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Abstract

Perceptual organization is the process of grouping scene elements into whole entities. A

classic example is contour integration, in which separate line segments are perceived as

continuous contours. Uncertainty in such grouping arises from scene ambiguity and sensory

noise. Some classic Gestalt principles of contour integration, and more broadly, of percep-

tual organization, have been re-framed in terms of Bayesian inference, whereby the

observer computes the probability that the whole entity is present. Previous studies that pro-

posed a Bayesian interpretation of perceptual organization, however, have ignored sensory

uncertainty, despite the fact that accounting for the current level of perceptual uncertainty is

one of the main signatures of Bayesian decision making. Crucially, trial-by-trial manipulation

of sensory uncertainty is a key test to whether humans perform near-optimal Bayesian infer-

ence in contour integration, as opposed to using some manifestly non-Bayesian heuristic.

We distinguish between these hypotheses in a simplified form of contour integration, namely

judging whether two line segments separated by an occluder are collinear. We manipulate

sensory uncertainty by varying retinal eccentricity. A Bayes-optimal observer would take the

level of sensory uncertainty into account—in a very specific way—in deciding whether a

measured offset between the line segments is due to non-collinearity or to sensory noise.

We find that people deviate slightly but systematically from Bayesian optimality, while still

performing “probabilistic computation” in the sense that they take into account sensory

uncertainty via a heuristic rule. Our work contributes to an understanding of the role of sen-

sory uncertainty in higher-order perception.

Author summary

Our percept of the world is governed not only by the sensory information we have access

to, but also by the way we interpret this information. When presented with a visual scene,

our visual system undergoes a process of grouping visual elements together to form coher-

ent entities so that we can interpret the scene more readily and meaningfully. For example,

when looking at a pile of autumn leaves, one can still perceive and identify a whole leaf
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even when it is partially covered by another leaf. While Gestalt psychologists have long

described perceptual organization with a set of qualitative laws, recent studies offered a

statistically-optimal—Bayesian, in statistical jargon—interpretation of this process,

whereby the observer chooses the scene configuration with the highest probability given

the available sensory inputs. However, these studies drew their conclusions without con-

sidering a key actor in this kind of statistically-optimal computations, that is the role of

sensory uncertainty. One can easily imagine that our decision on whether two contours

belong to the same leaf or different leaves is likely going to change when we move from

viewing the pile of leaves at a great distance (high sensory uncertainty), to viewing very

closely (low sensory uncertainty). Our study examines whether and how people incorpo-

rate uncertainty into contour integration, an elementary form of perceptual organization,

by varying sensory uncertainty from trial to trial in a simple contour integration task. We

found that people indeed take into account sensory uncertainty, however in a way that

subtly deviates from optimal behavior.

Introduction

Perceptual organization is the process whereby the brain integrates primitive elements of a

visual scene into whole entities. Typically, the same scene could afford different interpretations

because of ambiguity and perceptual noise. How the brain singles out one interpretation has

long been described to follow a set of qualitative principles defined in Gestalt psychology. For

example, contour integration, a form of perceptual organization that consists of the perceptual

grouping of distinct line elements into a single continuous contour, is often described by the

Gestalt principles of “good continuation” and “proximity”. These principles state that humans

extrapolate reasonable object boundaries by grouping local contours consistent with a smooth

global structure [1].

While Gestalt principles represent a useful catalogue of well-established perceptual phe-

nomena, they lack a theoretical basis, cannot make quantitative predictions, and are agnostic

with respect to uncertainty arising from sensory noise. This not only limits understanding at

the psychological level, it is also problematic within a broader agenda of quantitatively linking

neural activity in different brain areas to behavior. For example, neural investigations of the

perception of illusory contours, a phenomenon in contour integration in which the observer

perceives object contours when they are not physically present, have largely remained at a

qualitative level. An alternative approach that does not suffer from these shortcomings uses the

framework of Bayesian inference, whereby the observer computes the probabilities of possible

world states given sensory observations using Bayes’ rule [2]. In the realm of perceptual orga-

nization, Bayesian models stipulate that the observer computes the probabilities of different

hypotheses about which elements belong to the same object (e.g., [3–6]). For the example of

contour integration, such hypotheses would be that line elements belong to the same contour

and that they belong to different contours.

A fully Bayesian approach to contour integration would provide a normative way for deal-

ing both with high-level uncertainty arising from ambiguity in the latent structure of the

scene, and with low-level (sensory) uncertainty arising from noise in measuring primitive ele-

ments of the scene. Crucially, however, previous studies in perceptual organization, and more

specifically contour integration, have looked at the statistics of the environment [5] but have

not examined whether the decision rule adapts flexibly as a function of sensory uncertainty.

Such adaptation is a form of probabilistic computation and, while not unique, is one of the
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basic signatures of Bayesian inference in perception [7]. This question is fundamental to

understanding whether, how, and to which extent the brain represents and computes with

probability distributions [8]. A trial-by-trial manipulation of sensory uncertainty is an effective

test of probabilistic computation, because otherwise Bayesian inference would be indistin-

guishable from an observer using an inflexible, uncertainty-independent mapping [9, 10].

While the variation of sensory reliability is not the only possible form of uncertainty manipula-

tion, it has been a successful approach for studying probabilistic computation in low-level per-

ception, such as in multisensory cue combination [11, 12] and in integration of sensory

measurements with prior expectations [13, 14]. Moreover, tasks with varying sensory uncer-

tainty have yielded insights into the neural representation of uncertainty [15, 16].

In the current study, we investigate the effect of varying sensory uncertainty on an atomic

form of contour integration. Specifically, we manipulate sensory uncertainty unpredictably on

a trial-to-trial basis by changing stimulus retinal eccentricity in a simple collinearity judgment

task. Our experimental manipulation allows for a stronger test of the hypothesis that percep-

tual grouping is a form of Bayesian inference, at least for the elementary case of collinearity

judgment of two line segments. However, looking for a qualitative empirical signature of

Bayesian computations, such as an effect of sensory uncertainty, is not enough because many

distinct decision strategies might produce similar behaviors [17, 18]. Proper quantitative com-

parison of Bayesian observer models against plausible alternatives is critical in establishing the

theoretical standing of the Bayesian approach [19–21]. For example, as an alternative to per-

forming the complex, hierarchical computations characteristic of optimal Bayesian inference,

the brain might draw instead on simpler non-Bayesian decision rules and non-probabilistic

heuristics [22, 23] such as grouping scene elements based on some simple, learned rule. In con-

tour integration, such a simple rule may dictate that line elements belong to the same contour

if they are close enough in space and orientation, independently of other properties of the

scene. Therefore, here we rigorously compare the Bayesian strategy, and sub-optimal variants

thereof, against alternative and markedly non-Bayesian decision rules, both probabilistic and

non-probabilistic. While we find compelling evidence of probabilistic computation, a probabi-

listic, non-Bayesian heuristic model outperforms the Bayes-optimal model, suggesting a form

of sub-optimality in the decision-making process. Our study paves the way for a combined

understanding of how different sources of uncertainty affect contour integration, and offers

the opportunity for rigorous Bayesian modeling to be extended to more complex forms of per-

ceptual organization.

Results

Subjects (n = 8) performed a collinearity judgment task (Fig 1A). On each trial, the participant

was presented with a vertical occluder and the stimulus consisted of two horizontal lines of

equal length on each side of the occluder. At stimulus offset, the participant reported whether

the two lines were collinear or not via a single key press. To avoid the learning of a fixed map-

ping, we withheld correctness feedback. In different blocks in the same sessions, participants

also completed a height judgment task (Fig 1B), with the purpose of providing us with an inde-

pendent estimate of the participants’ sensory noise. In both tasks, sensory uncertainty was

manipulated by varying retinal eccentricity on a trial to trial basis (Fig 1D). We investigated

whether people took into account their sensory noise σx(y), which varied with eccentricity

level y, when deciding about collinearity.

We found a main effect of vertical offset on the proportion of collinearity reports (two-way

repeated-measures ANOVA with Greenhouse-Geisser correction; F(3.69,114) = 101, � = 0.461,

p< 0.001, Z2
p ¼ 0:766) and a main effect of eccentricity (F(2.38,169) = 51.2, � = 0.794, p< 0.001,
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Fig 1. Tasks and generative model. A: Collinearity judgment task. After stimulus offset, participants reported if the line segments belonged to the same line or

different lines. B: Height judgment task. Participants reported whether the left line segment was higher or the right line segment was higher. C: Generative model of

the collinearity judgment task. Trial type C = 1 when the two lines segments are collinear, and C = 0 when line segments are non-collinear. On a given trial, the

stimulus pair yL, yR randomly appeared around one of four eccentricity levels (y = 0, 4.8, 9.6, 16.8), measured by degrees of visual angle (dva). For all models, the

observer’s measurements xL, xR are assumed to follow a Gaussian distribution centered on the true stimulus yL, yR, respectively, with standard deviation σx(y)

dependent on eccentricity level y. D: Possible eccentricity levels (in dva). E: Stimulus distribution for collinearity judgment task. When C = 1, the vertical position

of the left line segment yL is drawn from a Gaussian distribution centered at y with fixed standard deviation σy; the vertical position of the right segment yR is then

set equal to yL. When C = 0, yL and yR are independently drawn from the same Gaussian.

https://doi.org/10.1371/journal.pcbi.1006308.g001
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Z2
p ¼ 0:419), suggesting that the experimental manipulations were effective (Fig 2A and 2B).

We also found a significant interaction between offset and eccentricity (F(4.38,30.7) = 7.88, � =

0.183, p< 0.001, Z2
p ¼ 0:529), which is evident in the psychometric curves across subjects

(Fig 2C).

We did not find significant effects of learning across sessions (see S1 Appendix), so in our

analyses for each subject we pooled data from all sessions.

Models

We describe here three main observer models which correspond to different assumptions

with respect to when the observer reports “collinear”, that is three different forms of decision

boundaries (Fig 3).

Fig 3. Decision boundaries for fixed-criterion (Fixed), bayesian (Bayes) and linear heuristic (Lin) models (left to right). The probability of reporting “collinear”

given stimulus and eccentricity condition is equal to the probability that the observer’s measurements of vertical positions of left and right line segments fall within the

boundary defined by the model.

https://doi.org/10.1371/journal.pcbi.1006308.g003

Fig 2. Collinearity judgement task data. A: Accuracy as a function of retinal eccentricity level (chance probability = 0.5). B: Proportion of reporting “collinear” as

a function of vertical offset between the two line segments. C: Proportion of reporting “collinear” as a function of vertical offset of the two line segments at each

eccentricity level. Error bars indicate Mean ± 1 SEM across 8 subjects.

https://doi.org/10.1371/journal.pcbi.1006308.g002
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We first consider the behavior of a Bayesian observer (“Bayes”) who utilizes the probability

distributions defined in the generative model of the task (Fig 1C) to make decisions that maxi-

mize the probability of being correct, given the available sensory measurements. In particular,

the Bayesian observer accounts for uncertainty when deciding whether a measured offset

between the line segments is due to non-collinearity or to sensory noise by choosing the cate-

gory (C = 1 or C = 0) with the highest posterior probability p(C|xL, xR), where xL, xR are mea-

surements of the two line segments on a particular trial. This strategy translates into reporting

“collinear” when xL, xR fall within the Bayesian decision boundary, which is a function of (a)

both measurements—not simply their difference—, (b) sensory noise (that is, eccentricity) in

the trial, (c) the belief about the offset distribution width σy, and (d) the prior belief about the

proportion of collinear trials p(C = 1) (Fig 3B). Note that a strictly Bayes-optimal observer

would have a prior that matches the experimental distribution, p(C = 1) = 0.5. Here we relaxed

the assumption and allowed p(C = 1) to be a free parameter. The basic Bayesian model assumes

that the observer knows the width of the offset distribution (fixed throughout the experiment)

and the noise level associated with the current trial; see Model variants for a relaxation of these

assumptions.

To investigate whether people apply instead a learned stimulus mapping that is uncertainty

independent, we tested a fixed-criterion model (“Fixed”) [24] in which the observer responds

that two line segments are collinear whenever the measured offset |xL − xR| is less than a fixed

distance κ (a free parameter of the model). This corresponds to an eccentricity-invariant deci-

sion boundary (Fig 3A).

Finally, we also considered an instance of probabilistic, non-Bayesian computation via a

heuristic model (“Lin”) in which the observer takes stimulus uncertainty into account in a

simple, linear way: the observer responds “collinear” whenever the measured offset |xL − xR| is

less than an uncertainty-dependent criterion,

kðyÞ ¼ k0 þ k1sxðyÞ ð1Þ

where κ0 and κ1 are free parameters of the model (Fig 3C). While the Lin model takes uncer-

tainty into account, and thus it is “probabilistic”, it is formally non-Bayesian because it does

not use knowledge of the statistics of the task to compute a posterior over latent variables [7]

(see also Discussion).

A detailed mathematical description of each model is reported in S1 Appendix.

Model comparison

To fully account for parameter uncertainty, we used Markov Chain Monte Carlo (MCMC) to

sample the posterior distributions of the parameters for each model and individual subject. To

estimate goodness of fit (that is, predictive accuracy) while taking into account model com-

plexity, we compared models using the leave-one-out cross-validation score (LOO), estimated

on a subject-by-subject basis directly from the MCMC posterior samples via Pareto smoothed

importance sampling [25] (see Methods). Higher LOO scores correspond to better predictive

accuracy and, thus, better models.

We found that the fixed-criterion model fits the worst (LOOBayes − LOOFixed = 25.6 ± 13.6,

LOOLin − LOOFixed = 69.3 ± 16.5; Mean ± SEM across subjects), while also yielding the poorest

qualitative fits to the behavioral data (Fig 4A). This result suggests that participants used not

only their measurements but also sensory uncertainty from trial to trial, thus providing first

evidence for probabilistic computation in collinearity judgment. Moreover, we find that the

linear heuristic model performs better than the Bayesian model (LOOLin − LOOBayes =

43.7 ± 13.3), suggestive of a suboptimal way of taking uncertainty into account.
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To allow for model heterogeneity across subjects, we also combined model evidence from

different subjects using a hierarchical Bayesian approach that treats the model as a random

variable to accommodate between-subject random effects [26]. This method allowed us to

compute the expected posterior frequency for each model, that is the probability that a ran-

domly chosen subject belongs to a particular model in the comparison. This analysis con-

firmed our previous model comparison ordering, with the Fixed model having the lowest

expected frequency (0.11 ± 0.09), Bayes the second highest (0.18 ± 0.11) and Lin by far the

highest (0.71 ± 0.13). We also calculated the protected exceedance probability [27], that is the

probability that a particular model is the most frequent model in the set, above and beyond

chance. We found consistent results—namely the Fixed model has the lowest protected

exceedance probability (0.048), followed by Bayes (0.062), and Lin (0.89).

Validation of noise parameters

In all analyses so far, the observer’s sensory noise levels at each eccentricity level σx(y) were

individually fitted as free parameters (four noise parameters, one per eccentricity level). To

obtain an independent estimate of the subjects’ noise, and thus verify if the noise parameters

estimated from the collinearity task data truly capture subjects’ sensory noise, we introduced

in the same sessions an independent Vernier discrimination task (height judgment task) [28,

29]. In this task, participants judged whether the right line segment was displaced above or

Fig 4. Model fits and model comparison for fixed-criterion (Fixed), bayesian (Bayes) and linear heuristic (Lin) models (from left to right). A: Model fits to

proportion of responding collinear as a function of vertical offset of the two line segments. Error bars indicate Mean ± 1 SEM across subjects. Shaded regions

indicates Mean ± 1 SEM of fits for each model, with each model on a separate column. B: Model comparison via leave-one-out cross-validation score (LOO). Bars

indicate individual subjects’ LOO scores for every model, relative to the fixed-criterion model. A positive value indicates that the model in the corresponding

column had a better LOO score than the fixed-criterion model. Shaded regions indicate Mean ± 1 SEM in LOO differences across subjects. The Lin model won the

model comparison, whereas Fixed was the worst model.

https://doi.org/10.1371/journal.pcbi.1006308.g004
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below the left line segment (Figs 1B and 5A). Importantly, the observer’s optimal decision rule

in this task is based solely on the sign of the observer’s measured offset between the line seg-

ments, and does not depend on the magnitude of sensory noise (that is, respond “right seg-

ment higher” whenever xR> xL). Moreover, trials in this task matched the stimulus statistics

Fig 5. Height judgment task results. A: Height judgment task data. Proportion of reporting “right line segment higher” is plotted as a function of vertical offset

between line segments. Error bars indicate Mean ± 1 SEM across subjects. B: Noise parameters estimated from the best-fitting model, linear heuristic (Lin), on

collinearity judgment task vs. noise parameters estimated from the height judgment task, in dva. Each dot corresponds to a subject’s estimated noise parameters

(posterior means) for a given eccentricity level. C: Models’ fits to collinearity judgment task data when noise parameters estimated from the height judgment task

were imported into the models. Shaded regions indicate Mean ± 1 SEM of fits. See Fig 4A for comparison. D: Model comparison on collinearity judgment task data

via LOO, constrained by importing noise parameters from the height judgment task. Results are consistent with the model comparison ordering we found in the

original unconstrained fits, with free noise parameters (see Fig 4B for comparison).

https://doi.org/10.1371/journal.pcbi.1006308.g005
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used in non-collinear trials of the collinearity judgment task. Therefore, the height judgment

task afforded an independent set of estimates of subjects’ noise levels.

Repeated-measures ANOVA indicated a main effect of the vertical offset between the two

line segments on the proportion of reports “right higher” (F(2.58,80.1) = 320, � = 0.323,

p< 0.001, Z2
p ¼ 0:912), no main effect of eccentricity (F(1.99,141) = 0.300, � = 0.662, p = 0.740,

Z2
p ¼ 0:004), and an interaction between eccentricity and offset (F(4.67,32.7) = 8.75, � = 0.195,

p< 0.001, Z2
p ¼ 0:556). These findings confirm that, as expected, participants in the height

judgement task took into account the offset, and their performance was also affected simulta-

neously by offset and eccentricity (that is, sensory noise).

We found that sensory noise parameters estimated from the best model (Lin) in the collin-

earity task were well correlated—across subjects and eccentricities—with those estimated from

the height judgment task (r = 0.88) (Fig 5B), indicating that the model is correctly capturing

subjects’ noise characteristics in collinearity judgment.

We next examined whether the model comparison between Bayes, Fixed, and Lin could be

constrained using the parameter estimates obtained from the height judgment task, and

whether such a constrained comparison would alter our findings. For each subject and each

eccentricity level, we imported the posterior mean of each noise parameter of that subject at

that eccentricity level, as estimated from the height judgment task, into the model for the col-

linearity task. This left the Bayes, Fixed, and Lin models with only 2, 2, and 3 free parameters,

respectively, which we estimated via MCMC as previously described. The fits of the con-

strained models were comparable to those of their unconstrained counterparts (compare

Fig 5C to Fig 4A). The quantitative comparison of the constrained models was also consistent

with that of the unconstrained models (compare Fig 5D to Fig 4B): LOOBayes − LOOFixed =

94.7 ± 25.1, LOOLin − LOOFixed = 150.6 ± 30.2. Overall, this analysis shows that our models

correctly captured subjects’ noise features, and that our conclusions are not merely due to

excessive flexibility of our models, as we obtain the same results with models with very few free

parameters.

As a further sanity check, we repeated the analysis in this section using maximum-a-poste-

riori (MAP) estimates for the noise parameters imported from the height judgment task

(instead of the posterior means), finding quantitatively similar results (correlation between

collinearity task and height judgement task parameters: r = 0.87; LOOBayes − LOOFixed =

93.5 ± 26.7; LOOLin − LOOFixed = 142.4 ± 28.3).

Suboptimality analysis

In the previous sections we have found that the Lin model wins the model comparison against

the Bayesian model, suggestive of suboptimal behavior among participants. Here we closely

examine the degree of suboptimality in terms of the loss of accuracy in the collinearity task

with respect to Bayes-optimal behavior.

In order to assess the accuracy that an observer with a given set of noise parameters could

achieve, had they performed Bayes-optimally, we proceeded as follows. For each subject, we

generated a simulated dataset from the Bayesian model using the maximum-a-posteriori noise

parameters σx(y) estimated from both the collinearity judgment task and the height judgment

task. We used both estimates to ensure that our results did not depend on a specific way of esti-

mating noise parameters. For this analysis, we assumed optimal parameters, that is pcommon =

0.5 and no lapse (λ = 0).

We found a significant difference between observed accuracy and estimated optimal accu-

racy based on collinearity judgment noise, as shown in Fig 6 (two-way repeated-measures

ANOVA with Greenhouse-Geisser correction; F(1.00,7.00) = 37.8, � = 1.00, p< 0.001,
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Z2
p ¼ 0:844). There is a significant main effect of eccentricity (F(2.03,14.2) = 128, � = 0.675,

p< 0.001, Z2
p ¼ 0:948), which is expected from the experimental manipulations. We also

found no significant interaction between optimality condition and eccentricity (F(2.22,15.5) =

2.31, � = 0.738, p = 0.106, Z2
p ¼ 0:248). Analogously, for height judgement noise parameters,

there is also a significant difference between observed accuracy and estimated optimal accu-

racy (F(1.00,7.00) = 7.45, � = 1.00, p = 0.029, Z2
p ¼ 0:516), a significant main effect of eccentricity

(F(1.85,13.0) = 54.4, � = 0.618, p< 0.001, Z2
p ¼ 0:886), and no significant interaction between

optimality condition and eccentricity (F(2.16,15.1) = 3.46, � = 0.720, p = 0.055, Z2
p ¼ 0:331).

These results confirm the results of the model comparison in that there is a statistically signifi-

cant difference between our subjects’ performance and optimal behavior.

However, a statistically significant difference does not necessarily imply a substantial differ-

ence in terms of performance, as previous studies have shown that participants can be “opti-

mally lazy” by deviating from optimal performance in a way that has minimal impact on

overall expected score in a task [30]. We quantified our subjects’ performance in terms of effi-
ciency, that is the proportion of correct responses with respect to optimal behavior. Our sub-

jects exhibited an overall efficiency of 0.953 ± 0.007 (based on collinearity judgment noise), or

0.959 ± 0.015 (based on height judgement noise), which suggests that our subjects were only

slightly suboptimal (see Discussion).

Model variants

We consider here several alternative observer models that relax some key assumptions we

made when constructing our main observers, to verify whether our findings still hold.

Trial dependency of sensory uncertainty. We tested for potential influence of stimulus

uncertainty from previous trials (“History” model) on the response of the current trial. Specifi-

cally, for the History model we extended the formula of the decision boundary of the Lin

model to be a linear function of the noise parameters of the current trial, as before, plus the

noise associated with up to four previous trials, that is σx(yt), σx(yt−1), σx(yt−2), σx(yt−3), σx(yt−4),

respectively, each one with a separate weight.

Fig 6. Suboptimality analysis. Black line: Observed accuracy across four eccentricity levels (chance probability = 0.5).

Error bars indicate Mean ± 1 SEM across subjects. Green line: Estimated accuracy if subjects perform Bayes-optimally,

with noise parameters obtained via the collinearity judgement task. Blue line: Estimated accuracy with noise

parameters obtained via the height judgment task. Performance was slightly suboptimal across participants.

https://doi.org/10.1371/journal.pcbi.1006308.g006
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We found no evidence of trial dependency based on sensory uncertainty, for the History

model fits about as well or even slightly worse than Lin (LOOHistory − LOOLin = −2.4 ± 0.24).

In particular, we also found that the maximum-a-posteriori weights associated with σx(yt−1) to

σx(yt−4) were all not significantly different from zero across participants (respectively, t(7) =

1.45, p = 0.19; t(7) = 0.0754, p = 0.94; t(7) = −1.18, p = 0.28; t(7) = −1.27, p = 0.24). These results

show that sensory uncertainty from previous trials had no effect on the observers’ decision in

the current trial.

Mismatch of noise parameters. So far, we have assumed that observers utilize directly

their noise parameters σx(y) when computing the decision rule. Here we propose a variant of

the Bayesian model, “Mismatch”, in which the observer instead uses a set of assumed noise

parameters that may deviate from the true standard deviations of their measurement distribu-

tions [31]. This model is identical to the Bayesian model except that all four σx(y) are substi-

tuted with σx,assumed(y), the assumed noise parameters, in the calculation of the decision

variables. To limit model complexity, we chose for the assumed noise parameters a parametric

form which is a linear function of the true noise parameters σx(y). To avoid issues of lack of

parameter identifiability [17], for the Mismatch model we also fixed pcommon = 0.5. Thus, the

Mismatch model has the same number of free parameters as Lin, and one more than Bayes.

After relaxing the Bayesian model to allow for assumed noise parameters, we found that the

Mismatch model fits better than the original Bayes model

(LOOMismatched sx
� LOOBayes ¼ 29:8� 13:0), and, thus, better than the Fixed model as well,

which was already the worst in the comparison (LOOMismatched sx
� LOOFixed ¼ 55:5� 14:0).

However, we found that the Lin model is still the best-fitting model

(LOOMismatched sx
� LOOLin ¼ � 13:9� 5:4). All combined, these results suggest that a degree

of suboptimality in the observers might have arisen from a lack of knowledge of their own

noise characteristics [31], but such mismatch is not enough to entirely explain the observed

pattern of behavior.

Mismatch of stimulus distribution width. We consider another relaxation of the Bayes-

ian observer model, whereby the subject computes with an incorrect stimulus distribution

width σy,assumed, which governs the offset distribution (Fig 1E) and is fixed throughout the

experiment. In the main Bayesian model, the observer is assumed to have learned the true

value of σy from training trials presented during the experiment. However, it is possible that a

lack of attention during training or a lack of training itself could lead to a mismatched estima-

tion of σy, which then influences the calculation of the decision boundaries.

The results of this Width-mismatched model indicate that incorporating the incorrect

assumption of stimulus distribution width also effectively improves the performance of the

Bayesian model (LOOWidth� mismatchedsy
� LOOBayes ¼ 14:8� 4:8) while still losing to the Lin

model (LOOWidth� mismatched sy
� LOOLin ¼ � 28:9� 16:3). We see that the deviation from

optimality observed in the data might also be partially attributed to the lack of familiarity with

the stimulus distribution, yet still not enough to better account for the data than our current

best model, namely the Lin model.

Bayesian observer with decision noise. In the basic Bayesian model, we model the infer-

ence stage as exact. That is, we assume there is no noise or imperfection in the mapping from

the observer’s internal representation to the decision. We now consider a formulation of the

Bayesian model in which the observer performs Bayesian inference with decision noise [32].

Specifically, we model decision noise σd as a Gaussian noise on the decision variable [33–36]:

pðdjd�Þ ¼ N ðd; d�; s2
dÞ; ð2Þ

where d� is the original decision variable in the basic Bayesian model (see S1 Appendix).
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Consistent with previous analyses, we see that this new relaxation of the original Bayesian

model with decision noise (Bayes+DN) better accounts for the behavioral data than the basic

Bayesian observer (LOOBayes+DN − LOOBayes = 25.4 ± 15.2), but is still not able to outperform

the Lin model (LOOBayes+DN − LOOLin = −18.3 ± 8.2).

Despite having tried different forms of relaxation of the basic Bayesian model, we still find

the Lin model to be our best performing model. Finally, taking our approach one step further,

we also tested a suboptimal Bayesian model in which we allowed for both stimulus distribution

width mismatch and decision noise. Having 8 free parameters, one more than the Lin model,

the hybrid model can be expected to be a very flexible model. However, while once again

improving on performance within the Bayesian formulation

(LOODNþWidth� mismatchedsy
� LOOBayes ¼ 31:8� 6:4), the hybrid model is still could not surpass

the Lin model (LOODNþWidth� mismatchedsy
� LOOLin ¼ � 11:9� 7:8).

Nonparametric examination. In the Lin model (and variants thereof), so far we assumed

a linear parametric relationship between the decision boundary and the noise level σx(y), as

per Eq 1.

Here we loosened this constraint and fitted the decision boundary for each eccentricity

level as an individual free parameter. Due to its flexible nature, we consider this “Nonparamet-

ric” model merely as a descriptive model, which we expect to describe the data very well. We

use the Nonparametric model as a means to provide an upper-bound on the LOO score for

each individual, so as to have an absolute metric to evaluate the performances of other models

(in a spirit similarly to estimating the entropy of the data, that is an estimate of the intrinsic

variability of the data which represents an upper bound on the predictive performance of any

model [37, 38]). As expected, given the large amount of flexibility, the Nonparametric model

fits better than Lin (LOONonparametric − LOOLin = 14.6 ± 6.5), but we note that the difference in

LOO is substantially less than the difference between Lin and Bayes (43.7 ± 13.3), or Lin and

Fixed (69.3 ± 16.5), suggesting that Lin is already capturing subjects’ behavior quite well, close

to a full nonparametric description of the data.

We can also use the Nonparametric model to examine how close the parametric estimates

of decision boundary from Lin, our best model so far, are to those obtained nonparametrically.

We observed that the average decision boundary across 8 subjects, as a function of eccentricity,

was consistent with the average nonparametric estimates of the decision boundary at every

eccentricity level (Fig 7A and 7B). This agreement means that the decision boundaries adopted

by observers in the task were, indeed, approximately linear in the sensory noise associated

with each eccentrity level, as assumed by the linear heuristic model (Eq 1), thus validating our

modeling choice.

Discussion

To study how people group together local elements to form a continuous contour, we designed

a behavioral experiment in which participants were asked to judge whether two line segments

partially occluded belonged to the same line. Using computational observer models to describe

the obtained data, we found that people utilize sensory uncertainty when making collinearity

judgements, however in a slightly suboptimal way. Crucially, our results are robust to changes

in model assumptions, such as noise model mismatch, history effects, and different decision

boundaries, and we independently validated our parameter estimates in a different task. With

trial-by-trial manipulation of eccentricity in a collinearity judgment task, our study presents a

rigorous examination of the role of sensory uncertainty for probabilistic computations in con-

tour integration.
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Contour integration as elementary perceptual organization

The present study is linked to the broader effort to study hierarchical Bayesian inference in

perception, whereby the observer is required to marginalize over stimulus values (here, line

offset) to build a posterior over latent, discrete causal scenarios (here, same line of different

lines). Such framework was adopted and tested in a variety of domains such as cue combina-

tion [39], change detection [33], perception of sameness [40], and causal inference [41].

In particular, our models share the same formal structure of models of causal inference in mul-

tisensory perception [41, 42]. In such tasks, the observer receives sensory measurements of

possibly discrepant cues from distinct sensory modalities (e.g., vision and hearing), and has to

infer whether the cues originated from the same source (C = 1) or from different sources

(C = 0)—leading to, respectively, cue integration and cue segregation. Previous work has

shown that Bayesian causal inference models provide a good qualitative description of human

performance in multisensory perception with discrepant cues, but quantitative comparison

hints at deviations from exact Bayesian behavior [38], not unlike what we find here. Our study

differs from previous work in that here we focus on an atomic form of perceptual organization.

Our approach is related to the work by Stevenson and Körding [43] in the field of depth

perception, which also provides an example of uncertainty manipulation used to probe the

basis of elementary perceptual organization. In their task, observers inferred whether a stereo-

graphically displayed disk was occluded or not, and utilized that information about the config-

uration of the visual scene to match the depth of another disk. Importantly, the experiment

included two different sensory uncertainty conditions. Biases in depth estimation showed by

subjects in the two conditions were well explained by a Bayesian model that inferred the rela-

tive probability of the two causal scenarios. Crucially, however, Stevenson and Körding did

not test alternative models that could also account for the data.

While in our study we closely examined the effect of varying sensory uncertainty, our task

did not strictly introduce ambiguity, a integral element of Gestalt perception. Ambiguity

Fig 7. Nonparametric model. A: Decision boundary estimates of linear heuristic model (Lin) vs. decision boundary estimates of the Nonparametric model at

different eccentricity levels (Mean ± 1 SEM). B: Decision boundary at every eccentricity level fitted non-parametrically vs. Decision boundary at every eccentricity

level fitted from the Lin model. Even when allowed to vary freely (“non-parametrically”), the decision boundaries are approximately linear in the sensory noise

associated with each eccentricity level (and, incidentally, approximately linear in the eccentricity level itself), as per the Lin model.

https://doi.org/10.1371/journal.pcbi.1006308.g007
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translates to overlapping stimulus distributions, and ambiguous trials are only found in the

collinear category of our task. With the presence of ambiguity, an observer will not be able to

achieve perfect performance even when sensory noise is completely absent. Shapes defined by

illusory contours such as variants of the Kanizsa triangle were previously used to study repre-

sentations of illusory contours in the cortical areas of the brain in functional imaging [44, 45],

rendering them potential candidates for stimuli that can incorporate both ambiguity and sen-

sory uncertainty.

Nevertheless, by studying the role of sensory uncertainty alone, our study presents a more

careful account of Bayesian inference in contour integration, and potentially in perceptual

organization. In particular, we compared the Bayesian observer model against other observer

models that each describe an alternative plausible decision strategy. We were able to distin-

guish a fixed stimulus mapping that mimics Bayesian inference from probabilistic computa-

tion, which requires the observer to flexibly adjust their decision boundary according to

sensory uncertainty. Despite evidence for probabilistic computations, we found that data was

better explained by a non-Bayesian heuristic model (but see below for further discussion).

Using simple contour integration as a starting point, our study provides detailed examina-

tions of the Bayesian observer model in comparison to other models, paving the way for the

applications of similarly rigorous analyses on more complex and naturalistic forms of percep-

tual organization. Our paradigm can be modified to examine the effects of varying occluder

width, varying contour angles, thickness and curvature to simulate the complexity of real-

world contour statistics [5]; and to test whether humans utilize the task statistics when com-

puting the posterior probability of different explanations. Even in naturalistic perceptual orga-

nization tasks, Bayesian strategies are still favorable for their inherent ability to control for

model complexity, due to the process of marginalizing (i.e., integrating) over latent variables,

which tends to favor the simplest hypothesis (property often referred to as ‘Bayesian Occam’s

razor’ [46]). Notably, the model comparison pipeline laid out in the current study can be easily

extended to be applied to these tasks.

Heuristic and imperfect strategies in probabilistic contour integration

Our findings align with a variety of results that show that, in many perceptual decision making

tasks, humans perform moderately to reasonably well, but not quite in a Bayes-optimal man-

ner [47]. In particular, extended and rigorous model comparison often reveals that human

behavior can be better explained by observer models representing strategies or heuristics

which are not exactly Bayesian [31, 36, 38, 48–50] (but see [37] for an example where the

Bayes-optimal model wins against a wide array of contenders).

However, the difference between a probabilistic, non-Bayesian heuristic (which may be

interpreted as “approximating Bayesian inference”) and an imperfect, noisy or mismatched

Bayesian model is arguably moot. When people deviate from ‘correct’ Bayesian behavior, it

can be very hard—and it might even become impossible in principle—to fully distinguish

between (a) mismatched Bayesian computations (i.e., due to ‘model mismatch’ between the

observer’s beliefs and the true statistics of the task); (b) approximate Bayesian computations

(due to implementations of approximate inference in the brain, necessary to deal with any

complex models of the environment, and with limited resources [51]); (c) the adoption of

some other complex heuristics with certain Bayesian-looking signatures (e.g., taking uncer-

tainty into account). Even when the behavior looks fairly Bayesian, as for example according to

a probabilistic strategy that takes uncertainty into account in an approximately correct way,

we may be unable to distinguish “truly” Bayesian computations (that explicitly account for

uncertainty according to Bayes’ rule) from arbitrarily complex non-Bayesian strategies that
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use complex heuristics and properties of the stimulus to estimate the current trial uncertainty.

The problem is ill-posed in psychophysics as there is always some property of the stimulus

which correlates with trial uncertainty, and we cannot know the exact computations being per-

formed in the brain until we open the black box and look at the actual neural implementation.

The empirical question that we can address via psychophysics is how flexible the subjects’

strategies are in accounting for uncertainty, and how close they end up being to the Bayesian

strategy, independently of the source of uncertainty, and even when multiple sources of uncer-

tainty are combined [52]. Moreover, we can use psychophysical data to investigate why (and

how) subjects deviate from the optimal performance, and how the brain learns to process sen-

sory information so as to perform a given task, which is an avenue for future work.

In our case, a possible explanation for subjects’ heuristic strategy, which differed slightly but

systematically from optimal performance, might be that they had received insufficient training.

While we found no evidence of learning across sessions, it is possible that participants would

have learnt to perform optimally had they received correctness feedback on the task, possibly

with greater incentives to motivate their learning. The main purpose of our experiment was to

explore the role of sensory uncertainty—thus, we limited the amount of training trials with per-

formance feedback on purpose, to prevent the possible learning of a fixed mapping of stimulus

to collinearity condition that is independent of sensory uncertainty. The tradeoff between pro-

viding sufficient training trials and avoiding learning of fixed mapping makes it difficult to test

behaviorally the hypothesis that sub-optimality stems from insufficient training.

A possible alternative avenue for exploring the effect of task learning could be through

training an artificial neural network on the same psychophysical task, and examining how per-

formance evolves as a function of training epochs [53], and whether this mimics human

behavior. For example, a hierarchical, probabilistic and stochastic neural network such as

Deep Boltzmann Machine is a desirable candidate as it can learn to generate sensory data in an

unsupervised fashion, a procedure that provides a plausible account for visual cortical process-

ing [54, 55]. Notably, such stochastic hierarchical generative model was used to show that

visual numerosity—a higher-order feature—can be invariantly encoded in the deepest hidden

layer of the neural network [56], and could analogously give rise to illusory contours neurons

as found in monkeys [54].

In conclusion, our finding that elementary contour integration is probabilistic—albeit

slightly suboptimal—leads naturally to a fundamental open question in neuroscience, that is

whether and how the visual system performs (or approximates) probabilistic inference in the

presence of complex, naturalistic stimuli. There is a trade-off between stimulus complexity

and modeling tractability in that we experimenters do not normally have access to the genera-

tive model of a complex visual scene, preventing the deployment of powerful statistical tools

from ideal-observer analysis such as those used in the current work. However, for example, a

recent theoretical paper introduced a flexible, parametric model of overlapping and occluded

geometric shapes that resemble the pattern of a bed of leaves (“dead leaves” [57]). Our rigorous

model comparison approach, combined with such complex psychophysical stimuli, provides a

viable direction for future studies interested in further exploring the probabilistic nature of

perceptual organization.

Methods

Ethics statement

The Institutional Review Board at New York University approved the experimental procedures

(protocol #IRB-FY2016-599: “Visual perception, attention, and memory”) and all subjects

gave written informed consent.
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Subjects

8 subjects (6 female), aged 20–30, participated in the experiment. Subjects received $10 for

each of four 1-hour sessions, plus a completion bonus of $10.

Apparatus and stimuli

The stimuli were shown on a 60 Hz 9.7-inch 2048-by-1536 pixel display. The display (LG

LP097QX1-SPA2) was the same as that used in the 2013 iPad Air (Apple). The screen was

secured to an arm with height adjusted to each subject’s eye level. A chin rest was horizontally

aligned with the center of the screen. The distance between the eyes and the display was 27.5

cm. To minimize potential biases caused by external visual cues, we added a large black panel

surrounding the display. The display was connected to a Windows desktop PC using the Psy-

chophysics Toolbox extensions [58, 59] for MATLAB (MathWorks, Natick, MA).

On each trial, a dark gray occluder (23 cd/m2) with a width of 5.6 degrees of visual angle

(dva) was displayed against a light gray background (50 cd/m2). A white (159 cd/m2) fixation

dot 0.24 dva in diameter was shown in the lower central part of the occluder; this dot corre-

sponded to a retinal eccentricity of 0 dva. The stimuli consisted of two horizontal white line

segments on both sides of the occluder. The line segments were all 5.6 dva in width and 0.16

dva in height. The vertical “base position” y of a pair of line segments had one of four levels of

retinal eccentricity (0, 4.8, 9.6, and 16.8 dva).

Trial procedure

Subjects completed two tasks, which we call collinearity judgment task and height judgment
task. On each trial in the collinearity judgment task (Fig 1A), the occluder and fixation dot

were displayed for 850 ms, followed by the stimulus for 100 ms. On a “non-collinear” trial,

the vertical positions of the two line segments were independently drawn from a normal dis-

tribution centered at one of the four “base” eccentricity levels (0, 4.8, 9.6, or 16.8 dva), with a

standard deviation of 0.48 dva (Fig 1E); on a “collinear” trial, we drew the vertical position of

the line segment on one side and matched the line segment on the other side. In each session,

50% of the trials were “collinear” and 50% were “non-collinear”, randomly interleaved. At

stimulus offset, the fixation dot turned green to prompt the subject to indicate whether the

two line segments were collinear. The participant pressed one of 8 keys, corresponding to 8

choice-confidence combinations, ranging from high-confident collinear to high-confident

non-collinear. Response time was not constrained. No performance feedback was given at

the end of the trial.

Height judgment task trials followed the same procedure (Fig 1B), except that the subject

was asked to report which of the two line segments was highest (“left” or “right”). We gener-

ated the line segments in the same fashion as in the “non-collinear” condition of the collinear-

ity judgment task. Audio feedback was given after each response to indicate whether the

choice was correct.

For the analyses described in this paper, we only considered choice data (“collinear/non-

collinear”, “left/right”), leaving analysis of confidence reports to future work.

Experiment procedure

During each session, subjects completed one height judgment task block, followed by three

collinearity judgment task blocks, and finished with another height judgment task block. Each

height judgment task block consisted of 60 trials, and each collinearity judgment task block

consisted of 200 trials.
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A demonstration of the experimental procedure was given to each subject at the beginning

of the first session. Participants were informed that there were an equal number of left/right

trials in the height judgment task as well as an equal number of collinear/non-collinear trials

in the collinearity judgment task. To familiarize subjects with the stimulus distribution and to

check for understanding of the tasks, participants completed 16 practice trials at the beginning

of each session. Stimulus presentation time was longer on practice trials (500 ms), and audio

correctness feedback was given at the end of each practice trial. We did not analyze the

responses on the practice trials.

Data analysis

In order to visualize psychometric curves with enough trials, we binned the offset values

between the left and right line segments into the following intervals: (−1, −3.31], (−3.31,

−2.08], (−2.08, −1.17], (−1.17, −0.38], (−0.38, 0.38], (0.38, 1.17], (1.17, 2.08], (2.08, 3.31], (3.31,

1), in dva. These values were chosen to include a comparable number of trials per interval,

based on the quantiles of the Gaussian distribution of the offset used in the experiment. For

the collinearity judgment task, we computed the proportion of trials in which subjects reported

“collinear” at each offset bin and retinal eccentricity level. For the height judgment task, we

computed the proportion of trials in which subjects reported “right higher” at each offset bin

and retinal eccentricity level.

Repeated-measures ANOVA with offset bin and eccentricity level as within-subjects factors

were performed separately on the proportion of reporting “collinear” in the collinearity judg-

ment task and the proportion of reporting “right higher” in the height judgment task. We

applied Greenhouse-Geisser correction of the degrees of freedom in order to account for devi-

ations from sphericity [60], and report effect sizes as partial eta squared, denoted with Z2
p.

For all analyses the criterion for statistical significance was p< .05, and we report uncor-

rected p-values. Unless specified otherwise, summary statistics are reported in the text as

mean ± SEM between subjects. Note that we used the summary statistics described in this sec-

tion only for visualization and to perform simple descriptive statistics; all models were fitted to

raw trial data as described next.

Model fitting

For each model and subject, the noise parameters s2
xðyÞ for y = 0, 4.8, 9.6 and 16.8 dva were fit-

ted as individual parameters.

We calculated the log likelihood of each individual dataset for a given model with parame-

ter vector θ by summing the log probability of trial i over all N trials,

log pðdatajθ;modelÞ ¼
XN

i¼1

log pðĈijθ;modelÞ ¼
XN

i¼1

logpθ;modelðĈijyLi ; yRi ; s
2

xðyiÞÞ ð3Þ

where the response probability pθ;modelðĈijyLi ; yRi ; s
2
xðyiÞÞ is defined in S1 Appendix.

We fitted the models by drawing samples from the unnormalized log posterior distribution

of the parameters p(θ|data) using Markov Chain Monte Carlo (parallel slice sampling [38, 61])

for each subject. The posterior distribution of the parameters is proportional to the sum of

data likelihood (Eq 4) and a factorized prior over each parameter j,

logpðθjdata;modelÞ ¼ logpðdatajθ;modelÞ þ
X

j

logpðθjjmodelÞ þ const: ð4Þ
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We used log-transformed coordinates for scale parameters (e.g., noise), and for all parame-

ters we assumed a uniform non-informative prior (uniform in log space for scale parameters)

[62], within reasonably large bounds. Three parallel chains were ran with starting point set at

maximum likelihood point estimates of the parameters, evaluated with Bayesian Adaptive

Direct Search [63], to ensure that the chains were initialized within a high posterior density

region.

After running all chains, we computed Gelman and Rubin’s potential scale reduction statis-

tic R for all parameters to check for convergence [64]. An R value that diverges from 1 indi-

cates convergence problems, whereas a value close to 1 suggests convergence of the chains.

The average difference between R value and 1 across all parameters, subjects and models is

1.16 × 10−4, and all R values fall within (0.99, 1.003], suggesting good convergence. To verify

compatibility between different runs, we also visually inspected the posteriors from different

chains. We merged samples from all chains for each model and subject in further analyses.

To visualize model fits (or posterior predictions) in Figs 4 and 5, we computed the posterior

mean model prediction for each subject based on 60 independent samples from the posterior

(equally spaced in the sampled chains). We then plotted average and standard deviation across

subjects.

Model comparison

To estimate the predictive accuracy of each model while taking into account model complex-

ity, we performed Bayesian leave-one-out (LOO) cross-validation. Bayesian LOO cross-

validation computes the posterior of the parameters given N − 1 trials (the training set), and

evaluates the (log) expected likelihood of the left-out trial (the test set); this process is repeated

until all trials have been iterated through, yielding the leave-one-out score

LOO ¼
XN

i¼1

log
Z

pðĈijθ;modelÞpðθjdata� i;modelÞdθ; ð5Þ

where pðĈijθ;modelÞ is the likelihood of the i-th trial (see Eq 3), and p(θ|data−i, model) is the

posterior over θ given all trials except the i-th one. For most models, evaluating Eq 5 naively is

impractical due to the cost of obtaining the leave-one-out posteriors via N distinct MCMC

runs. However, noting that all posteriors differ from the full posterior by only one data point,

one could approximate the leave-one-out posteriors via importance sampling, reweighting the

full posterior obtained in a single MCMC run. Still, a direct approach of importance sampling

can be unstable, since the full posterior is typically narrower than the leave-one-out posteriors.

Pareto-smoothed importance sampling (PSIS) is a recent but already widely used technique to

stabilize the importance weights [25]. Thus, Eq 5 is approximated as

LOO �
XN

i¼1

log
PS

s¼1
wðsÞi pðĈijθ

ðsÞ
;modelÞ

PS
s¼1

wðsÞi
; ð6Þ

where θ(s) is the s-th parameter sample from the posterior, and wðsÞi are the Pareto-smoothed

importance weights associated to the i-th trial and s-th sample (out of S); see [25] for details

and [38] for an application with discussion of other model selection metrics.

We also conducted model comparison by computing a simpler metric, namely the Akaike

information criterion (AIC) using log likelihood values obtained via maximum likelihood esti-

mation for each subject and each model. We found a perfect rank correlation between AIC

scores and LOO scores (ρ = 1), which is expected in the limit of infinite trials, for AIC and

LOO cross-validation are asymptotically equivalent [65].
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