519 (44.6) 35 (39.3) 0.98 0.63-1.54 0.97
Phenotype Precursor-B cell 1008 (86.7) 65 (73.0) Ref.
T-cell 155 (13.3) 24 (27.0) 1.19 0.36-3.90 0.77
Induction Prednisone 931 (80.1) 61 (68.6) Ref.
Dexamethasone 221 (19.0) 27 (30.3) 0.69 0.25-1.87 0.46
Missing 11 (0.9) 1(01.1) -
Mediastinal mass No 1073 (92.3) 70 (78.6) Ref.
Yes 79 (7.8) 16 (18.0) 1.93 0.88-4.27 0.10
Missing 11 (0.9) 3(3.4) -
Lymph nodes > 3cm No 1078 (92.7) 74 (83.1) Ref.
Yes 70 (6.0) 15 (16.9) 2.32 1.22-4.39 0.01
Missing 15 (1.3) - -

" Multiple cox regression of time to TE event for baseline clinical characteristics.

Table 3
Cox regression analysis of time to TE event.

SNP Single-SNP Multiple-SNP

HR 95% CI p-Value HR 95% CI p-Value
F5 rs6025 1.06  0.44-2.55 0.89 1.16  0.48-2.83 0.75
ABO 158176719 0.99 0.75-1.37 0.94 1.03 0.76-1.40 0.83
FGG 152066865 1.36  0.98-1.89  0.065 1.37  0.99-1.91  0.058
F11 rs2036914 1.51 1.11-2.06  0.009 1.52  1.11-2.07  0.009

Table 4
Genotype distribution of F5 rs6025 according to age.

F5 rs6025 Proportion of patients with TE (%)
genotype

1.0-9.9 years 10.0-17.9 years 18.0-45.9 years
CcC 32/838 (3.8) 31/214 (14.5) 21/122 (17.2)
CT 2/54 (3.7) 3/16 (18.8) 0/5 (0)
TT 0/2 (0) 0/1 (0) 0/0

CI 6.7-15.5), compared with 66 of 1053 patients with < 3 risk alleles
(cumulative incidence 6.3%, 95% CI 4.8-7.8). Including an age
group*genetic risk score interaction term to the cox model showed a
significant interaction between the 2-SNP genetic risk score and the
adolescent age group of 10.0-17.9 years (p 0.04).

Stratified analysis by age group, controlling for the first two genetic
principal components, showed the strongest association of the 2-SNP
genetic risk score in adolescents, 10.0-17.9 years (HR 1.64 per risk
allele, 95% CI 1.17-2.89, p 0.004). Twelve of 41 adolescents with =3
risk alleles developed TE (cumulative incidence 29.3%, 95% CI
15.2-43.4), compared with 22 of 190 with < 3 risk alleles (cumulative
incidence 11.2%, 95% CI 6.7-15.7) (Fig. 3b). In adults,
18.0-45.9 years, the cumulative incidence of TE was high in both the
group with =3 risk alleles (22.1%, 95% CI 0-45.2) and with < 3 risk
alleles (16.1%, 95% CI 9.3-22.9) (Fig. 3c). In children, 1.0-9.9 years,
the cumulative incidence of TE was low in both the group with =3 risk
alleles (4.9%, 95% CI 1.4-8.4) and with < 3 risk alleles (3.6%, 95% CI
2.3-4.9) (Fig. 3a). Including F5 rs6025 or ABO rs8176719 in the genetic
risk score did not significantly improve the model. An unweighted ge-
netic risk score using all four SNPs showed a weaker, but still significant
association with TE (HR 1.28, 95% CI 1.07-1.54, p 0.008).

95

4. Discussion

In this prospective, longitudinal cohort of patients with ALL treated
according to the NOPHO ALL2008 protocol we found a significant as-
sociation with TE for F11 rs2036914 and a borderline significant as-
sociation with FGG rs2066865, but no significant association for F5
rs6025 or ABO rs8176719. We found a significant interaction between
the 2-SNP genetic risk score and age group, indicating that age is a
modifier of the effect of the SNPs on the risk of TE, with adolescents
having the strongest risk. These SNPs, with the exception of F5 rs6025,
have not previously been tested in patients with ALL.

There is strong evidence from adult studies of SNPs from the F5,
F11, FGG, and ABO genes being associated with TE, including a meta-
analysis of GWAS from the INVENT consortium from 2015 [3], com-
prising 7507 venous TE cases and 52,632 controls, and a GWAS in the
UK Biobank from 2017 [19], with 3290 venous TE cases and 116,868
controls. Several studies have used these SNPs as part of genetic risk
scores for TE in adults [5,20,21].

The majority of the patients in our study population were chil-
dren < 18 years old. In 2017 Ruhle et al. [22] reported a GWAS of 212
nuclear families with pediatric venous TE; identifying a region on
chromosome 6 as a new susceptibility locus for TE in children. They
also found associations from the ABO and F11 loci that almost reached
genome-wide significance. A study from 2009 by Nowak-Gottl et al.
[23] on 244 families of children with venous TE and 268 families of
children with nonvascular thromboembolic stroke found an association
with haplotypes of FGA and FGG, and with F5 rs6025. In children with
ALL, the few studies on inherited thrombophilia, including F5 rs6025,
associated with TE are largely contradictory or inconclusive due to
small numbers [24-27]. In the present study, we did not find an asso-
ciation for F5 rs6025 despite excellent power (96%) to detect an asso-
ciation of the same magnitude as found in literature. However, the 95%
CI does span clinically significant values.

The effect of non-O blood group on thrombotic vascular disease is
thought to be primarily through the effect of increased plasma levels of
von Willebrand factor, and consequently factor VIII [28]. A meta-ana-
lysis from 2012 found a significant association between venous TE and
non-O blood group in adults [29]. There have been several reports of
associations between non-O blood group and TE in children with ALL.
Mizrahi et al. [30] found an association with non-O blood group in a
retrospective study of 523 children with ALL of which 56 developed TE
and Athale and al [24] reported an association with age and non-O
blood group in a prospective cohort of 131 children with ALL of which
20 developed TE. We did not have data on blood group in our popu-
lation; however, we found no association between ABO rs8176719 and
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Fig. 2. Cumulative incidence of TE according to the 2-SNP genetic risk score.

Cumulative incidence of TE per number of risk alleles of the 2-SNP genetic risk score based on F11 rs2036914 and FGG rs2066865, gray's test p-value 0.003.

TE development, despite this large prospective cohort being relatively
well powered (74%) to detect an effect of the same magnitude as found
in the literature of TE in adults.

Factor XI is a component of the coagulation pathway and elevated
levels have been associated with increased TE development in adults
[31], while fibrinogen is the precursor to fibrin, which is required to
stabilize the coagulation clot in hemostasis, and fibrinogen gamma
makes up part of the fibrinogen molecule. Different levels of isoforms of

the fibrinogen gamma chain are likely to be associated with TE devel-
opment, although this has recently been questioned [10,32]. In ex-
ploratory analysis we created a 2-SNP genetic risk score based on F11
152036914 and FGG rs2066865 and demonstrated an interaction be-
tween the genetic risk score and age group. Several previous studies
have shown that adolescents are at increased risk of TE compared with
younger children [33]. In children and adolescents, the hemostatic
system is under constant development and the levels of many
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Fig. 3. Cumulative incidence of TE by number of risk alleles and age group.
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Incidence of TE in patients with =3 (red) or < 3 (blue) risk alleles of the 2-SNP genetic risk score (F11 rs2036914 and FGG rs2066865) for children 1.0-9.9 years (A),
adolescents 10.0-17.9 years (B), and adults 18.0-45.9 years old (C) respectively. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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components of the hemostatic system are different to those of adults
[34,35]. For instance, studies have found lower levels of factor XI in
healthy adolescents compared with adults [35,36]. In addition, the
hormonal changes occurring during puberty may also affect the risk of
TE, though there is little data on this subject. Greiner et al. [37] recently
showed that prophylactic antithrombotic treatment significantly re-
duced the incidence of TE in patients with ALL. If validated, a F11
152036914 and FGG rs2066865 risk prediction model should be tested
as a stratification tool for prophylactic antithrombotic interventions in
patients with ALL.

The strengths of this study include the large population-based co-
hort of patients with ALL from 1 to 45 years of age, treated according to
a uniform and strictly regulated research-protocol. The NOPHO
ALL2008 protocol has a high inclusion rate and the prospective toxicity
registration has a reporting compliance of 98.9% [2]. In addition, we
performed a priori power calculations before performing our SNP ana-
lyses. A potential weakness of the study is the delay of consent to
participation in the genetic studies following the ALL diagnosis in some
cases; thus there may have been cases of early deaths that were not
included and therefore could not be accounted for as competing events.

Second, only 53.9% of the TE events were non-CVL-related. It would
be interesting to investigate whether the selected SNPs play a more
important role when excluding the mechanic effect of the CVL.
However, we did not have large enough numbers for this.

Third, despite having a large multinational cohort, we did not have
enough power to test more individual SNPs; particularly those with
smaller effect sizes or lower minor allele frequencies. Two of our SNPs
were not available in the Illumina chip and were imputed. Imputation
of SNPs with low risk allele frequencies is difficult, which is clearly
shown in the poor quality score for F2 rs1799963, forcing us to exclude
this SNP.

In conclusion, we find a significant association with TE for F11
rs2036914 and a trend toward significant association for FGG
rs2066865 in patients with ALL. The role of F11 rs2036914 and FGG
152066865 for TE risk prediction models in ALL patients should be
validated, particularly in adolescents, before applying these in pre-
ventive strategies to avoid TE.
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