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Abstract 25 

Understanding stomatal regulation is fundamental to predicting the impact of changing environmental 26 

conditions on vegetation. However, the influence of soil temperature (ST) and soil water content 27 

(SWC) on canopy conductance (gs) through changes in belowground hydraulic conductance (kbg) 28 

remains poorly understood, because kbg has seldom been measured in field conditions. Our aim was 29 

to i) examine the dependence of kbg on ST and SWC, ii) examine the dependence of  gs on kbg, and 30 

iii) test a recent stomatal optimization model according to which gs and soil-to-leaf hydraulic 31 

conductance are strongly coupled. We estimated kbg from continuous sap flow and xylem diameter 32 

measurements in three boreal species. kbg increased strongly with increasing ST when ST was below 33 

+8 °C, and typically increased with increasing SWC when ST was not limiting. gs was correlated with 34 

kbg in all three species, and modelled and measured gs were well correlated in Pinus sylvestris (a 35 

model comparison was only possible for this species). These results imply an important role for kbg 36 

in mediating linkages between the soil environment and leaf gas exchange. In particular, our finding 37 

that ST strongly influences kbg in mature trees may help us to better understand tree behaviour in cold 38 

environments. 39 

 40 

Key words: belowground hydraulic conductance, cold, point dendrometer, sap flow, stomatal 41 

control, water relations 42 

 43 

Summary statement: Soil temperature and water content are important factors influencing 44 

belowground hydraulic conductance and canopy conductance in mature boreal trees. 45 

  46 
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Introduction 47 

For high latitude forests, air temperatures are expected to increase two-fold compared to the global 48 

average change of temperature (IPCC 2018). When combined with a decrease in the depth and 49 

duration of insulating snow cover, important changes in soil temperature may be expected (Aalto, 50 

Scherrer, Lenoir, Guisan & Luoto, 2018). The effect of soil temperature on tree or stand level gas 51 

exchange and carbon uptake remains poorly understood, and thus poorly represented in models, 52 

despite the important role of soil temperature in high latitude ecosystem functioning (Aalto et al, 53 

2018; Niittynen, Heikkinen & Luoto, 2018). For example, the fact that current biosphere models 54 

overestimate springtime photosynthesis and gross primary production in boreal coniferous forests 55 

(Böttcher et al, 2016) may reflect their failure to take into account important linkages between soil 56 

temperature and tree gas exchange. 57 

Plants absorb CO2 for photosynthesis through leaf stomatal pores. The cost of CO2 absorption through 58 

the stomata is the concurrent loss of water to the atmosphere, so that these two processes are tightly 59 

coupled. The water lost from leaves is replaced by water uptake from the soil and sap flow through 60 

the xylem. Stomatal conductance and photosynthesis are known to decrease sharply when soil 61 

temperature is decreased below approximately +8 °C in boreal conifers (Day, Heckathorn & DeLucia, 62 

1991; DeLucia, 1986; Lippu & Puttonen, 1991; Mellander, Bishop & Lundmark, 2004). Under these 63 

conditions, insufficient water is available for trees because cold soil limits the capacity of trees to 64 

extract water from the soil, thus reducing transpiration and photosynthesis.  65 

The linkage between soil temperature and tree gas exchange may occur through changes in 66 

belowground hydraulic conductance (kbg), i.e. hydraulic conductance from bulk soil to stem base. 67 

And yet kbg is one of the least understood components of the water transport pathway from the soil to 68 

leaves. kbg has been measured in the laboratory for smaller plants (e.g. BassiriRad, Radin & Matsuda, 69 

1991; Nobel, Schulte & North, 1990; Running & Reid, 1980) and tree seedlings of various species 70 
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(e.g. Day et al., 1991; Cochard, Martin, Gross & Bogeat-Triboulot, 2000; McLean, Ludwig & 71 

Grierson, 2011; Wan, Landhäusser, Zwiazek & Lieffers, 1999; Wan, Zwiazek, Lieffers & 72 

Landhäusser, 2001), but it has seldom been measured continuously for mature trees in field conditions 73 

(but see Martínez-Vilalta, Korakaki, Vanderklein & Mencuccini, 2007; McElrone et al, 2007; 74 

Poyatos, Aguadé & Martínez-Vilalta, 2018 for rare examples of such studies). As far as we are aware, 75 

the preliminary study by Lintunen et al. (2018) is the only one to have monitored the belowground 76 

hydraulic conductance of mature trees in conditions where soil temperature is limiting. 77 

Hydraulic conductance affects stomatal conductance indirectly through its effects on leaf water 78 

potential (Comstock & Mencuccini, 1998; Mellander et al, 2004). On theoretical grounds, a recent 79 

optimization model of stomatal conductance (Dewar et al, 2018; Hölttä et al, 2017) predicts that gs is 80 

approximately proportional to the square root of soil-to-leaf hydraulic conductance (ksl), of which kbg 81 

is a key component. This model, which provides a theoretical framework for the design of the present 82 

study, is based on the hypothesis that gs varies to maximize photosynthesis, where the cost of stomatal 83 

opening occurs through non-stomatal limitations to photosynthesis induced by decreased leaf water 84 

potential or increased leaf sugar concentration (Friend, 1991; Givnish, 1986; Hölttä et al, 2017). The 85 

model offers testable predictions for the cost associated with non-stomatal limitations to 86 

photosynthesis (Gimeno, Saavedra, Ogée, Medlyn & Wingate, 2019) as well as for the close coupling 87 

between gs and soil-to-leaf hydraulic conductance.     88 

Hydraulic conductance is defined as the flow rate per unit pressure driving force (Nobel 2009). In the 89 

case of belowground hydraulic conductance, the driving force is the water potential difference 90 

between the bulk soil and stem base. Martínez-Vilalta et al (2007) introduced an approach where kbg 91 

is calculated as the ratio of sap flow rate to the difference between soil and stem base water potentials, 92 

where the latter are estimated from xylem diameter measurements conducted at the stem base at 93 

predawn and during the day, respectively. This approach is based on the observation that tree stems 94 
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shrink in diameter during the day and swell during the night in response to changes in water tension 95 

in the xylem, and the shrinkage can easily be measured in a nondestructive way to derive continuous 96 

information about tree water potential (Alméras, 2008; Alméras & Gril, 2007; Irvine & Grace, 1997; 97 

Perämäki et al, 2001). Under steady-state conditions, various studies have found a linear correlation 98 

between reversible changes in xylem or whole stem diameter (corrected for growth if required) and 99 

changes in xylem water potential (Badal et al, 2010; Cochard, Forestier & Améglio, 2002; Intrigliolo 100 

et al, 2011; Irvine & Grace 1997; Ortuño et al, 2006; Ueda & Shibata, 2001). The approach of 101 

Martínez-Vilalta et al. (2007) was recently used to study belowground hydraulic constraints during 102 

drought-induced decline in Pinus sylvestris in a Mediterranean climate (Poyatos et al, 2018), and was 103 

also tested with one P. sylvestris tree in a boreal environment (Lintunen et al, 2018).  104 

In this study, our overall objective was to test the hypothesis that belowground hydraulic conductance 105 

(kbg) is an important link between soil conditions and leaf gas exchange. We examined kbg and its 106 

linkage to canopy conductance (gs) in mature P. sylvestris trees growing in a boreal forest stand, and 107 

in A. glutinosa and T. x vulgaris trees growing in a boreal urban environment in Southern Finland. 108 

These three case studies were selected in order to study mature trees in their natural growth 109 

environment (forest stand) and trees in a more extreme growth environment (urban sites). Within this 110 

overall objective, our first aim was to examine how kbg depends on soil temperature and soil water 111 

content in a coniferous species in a forest stand over several growing seasons, and in broadleaved 112 

species in an urban environment over a growing season. We hypothesize that soil temperature has a 113 

strong effect on kbg in boreal environments. Our second aim was to examine how gs is linked to kbg, 114 

and specifically, to compare observed gs in P. sylvestris with gs predicted by the stomatal optimization 115 

model (Dewar et al, 2018; Hölttä et al, 2017) according to which gs is closely coupled to the soil-to-116 

leaf hydraulic conductance.  117 

 118 
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Material and methods 119 

A list of symbols, their definitions and units is given in Table 1. 120 

Study site 121 

We measured three Pinus sylvestris (L.) trees in a boreal, evergreen coniferous forest at SMEAR II 122 

station in Hyytiälä (N 61˚ 50.8’ , E 24˚ 17.7’, 180 m.a.s.l.), Finland: tree 1 in year 2016, trees 1 and 123 

2 in year 2015, and tree 3 in year 2013. The average height of the measured trees in the measurement 124 

year was 18 m and average breast height diameter was 20 cm. The trees were 54 years old in year 125 

2016. The vegetation type is Vaccinium (Cajander, 1949) and the forest floor is dominated by dwarf 126 

shrubs and mosses. The soil type is glacial till, which is the most common soil type in Finland. Annual 127 

precipitation is 700 mm and average air temperature +4 °C. 128 

In the urban environment, we measured three Alnus glutinosa (L.) Gaertn. f. pyramidalis ‘Sakari’ 129 

trees in 2010, one Tilia × vulgaris Hayne tree in year 2012, and two Tilia trees in year 2013. The trees 130 

were planted in 2002 on two separate streets in the city of Helsinki, Finland. The growing media 131 

consisted of pre-mixed structural soil, and the soil plot dimensions for each tree were 3 m wide with 132 

1 m deep strips placed within the standard load bearing gravel of the street. The spacing for A. 133 

glutinosa was 4-5 m and for T. x vulgaris 15 m, and subsurface drains were installed on both streets. 134 

The level of the water table at the T. x vulgaris site was continuously high due to water being collected 135 

from a larger catchment area compared to the A. glutinosa site, which received only local rainfall. 136 

The average tree height and breast height diameter in the sites in 2010 were 11 m and 15 cm, 137 

respectively for Alnus, and 6 m and 13 cm, respectively for T. x vulgaris. Details of the research sites, 138 

soils and street surfacing are given in Riikonen et al (2011) and Riikonen et al (2016). Annual 139 

precipitation is 680 mm and average air temperature +5 °C. 140 

Field measurements 141 
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Sap flux density was measured with a constant heat dissipation sensor (Granier, 1985). Pairs of 4 cm 142 

probes (typical conductive depth of sapwood in mature pine trees at SMEAR II station) were inserted 143 

into the xylem at a height of 1.3 m in P. sylvestris and 0.5-1 m in A. glutinosa and T. x vulgaris. The 144 

vertical separation of the sensors was 10 cm, and they were covered with a reflective aluminum 145 

shelter. The sensors were located on the northern side of the stem. Sap flux density was recorded 146 

every minute. Zero sap flux density at night was defined as the average of seven consecutive nights 147 

as suggested by Lu et al (2004). Sap flow rate was calculated from the sap flux density multiplied by 148 

the leaf area. Leaf area for each tree was estimate by multiplying the conductive sapwood area with 149 

leaf to sap wood area ratio of 2000 m2 m-2 (Martínez-Vilalta et al, 2009).  150 

The water potential difference between the bulk soil and stem base was derived from xylem diameter 151 

measurements (P. sylvestris at breast height, A. glutinosa and T. x vulgaris at 20-40 cm height). 152 

Xylem diameter was continuously measured with linear displacement transducer point dendrometers 153 

(Solartron Inc., Model AX/5-0/5, Bognor Regis, West Sussex, UK; accuracy of 1 μm). The 154 

measurement apparatus has a negligible thermal expansion (Sevanto et al, 2005a) because thermal 155 

expansion of the frame and wood nearly compensate each other. Because the thermal expansion 156 

coefficient of wood is not exactly known, diameter changes were not corrected for thermal expansion; 157 

a sensitivity analysis of the effect of various corrections for wood thermal expansion showed no 158 

significant effect on our overall conclusions (data not shown). Air temperature and photosynthetic 159 

active radiation (PAR) were continuously measured at a height of 16 m at the SMEAR II station and 160 

8 m at the urban sites, and soil temperature and volumetric water content in the B1 horizon in 9-14 161 

cm depth at all sites (see Hari & Kulmala, 2005; Riikonen, Järvi & Nikinmaa, 2016). The B1 horizon 162 

was selected because daily maximum transpiration has been shown to be most closely linked to the 163 

water content of soil deeper than 5 cm at the studied forest site (Duursma et al, 2008). At the SMEAR 164 

II site, relative air humidity was measured locally, adjacent to air temperature; for the urban sites, we 165 

used air humidity measured at the nearby (4 km) SMEAR III urban measurement station (Järvi et al, 166 
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2009). Vapor pressure deficit (D) was calculated from air humidity and air temperature 167 

measurements. 168 

Stem water potential was assumed to be linearly proportional to the instantaneous xylem diameter 169 

(e.g. Irvine & Grace, 1997; Perämäki et al, 2001). This assumption has been empirically verified by 170 

numerous studies for various conifer and broadleaved species (e.g. Cochard et al, 2002; Dietrich, 171 

Zweifel & Kahmen, 2018; Irvine & Grace, 1997; Offenthaler, Hietz & Richter, 2001; Ueda & Shibata, 172 

2001). We also tested the relationship by measuring stem water potential and xylem diameter from 173 

A. glutinosa in the morning, mid-day and afternoon for 5 days in June 2011 (R2=0.73, Fig. 1a). If 174 

water potential drops below the species-specific cavitation threshold, the assumption of linear 175 

relationship between water potential and xylem diameter is violated as cavitation releases water 176 

tension so that the tissue swells (Alméras 2008; Dietrich et al, 2018; Offenthaler et al, 2001; Rosner, 177 

Karlsson, Konnerth & Hansmann, 2009; Rosner, Konnerth, Plank, Salaberger & Hansmann, 2010). 178 

In the studied boreal climate, however, the cavitation thresholds can be expected to be reached only 179 

rarely, at least for pine (Hölttä et al, 2005; Sevanto et al, 2005b).  180 

When soil water potential (ѱs) differed significantly from zero, maximum xylem diameter (dxmax) 181 

measured during night-time was used as a proxy for ѱs assuming: 1) that both variables are linearly 182 

related, in agreement with earlier studies (Martínez-Vilalta et al, 2007; Meng et al, 2017; de Santana, 183 

de Almeida Bocate, Sgobi, Borges Valeriano & de Souza, 2017); and 2) that predawn xylem water 184 

potential is in equilibrium with ѱs (Bréda, Granier, Barataud & Moyne, 1995; Ĉermák, Huzulák & 185 

Penka, 1980; Fahey & Young, 1984; Garnier & Berger 1987; Sala, Lauenroth, Parton & Trlica, 1981). 186 

To test the first assumption, we compared the concurrently measured dxmax and ѱs at the Pinus forest 187 

site in May-August 2015. ѱs was measured every 15 minutes from the B1 horizon with an 188 

equitensiometer (EQ2, Delta-T Devices, Cambridge, UK). ѱs and dxmax were linearly correlated 189 

(R2=0.85, Fig. 1b). The second assumption would be violated in the case of nocturnal transpiration, 190 

as has been the case in some earlier studies (see Donovan, Linton & Richards, 2001), but in that case, 191 
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the assumption of zero sap flux density during the night would have the same error (i.e. nocturnal sap 192 

flow would produce artificially lower dxmax and daily maximum sap flow rate (Fmax)) and thus the 193 

errors would cancel each other in the calculation of kbg. 194 

When ѱs was close to zero, dxmax was always assumed to represent predawn xylem water potential 195 

(in equilibrium with ѱs) even if dxmax changed independently of ѱs. This assumption was made 196 

because other mechanisms than changes in xylem water potential, such as changes in osmotic content 197 

in the living cells of the xylem or changes in resin content (Rissanen et al, 2016), might have induced 198 

changes in dxmax during these periods. This assumption, however, does not bias the interpretation of 199 

our results, because these other mechanisms would equally affect dxmax and the minimum diurnal 200 

diameter (dxmin), and thus do not affect their difference, on which our study is based. 201 

It was assumed here that internal water stores did not play a role in stem diameter changes on a daily 202 

scale. It is likely that there is some scatter in the results due to this assumption, but we minimized the 203 

influence of diurnal capacitance effects and time lags between variables by using maximum daily 204 

values instead of hourly values (Martínez-Vilalta et al, 2007).  205 

Rainy and very humid days (when the daily mean of the 10% lowest values of relative humidity was 206 

above 75%), and days with freezing events (when the daily mean of the 10% lowest values of ambient 207 

air temperature was below 0 °C) were excluded from the analysis. We excluded rainy days because 208 

water uptake directly through the bark may interfere with the interpretation of the xylem diameter 209 

change measurements, and the thermal dissipation method for measuring sap flux density is known 210 

not to be accurate in low flow conditions (e.g. Hölttä, Linkosalo, Riikonen, Sevanto & Nikinmaa, 211 

2015). Days with a minimum temperature below zero were excluded because freezing causes artefacts 212 

in both diameter change (Lindfors et al, 2015; Lintunen et al, 2015) and sap flux density 213 

measurements. Additionally, days when broadleaves had no leaves were excluded for A. glutinosa 214 

and T. x vulgaris, because the sap flux density signal is too low for reliable detection on those days. 215 
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We also excluded days before leaf area reached 15% of its total, and after leaf fall had reached 70% 216 

(see Riikonen et al, 2016 for leaf area measurement method). 217 

Empirical calculation of belowground hydraulic conductance and canopy conductance 218 

A daily diameter-based measure of belowground hydraulic conductance (kbg,d) was calculated as the 219 

ratio of the daily maximum (mean of the 10 % highest values) flow rate (Fmax, i.e. sap flux density 220 

multiplied by leaf area) to the difference between the daily maximum (dxmax, mean of the 10% highest 221 

values) and daily minimum (dxmin, mean of the 10% lowest values) xylem diameters (Fig. 2). As noted 222 

above, we calculated daily values because time lags caused by hydraulic capacitance likely disturb 223 

analysis of shorter-term dynamics (Martínez-Vilalta et al, 2007). The kbg,d values thus obtained were 224 

then divided by their maximum value per tree per growing season, to obtain a seasonally normalized 225 

(fractional) daily belowground hydraulic conductance value fbg lying between 0 and 1. Because of 226 

normalization, fbg can be considered independent of leaf area and so can be calculated directly from 227 

sap flux density (l m-2 h-1). The value of kbg,d was only calculated when soil temperature started to 228 

increase from zero, corresponding to the time of soil thawing. Daily maximum canopy conductance 229 

(gs) was calculated as the ratio of the daily maximum value of sap flux density to the daily maximum 230 

(mean of the 10% highest values) D (Fig. 2). 231 

Linking belowground hydraulic conductance and canopy conductance: an optimization model  232 

We used the analytical solution of the optimal stomatal conductance model derived by Dewar et al 233 

(2018) to predict a relationship between belowground hydraulic conductance (kbg) and canopy 234 

conductance (gs). The optimal stomatal conductance model is a leaf-level model which assumes 235 

infinite boundary layer conductance; therefore, in comparing the model with measured canopy-level 236 

conductance we are assuming the canopy is a homogeneous crown that is well-coupled to the 237 

atmosphere. The basic assumption of the optimization hypothesis is that gs maximizes the rate of leaf 238 
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photosynthesis, where the cost of stomatal opening occurs through non-stomatal limitation (NSL) to 239 

leaf photosynthesis induced by lower leaf water potential. We applied this hypothesis to a simple bi-240 

substrate model of leaf photosynthesis (A, mol m-2 s-1) as a function of photosynthetically active 241 

radiation (Q, mol m-2 s-1) and intercellular CO2 concentration (ci, mol mol-1), in which both the initial 242 

slope (carboxylation efficiency) and plateau (carboxylation capacity) of the A-ci curve are subject to 243 

NSL (Dewar et al, 2018, Case 1 in their Table 1). The analytical solution for gs (Dewar et al, 2018, 244 

their Table 3; see also Supporting Information) is given by 245 

𝑔𝑠 =
𝛼0𝑄

𝑎0𝑄𝑟𝑥,0+2Γ∗

1−𝜓𝑠/𝜓𝑐

√𝑧
[

1+√𝑧 

(1+√𝑧)
2

+𝑤
]     (1) 246 

where 𝛼0 (mol mol-1) and 𝑟𝑥,0 (mol-1 m2 s) are, respectively, the photosynthetic quantum yield and 247 

carboxylation resistance in the absence of NSL, Γ* is the CO2 photorespiratory compensation point 248 

(mol mol-1), ѱs is the soil water potential (MPa), ѱc is the critical leaf water potential (MPa) at which 249 

NSL reduces leaf photosynthesis to zero, and z and w are the dimensionless parameter combinations  250 

𝑧 =
𝛼0𝑄

𝑎0𝑄𝑟𝑥,0+2Γ∗

1.6𝐷

𝑘𝑠𝑙|ψ𝑐|
      (2) 251 

and 252 

𝑤 =
𝐶𝑎−Γ∗

𝑎0𝑄𝑟𝑥,0+2Γ∗      (3) 253 

in which D is the atmospheric water vapour pressure deficit (mol mol-1), ksl is the soil-to-leaf hydraulic 254 

conductance (mol m-2 s-1 MPa-1), and ca is the atmospheric CO2 concentration (mol mol-1).  255 

The dependence of gs on ksl occurs through the parameter combination z (eqn 2). In order to link gs to 256 

belowground hydraulic conductance (kbg), we assumed here that, within a growing season, variation 257 

in the soil-to-leaf hydraulic conductance (ksl) is dominated by variation in kbg, because P. sylvestris 258 

at SMEAR II station has been shown to experience drought-induced embolism only marginally 259 
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(Hölttä et al, 2005; Sevanto et al, 2005b). Total hydraulic conductance from soil to leaf (ksl) was 260 

modelled as a variable hydraulic conductance from soil to stem base (kbg) connected in series to a 261 

constant hydraulic conductance from stem base to leaf (krl), i.e. 262 

  
1

𝑘𝑠𝑙
=

1

𝑘𝑏𝑔
+

1

𝑘𝑟𝑙
      (4) 263 

The variation of kbg within each year and tree was expressed by writing kbg as the annual maximum 264 

hydraulic conductance (kbg,max) multiplied by the fractional or normalized value (fbg) that varied 265 

between 0 and 1,  266 

𝑘𝑏𝑔 = 𝑘𝑏𝑔,𝑚𝑎𝑥  𝑓𝑏𝑔       (5) 267 

where fbg was calculated from xylem diameter measurements as described above. We assumed that 268 

the constant hydraulic conductance from the stem base to the leaf was equal to the maximum value 269 

of the belowground hydraulic conductance,  270 

𝑘𝑟𝑙 = 𝑘𝑏𝑔,𝑚𝑎𝑥      (6) 271 

This partitioning between below- and above-ground conductances is in agreement with earlier studies 272 

of Scots pine trees (Martínez-Vilalta et al, 2007). Combining eqns (4)-(6) and rearranging then gives 273 

𝑘𝑠𝑙 = 𝑘𝑏𝑔,𝑚𝑎𝑥 (
𝑓𝑏𝑔

𝑓𝑏𝑔+1
)      (7) 274 

The constant kbg,max was chosen to be 0.00066 mol m-2 s-1 MPa-1 so that the maximum ksl 275 

(corresponding to fbg = 1) was 0.00033 mol m-2 s-1 MPa-1 (so that minimum leaf water potential would 276 

be -3MPa when calculated from sap flow rate and ksl). 277 
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Eqn (7) was then used to substitute for ksl in the expression for the stomatal parameter z (eqn 2). It 278 

may be shown from eqns (1)-(3) that the predicted dependence of gs on fbg is given approximately by 279 

(see in more detail from Supporting Information) 280 

𝑔𝑠 ≈ 𝐶√(
𝑓𝑏𝑔

𝑓𝑏𝑔+1
)      (8) 281 

where the parameter C (with dimensions of gs), given by 282 

𝐶 =
1−𝜓𝑠/𝜓𝑐 

1+𝑤
√

𝛼0𝑄

𝑎0𝑄𝑟𝑥,0+2Γ∗

|ψ𝑐|𝑘𝑏𝑔,𝑚𝑎𝑥

1.6𝐷
,     (9) 283 

depends on environmental conditions. Eqns (8) and (9) predict that gs is an increasing function of fbg, 284 

and that the sensitivity of gs to changes in fbg increases with increasing C, corresponding to 285 

environmental conditions that favor stomatal opening (e.g. less negative soil water potential, higher 286 

light, lower D).   287 

For D and Q, daily maximum values (mean of 10 % highest values) were used. The values for the 288 

photosynthetic parameter rx,o (2 mol-1 m2 s) and the CO2 photorespiratory compensation point Γ* (40 289 

x 10-6 mol mol-1) were taken from Hölttä et al (2017). The value for ѱc (-3.75 MPa) for P. sylvestris 290 

in boreal conditions were taken from Hölttä et al (2017).  291 

In order to estimate photosynthetic parameters required for the stomatal optimization model, shoot 292 

gas exchange was measured continuously with automatically opening and closing chambers from one 293 

selected shoot from two of the measured P. sylvestris trees. Data for photosynthetic quantum yield 294 

(α) was derived during a three-day interval from midday gas exchange measurements using a fixed-295 

curvature light response curve (Kolari, Lappalainen, Hänninen & Hari, 2007; Aalto et al, 2015), and 296 

α0 on each day was estimated from the daily leaf water potential (𝜓𝑙 =
−𝐹𝑚𝑎𝑥

𝑘𝑠𝑙 𝐴𝑙𝑒𝑎𝑓
 where Fmax is sap flow 297 
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rate and 𝐴𝑙𝑒𝑎𝑓  is leaf area) to be 𝛼0 = 𝛼 (1 −
𝜓𝑙

𝜓𝑐
)

−1

 in accordance with the assumption of NSL in the 298 

stomatal optimization model (Dewar et al, 2018). For the days in between, α0 was interpolated 299 

assuming a linear relation between the existing points. Data for α0 was not available for year 2013. 300 

Statistical analysis 301 

First, we analyzed how soil temperature, soil water content and their interaction affect normalized 302 

values of kbg (i.e. fbg) in different species. In addition, for the evergreen species P. sylvestris the effect 303 

of season and its interaction with soil temperature and water content were included in the analysis. 304 

For the broadleaved species A. glutinosa and T. x vulgaris, the data mainly consisted of summertime 305 

values due to leafless spring and autumn. The seasons were defined so that spring begins when soil 306 

temperature starts to increase from 0 °C, corresponding to the time of snow thawing, and continues 307 

until the soil temperature reaches +8 °C. Then summer follows and continues until the soil 308 

temperature drops again below +8 °C, after which it is autumn until the daily minimum (mean of 10% 309 

lowest values) ambient temperature drops below 0 °C. +8 °C was selected as a boundary value 310 

because of the obvious change in the relationship between soil temperature and kbg at this temperature. 311 

Also previous literature suggests that canopy conductance and photosynthesis decrease sharply in 312 

seedlings when soil temperature is decreased below +8 °C or +10 °C in boreal environment (Day et 313 

al, 1991; DeLucia, 1986; Lippu & Puttonen, 1991; Mellander et al, 2004). 314 

The analysis on how kbg was affected by soil environmental variables was performed independently 315 

for each tree species. We used a mixed effect model with restricted maximum likelihood method in 316 

the MIXED procedure in Statistical Analysis System (SAS, version 9.4, SAS Institute Inc., Cary, 317 

USA; Table 2). For each species, all data were analyzed together using normalized values of kbg (i.e. 318 

fbg) per tree per year and repetitive measurements within a tree per year were treated with covariance 319 

parameter as a random effect. First, we analyzed the effect of soil temperature, season and their 320 

interaction on fbg (Table 2A), then the effect of soil water content, season and their interaction on fbg 321 
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(Table 2B), and finally a model with all fixed effects was introduced: soil temperature, soil water 322 

content, season, and interactions: season * soil temperature and season * soil water content (Table 323 

2C). Akaike’s Information Criteria (AIC) was used for model selection. The number of observations 324 

(daily values) used was 471, 401 and 396, for P. sylvestris, A. glutinosa and T. x vulgaris, respectively.         325 

Secondly, we examined the relationship between normalized canopy conductance (gs,norm, defined as 326 

gs divided by its seasonal maximum value), fbg, season and their interaction variable (Table 3). 327 

Analyses were made with a mixed effect model in the MIXED procedure in SAS. We used log-328 

transformed values in the statistical analysis, because the data had a power-law form. The random 329 

effect and model selection (in case of pine; weather the season was included in the final model or not) 330 

were similar as described above and the number of observations used was 469, 401 and 396, for P. 331 

sylvestris, A. glutinosa and T. x vulgaris, respectively. Because both gs and fbg are calculated from sap 332 

flux density, and are thus statistically correlated, we calculated a corrected r2 value as the square of 333 

the partial coefficient of correlation, i.e. r2 of gs and fbg after the normalized sap flux density has been 334 

partialed out from them both (Table 3). More generally, the square of the partial coefficient of 335 

correlation between Y and X after having eliminated the effect of Z from both of them, is given by 336 

(Shipley, 2016) 337 

𝑟2
(𝑌.𝑋|Z) =

(𝑟𝑌.𝑋 − 𝑟𝑌.𝑍 𝑟𝑋.𝑍)2

(1 − 𝑟2
𝑌.𝑍)(1 − 𝑟2

𝑋.𝑍)
     (10) 338 

where Y, X and Z are dependent variables, and e.g. rY,X is the coefficient of correlation of Y and X. 339 

First, Y is predicted from Z and X is predicted from Z. Second, the residuals of these predictions are 340 

computed and correlated. 341 

Finally, we used a mixed model (SAS) to examine how well the measured and modelled canopy 342 

conductance correlate with each other (Table 3). The random effect was similar as described for Table 343 

1. This analysis was only done for P. sylvestris as we did not have photosynthetic data for A. glutinosa 344 
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and T. x vulgaris. The measured and modelled gs were treated in the analysis as independent of each 345 

other, because although sap flux density played a large role in calculating the measured gs (r
2 = 0.22 346 

for linear dependency between gs and sap flux density, not shown), the statistical correlation between 347 

sap flux density and the modelled gs was numerically small (r2 = 0.02, not shown), due to the algebraic 348 

form of the dependence of modelled gs on fbg given by eqn 8, and to the presence of other sources of 349 

variation in modelled gs via the environmental factor C in eqn 8. The number of observations used 350 

for P. sylvestris was 319 (photosynthetic measurement data available for years 2015 and 2016).  351 

 352 

Results 353 

Sap flow rate, xylem diameter change amplitude, daily maximum vapor pressure deficit, soil 354 

temperature and normalized belowground hydraulic conductance (fbg) increased from spring towards 355 

the summer and decreased again in autumn in the three studied cases (Figs. 3, 4, 5). Soil water content 356 

increased in spring, was lowest in summer and increased again in autumn in all studied years and 357 

sites (Fig. 3, 4, 5). However, the decrease in soil water content in the wet urban site for T. x vulgaris 358 

was more limited than for the other species even during the summer months (Fig. 5). fbg did not 359 

decrease below 0.2, and was seldom below 0.3 in summer (Fig. 3, 4, 5). However, the A. glutinosa 360 

trees showed a decrease in fbg during the warmest and driest summer month (Fig. 4), which was not 361 

seen in evergreen P. sylvestris trees growing in a forest (Fig. 3) or in T. x vulgaris street trees measured 362 

on wet urban site (Fig. 5).  363 

fbg of P. sylvestris increased with increasing soil temperature in all seasons (Table 2a, Fig. 6a). In 364 

summer, fbg increased with increasing soil water content, but the correlation between fbg and soil water 365 

content was negative in spring and autumn (Table 2b, Fig. 7a). This is because fbg increased with 366 

increasing soil water content if soil temperature was high enough; when soil temperature was low, fbg 367 
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was low despite the high soil water content as was the situation early in spring and late in autumn 368 

(Fig. 7a). When the dependency of fbg on soil temperature and soil water content was analyzed 369 

together, fbg was positively correlated with soil temperature and soil water content in all seasons, 370 

although most strongly in spring (Table 2c). r2 for the final model was 0.52. 371 

fbg of A. glutinosa decreased with increasing soil temperature (Table 2a, Fig. 6b), and increased with 372 

increasing soil water content (Table 2b, Fig. 7b). fbg seems to decrease with increasing soil 373 

temperature because when soil temperature is high, soil water content is also typically low (Fig. 6b). 374 

This was verified by the fact that soil water content was the only significant variable to explain fbg 375 

when both soil temperature and water content were analyzed together (Table 2c). In contrast, fbg of T. 376 

x vulgaris on a wet site increased with increasing soil temperature (Table 2a, c, Fig. 6c), and 377 

decreased with increasing soil water content (Table 2b, c, Fig. 6c). The r2 value (for the fixed effects) 378 

in the final model was only 0.08 for A. glutinosa and 0.28 for T. x vulgaris. Based on the confidence 379 

intervals of the model estimates, the effect of soil temperature on fbg during summer was similar in P. 380 

sylvestris and T. x vulgaris sites but significantly different in the A. glutinosa site, whereas the effect 381 

of soil water content on fbg during summer was similar in P. sylvestris and A. glutinosa sites and 382 

significantly different in the T. x vulgaris site (when the effect of soil temperature and water content 383 

were analyzed together, Table 2c).  384 

gs was positively correlated with fbg in all studied species (Table 3a). The partial-corrected r2 was 0.35 385 

for P. sylvestris, 0.52 for A. glutinosa and 0.10 for T. x vulgaris (Table 3a) indicating that 386 

belowground hydraulic conductance explains 10 to 52% of the canopy conductance depending on the 387 

case.   388 

The modelled optimal canopy conductance predicted from eqn (1) was well correlated with the 389 

measured canopy conductance in P. sylvestris with an r2 of 0.78 (Table 3b, Fig. 8). When kbg was 390 

kept constant (and equal to ksl) in the model, the correlation between the measured and modelled gs 391 
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decreased significantly having r2 of 0.46 (i.e. this is the explanatory power of the environmental factor 392 

C in eq. 8).  393 

 394 

Discussion 395 

The stomatal optimization model of Hölttä et al (2017) and Dewar et al (2018) provides a theoretical 396 

framework for the two key goals of our study: to examine the dependence of belowground hydraulic 397 

conductance (kbg) on soil environment, and to examine the dependence of canopy conductance (gs) 398 

on kbg. In contrast to previous stomatal models which have various undetermined parameters – e.g. 399 

the parameter  (“the cost of water”) in the optimization theory of Cowan and Farquhar (1977) and 400 

Hari et al (1986), or the parameter g1 in the empirical stomatal model of Ball et al (1987) and Medlyn 401 

et al (2013) – the present model contains no undetermined parameters. As a result, it makes the novel 402 

and specific prediction that soil environmental factors affect stomatal conductance (gs) principally 403 

through their effect on below-ground hydraulic conductance (kbg). Testing the validity of this 404 

prediction is important to our understanding of stomatal conductance because, if valid, it would 405 

enable the behaviour of tree gas exchange from contrasting sites to be understood and synthesised 406 

through an understanding of site-specific controls on kbg.  407 

Our results demonstrate that for mature P. sylvestris trees growing in field conditions, measured 408 

canopy conductance can indeed be successfully predicted from this optimization hypothesis, which 409 

explicitly relates gs to soil-to-leaf hydraulic conductance, of which kbg is an important component. 410 

Furthermore, we found that canopy conductance and kbg were positively correlated in all studied 411 

species and sites (Table 3). Our finding that canopy conductance is an increasing function of 412 

belowground hydraulic conductance, with a sensitivity that depends on environmental conditions, is 413 

consistent with the theoretical predictions summarized in eqns (8) and (9). In particular, the fit 414 
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between measured and modelled gs was much better when measured kbg was used to model gs (r
2 = 415 

0.78, Fig. 8) than when kbg was held constant in modelling gs (r2 = 0.46). The strong correlation 416 

between stomatal and plant conductance in their response to changes in environmental conditions 417 

makes sense from an evolutionary standpoint, from which one would expect selection for a 418 

coordinated response of stomata and plant tissues (Brodribb,  Holbrook, Edwards & Gutiérrez, 2003; 419 

Sperry, 2000) to constrain the decrease in water potential with decreasing hydraulic conductance. 420 

In conjunction with a strong positive correlation between kbg and gs, kbg varied with soil temperature 421 

and soil water content in all tree species and sites studied here. Responses to soil drought mediated 422 

by leaf water potential have been shown to explain on average 87% of the observed decline in gs in 423 

Prunus dulcis, Olea europaea and Vitis vinifera (Rodriguez-Dominguez et al, 2016). Also, elevated 424 

root-zone temperature has been shown to result in higher daytime stomatal conductance, transpiration 425 

and net assimilation rates in Vitis vinifera (Rogiers & Clarke, 2013). Soil temperature was the 426 

dominant factor controlling kbg in P. sylvestris at the forest site: when soil temperature was low, kbg 427 

was always low, but kbg was often high even if soil water content was relatively low (Fig. 5). The 428 

effect of soil water content on kbg was overruled by soil temperature in spring and autumn. Especially 429 

in spring, the correlation between soil water content and kbg was negative unless the effect of soil 430 

temperature was taken into consideration in the analysis. This is because soil water content and soil 431 

temperature had a negative correlation during spring and autumn. Soil temperature was over +8 °C 432 

during summer (according to our definition of seasons based on soil temperature), and thus the 433 

positive effect of soil water content on kbg was most clear during summer. In summary, soil 434 

temperature was the limiting factor for the kbg of P. sylvestris growing at a boreal forest site in spring 435 

and autumn, and soil water content in summer in the absence of low temperatures.  436 

Environmental conditions for the urban street trees are more extreme than those in a forest stand. For 437 

example, air temperature is commonly higher, relative air humidity lower (i.e. D substantially higher), 438 
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and soil water and nutrient availability more limited in urban areas than in forests (Nielsen, Bühler & 439 

Kristoffersen, 2007). This was evident in the high soil temperatures and large differences in soil water 440 

content between individuals in the urban sites of this study. Soil water content was high throughout 441 

the growing season for T. x vulgaris at the urban site, even excessively high, as further increase in 442 

soil water content caused kbg to decrease. A similar response in shoot growth was reported previously 443 

for the same site and was explained by high groundwater level implying poor soil oxygen availability 444 

(Riikonen, Lindén, Pulkkinen & Nikinmaa, 2011). kbg of A. glutinosa growing at the urban site did 445 

benefit from higher soil water content similarly to P. sylvestris at the forest site, most likely because 446 

soil water content decreased clearly during summer months in both of these cases (Figs. 3,4) 447 

indicating that lack of water restricted hydraulic conductance periodically. Similarly, shoot growth 448 

has been reported to respond positively to increase in soil water content at the A. glutinosa site 449 

(Riikonen et al, 2011). Differences in the absolute values in soil water content between the forest site 450 

and urban trees, and even between the urban trees, were mainly caused by different soil materials and 451 

effectiveness of local drainage at the urban sites (Riikonen et al, 2011). Soil temperature did not have 452 

a positive effect on kbg at the T. x vulgaris site, unlike the other two studied cases, indicating that soil 453 

temperature did not limit hydraulic conductance at the T. x vulgaris site during summer. This is 454 

partially explained by the fact that the data from the broadleaved species growing in the urban sites 455 

lacks the periods with cold soil temperatures in the leafless spring and autumn periods. The selected 456 

tree species and site combinations form case studies to test the selected kbg approach, and the study 457 

design does not allow us to compare differences between species or sites per se; because both species 458 

and sites vary between the studied cases, it is not possible to differentiate their effects individually.  459 

The studied sites are located in boreal environment that can be characterized as cold and moist. 460 

Temperature frequently drops to low values especially in spring and autumn, but soil water content 461 

and soil water potential never drop to low values in spring, and rarely even in summer. The limiting 462 

factors for kbg are most likely different in drier and warmer environments. Using a similar 463 
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measurement approach as used in this study, the effect of soil water content on belowground hydraulic 464 

conductance of P. sylvestris was recently studied in a dry Mediterranean forest (Poyatos et al, 2018). 465 

Those results suggest that kbg can become a limiting factor for whole-plant hydraulic conductance 466 

during drought due to root embolism or reductions in the hydraulic conductance of the soil-root 467 

interface (Poyatos et al, 2018). Martínez-Vilalta et al (2007), on the other hand, did not find a clear 468 

relationship between kbg and either soil temperature or soil water content in their study although the 469 

method was similar. Their data was collected in Scotland from August to November. The climate in 470 

Scotland is temperate and oceanic, and the measurement period represents late summer and autumn, 471 

and thus it is possible that the scales of change in soil temperature and soil water content were not 472 

large enough to effect kbg in their study.  473 

The method used to derive kbg and gs is based on continuous and automatic field measurements, which 474 

is advantageous in comparison to measuring canopy gas exchange and soil and tree water potentials 475 

directly. Earlier studies using different methodology have shown that kbg decreases with decreasing 476 

soil water content due to decreased soil hydraulic conductance (e.g. Campbell & Norman, 2000; 477 

Duursma et al, 2008). In addition to soil water content, soil temperature has also been found to play 478 

a key role in kbg especially at low soil temperatures (BassiriRad et al, 1991; Cochard et al, 2000; 479 

García-Tejera, López-Bernal, Villalobos, Orgaz & Testi, 2016; Mellander et al, 2004; Nobel et al, 480 

1990; Running & Reid, 1980; Wan et al, 1999, 2001). However, studies of the relation between kbg 481 

and soil temperature have been missing in mature trees in field conditions. We found a steeper 482 

decrease of kbg with decreasing soil temperature in spring, when soil temperature was below +8°C 483 

(Figs. 3, 4, 5); kbg decreased below 0.3 of its maximum value mainly in spring and autumn. Also 484 

Running and Reid (1980) found root resistance for water transport in Pinus contorta seedlings to 485 

increase exponentially below +7 °C soil temperature, and Mellander et al (2004) found that soil 486 

temperatures below +8 C restricted transpiration, because of restricted water uptake in P. sylvestris. 487 

The increase in belowground hydraulic conductance with increasing temperature is likely due to 488 
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decreasing water viscosity and increasing root membrane permeability due to modifications in its 489 

fluidity (Améglio et al, 1990; Hertel & Steudle, 1997; Kaufmann, 1975; Kramer, 1940; Wan et al, 490 

2001). For example, Wan et al (1999) showed with Populus tremuloides seedlings that root water 491 

flow was decreased by decreasing soil temperature from 20 °C downwards. Decrease in water uptake 492 

capacity with decreasing temperature cannot be fully explained by increasing water viscosity, but 493 

requires also some other factors such as changes in root membrane permeability (Wan et al, 2001). 494 

Consistent with this finding, Cochard et al. (2000) showed with Quercus robur saplings that 495 

decreasing soil temperature decreased root conductance considerably, and that this decrease could be 496 

explained by changes in water viscosity only in temperatures between 35 and 15 °C. The decrease in 497 

root conductance was steeper in colder temperatures. Increase in root membrane permeability with 498 

increasing temperature can be caused by biomembrane changes from a solid-gel state to a liquid-499 

crystal state (Améglio et al, 1990; Grossnickle, 1988) and/or by increased aquaporin activity (e.g. 500 

Ionenko, Anisimov & Dautova, 2010; Javot & Maurel, 2002; Murai-Hatano et al, 2008). Moreover, 501 

the growth of fine roots (Beikircher, Mittmann & Mayr, 2016; Larcher, 2003) and mycorrhizas 502 

(Domisch, Finér, Lehto & Smolander, 2002) as well as restoration of the xylem hydraulic 503 

conductivity after winter embolism (Beikircher et al, 2016) are strongly enhanced by increasing 504 

temperatures, and thus increasing kbg.  505 

The method of estimating belowground hydraulic conductance from simultaneous field 506 

measurements of sap flow rate and xylem diameter change of mature trees gave consistent values 507 

over the seasonal time series of kbg across years, tree individuals, species and sites, and of the variation 508 

of kbg with soil temperature, soil water content, and canopy conductance. Our results demonstrate that 509 

soil temperature is an important factor affecting the water availability and the leaf gas exchange of 510 

mature trees in boreal conditions. The expected earlier snowmelt and higher springtime soil 511 

temperatures (Mellander, Löfvenius & Laudon, 2007) are expected to accelerate springtime carbon 512 

uptake (Black et al, 2000; Pulliainen et al, 2017) and allow the growing season to start earlier (Bergh 513 
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& Linder, 1999), leading to increased carbon sequestration and growth in boreal conditions (Jarvis & 514 

Linder, 2000). Our results indicate how such effects may be represented in models, through the use 515 

of a novel stomatal optimization theory that links stomatal conductance to belowground hydraulic 516 

conductance.    517 
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Tables 764 

Table 1.  List of symbol definitions and units used in the main text. 765 

Symbol Definition Unit 

A leaf photosynthesis mol m-2 s-1 

Aleaf leaf area m2 
α0 photosynthetic quantum yield mol mol-1 

ca atmospheric CO2 concentration mol mol-1 

ci intercellular CO2 concentration mol mol-1 
D vapor pressure deficit mol mol-1 

Dmax maximum daily vapor pressure deficit mol mol-1 

dxmax daily maximum xylem diameter (mean of the 10 % highest values) μm 

dxmin daily minimum xylem diameter (mean of the 10 % lowest values) μm 
Δdx daily amplitude of diameter change μm 

fbg normalized belowground hydraulic conductance (values 0-1) - 

Fmax daily maximum sap flow rate (mean of the 10 % highest values) l h-1 
gs canopy conductance for CO2 mol m-2 s-1 

gs,norm normalized canopy conductance (values 0-1) - 

kbg belowground hydraulic conductance  mol m-2 s-1 MPa-1 
kbg,d daily maximum belowground hydraulic conductance  mol m-2 s-1 MPa-1 

kbg,max annual maximum hydraulic conductance  mol m-2 s-1 MPa-1 

krl leaf specific base-to-leaf hydraulic conductance mol m-2 s-1 MPa-1 

ksl leaf specific soil-to-leaf hydraulic conductance  mol m-2 s-1 MPa-1 
ѱc critical leaf water potential MPa 

ѱl leaf water potential MPa 

ѱs soil water potential MPa 
Q photosynthetically active radiation mol m-2 s-1 

Γ* CO2 photorespiratory compensation point mol mol-1 

rx,0 carboxylation resistance in the absence of non-stomatal limitation mol-1 m2 s 

SWC soil water content (relative value) - 

  766 

  767 
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Table 2. Mixed effect model results are presented for normalized belowground hydraulic conductance 768 

(fbg) for Pinus sylvestris, Alnus glutinosa and Tilia x vulgaris. A) fbg is modelled with daily mean soil 769 

temperature (ST) as an independent variable, B) with soil water content (SWC) as an independent 770 

variable, and C) with a full model selected based on Akaike’s Information Criteria. For Pinus, season 771 

and its interaction variable with ST and SWC are also included in all models. Seasons refer to spring 772 

(SP), autumn (AU) and summer (SU). r2 is given for the fixed effects only.  773 

Species 
Dependent 

variable 
r2 Effect Season Estimate 

Confidence 

interval (95) 

Standard 

Error 
t Value Pr > |t| 

A          

Pinus  fbg 0.44 Intercept  0.46 0.26-0.67 0.065 7.17 0.0056 

   season SP -0.40 -0.54-(-0.25) 0.074 -5.38 <.0001 

   season AU -0.64 -1.02-(-0.26) 0.194 -3.31 0.0010 

   season SU 0 . . . . 

   ST  0.01 0.00-0.02 0.006 2.19 0.0288 

   ST*season SP 0.068 0.05-0.09 0.009 7.46 <.0001 

   ST*season AU 0.056 0.00-0.11 0.028 2.04 0.0415 

   ST*season SU 0 . . . . 

Alnus fbg 0.02 Intercept  0.54 0.25-0.83 0.067 8.11 0.0149 

   ST  -0.01 -0.01-(0.00) 0.002 -3.85 0.0001 

Tilia fbg 0.22 Intercept  0.05 -0.15-0.26 0.047 1.11 0.3821 

   ST  0.02 0.02-0.03 0.002 10.54 <.0001 

B          

Pinus fbg 0.32 Intercept  0.47 0.35-0.59 0.037 12.81 0.0010 

   season SP 0.51 0.27-0.75 0.121 4.22 <.0001 

   season AU -0.17 -0.31-(0.04) 0.069 -2.51 0.0124 

   season SU 0 . . . . 

   SWC  0.66 0.34-0.98 0.164 4.01 <.0001 

   SWC*seaso

n 
SP -2.31 -3.09-(-1.55) 0.391 -5.91 <.0001 

   SWC*seaso
n 

AU -0.74 -1.42-(-0.05) 0.348 -2.12 0.0343 

   SWC*seaso
n 

SU 0 . . . . 

Alnus fbg 0.07 Intercept  0.15 -0.15-0.45 0.070 2.12 0.1683 

   SWC  1.47 1.02-1.92 0.229 6.40 <.0001 

Tilia fbg 0.18 Intercept  2.17 1.41-2.93 0.176 12.35 0.0065 

   SWC  -8.10 -9.74-(-6.46) 0.835 -9.71 <.0001 

C          

Pinus fbg 0.52 Intercept  0.13 -0.12-0.37 0.078 1.62 0.2028 

   season SP -1.46 -1.87-(-1.05) 0.208 -6.99 <.0001 

   season AU -0.46 -0.87-(-0.05) 0.209 -2.19 0.0291 

   season SU 0 . . . . 

   SWC  1.01 0.72-1.30 0.147 6.89 <.0001 

   ST  0.02 0.01-0.04 0.005 4.54 <.0001 

   ST*season SP 0.11 0.09-0.13 0.012 9.67 <.0001 

   ST*season AU 0.05 0.00-0.11 0.026 2.07 0.0387 

   ST*season SU 0 . . . . 

   SWC*seaso

n 
SP 2.45 1.47-3.43 0.499 4.92 <.0001 

   SWC*seaso
n 

AU -0.58 -1.18-(0.02) 0.305 -1.90 0.0586 

   SWC*seaso
n 

SU 0 . . . . 

Alnus fbg 0.08 Intercept  0.11 -0.35-0.57 0.107 1.06 0.4011 

   SWC  1.56 0.95-2.16 0.309 5.04 <.0001 

   ST  0.00 -0.00-(0.01) 0.003 0.43 0.6703 

Tilia fbg 0.28 Intercept  1.20 0.24-2.16 0.223 5.37 0.0330 

   SWC  -4.89 -6.73-(-3.06) 0.934 -5.24 <.0001 

   ST  0.02 0.01-0.02 0.003 6.52 <.0001 
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Table 3. A) Mixed effect model results are presented for the correlation between normalized 774 

(measured) canopy conductance (gs) and belowground hydraulic conductance (fbg) for Pinus 775 

sylvestris, Alnus glutinosa and Tilia x vulgaris. Season is included in the model selection process for 776 

P. sylvestris; seasons refer to spring (SP), autumn (AU) and summer (SU). The models are selected 777 

based on Akaike’s Information Criteria. We used log-transformed values, because the data had a 778 

power-law form. B) Generalized linear model results are given for the relation between measured 779 

(unnormalized) and modelled canopy conductance (gs) for P. sylvestris. r2 is given for fixed effects 780 

only, and corrected r2 is given in A as calculated in eq. 10. 781 

Species 
Dependent 

variable 
r2  Effect Season Estimate 

Confidence 

interval (95) 

Standard 

Error 
t Value Pr > |t| 

A          

Pinus gs_norm 0.35 Intercept  -0.26 -0.48-(-0.03) 0.071 -3.61 0.0366 

   season SP -0.04 -0.16-(0.09) 0.064 -0.60 0.5515 

   season AU -0.46 -0.72-(-0.20) 0.132 -3.45 0.0006 

   season SU 0 . . . . 

   fbg  0.76 0.63-0.89 0.066 11.52 <.0001 

   fbg *season SP 0.10 -0.05-0.26 0.078 1.29 0.1972 

   fbg *season AU -0.24 -0.45-(-0.04) 0.106 -2.30 0.0220 

   fbg *season SU 0 . . . . 

Alnus gs_norm 0.52 Intercept  -0.43 -0.87-0.02 0.104 -4.09 0.0550 

   fbg  0.91 0.83-0.99 0.042 21.71 <.0001 

Tilia gs_norm 0.10 Intercept  -0.25 -0.86-0.36 0.143 -1.75 0.2216 

   fbg  0.92 0.86-0.97 0.028 32.92 <.0001 

B          

Pinus gs_measured 0.78 Intercept  -0.00 -0.01-0.01 0.002 -0.42 0.7131 

   gs_modelled  1.02 0.96-1.08 0.031 33.21 <.0001 

 782 

 783 

  784 
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Figure captions 785 

Figure 1. A) Relationship between xylem diameter and stem water potential in Alnus glutinosa grown 786 

in an urban environment. The measurements are from morning, mid-day and afternoon for 5 days in 787 

June in 2011. B) Relationship between maximum diurnal xylem diameter and soil water potential in 788 

cases where soil water potential is essentially different from zero in Pinus sylvestris grown in a forest 789 

stand. The measurements are from May to August in 2015. In both figures, xylem diameter is set to 790 

zero in the beginning of the period.  791 

Figure 2. Illustration of the principle used in deriving daily belowground hydraulic conductance (kbg) 792 

and canopy conductance (gs) from 24 hours of example field data. Fmax, dxmax and Dmax are calculated 793 

as mean of the 10 % highest values per day and dxmin as mean of the 10% lowest values per day. 794 

Figure 3. Time series of A) normalized belowground hydraulic conductance (fbg), B) daily maximum 795 

sap flow rate (Fmax), C) the daily amplitude of diameter change (Δdx) and daily maximum vapor 796 

pressure deficit (Dmax), and D) daily mean soil temperature and soil water content for Pinus sylvestris 797 

grown in a forest stand (tree 1 in year 2015). 798 

Figure 4. Time series of A) normalized belowground hydraulic conductance (fbg), B) daily maximum 799 

sap flow rate (Fmax), C) the daily amplitude of diameter change (Δdx) and daily maximum vapor 800 

pressure deficit (Dmax), and D) daily mean soil temperature and soil water content for Alnus glutinosa 801 

grown in urban environment (tree 2 in year 2010). fbg data are shown only for the leaf-period (period 802 

between the leaf area reached 15% of its total area in spring and before the leaf fall had reached 70% 803 

of its total area in autumn). 804 

Figure 5. Time series of A) normalized belowground hydraulic conductance (fbg), B) daily maximum 805 

sap flow rate (Fmax), C) the daily amplitude of diameter change (Δdx) and daily maximum vapor 806 

pressure deficit (Dmax), and D) daily mean soil temperature and soil water content for Tilia x vulgaris 807 
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grown in urban environment (tree 1 in year 2013). fbg data are shown only for the leaf-period (period 808 

between the leaf area reached 15% of its total area in spring and before the leaf fall had reached 70% 809 

of its total area in autumn). 810 

Figure 6. Normalized belowground hydraulic conductance (fbg) plotted against daily mean soil 811 

temperature in spring, summer and autumn for A) Pinus sylvestris trees grown in a forest stand, B) 812 

Alnus glutinosa grown in an urban environment, and C) Tilia x vulgaris grown in an urban 813 

environment. The bubble size represents volumetric soil water content. Linear fits between fbg and 814 

soil temperature are drawn and r2 values are given for each season in A and for all data in B and C. 815 

See Table 2A for detailed analysis. Note different X-axes values in the panels. 816 

Figure 7. Normalized belowground hydraulic conductance (fbg) plotted against volumetric soil water 817 

content in spring, summer and autumn for A) Pinus sylvestris trees grown in a forest stand, B) Alnus 818 

glutinosa grown in an urban environment, and C) Tilia x vulgaris grown in an urban environment. 819 

The bubble size represents relative soil temperature. Linear fits between fbg and soil temperature are 820 

drawn and r2 values are given for each season in A and for all data in B and C. See Table 2B for 821 

detailed analysis. Note different X-axes values in the panels. 822 

Figure 8. Measured canopy conductance (gs) for Pinus sylvestris compared with canopy conductance 823 

modelled using eqns 8 and 9. See Table 3 for detailed analysis. 824 
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