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Extract Human Mobility Patterns
Powered by City Semantic Diagram

Zhangqing Shan,Weiwei Sun*,and Baihua Zheng

Abstract—With widespread deployment of GPS devices, massive spatiotemporal trajectories became more accessible. This booming
trend paved the solid data ground for researchers to discover the regularities or patterns of human mobility. However, there are still
three challenges in semantic pattern extraction including semantic absence, semantic bias and semantic complexity. In this paper, we
invent and apply a novel data structure namely City Semantic Diagram to overcome above three challenges. First, our approach
resolves semantic absence by exactly identifying semantic behaviours from raw trajectories. Second, the design of semantic
purification helps us to detect semantic complexity from human mobility. Third, we avoid semantic bias using objective data source
such as ubiquitous GPS trajectories. Comprehensive and massive experiments have been conducted based on real taxi trajectories
and points of interest in Shanghai. Compared with existing approaches, City Semantic Diagram is able to discover fine-grained
semantic patterns effectively and accurately.

Index Terms—Human mobility; fine-grained semantic pattern; GPS trajectory; Point of Interest.

F

1 INTRODUCTION

The number of GPS-enabled mobile devices is increasing
globally. According to Ericsson, there were 5.5 billion smart-
phone subscriptions in 2019, and this number is expected
to reach 7.5 billion by 2025, significantly larger than the
number of active fixed line subscriptions worldwide which
was reported to be close to 1 billion in 2019. This growth
has a big impact in more ways than one. For one, a smart-
phone, in addition to serve purposes such as keeping in
touch with family members, conducting business, and for
entertainment, has become a vehicle for data collection. GPS
trajectory tracked by smart phones is one example.

Raw GPS trajectories capture how residents move in
a city, while there are lots of rich information that could
be inferred and learned from the massive raw trajectory
data collection. In this paper, we aim at discovering the
regularities of human mobility and identifying commuters’
daily activity patterns via a data-driven approach, by an-
alyzing a large collection of taxi trajectories collected in
Shanghai. To be more specific, raw GPS trajectories tell us
when a commuter makes a trip via taxi, together with the
source and the destination of the trip. Unfortunately, a raw
trajectory does not contain any semantic information so we
do not understand why a commuter makes a trip via taxi,
and whether the purpose of the trip is common to many
commuters.

However, understanding the real purpose of trips and
the travel patterns is crucial to many applications and
services. First, it allows us to apply business intelligence
for improved decision making [1], [2], [3]. For example,
patterns such as Residence → Shop or Residence → Su-
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permarket can help estimate the popularity level and the
purchasing power around certain commercial center and
the demand for commodities and services revealed from
patterns is valuable for site selection of new shops. Second,
as cities grow and attract more diverse populations, public
transport agencies are faced with growing ridership, chang-
ing demand patterns and higher commuters’ expectations.
Understanding the real and regular travel patterns allows
agencies to better respond to the changes of urban travel
demand [4], [5], [6]. For example, common travel patterns
shared by a large number of taxi commuters imply traffic
congestion or certain shortages in public transport, which
provides valuable input for the authorities to expand or
revise the train/bus network. Last but not least, it enables
a deeper understanding of commuters’ real needs which
can help mobile apps to deliver more relevant and more
useful services. For example, commuters traveling from
Office → Shop might be interested in receiving shopping
vouchers and promotion information; commuters traveling
from Office→ Residence might want to know the fastest route
to reach home earlier.

Nevertheless, it is challenging to discover the travel pur-
pose and identify the travel patterns of commuters. There
are mainly three challenges, as listed below.

• Semantic Absence. Parts of data from mobile devices
do not contain any semantic property. The absence
of semantic information restrains semantic analysis on
massive raw trajectory datasets. A notable example is
raw GPS trajectories which do not contain any semantic
tags.

• Semantic Bias. Some commuters do share their lo-
cations and activities with others (e.g., check-ins on
FourSquare, adding locations to Tweets), which provides
one source of semantic information. However, it suf-
fers from topic imbalance and selectivity. For example,
FourSquare users might be willing to share their dining
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at restaurants but not their visits to doctors.
• Semantic Complexity. Many users actually perform mul-

tiple behaviours or activities in a single movement,
which make several semantic properties co-exist in one
location. Take shopping centers as an example. People
could visit there for shopping and dining.
To the best of our knowledge, the existing works could

address one or two challenges listed above, but not all
of them [7]. In this paper, we propose a very novel data
structure, namely City Semantic Diagram (CSD), and a system
namely Pervasive Miner empowered by CSD as a solution to
tackle all three challenges.

To be more specific, instead of relying on the semantic
information shared by users, CSD fully utilizes Point of
Interests (POIs) dataset. Mobile Apps that provide location-
based services (LBSs) allow users to upload and update the
description of locations, e.g., Foursquare [8]. With the help
of these User Generated Contents (UGC), the number of POIs
is growing rapidly. CSD which is built based on POIs is able
to resolve the issue of semantic absence. Pervasive Miner
takes in GPS trajectories that capture ubiquitous movements
of commuters as input and it is able to mine the common
travel patterns from GPS trajectories to address semantic
bias issue by data selection and processing. Last but not
least, thanks to the dedicated design of a sub-step namely
semantic purification, Pervasive Miner is also able to address
the challenge of semantic complexity.

In summary, we have made mainly three contributions
in this paper.
• We design a novel data structure namely City Semantic

Diagram to organize semantic sources and to support
common semantic recognition operations.

• We implement a fine-grained semantic pattern extraction
system, namely Pervasive Miner, that is applicable to
ubiquitous GPS trajectories.

• We perform a comprehensive experimental study using
real taxi trajectory dataset collected in Shanghai to evalu-
ate and compare the performance of Pervasive Miner and
its competitors.
The rest of this paper is organized as follows. Section 2

reviews the related works. Section 3 defines the city se-
mantic diagram. Section 4 presents the system Pervasive
Miner, including the algorithms and data structure design.
Section 5 explains the datasets used in experiments and
reports the experimental results, and Section 6 showcases
some meaningful discoveries based on real data trajectories
to demonstrate the impact and practicality of Pervasive
Miner. Finally, we conclude our study in Section 7.

2 RELATED WORK

Human mobility pattern extraction is a component in tra-
jectory pattern mining [9], [10]. Nevertheless, Semantic Ab-
sence, Semantic Bias and Semantic Complexity limit existing
approaches to discover fine-grained semantic patterns effec-
tively and accurately.

Mining patterns in spatiotemporal database cannot han-
dle Semantic Absence, because semantic information is absent
in raw data without any effective annotation. Pioneer stud-
ies on this topic [11], [12] adopt space partitioning strategy
to perform the mining task, which divides the whole space

TABLE 1
The top 10 topics in New York and Tokyo of FourSquare check-in data

from 2014 January to 2014 October

New York Ratio Tokyo Ratio
Bar 7.03% Train Station 34.93%
Home (private) 6.8% Subway 7.26%
Office 5.60% Noodle House 3.01%
Subway 4.11% Convenience Store 2.93%
Fitness Center 4.03% Japanese Restaurant 2.73%
Coffee Shop 3.30% Bar 2.60%
Food Drink Shop 2.90% Food & Drink Shop 2.44%
Train Station 2.81% Electronics Store 1.89%
Park 2.11% Mall 1.88%
Neighborhood 2.02% Coffee Shop 1.56%

into many small grids based on a pre-specified granular-
ity. In [13], the authors define T-pattern in a collection of
GPS trajectories, and use a sequence of Region-of-Interest
(ROI) with temporal intervals to describe human mobility
regularity. Here, ROI refers to a collection of nearby grids
with high popularity density. In [14], [15], [16], clustering-
based strategies are proposed to overcome the limitation of
grid-based algorithms. Clustering algorithms discover the
clusters with similar sub-sequence. Nevertheless, these ap-
proaches only focus on spatiotemporal regularity in raw tra-
jectories, and they cannot support semantic related queries
or services.

Mining patterns in semantic-enriched datasets is usually
affected by Semantic Bias. To discover the semantic patterns
from online social media data, check-in logs or twitter
messages are introduced to pattern discovery [17], [18], [19],
[20]. Splitter introduced in [17] is the representative, which
is further improved in [19]. The main enhancement includes
the utilization of the user generated semantic tags to find
patterns, and a topic trajectory pattern mining algorithm
namely TOPTRAC [18] using messages from online social
media. However, people are willing to share daily life like
shopping but not more private activities such as visits to
doctors.

The topic selectivity is harmful to the analysis of hu-
man mobility. On the one hand, many users only share
their mobility and behaviour using online social media in
leisure time (not regularly); on the other hand, users are
very selective in terms of the types of information they
are willing to share. Table 1 lists the top 10 most popular
topics in New York and Tokyo respectively, extracted from
FourSquare check-in data. As expected, sensitive private
topics such as hospital or drug store do not top in either
list. As a popular destination, New York receives millions of
visitors every year. Tourists usually spend short vacations
in New York such as several days. Medical activities are
rare for temporary vacations and mostly happen in their
living cities. Residents regard medical activities as personal
privacy and refuse exposure on social network. This fact
shows that check-ins data has bias between different topics.
Compared with New York users, the users in Tokyo tend
to be more reserved and sensitive because most of them
keep their home as a secret in Internet. These phenomena
not only limit the volume of available online social media
datasets, but also introduce unavoidable topic bias into the
semantic-enriched trajectories.

Semantic Complexity also challenges most pattern ex-
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traction approaches. In order to prevent the Semantic Bias,
semantic pattern discovery based on raw GPS trajectories
is presented in [21]. It extracts semantic property from
raw GPS trajectories using the semantic annotation and
hot region detection hybrid algorithm before semantic pat-
tern mining. Different from traditional semantic annotation
based on database query in [22], [23], such a hybrid algo-
rithm adopts clustering algorithms (e.g., DB-Scan and K-
means) to detect hot regions, and then uses semantic back-
ground information (e.g., POI database, geographic API) to
attach the semantic attribute of each region. Based on the
spatial overlapping examination, each stay point of raw
trajectories can get semantic description from hot regions.
However, these algorithms perform poorly in regions with
complex semantics, which leads to the weak consistency in
pattern discovery.

To the best of our knowledge, Splitter [17] is the most typ-
ical approach to discover fine-grained semantic patterns in
semantic-enriched trajectories. It retrieves a set of spatially
coarse semantic patterns using PrefixSpan algorithm [24]
from semantic-enriched trajectories, then refines each coarse
pattern into fine-grained ones with Mean Shift strategy [25].
A modified version of Splitter is proposed in [19], namely
SDBSCAN. The key difference between them lies in the
distinct strategies taken to break and cluster coarse patterns
after PrefixSpan step. SDBSCAN renders DB-Scan algorithm
rather than top down Mean Shift strategy to cluster trajec-
tories with high density to extract patterns. However, both
Splitter and SDBSCAN cannot detect semantic patterns from
semantic-absent datasets such as raw GPS trajectories.

In order to make above approaches also applicable to
raw GPS trajectories, a ROI based algorithm is proposed in
[21] to support semantic recognition. Before pattern mining,
it generates semantic property for raw GPS trajectories using
a hybrid algorithm that combines semantic annotation and
hot region detection. Different from traditional semantic
annotation based on database query, such a hybrid approach
adopts clustering strategy to detect hot regions, and then
uses semantic background information to describe each
region. Based on the spatial overlapping examination, each
stay point of raw trajectories gets semantic description from
hot regions. Although Semantic Absence is resolved, this
algorithm cannot guarantee semantic consistency for nearby
stay points in each hot region because of the uncontrolled
purity of semantic property in each hot region.

3 PRELIMINARIES

In the following, we formally define some important terms
that will be used throughout the paper and then introduce
CSD. Table 2 summarizes the list of notations frequently
used in the rest of the paper.

Definition 1. GPS Trajectory. A GPS trajectory T =
{(p1, t1), (p2, t2), . . . , (pn, tn)} captures a journey that
passes n GPS points sequentially. Here, pi in the form of
(xi, yi) refers to the longitude and the latitude of the i-th
point at time stamp ti in the trajectory.

Definition 2. POI. A Point of Interest (POI) pI is defined as a
single point with spatial location and semantic property,
i.e., pI = {id, p, s}. Here, id represents pI ’s physical title,

TABLE 2
Table of Important Notations

Notation Description

(p, t)
a GPS point where p records the location and t
is the time stamp

d(pi, pj) Haversine distance between points pi and pj
|S| the size of a set S

V ar(S)
spatial variance of location distribution among
points in set S

Den(S) spatial density among points in set S
T GPS trajectory, T = {(p1, t1), . . . , (pn, tn)}
s semantic property (the set of semantic tags)
pI Point of Interest (POI), pI = {id, p, s}
U Fine-Grained Semantic Unit

sp
stay point, indicating (x, y, t, s), pick-up or
drop-off points of passengers in taxi trajecto-
ries

ST semantic trajectory
D database of semantic trajectories

ST.sup(D)
support, the number of semantic trajectories
which contain or reachable contain pattern ST

Group(spi)
the collection of corresponding neighbor
points from contained or reachable contained
semantic trajectories (Definition 10)

||p, p′|| the Gaussian distribution coefficient between
two points (Equation (2))

pop(POI) the popularity of POI (Equation (3))

KL(pr1, pr2)
The Kullback Leibler divergence between two
probability distribution

ρ
density threshold, the lower bound of the
point density in Algorithm 4

σ
support threshold, the lower bound of the
trajectory number in Algorithm 4

δt
temporal constraint, the upper bound of time
interval in semantic trajectory containment
and in Algorithm 4

Ptk(ST ) the kth stay point of semantic trajectory ST

p in the form of (x, y) refers to the longitude and the lati-
tude of its location, and s indicates its semantic property
using keywords, e.g.,business, hospital or entertainment.

A raw GPS trajectory, as defined in Definition 1, captures
a sequence of points passed by a trip. A POI point refers
to one geographic entity, e.g., pI1 = {1, p1, restaurant} and
pI2 = {2, p2, bar} could refer to two POIs near the Bund
of Shanghai. In this work, we make full use of the rich
semantic context that presents in POIs. In the following, we
introduce the concept of fine-grained semantic unit as a carrier
of semantic information corresponding to a small region in
a city. Function SingleSemantic(P ) is to check whether all
the POI points pI ∈ P share the same semantic property;
function range(p, ε, P ) returns all the points p′ ∈ P that
are within ε distance to point p; and Function Var(S) is to
return the spatial variance of points in set S, as defined
in Equation (1) where pc refers to the center point, i.e.,
pc = (x, y) = ( 1

|S|
∑
∀pi∈S pi.x,

1
|S|
∑
∀pi∈S pi.y).

Var(S) =

∑
∀pi∈S

(
(pi.x− pc.x)2 + (pi.y − pc.y)2

)
|S| − 1

(1)

Definition 3. Fine-Grained Semantic Unit. Given a set
of POIs U = {pI1, pI2, . . . }, and parameters Nmin,
εp and Vmin, U is a fine-grained semantic unit iff
∀pIi ∈ U , ∃Vi ⊂ U satisfies following three conditions



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 4

i) |Vi| ≥ Nmin; ii) ∀pIj ∈ Vi, d(pIi , p
I
j ) < εp; and iii)

Var(Vi) ≤ Vmin or SingleSemantic(Vi) returns true.

As stated in Definition 3, a fine-grained semantic unit
refers to a small region in a city where all the bounded POIs
are highly homogeneous in terms of either spatial location
or semantic property. Spatial homogeneity is motivated by
the existence of multi-purpose skyscrapers. For example, the
Shanghai Tower is a 128-story skyscraper in Shanghai. It has
shops and restaurants in a few lower floors, a subway sta-
tion in the basement, a conference center in its fifth floor, and
offices and hotel rooms in many floors. POIs corresponding
to the Shanghai Tower are expected to have mixed semantics
properties while their locations are very close to each other
or even identical. On the other hand, semantic homogeneity
is motivated by the fact that venues are more similar to those
located nearby, as compared with other far away. It is consis-
tent with our everyday experience that certain districts are
designated for certain purposes. For example, Fifth Avenue
in New York is a famous shopping area where there are
many prestigious boutiques and flagship stores; Lan Kwai
Fong in Hong Kong is a small square of streets with over
100 bars and restaurants; and the Bund in Shanghai houses
more than 50 buildings of various architectural styles. Based
on the concept of fine-grained semantic unit, we propose to
organize POIs in a city in the form of City Semantic Diagram,
as defined in Definition 4.
Definition 4. City Semantic Diagram. A set of fine-grained

semantic units within a city forms a City Semantic Dia-
gram, donated as CSD.

Next, we are going to introduce a few novel concepts that
are proposed to facilitate the discovering of the semantic
information related to a trajectory T . The first concept is
stay point, as formally defined in Definition 5. Commuters
take taxis to complete a journey for certain purposes, while
they need to stop at somewhere to perform activities to
fulfill the purposes. The intuition behind the stay point is
to locate the locations where commuters stop and perform
activities, e.g., the pickup point and drop-off point of a taxi
journey. As stated in Definition 5, we adopt two conditions
to evaluate whether the center point of a sub-trajectory
is a stay point. The first condition is to guarantee that a
subtrajectory that is corresponding to a stay point spans a
time duration not shorter than the minimum requirement θt
to provide sufficient time to perform the activity; and the
second condition is to guarantee that all the GPS points
passed by this subtrajectory are physically close to each
other.
Definition 5. Stay Point. Given a GPS trajectory T =
{(p1, t1), . . . , (pn, tn)}, and two thresholds θd and θt, let
T ′ = {(pi, ti), . . . , (pi+l, ti+l)} with i ≤ 1 and i + l ≤ n
be a sub-trajectory. The center point of T ′ is defined as
a stay point sp = (p, t, s) iff i) ti+l − ti ≥ θt; and ii)
∀k ∈ [1, l], d(pi, pi+k) ≤ θd with p.x = 1

l+1

∑
∀p∈T ′ p.x,

p.y = 1
l+1

∑
∀p∈T ′ p.y, t = 1

l+1

∑
∀t∈T ′ t, and s refers to

the semantic property of this stay point.

Note, given a GPS trajectory T , we can locate the stay
points but the semantic property of a stay point is unknown.
Identifying its semantic property s for a stay point sp is
one of the main tasks we need to complete in this paper.

Office Home Restaurant

ST1

ST2

ST3

ST4

2Ɛt 2Ɛt 2Ɛt

sp11

sp41

sp12

sp42

sp13

sp43

Time Interval < δt Time Interval < δt 

Den(Group(sp11)) > ρ  Den(Group(sp12)) > ρ  Den(Group(sp13)) > ρ  

Group(sp11)

Group(sp12)

Group(sp13)

sp21
sp22

sp23

sp31 sp32

sp33

Fig. 1. Sample fine-grained patterns (Office → Home → Restaurant),
ST1 contains ST2, ST2 contains ST3, ST3 contains ST4, ST1 reach-
able contains ST3 and ST4, and ST2 reachable contains ST4.

Based on the concept of stay point, we can convert each GPS
trajectory T to a semantic trajectory ST which only involves
stay points, as stated in Definition 6. This conversion helps
to significantly reduce the size of each trajectory and to
effectively facilitate the understanding and identifying of
the travel patterns.
Definition 6. Semantic Trajectory. Given a GPS trajectory T ,

let sp1, sp2, · · · refer to a sequence of stay points derived
from T . They form the corresponding semantic trajectory
ST for T , i.e., ST = {sp1, sp2, · · · }.

Although semantic trajectory can help effectively reduce
the size of each trajectory, the number of trajectories is
still huge which increases the complexity of the mining of
common patterns from trajectories. Consequently, we intro-
duce the concepts of containment and reachable containment,
as formally presented in Definition 7 and Definition 8 as
a solution. The former is to evaluate whether a semantic
trajectory ST ′ has its pattern fully captured by another
semantic trajectory ST according to three factors, namely
location proximity, temporal similarity, and semantic contain-
ment. The latter is to relax the spatial locality condition
to recognize temporal similarity and semantic containment
among semantic trajectories.
Definition 7. Containment. Given two semantic trajectories

ST = {sp1, . . . , spm} and ST ′ = {sp′1, . . . , sp′n}
with m ≥ n and parameters δt and εt, if ∃ST ′′ =
{spi1 , spi2 , · · · , spin} ⊆ ST such that i) ∀j ∈ [1, n],
d(spij .p, sp

′
j .p) ≤ εt; ii) ∀j ∈ [1, n), |spij .t − spij+1 .t| ≤

δt ∧ |sp′j .t − sp′j+1.t| ≤ δt; and iii) ∀j ∈ [1, n], spij .s ⊇
sp′j .s, ST is considered to contain ST ′, denoted as
ST c ST ′.

For example in Figure 1, d(sp11.p, sp21.p) ≤ εt,
d(sp12.p, sp22.p) ≤ εt, d(sp13.p, sp23.p) ≤ εt, |sp11.t −
sp12.t| ≤ δt, |sp12.t − sp13.t| ≤ δt, |sp21.t − sp22.t| ≤ δt,
|sp22.t − sp23.t| ≤ δt, sp11.s = sp21.s = {Office}, sp12.s =
sp22.s = {Home}, sp13.s = sp23.s = {Restaurant}, thus
ST1 contains ST2. Following such conclusion, ST2 contains
ST3 and ST3 contains ST4 because their distances between
nearby points are lower than εt, their time intervals between
consecutive points are lower than δt and their semantic
categories are compatible with each other.
Definition 8. Reachable Containment. Given two semantic

trajectories ST and ST ′, ST reachable contains ST ′ iff
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POI Database

Semantic Diagram Constructor Semantic Recognizer Pattern Extractor

Popularity Clustering

Popularity Rating

Popularity Based Clustering

Semantic Purification

Top-Down Splitting

KL Divergence Examonation

Semantic Unit Merging

Merge Iteration

Similarity Examonation

Semantic Recognition

Popularity Voting
Pattern Extraction

Optics Algorithm

PrefixSpan Sequence Mining

Counterpart Cluster Mining

Minimal Semantic Unit

Fine-Grained Semantic Unit

GPS Trajectories
Fine-Grained Patterns

Semantic Trajectories

Stay Points Extraction

City Semantic Diagram

Fig. 2. System architecture of Pervasive Miner

there is a sequence of semantic trajectories ∪ji=1STi such
that i) ST contains ST1, ii) STj contains ST ′ and iii)
∀i ∈ [1, j), STi contains STi+1, denoted as ST c ST1 ∧
ST1 c ST2 ∧ · · · ∧ STj−1 c STj ∧ STj c ST ′ → ST A
ST ′.

In Figure 1, ST1 reachable contains ST3 and ST4, and
ST2 reachable contains ST4. Based on the concepts of con-
tainment and reachable containment, we define a function
CP(ST , ST ′) with |ST | ≥ |ST ′| that tries to find the
counterpart of a semantic trajectory ST ′ in another semantic
trajectory ST . It is a recursive function and the output
depends on the containment relationship between ST and
ST ′. There are in total three cases. Case i) ST c ST ′: it
returns a subset ST ′′ ⊆ ST that enables ST to contain
ST ′, i.e., a subset ST ′′ ⊆ ST that qualifies for all three
conditions stated in Definition 7. Case ii) ST A ST ′: there
must be a sequence of semantic trajectories {ST1, · · · , STj}
such that ST c ST1 ∧ ST1 c ST2 ∧ · · · ∧ STj−1 c STj
∧ STj c ST ′. Let ST ′′j be the output returned by CP(STj ,
ST ′). CP(ST , ST ′) in this case will return CP(ST , ST ′′j ).
Case iii) ST neither contains nor reachable contains ST ′: it
returns an empty set. It is noted that given two semantic
trajectories ST and ST ′, the output of CP(ST , ST ′) is either
an empty set or a sequence of stay points {sp1, sp2, · · · ,
spn} with |ST ′| = n.
Definition 9. Counterpart Function. CP(ST, ST’) is a func-

tion to find the counterpart of a semantic trajectory
ST ′ in another semantic trajectory ST . The recursive
definition is listed below.

CP(ST, ST ′) =


ST ′′ = {spi1 , · · · , spin} if ST c ST ′

CP(ST,CP(STj , ST ′)) if ST A ST ′

∅ otherwise

To facilitate the understanding of function CP(ST , ST ′),
an example is depicted in Figure 1 with four semantic
trajectories ST1, ST2, ST3 and ST4. Assume ST4 c ST3,
ST3 c ST2, and ST2 c ST1. CP(ST2, ST1) returns
{sp21, sp22, sp23}, CP(ST3, ST1) returns CP(ST3, CP(ST2,
ST1)) = {sp31, sp32, sp33}, and CP(ST4, ST1) = CP(ST4,
CP(ST3, ST1)) = {sp41, sp42, sp43}.

Then, we are ready to present next concept, group,
in Definition 10. Let us revisit our example shown
in Figure 1. For semantic trajectory ST1, we have

Group(sp11) = {sp11, sp21, sp31, sp41}, Group(sp12) =
{sp12, sp22, sp32, sp42}, and so on. It can be observed that
the concept group is to locate the stay points in different
semantic trajectories that are physically close to each other
and meanwhile own similar semantic properties.
Definition 10. Group. Given a semantic trajectory ST ′ =
{sp1, · · · , spn} and a semantic trajectory database DST ,
let D′ ={STi ∈ DST |STi c ST ′ ∨ STi A ST ′}
and S = ∪∀STi∈D′Si with Si = CP(STi, ST ′) =
{spi1, spi2, · · · , spin}. Then, for each stay point spj ∈
ST ′, all the jth stay points returned by CP(STi, ST ′)
form its group, denoted as Group(spj) = ∪∀Si∈Sspij ∪
{spj}.
With the help of group and containment, we present

fine-grained pattern in Definition 11. If a semantic trajectory
can represent multiple semantic trajectories as a common
pattern, it has to satisfy the three conditions listed in Defini-
tion 11. The main task of our work presented in this paper
is to mine the fine-grained patterns from a large set of raw
GPS trajectories. All the concepts defined in this section are
to formalize and facilitate this task.
Definition 11. Fine-grained Pattern. Given a semantic tra-

jectory ST = {sp1, . . . , spn}, a semantic trajectory
database D, support threshold σ and a density thresh-
old ρ, if ∃Dst = {ST1, . . . , STm} ⊆ D such that i)
∀ST ′ ∈ Dst, ST ′ contains or reachable contains ST , ii)
|Dst| ≥ σ; and iii) 1

n

∑n
i=1Den(Group(spi)) ≥ ρ, then

ST can be extracted as a fine-grained pattern.

4 PERVASIVE MINER

In this section, we introduce our approach to discover fine-
grained patterns, namely Pervasive Miner. It consists of three
components, as shown in Figure 2, Semantic Diagram Con-
structor, Semantic Recognizer and Pattern Extractor, respon-
sible for constructing CSD, recognizing semantic property
and extracting patterns respectively.

4.1 Semantic Diagram Construction
The constructor of semantic diagram aims at managing
and organizing semantic POI datasets via constructing a
city semantic diagram. The detailed construction consists



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 6

R3σ R3σ 

S1 

S2 S3 

S4 

S5 

S6 

S7 

S8 

stay points POIs

(a) Rating POIs’ popularity

P1 
P2 

P3 

P4 

P5 
P6 

P7 

P8 

P9 

P10 

P11 

P12 
P13 

P14 P15 

High Popularity 
Cluster C1 

Low Popularity 
Cluster C2 

P16 

(b) Clustering POIs

Fig. 3. Popularity-based clustering
of three steps, namely Popularity Based Clustering, Semantic
Purification and Semantic Unit Merging. To be more specific,
it first clusters POIs into coarse clusters based on popularity;
next fine-tunes the clusters by considering the semantic
property of each POI inside a cluster; and finally merges
nearby clusters that share similar semantic property. In the
following, we detail these three steps.
Popularity Based Clustering. As explained before, stay
points capture the locations where commuters perform dif-
ferent tasks such as dining and working to fulfill the pur-
poses of their travels. As POIs close to each stay point could
be potential destinations of the corresponding trajectories,
we measure the popularity of POIs based on the density
of stay points. To be more specific, the popularity of a
POI pI , denoted as pop(pI), is approximated by Gaussian
distribution coefficient to nearby stay points, as stated in
Equation (3). Note, notation ||p, p′|| defined in Equation (2)
refers to the Gaussian distribution coefficient between two
points and notation Dsp refers to the complete set of stay
points derived from raw trajectories. According to the classi-
cal GPS data study [26], the longitude and the latitude from
GPS data are often twisted by noises and errors. Researchers
usually use the assumption of Gaussian errors to estimate
the likelihood distribution of the adjacent region around
the real location. Such Gaussian formula avoids the damage
from GPS errors and noises. As depicted in Figure 3(a), each
stay point sp contributes to the popularity of all the POIs
that are located within the circle centered at sp having R3σ

as the radius.

||p, p′|| =
1

R3σ/3×
√
2π
· e−

d(p,p′)2

2(R3σ/3)
2 (2)

pop(pI) =
∑

{spi∈Dsp|d(spi,pI)<R3σ}

||pI .p, spi.p|| (3)

In our implementation, we adopt DB-Scan alike algorithm
to perform the clustering, with its pseudo code listed in
Algorithm 1. The basic idea is to group nearby POIs with
similar popularity (line 5) and similar semantic property
(line 6) into clusters. Note not all the POIs in P are clustered
into certain clusters, e.g., POI p16 in Figure 3(a) is not
covered by any cluster. In other words, let C be the set
of clusters formed by this step, all the points covered by
clusters in C are a subset of P . In terms of parameter
settings, we set R3σ = 100m, the vertical overlapping
distance threshold dv = 15m, MinPtsp = 5, εp = 30m
and α = 0.8 after performing a large number of tests. These
values not only achieve an optimal clustering performance
(average popularity density of all clusters), but also conform
to our daily experience.

Algorithm 1 Popularity Based Clustering

Input: support threshold MinPtsp, search radius εp, ver-
tically overlapping distance dv , popularity threshold α,
trajectory dataset DT and POI dataset P

Output: coarse semantic clusters C
1: C ← ∅;
2: for each pI ∈ P do
3: V ← range(pI , εp, P ), Cl ← {pI}, P ← P - {pI};
4: for each pIj ∈ V do

5: if
pop(pIj )

pop(pI) ≥ α and pop(pI)
pop(pIj )

≥ α then

6: if d(pI , pIj ) ≤ dv or pIj .s = pI .s then
7: V ← V + range(pIj , εp, P );
8: Cl ← Cl + {pIj}, P ← P − {pIj};
9: if |Cl| ≥MinPtsp then

10: C ← C + {Cl};
11: return C ;

We also want to highlight that the clustering algorithm
mainly packages POIs having similar popularity and se-
mantic property together, but it also groups POIs with dif-
ferent semantic properties but physically very close to each
other into one cluster because of condition d(pI , pIj ) ≤ dv
listed in line 6 of Algorithm 1. This condition is to cater for
the multi-purpose skyscrapers where POIs of very different
semantic properties are located in one building. Although
they might be located at different levels of a skyscraper, their
physical locations are very near to each other in the two-
dimensional space. Consequently, the clusters generated in
this step are coarse in terms of semantic, especially in the
case where POIs are close to each other but have different
semantic properties. We then perform the next step to fur-
ther purify the clusters in terms of semantic properties.

Semantic Purification. In this step, we progressively de-
compose each coarse cluster into smaller ones to improve
semantic consistency of POIs within one cluster. Our objec-
tive is to make sure POIs in each cluster correspond to a
fine-grained semantic unit.

In our implementation, we adopt Kullback Leibler diver-
gence (notated as KL) to check the inner semantic distribu-
tion homogeneity in each coarse cluster. In statistics, Kull-
back Leibler divergenc is a measure of how one probability
distribution diverges from another. In our context, let C
denote the set of clusters produced by Algorithm 1. For a
given cluster Co ∈ C , ∀pIi , pIj ∈ Co, Equation (5) defines
their KL value. Note if all POIs in Co share the same
semantic property, the corresponding KL is zero. On the
contrary, two POIs with high KL must have very different
semantic properties and they suggest the current cluster
should be decomposed as it currently contains POIs with
different semantic properties. Figure 4 shows an intuitive
example of KL computation. Given four POIs located in
a coarse cluster, the right chart lists the inner semantic
distribution of A and B, and the last line lists the KL between
A and B.

Pr pIi (s) =

∑
pIj∈Co∧pIj .s=s

||pIj , pIi ||∑
pIk∈Co

||pIk, pIi ||
(4)
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Algorithm 2 Semantic Purification

Input: spatial variance threshold Vmin, mixed coarse se-
mantic clusters C

Output: minimal semantic unit set U
1: U ← ∅;
2: while C is not empty do
3: Ci ← RandomCluster(C);
4: if SingleSemantic(Ci) or Var(Ci) < Vmin then
5: C ← C − {Ci}; U ← U + {Ci};
6: else
7: pI ← CenterPoint(Ci); DistList← ∅;
8: for each pIk ∈ Ci do
9: DistList[k]← KL(PrpI , P rpIk);

10: Median← GetMedian(DistList); Cnew ← ∅;
11: for each pIk ∈ Ci do
12: if DistList[k] > Median then
13: Cnew ← Cnew + {pIk}; Ci ← Ci − {pIk};
14: C ← C + {Cnew}
15: return U ;

KL(Pr pIi ,Pr pIj ) =
∑

s∈∪∀pI∈Co
pI .s

Pr pIi (s) log
Pr pIi (s)

Pr pIj (s)
(5)

Algorithm 2 lists the pseudo code of the step of semantic
purification. It randomly picks one cluster Ci ∈ C for
evaluation. If Ci qualifies for a fine-grained semantic unit,
Ci is removed fromC and no further purification is required
(lines 4-5). Otherwise, we try to purify the semantic property
of POIs in Ci by decomposing the current cluster into
two smaller clusters. The decomposition is guided by the
measure KL. We pick the center POI pI ∈ Ci (the point
closest to the cluster center) as the reference, and derive the
KL values between pI and another POI pIk ∈ Ci (lines 7-
9). Guided by the median KL value, POIs with higher KL
values (and hence more different from pI ) are removed from
Ci and form a new cluster Cnew which will be reinserted
back to C for further purification if required (lines 10-14).
On the other hand, the original Ci only keeps those POIs
with lower KL values (and hence more similar to pI in
terms of semantic properties). We still keep Ci in C for
further purification. This step terminates only when all the
clusters in C qualify for fine-grained semantic units. An
example is plotted in Figure 5(a), where the right cluster is
decomposed into two smaller clusters with more consistent
semantic properties.

In brief, the main objective of this step is to detect seman-
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Fig. 5. Purification and merging

tic complexity. With the help of Kullback Leibler divergence,
coarse clusters with POIs having different semantic proper-
ties are decomposed into smaller ones for better semantic
consistency

Semantic Unit Merging. After previous steps, a collection
of minimal semantic units is generated. Because of the
randomness and complexity of POI datasets, some parts of a
single semantic cluster are sometimes unlinked in previous
steps (separated by pedestrian streets or public squares).
Thus, the distribution of units might be fragmental. In
order to combine the fragments corresponding to similar
semantic properties, we adopt cosine similarity examination
to check whether two nearby units are mutually semantic
consistent, as stated in Equation (8). Different from the
Kullback Leibler divergence which specializes in reflecting
the inner distribution heterogeneity of a single unit, co-
sine similarity is generally applied to measure the external
similarity between items. Given a set of semantic units
U = {u1, u2, . . . , un} (output of Algorithm 2), ui ∈ U in
the form of {pIi1, pIi2, . . . , pIim} is a collection of POIs, and s
indicates the semantic property. ∀ui, uj ∈ U ,

Pr ui(s) =

∑
∀pI∈ui∧pI .s=s pop(p

I)∑
pI∈ui pop(p

I)
(6)

Prod(ui, uj) =
∑

s∈{pI .s|pI∈ui∪uj}

(Pr ui(s) · Pr uj (s)) (7)

Cos(ui, uj) =
Prod(ui, uj)√

Prod(ui, ui) · Prod(uj , uj)
(8)

We illustrate the process of this merging step via an
example shown in Figure 5(b). For each pair of nearby
semantic units, we derive their similarity according to Equa-
tion (8). If the similarity exceeds a given threshold (e.g., the
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(a) Detail view

(b) Overall view
Fig. 6. City Semantic Diagram in Shanghai

threshold is set to 0.9 in our experiments after lots of test-
ing), these two semantic units are considered semantically
similar and hence are merged into a bigger one. Note that
the un-clustered POIs in the first popularity based clustering
step (i.e., those left over POIs such as p16 in Figure 3(b))
are also considered in this merging step, and they might
be merged with other similar units nearby. As shown in
Figure 5(b), a single POI whose semantic property is office
is merged with the office unit.

After this step, Pervasive Miner extracts many fine-
grained semantic units to form City Semantic Diagram (CSD).
CSD of Shanghai is depicted in Figure 6 for illustration
purpose. The colourful regions located in Shanghai’s road
network are fine-grained semantic units. Each unit owns
different color from nearby ones. In the detail view, most
units distribute regularly and orderly. Many units share
boundary between roads. Some discrete units in same large
block separate from each other. In summary, after the step
of semantic diagram construction, the semantic properties of
POI datasets are managed and organized in CSD properly.

4.2 Semantic Recognition

In this step of semantic recognition, Pervasive Miner tries to
identify the semantic properties associated with each stay
point of a semantic trajectory. As mentioned before, we
propose to make full use of the rich semantic information
associated with POI dataset to address the challenge of
semantic absence. In the following, we explain how to
recognize the semantic property of a stay point based on
CSD.

Algorithm 3 Semantic Recognition

Input: search radius R3σ , city semantic diagram CSD, GPS
trajectory dataset T

Output: semantic trajectory dataset ST
1: ST ← ∅;
2: for each Ti ∈ T do
3: STi ← SemanticTrajectory(Ti);
4: for each stay point spj ∈ STi do
5: P ← range(spj .p, R3σ, CSD);
6: Listv ← ∅; Lists ← ∅;
7: for each pI ∈ P do
8: id← FindSemanticUnit(pI , CSD);
9: Listv[id]← Listv[id] + pop(pI)× ||pI , spj .p||;

10: Lists[id]← Lists[id] ∪ pI .s;
11: hv ← argmaxid(Listv[id]); spj .s← Lists[hv];
12: ST ← ST + {STi};
13: return ST ;

As listed in Algorithm 3, we adopt a voting strategy
to find the semantic property for each stay point. To be
more specific, given a raw GPS trajectory Ti, we first invoke
function SemanticTrajectory to identify all the stay points
of Ti and to form the corresponding semantic trajectory
STi with the semantic property of each stay point not
yet identified (line 3). Thereafter, we need to identify the
semantic property of each stay point (lines 4-11). For each
stay point spj ∈ STi, a range search is executed to locate
all the POIs, denoted as P , that are within the circular range
centered at the stay point spj with R3σ being the radius. For
each located POI pI ∈ P , its popularity and the distribution
coefficient to the stay point spj jointly determine the visited
possibility of pI by spj .

Although we can find the POI with highest visited
possibility and assume that POI is able to explain the reason
behind the trips stopped at the stay point spj , Pervasive
Miner adopts a different approach. Its voting strategy is
based on fine-grained semantic units. To be more specific,
it considers all the POIs that are within the circular range
and meanwhile belong to the same fine-grained semantic
unit as one group. As listed in lines 8-10, we invoke function
FindSemanticUnit(pI ,CSD) to find the fine-grained semantic
unit uid that pI belongs to, and pI ’s visited possibility con-
tributes to the weight vote of uid (maintained by Listv[id]).
In line 11, index hv represents the highest vote unit by
searching the candidate unit list Listv[id]. Eventually, the
unit Uhv with the highest weighted vote becomes the best
representative of the stay point spj in terms of semantic
(line 11). Consequently, we assign the semantic property
associated with the POIs in the unit Uhv that are within the
initial circular search range to the stay point spj . After all
the stay points related to semantic trajectory STi have been
evaluated, we finish the formation of a semantic trajectory
(line 12) and we continue the process until all the semantic
trajectories have been formed.

Rendering voting strategy between fine-grained seman-
tic units on CSD reduces the semantic ambiguity under
GPS noise and errors. For instance, different semantic units
distribute on both sides of the river are located closely in
Shanghai. Some stay points may locate on the river region
because of the GPS noise and errors. If we invoke range
search to select the POIs that are located close to a stay



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 9

R3σ  

Hospital (low popularity)

Office (low popularity)

Shop (high popularity)

A
B

C
D

OE
F

G
H

||,||)(||,||)(

||,||)(||,||)()(

DODpopCOCpop

BOBpopAOApopshopvoting

×+×+
×+×=

||,||)(||,||)()( FOFpopEOEpophospitalvoting ×+×=

||,||)(||,||)()( HOHpopGOGpopofficevoting ×+×=

Fig. 7. Semantic recognition

point, and find the POI with largest visited probability as
a way to determine the semantic property of a stay point,
it might suffer from semantic ambiguity as multiple POIs
might share similar voting scores or raw GPS locations
have errors. In Pervasive Miner, we strategically employ fine
grained semantic units to bind POIs into compact clusters to
evaluate their integral scores with historical popularity fac-
tors. This integral voting strategy enhances the robustness
to GPS noise and errors.

An example is depicted in Figure 7 for illustration.
Let O be the location of a stay point sp whose semantic
information is unknown. In order to determine its semantic
property, Pervasive Miner launches a range search centred
at O with radius R3σ . Totally, eight points (A − H in dash
circle) from three semantic units are discovered. In order
to pick up the semantic unit that is visited by sp with the
highest possibility, a voting competition starts. All eight
POIs vote for their ownership of semantic unit, with voting
power weighted by their popularity and coefficients from
Gaussian distribution. The detailed computation is listed in
Figure 7. Finally, the semantic unit with the highest vote is
selected and the stay point retrieves the semantic property
from that unit. In Figure 7, shop unit scores the highest
because of its higher popularity, shorter distance to the
stay point sp, and more selected POIs. Thus, the semantic
property of stay point sp is defined as shop.

4.3 Pattern Extraction

In Pattern Extraction, we use the counterpart conception in
Definition 9 to collect the nearby trajectories from coarse
semantic patterns. All collected trajectories are divided into
several groups described in Definition 10. They are scanned
group by group to form the fine-grained semantic patterns.

We first leverage classic PrefixSpan algorithm [24] to
detect frequent semantic patterns from semantic trajectories.
The basic idea of PrefixSpan is to use short patterns as
prefixes to project the database and to progressively grow
the short patterns by searching for local frequent items. Ref-
erence [24] describes more details about PrefixSpan. The out-
put of PrefixSpan is a collection of coarse semantic patterns
with same length denoted as PAcoarse = {pa}, where pa is
a coarse semantic pattern which contains n semantic trajec-
tories with same length m. ∀pa = {ST1, ST2, . . . , STn} ∈
PAcoarse, ∃O = {o1, o2, . . . , om}(as a list of semantic prop-
erty), let 1 ≤ i ≤ n, 1 ≤ j ≤ m, we can make sure that
spij = Ptj(STi)(as the jth point of STi) and spij .s = oj .

For each coarse pattern detected by PrefixSpan, Pervasive
Miner renders the CounterpartCluster algorithm to detect its
spatio-temporal regularity. Algorithm 4 describes the details
of CounterpartCluster.

Algorithm 4 CounterpartCluster

Input:
semantic trajectory set D, support threshold σ, temporal
constraint δt and density threshold ρ

Output:
collection fine-grained patterns PAfinegrained

1: PAfinegrained ← ∅;
2: PAcoarse ← PrefixSpan(D);
3: for each pa ∈ PAcoarse do
4: m← the length of each trajectories in pa;
5: for 1 ≤ k ≤ m do
6: Ck ← Optics({Ptk(ST )|ST ∈ pa}, σ);
7: for each STi ∈ pa do
8: C0

CP ← pa; CmCP ← ∅; valid← true;
9: for 1 ≤ k ≤ m do

10: CkCP ← {STj |STj ∈ C
k−1
CP ,

∃c ∈ Ck, P tk(STi) ∈ c and Ptk(STj) ∈ c};
11: if (k > 1) and (∃STj ∈ CkCP ,

P tk(STj).t− Ptk−1(STj).t) ≥ δt) then
12: delete all such STj from CkCP ;
13: if Den({Ptk(ST )|ST ∈ CkCP }) < ρ then
14: pa← pa− CkCP ; valid← false; break;
15: pa← pa− CmCP ;
16: if |CmCP | < σ or not valid then
17: continue;
18: for 1 ≤ k ≤ m do
19: pafinegrained ← pafinegrained ∪

{CenterPoint({Ptk(ST )|ST ∈ CmCP })};
20: PAfinegrained ← PAfinegrained ∪ {pafinegrained};
21: return PAfinegrained;

For each coarse semantic pattern, we can calculate its
length m (line 4). All kth points in each semantic trajectory
of the coarse pattern are collected to generate clusters by
Optics [27], with the results stored in Ck (line 6). We render
Optics to finish clustering tasks without the configuration
of distance threshold. It initiates with a default maximum
distance threshold and cluster size threshold σ (support
threshold) to mark all core points. After that, Optics calcu-
lates the core distance for each point and generates a queue
of points with their smallest reachable distance. It chooses
an optimal distance threshold with sufficiently high density
for each cluster.

Then, the algorithm picks each semantic trajectory STi
to gather all counterpart trajectories point by point (line 9-
14). First, the procedure is divided into m loops according
to the trajectory length. The candidate set CkCP stores all
trajectories that may share counterpart relationship with
trajectory STi by scanning the leading k points. In kth loop,
we check whether the kth points from trajectories STi and
STj are located in the same spatial cluster c from the Optics
result Ck. If not, the function CP(STj , STi) in Definition 9
returns empty set. STj does not contain or reachable contain
STi because the points distribute dispersively. Otherwise
(i.e., points are located in same cluster and STj exists in
previous candidate set Ck−1CP ), STj will be preserved into
current candidate set CkCP (line 10), that means leading k
points in STi and STj are close enough to make the lead-
ing parts of two trajectories share counterpart relationship.
This counterpart pending considers the temporal constraint
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(a) Detail view

(b) Overall view
Fig. 8. Taxi stay points in Shanghai, the pick-up/drop-off points are
selected to be stay points in our experiments directly

between two consecutive points in STj . If the time interval
between kth and (k − 1)th points exceeds δt, STj will not
be included in candidate set CkCP (line 11-12). The pending
also examines the spatial density around all kth points from
trajectories inCkCP . If the density of points is not higher than
the threshold ρ, we break the pending loop and all failed
trajectories in candidate set will be deleted from the coarse
pattern pa (line 13-14). The group around all kth points
is denoted as {Ptk(ST )|ST ∈ CkCP } according to Defini-
tion 10. High spatial density of each group maintains the
low spatial sparsity in the fine-grained semantic patterns.

After these m loops, we gather the counterpart set CmCP ,
that will be separated from the coarse pattern pa (line 15). If
the size of set outnumbers the support threshold σ (line 16-
17), we push the counterpart trajectories into next extraction
stage (line 18-20). For all kth points in the counterpart trajec-
tories, they are collected as one group to calculate the center
location and the average timestamp. The closest point to the
center location will be selected as the representative point,
and the new timestamp will be recorded as the average
value (line 19). The new trajectories of these representative
points form the fine-grained semantic patterns.

5 EXPERIMENT

In this section, we conduct extensive experiments to evalu-
ate the performance of Pervasive Miner and its competitors
under disparate parameter configuration. Experiments are
based on a real taxi trajectory dataset collected in Shanghai
in the month of April, 2015. The raw GPS trajectory dataset

TABLE 3
Statistic table of POI category in Shanghai

Category Count Percentage
Residence 218,327 18.09%

Shop & Market 197,411 16.36%
Business & Office 180,962 15.00%

Restaurant 136,322 11.30%
Entertainment 120,986 10.03%
Public Service 113,446 9.40%
Traffic Stations 91,079 7.55%

Technology & Education 32,190 2.67%
Sports 23,418 1.94%

Government Agency 22,670 1.88%
Industry 17,732 1.47%

Financial Service 17,251 1.43%
Medical Service 15,894 1.32%

Accommodation & Hotel 12,795 1.06%
Tourism 6,166 0.51%

consists of 2.2×107 taxi journeys, with each journey record-
ing a taxi trip from a pick-up location to a drop-off location,
as depicted in Figure 8. The red points refer to pick-up
locations and the blue points stand for drop-off locations.
They are selected to be stay points in our experiments
directly. Besides the pick-up and drop-off records, payment
card information of 20% passengers (around 184,000 passen-
gers) are also stored in the logs. By linking the consecutive
journey trajectories for each passenger in a day, we recover
many long movement trajectories with at least three stay
points. In order to retrieve semantic property for stay points
in raw trajectories, we form the POI dataset from AMAP
(http://ditu.amap.com/) to support semantic recognition.
This POI dataset contains 1.2×106 POIs with exact semantic
property, while all the POIs are categorized into 15 major
semantic types and 98 minor semantic types (described in
Table 3). The POI dataset covers an area of 6, 120 square
kilometer in Shanghai.

In our experiments, we implement six approaches, in-
cluding Pervasive Miner proposed in this paper and five
competitors. Pervasive Miner adopts City Semantic Diagram
to implement semantic recognition, and we abbreviate this
standard Pervasive Miner with name CSD-PM (City Semantic
Diagram based Pervasive Miner). Then, in order to evaluate
the strength of City Semantic Diagram, we replace CSD
with ROI based algorithm [21] in standard Pervasive Miner
and rename it as ROI-PM (Region of Interest based Pervasive
Miner). In order to apply Splitter and SDBSCAN in raw GPS
trajectories, we integrate City Semantic Diagram or ROI based
algorithm with SDBSCAN or Splitter, so we have another
four implementations totally, named as CSD-SDBSCAN,
ROI-SDBSCAN, CSD-Splitter and ROI-Splitter respectively.

Parameter Setting. For all above six approaches, support
threshold σ, temporal constraint δt, and density threshold
ρ influence their performance in pattern extraction. Support
threshold σ is the size lower bound of included trajectory
set for each pattern as stated in Definition 11. Temporal
constraint δt sets the upper bound for time interval between
adjacent stay points in semantic trajectories, which contain
or reachable contain the semantic pattern as we mentioned
in Definition 7 and 8. Density threshold ρ defines the lower
bound of spatial density in clusters of semantic trajectories,
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which contain or reachable contain the semantic pattern in
Definition 11. These three parameters are universal factors
in all six approaches and declared in Algorithm 4 and
Table 2. In normal condition, we set σ = 50, δt = 60mins
and ρ = 0.002m−2, because this configuration is generally
suitable for all above six approaches.

Metrics of evaluation. According to the detail study in
previous related works [17], [18], [19], [21], quantity of
patterns, semantic and spatial quality of extracted patterns
are the pivotal and classical indices for performance eval-
uation. Same as previous works and study, four common
performance metrics are introduced in our experiments as
benchmarks, including number of patterns detected (notated
as #patterns), coverage, spatial sparsity and semantic consis-
tency. Coverage metric represents the sum of support for
each pattern. As we mentioned in Table 2, a pattern’s sup-
port is the number of semantic trajectories which contain
or reachable contain itself. The larger the value, the better
the performance. Spatial sparsity (notated as ss) for a
pattern indicates the average point distance in each group
(Definition 10) of points from trajectories which contain
or reachable contain the pattern. Its math expressions are
defined in Equation 9 and 10, and a smaller ss is more
preferable, because it means higher density. Semantic con-
sistency (notated as sc) is defined as the average semantic
cosine similarity between trajectories, and a bigger value is
considered to be more preferable.

Let pattern pa = {sp1,· · · ,spn}, ∀1 ≤ k ≤ n, there exists
a list of groups {Group(sp1), · · · , Group(spn)} including
corresponding neighbor stay points (see in Definition 10). If
Group(spk) = {sp′1, · · · , sp′m} with sp′i.s and sp′j .s referring
to the semantic property queried by semantic recognition
from CSD, we can get:

ss(Group(spk)) =
2

m(m− 1)

m−1∑
i=1

m∑
j=i+1

d(sp′i, sp
′
j) (9)

spatial sparsity(pa) =
1

n

n∑
k=1

ss(Group(spk)) (10)

sc(Group(spk)) =
2

m(m− 1)

m−1∑
i=1

m∑
j=i+1

Cos(sp′i.s, sp
′
j .s))

(11)

semantic consistency(pa) =
1

n

n∑
k=1

sc(Group(spk)) (12)

Performance Evaluations. In Figure 9, we plot the frequency
curves to demonstrate the spatial sparsity performance of
each approach. The x-axis is divided into 20 segments
uniformly from 0 to 100 with each segment representing
a spatial sparsity bin with the same width 5. Each pattern is
assigned to a bin when the sparsity range of this bin covers
the pattern’s sparsity value. Then the count value of each bin
is plotted as a frequency point. By linking the consecutive
frequency points, we get the frequency curve to represent
the spatial sparsity distribution. After analyzing six sets of
patterns under the configuration σ = 50, δt = 60mins and
ρ = 0.002m−2, three curves are drawn in the upper part
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Fig. 9. Frequency distribution of patterns’ spatial sparsity for each
approach. A higher point locating on a curve means higher density
or frequency.

of Figure 9 to indicate the CSD based algorithms and other
three curves are depicted in the lower part to represent the
ROI based ones.

As we mentioned above, spatial sparsity indicates the
average point distance in each group of points. The higher
the curve is located in the low sparsity range, the more
the patterns with high density are extracted. On one hand,
the upper three curves score higher than the lower three
curves in the low sparsity range (≤ 20), which means that
more patterns with high density are extracted by CSD based
algorithms. On the other hand, the lower three curves main-
tain relatively large frequency values in the high sparsity
range (≥ 60), meaning that ROI based algorithms may
output some extremely sparse patterns which are actually
harmful to the collection of the fine-grained patterns. Be-
sides, the CSD-PM curve owns obvious advantages in low
sparsity range (≤ 15), as compared with other two CSD
based algorithms. After aggregated statistical calculating,
the average spatial sparsity, total number of patterns and
total coverage of each curve are exposed in legend. CSD-PM
owns the minimal average spatial sparsity (20.93m) with the
maximal #patterns (421) and coverage (68872). In summary,
our approach is good at detecting more dense patterns, in
the meanwhile, rejecting the extremely sparse patterns.
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Fig. 10. Box plots of patterns’ semantic consistency for each approach

Figure 10 shows the box plots of patterns’ semantic
consistency for each approach. Semantic consistency is de-
fined as the average semantic cosine similarity between
trajectories in Equation 11 and Equation 12. The middle
point with a crossing horizontal line of each box represents
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the average value and other horizontal lines indicate the
minimum, Q1, Q2, Q3 and maximum. For CSD based
algorithms, their average lines are all higher than 0.99 and
none of their minimum values is less than 0.98. Such a stable
distribution demonstrates CSD’s superior performance in
semantic consistency, thanks for the step of semantic purifi-
cation (presented in Section 4.1) that is able to recognize and
handle multiple semantic regions to minimize the damage
of Semantic Complexity. For ROI based approaches, the Se-
mantic Complexity leads to some confusions in pattern extrac-
tion. Consequently, all three boxes of ROI based algorithms
occupy a large scale.

Parameter Experiments. Next, we study the influence of
support threshold σ, with the results shown in Figure 11.
We observe that, under different support values, CSD-PM
consistently outperforms others in terms of number of pat-
terns detected and coverage, as reported in Figure 11(a)
and Figure 11(b) respectively. The advantages of CSD-PM
over other approaches are contributed mainly by Optics in
pattern extraction. To be more specific, Optics optimizes the
configuration of distance threshold automatically, thus CSD-
PM is empowered to discover more fine-grained patterns.
As shown in Figure 11(c) and Figure 11(d), CSD-based
algorithms perform better than ROI-based ones in general.
The trend of curves in Figure 11 shows that if support
threshold σ is increased, the quality of patterns is improved
but the quantity falls.

In addition, we study the impact of density threshold ρ,
as reported in Figure 12. We observe that density threshold
ρ seems to have the similar influence as σ, as Figure 11(a)
demonstrates a similar trend as Figure 12. CSD-PM shows
its advantages on number of patterns detected and coverage
again under varying density, as shown in Figure 12(a) and
Figure 12(b). As for the spatial sparsity and semantic con-
sistency, we observe the algorithms based on CSD always
perform better than those based on ROI.

Last but not least, we study the impact of temporal
constraint δt, with the results shown in Figure 13. Temporal
constraint δt sets the upper bound for time interval between
adjacent stay points in semantic trajectories which contain
or reachable contain the semantic pattern as we declared
in Algorithm 4, Definition 7, and Definition 8. A shorter
temporal constraint wound filter more patterns with a large
time interval. For example, the pattern transiting from res-
idences to airports usually costs more than half an hour in
its travel. If we set temporal constraint shorter than 30 min-
utes, considerable time-consuming patterns like residences
to airports wound disappear from the results. We observe
that there is almost no fluctuation when δt ≥ 30mins. This
phenomenon is caused by some unique characteristics of
Shanghai taxi datasets. We find that the average duration
of most taxi trips is around 30 minutes, according to the
pick up and drop off records, thus the coverage and pattern
number drop when δt = 15mins. However, CSD-PM and
CSD based algorithms stand out again when we vary the
setting of the temporal constraint.

6 DEMONSTRATION

In addition to quantitative evaluation reported previously,
we visualize the patterns discovered by CSD-PM in Shang-

hai downtown region in Figure 14. Here, all the patterns
are categorized into six specific time intervals in a week,
based on the time of a day and the day within a week,
including weekday morning, weekday afternoon, weekday night,
weekend morning, weekend afternoon, and weekend night. In the
morning of a weekday, a large number of people move from
the faraway residential areas to the work places of the city,
as shown in Figure 14(a). Most of the patterns are recognized
as Residence→ Office or Residence→ Airport. In the afternoon
of a weekday, both the number of patterns detected and
the average length of patterns decrease, because majority
of people work in their offices with relatively low demand
for taxi, as visualized in Figure 14(b). In the evening of
a weekday, the demand for taxi becomes high again, and
lots of patterns re-appear. Consistent with our expectation,
patterns such as Office → Supermarket and Restaurant →
Residence are detected, as shown in Figure 14(c).

Similarly, we also plot the patterns detected in weekends
in Figure 14(d), Figure 14(e) and Figure 14(f), corresponding
to the morning, the afternoon, and the evening of weekends
respectively. Compared with the findings from weekdays,
weekend’s patterns are sparse and irregular; and many pat-
terns observed during weekday do not appear in weekend.
This is because our life in weekend is not constrained by our
regular jobs and hence we have more freedom to arrange
our activities with more variety.

Figure 14(g) shows a group of patterns detected by
Pervasive Miner around Shanghai Hongqiao International
Airport. This group of patterns covers 20% of total taxi
pick-up and drop-off records in our dataset. As observed,
many patterns direct to the airport and the movement trend
is obvious. This dominant phenomenon reveals human’s
enormous demand on taxis. In addition, we report some
patterns detected near Children’s Hospital of Fudan Univer-
sity in Figure 14(h). It is observed that our approach is able
to detect many trips to/from hospitals, which are hardly
discovered from online social media datasets such as check-
in records or twitter messages. Most people consider their
visits to hospitals are private and sensitive. Consequently,
the number of check-in logs or text messages that are related
to medical visits is extremely small. This example shows that
our solution excludes the deficiency of Semantic Bias by data
selection and processing.

7 CONCLUSION

In summary, our approach addresses the challenge of Se-
mantic Absence by recognizing semantic behaviours from
raw trajectories; it prevents Semantic Bias via using ubiq-
uitous GPS trajectory datasets; and it is capable of detecting
Semantic Complexity from human mobility, thanks to the
dedicated design of semantic purification for City Semantic
Diagram. Comprehensive and massive experiments are con-
ducted based on trajectories from more than 10,000 taxis,
920,000 passengers and 1,200,000 POIs in Shanghai. City
Semantic Diagram is proved to maintain high semantic con-
sistency and low spatial sparsity in extracted patterns.
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0.002 0.004 0.006 0.008 0.010

100

200

300

400

500

Density (m-2)

#P
at

te
rn

s

 CSD-PM
 ROI-PM
 CSD-SDBSCAN
 ROI-SDBSCAN
 CSD-Splitter
 ROI-Splitter

(a) #Patterns w.r.t. ρ

0.002 0.004 0.006 0.008 0.010

30k

40k

50k

60k

70k

 Density (m-2)

C
ov

er
ag

e

 CSD-PM
 ROI-PM
 CSD-SDBSCAN
 ROI-SDBSCAN
 CSD-Splitter
 ROI-Splitter

(b) Coverage w.r.t. ρ

0.002 0.004 0.006 0.008 0.010
0

20

40

60

80

100

 Density (m-2)

S
pa

ti
al

 S
pa

rs
it

y 
(m

)

 ROI-PM
 CSD-SDBSCAN
 ROI-SDBSCAN
 CSD-Splitter
 ROI-Splitter
 CSD-PM

(c) Spatial sparsity w.r.t. ρ

0.002 0.004 0.006 0.008 0.010
0.96

0.97

0.98

0.99

1.00

 Density (m-2)

S
em

an
ti

c 
C

on
si

st
en

cy

 ROI-PM
 CSD-SDBSCAN
 ROI-SDBSCAN
 CSD-Splitter
 ROI-Splitter
 CSD-PM

(d) Semantic consistency w.r.t. ρ
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Fig. 13. Performance comparison on pattern number, coverage, average spatial sparsity and average semantic consistency with various
temporal constraint δt
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Fig. 14. (a)-(f) show patterns discovered by Pervasive Miner in Shanghai downtown region from one day taxi records of weekday or
weekend. (g) and (h) show dominant and typical patterns
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