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Abstract: Server-side WiFi-based indoor localization offers a compelling approach for passive occupancy estimation 
(i.e., without requiring active participation by client devices, such as smartphones carried by visitors), but is known 
to suffer from median error of 6–8 meters. By analyzing the characteristics of an operationally-deployed, WiFi-based 
passive indoor location system, based on the classical RADAR algorithm, we identify and tackle 2 practical 
challenges for accurate individual device localization. The first challenge is the low-cardinality issue, whereby only 
the associated AP generates sufficiently frequent RSSI reports, causing a client to experience large localization error 
due to the absence of sufficient measurements from all nearby APs. The second is the outlier resolution issue, whereby 
clients physically located outside the fingerprinted region but attached to the WiFi network are localized erroneously 
to a fingerprinted landmark. To tackle the low-cardinality challenge, we identify the stationary-period of devices, and 
augment the device’s live AP-reported RSSI readings, during such stationary periods, with the useful but ‘stale’ 

values reported by neighboring APs. To eliminate extraneous outlier devices, we apply a threshold-based filtering 
strategy, where the RSSI thresholds for all interior points are derived using a combination of a weighted path-loss 
propagation model and the Voronoi tessellation of the fingerprinting map. In addition, to overcome intermittent false 
positives/negatives in localization or subsequent occupancy estimation, we apply two additional techniques: (a) 
temporal smoothing of location estimates over a time period, and (b) identification and removal of static devices. We 
experimentally evaluate these combined set of techniques on 3 different indoor work, collaboration & residential 
spaces, and show how these techniques improve the robustness of location tracking, which subsequently translates 
into an approx. 80+% reduction in the overall occupancy estimation error. 

Keywords: Location based services, Occupancy estimation, WLAN network measurements 

 

1. Introduction 

WiFi-based indoor localization has been a subject of 
research for more than two decades, with potential 
commercial uses of this technology covering 
applications such as indoor navigation [1] and 
occupancy sensing [2]. Various techniques such as 
fingerprinting [3], propagation modeling [4] and time-
of-flight estimation [5] have been analyzed 
extensively. While state-of-the-art techniques achieve 
location errors less than 10 cm, they require active 
client participation (often requiring an App on the 
mobile device) and are thus not practically usable for 
scenarios that require location tracking of all 
users/devices in an indoor space. For such 
applications, such as occupancy counting [6] and 
visitor movement analytics [7], there is a need for 
passive server-side localization techniques, that are 
able to localize all WiFi-enabled devices without any 
active participation or App downloads by individual 
users. The work in this paper focuses on addressing 
multiple key shortcomings in such passive WiFi 
localization, and is motivated by our broader, ongoing 
work on occupancy estimation to support energy-

efficient smart buildings, via control of both HVAC 
and LED luminaires. Such adaptive control requires 
accurate occupancy estimation with finer spatial 
resolution (e.g., within a 5 × 5 m   meeting room). Our 
key goal is to reduce the error in estimating the total 
device-count (a proxy for human occupancy) within 
selected regions of a building, via appropriate 
enhancements to the underlying location estimation 
and movement tracking process. 

In this work, we consider the operationally-deployed 
LiveLabsserver-side WiFi localization system [8], 
which uses signal strength (RSSI) measurements of 
uplink transmissions, captured by multiple WiFi APs, 
to periodically compute a device’s current location. 

This system uses the classical RADAR algorithm [9], 
which (a) first creates a fingerprinting database, 
containing a mapping between a vector of RSSI values 
and chosen landmark locations, during the training 
phase, and (b) subsequently performs a nearest-
neighbor, reverse-lookup on  
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this database to compute device locations at runtime (during the
testing phase). As detailed in [10], such fingerprint-based approaches
have several limitations and are capable of providing only relatively
coarse-grained location accuracy, with median errors of ∼ 8–10 m [8].
Note that client-side approaches [11,12], which can either obtain more
frequent & diverse WiFi measurements via active scanning or utilize
additional inertial sensors embedded in mobile devices, usually have
significantly lower localization error (∼ 50 cm–1 m).

We tackle three empirically-observed limitations that are partic-
ularly relevant for accurate occupancy estimation based on passive
AP-side measurements:

• Low Cardinality: As detailed in [13], to conserve energy, modern
mobile nodes (MNs) generate WiFi PROBE_REQUESTs fairly in-
frequently (especially when stationary), reducing the number of
distinct APs that provide fresh RSSI measurements of a mobile
device. As a consequence, location estimates are predominantly
derived using readings from just one AP, resulting in median
localization error rates in excess of 6–8 m.

• Extraneous Outliers: The localization process implicitly assumes
that a mobile device is always within the fingerprinted region
of interest, and thus assigns any connected device to a location
within this region. However, due to the larger range of WiFi
signals, there are multiple instances of MNs attaching to the WiFi
network from outside the fingerprinted region (e.g., from the
parking lot or lawn outside a building)–such devices are localized
incorrectly and effectively inflate the occupancy estimate.

• Errors with Transient & Static Devices: Occupancy estimates are
typically derived over slightly longer durations (e.g., 5 min) to
avoid counting transient devices. When WiFi location estimates
are computed more frequently, the estimated location can fluc-
tuate ‘randomly’ across consecutive readings, thereby polluting
the occupancy count, especially for devices that are close to
the boundary of the region being monitored. Moreover, public
spaces often contain non-personal static devices (e.g., wireless
kiosks or WiFi-enabled cameras), which can artificially inflate the
occupancy count unless they are identified and eliminated.

Key Contributions: We shall quantify the three challenges men-
tioned above and then present techniques to reduce the resulting
localization errors. We make the following key contributions:

• Improve Cardinality via Judicious Use of Stale Measurements: We
tackle the problem of low cardinality by augmenting the freshly-
generated RSSI reports (typically only from the associated AP)
with the older RSSI values previously reported by additional,
non-associated APs. Via empirical studies, we discover that such
reports from non-associated APs are typically the result of explicit
AP scanning, which primarily occurs only when an MN actually
moves and sees a sharp drop in RSSI values (in contrast to
the constant random RSSI fluctuations that are present in even
static MNs). We exploit this property to implicitly identify the
periods when an MN is stationary, and reuse the stale, but likely
still valid, RSSI reports from other APs to improve the median
localization error from 6 m to 4 m.

• Eliminating Outlier devices: We demonstrate a method for elimi-
nation of outlier devices, i.e., those that connect to the WiFi APs
from outside the fingerprinted area. To eliminate these extraneous
clients, we first define the Voronoi region, in RSSI space, for each
landmark. To ensure that Voronoi cells are convex polytopes even
for boundary landmarks, we use a propagation model approach
to estimate the RSSI values at points on the boundary of the
fingerprinted area without requiring laborious additional finger-
printing. Each Voronoi region is then used to define a (min,max)
per-AP, per-landmark threshold, such that devices localized to a
specific landmark but with RSSI readings outside these thresholds
are marked as outliers. We empirically demonstrate the effective-
ness of this approach in eliminating such outlier devices from the
occupancy estimation process.

• Eliminating Transient Errors & Non-Personal Devices: Motivated by
empirical observations, we develop two additional post-
processing techniques to improve the accuracy of occupancy
estimation. First, we perform temporal smoothing, by computing
the mode of the multiple location estimates for a device over an
occupancy estimation period 𝑇 . We show that such smoothing
helps to improve the accuracy of location estimation for devices
close to the boundary regions by 4%. Second, we develop a
mechanism to identify and eliminate the devices that are observed
to be remain physically static over a long period (across days),
as such devices are likely non-personal devices that potentially
inflate the occupancy count.

• Real-World Deployment : We validate our overall solution, using
real-world studies, under different occupancy levels, on three
different workspaces in our university campus: (a) an access-
controlled academic lab space, typically occupied by a regular
pool of research employees, (b) a student-centric shared, public
collaboration space with a floating pool of users, and (c) common
spaces of a student residential (dorm) building. We show that our
refinements to the underlying location system help us reduce the
occupancy estimation error to approx. 24%–30%, compared to
baseline errors that vary between ∼97%–120% (in the absence
of these techniques).

We believe that our work is both generalizable and practically useful:
a) the challenges of low cardinality & outlier elimination apply not just
to RADAR but any other passive localization technique (e.g., based on
propagation models), and (b) indoor occupancy analytics is projected
to be a USD $9B market by 2025.1 The rest of the paper is organized as
follows. Section 2 surveys relevant past work. Section 3 discusses the
experimental setup and data collection methods across the 3 distinct
spaces. Section 4 describes the problems identified in the server-side in-
door localization system. Section 5 gives the proposed solutions to solve
the challenges identified. We discuss the results of our methodology in
Section 6. Finally, Section 7 concludes the paper.

2. Related work

In this section we present the existing approaches towards WiFi
based indoor localization, as well as describe their associated chal-
lenges. The WiFi fingerprinting-based approach for indoor localization
was introduced classically via techniques such as RADAR [9] & Ho-
rus [14] that utilize coarse-grained RSSI information. In more recent
years, an extremely large variety of approaches (e.g., PinLoc [4],
Pilot [15]) have used additional physical-layer information (e.g., the
phase & amplitude of different sub-carrier frequencies) to enrich the
fingerprint and improve location estimation accuracy.

Researchers have also extensively investigated the sensitivity of
RSSI-based fingerprinting strategies to various parameters. Li et al. [16]
studied how the average localization error was inversely proportional
to the number of landmarks. Kaemarungsi et al. [17] showed that RSSI
values in indoor environments are prone to fluctuation due to changes
in ambient conditions and shadowing effects caused by the presence
of humans. Mazuelas et al. [18] proposed a robust indoor positioning
system by dynamically calibrating the propagation model using the
obtained real-time RSSI values. Talvitie et al. [19] discussed the impact
of missing fingerprints and compared techniques for interpolating from
sparse fingerprint values, while Kafrawy et al. [20] developed indoor
WiFi propagation models for localizing vehicles and humans. To over-
come the RSSI variations due to client heterogeneity, Kjaergaard [21]
proposed a hyperbolic fingerprinting method that uses ratios of signal
strengths (instead of absolute values) for localization. Wang et al. [22]

1 https://www.marketwatch.com/press-release/indoor-location-by-
positioning-systems-market-size-to-surpass-447-cagr-up-to-2025-2019-04-29.

https://www.marketwatch.com/press-release/indoor-location-by-positioning-systems-market-size-to-surpass-447-cagr-up-to-2025-2019-04-29
https://www.marketwatch.com/press-release/indoor-location-by-positioning-systems-market-size-to-surpass-447-cagr-up-to-2025-2019-04-29
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showed that temporal correlation, over a longer observation period, can
improve the accuracy of RSSI fingerprinting-based indoor localization.

As an alternative to active WiFi-based localization techniques, re-
searchers have also investigated the specific challenges with server-
side, passive WiFi localization. For instance, Li et al. [23] exploit the
absolute time-of-arrival (ToA) of WiFi signals, measured at multiple
WiFi sniffers. In a different approach, Li et al. [24] utilize a nonlinear
regression model to relate the CIR information from PHY-layer with
the propagation distance and propose a novel trilateration algorithm to
localize devices. Sun et al. [25] also demonstrated a passive approach,
based on the sniffing of PROBE_REQUEST frame transmitted by mobile
clients, that uses a log-distance path loss model to perform trilateration-
based location estimation. While the paper reports median localization
error of ∼4–5 m, the experimental studies are fairly limited (involving
individuals walking in straight line segments) and also involved the
use of custom sniffing hardware. The LiveLabs server-side localiza-
tion system [8], uses real-time measurements from a commercially
deployed Aruba WiFi network, to perform RADAR-based localization
of devices: while median errors in this system were ∼6–8 m, the error
distribution was seen to have a long tail (95th percentile error = 15
m). Such commercial infrastructure typically offers less frequent and
coarser measurement reports than custom sniffers, directly impacting
the accuracy achievable via a passive sensing approach. Via a careful
analysis of such a server-side localization system, Jaisinghani et al. [13]
established the severity of the cardinality problem, whereby multiple
APs provide RSSI measurements only infrequently, with the problem
being more acute in the 5.5 GHz band. In an alternative approach,
ArrayTrack [26] derived accurate location estimates (∼20 cm median
error) by triangulating across AoA estimates from multiple cooperating
APs.

Researchers have also suggested more sophisticated passive local-
ization techniques, which do not even require the individual to carry
a WiFi-enabled mobile device. Such passive localization approaches
include radio tomography imaging (e.g., [27]), which constructs a 3-
D ‘image’’ of an environment based on concurrent fine-grained RSSI
measurements made by multiple sophisticated receivers, or the use of
ultra-wideband (UWB) technology [28], which allows passive track-
ing of moving objects even through obstacles such as walls. These
approaches, however, all require custom infrastructure deployment.

Overall, all of these approaches implicitly assume the availability
of a set of RSSI measurements from multiple APs or receivers, likely
obtained through active scans issued by an MN–as has been noted,
state-of-the-art WiFi clients rarely perform such active scans. These
methods also focus on improving an MN’s location accuracy within
the fingerprinting area, instead of explicitly tackling the problem of
filtering out MNs that attach to an AP but are outside the fingerprinted
region.

3. Experimental setup and data collection

In this work, we utilize, as a baseline, the LiveLabs indoor local-
ization system [8] deployed in our university campus, based on the
existing Aruba-provided WiFi infrastructure [29]. We test our proposed
system for occupancy tracking in three distinct spaces:

(a) An access-controlled academic research lab (roughly 400 m2 in
area) that is primarily occupied by a set of full-time research and
administrative staff. Fig. 1 illustrates the floor plan of the research
labs, with the 𝑖th fingerprinted landmark locations marked as
𝐿𝑖. The figure also illustrates the notion of extraneous or outlier
devices, marked as ‘‘E’’ in the floor plan, which are outside
the research lab area but can get included in the occupancy
estimate if they get erroneously mapped to one of the designated
landmarks within the research space. This space is covered by 5
distinct APs, all located within the research space.

(b) Another informal, collaborative workspace (roughly 1000 m2 in
area), in a different building, that is accessible to all university
students and staff, and is typically used in a 24X7 fashion. Fig. 2
illustrates the various landmark coordinates and the distinct sec-
tions into which this collaborative space are divided; this area
is covered by 4 different APs (AP01, AP02, AP03 and AP04). We
restrict our study to sections S1, S2, S3, S6 and the ‘lobby’ area, as
the sections S4 and S5 are currently seen to be largely unoccupied
during daily use. The list of outlier devices will then consist of
devices located in the lobby area (as this is outside the boundaries
of the collaborative space), as well as other devices (e.g., on other
floors) that get connected to one of the four APs mentioned above.

(c) To demonstrate that our approach is robust and independent
of vendor-specific features, we also analyze data collected by a
Cisco-Meraki [30] based WiFi infrastructure deployed in a resi-
dential building that houses university students. We restrict our
study to the common spaces utilized by the students on a 24X7
basis. Fig. 3 illustrates the floor plan for one such common space
— the extraneous devices as marked as ‘‘E’’, and the legitimate
devices as ‘‘D’’, in the floor plan. For privacy reasons, we were
unable to fingerprint the other non-communal spaces of the build-
ing. Moreover, due to the ongoing viral pandemic, the premises
did not have its usual quota of residents, making it impossible for
us to conduct long-term studies on ‘‘real-world’’ occupancy behav-
ior. Accordingly, we primarily utilize this building to additionally
test our outlier detection mechanisms, i.e., the ability to filter out
the student devices that connect to the WiFi network from outside
the designated common spaces.

3.1. Localization process

For the Aruba infrastructure (which forms the dominant part of our
analysis), each AP in the infrastructure generates real-time RTLS2 data
every 5 s, which are directed to our localization servers. For the Cisco
infrastructure deployed in the residential building, the localization
system receives RSSI feeds from the Meraki cloud [30]. The localization
process consists of two phases, as described below:

Offline (Fingerprinting) Phase: The fingerprinting process in-
volves choosing distinct landmarks (annotated as 𝐿_63 −𝐿_74 in Fig. 1
and 3−6 𝑎𝑛𝑑 15−34 in Fig. 2)–our designated landmarks (3–5 m apart)
are delineated based on the overhead sprinklers, which are typically
deployed in a grid-like fashion with a separation of ∼3 m. We then man-
ually place devices (configured with custom software to perform
active scanning continuously) at each of these landmarks, and record
the RSSI readings. For the Aruba network, these readings are reported
once very 5 s as part of RTLS packets, by the corresponding APs over a
total period of 5 min. For the Cisco network, as the data received from
Meraki Cloud arrives aperiodically and in random order, the system
waits until it receives new reports from all APs before proceeding on
to localization, resulting in location update periods of ≈ 1 − 1.5 mins.
The values received over the 5 min interval are then averaged to
create the RSSI fingerprint for each landmark. To further improve
the accuracy of fingerprinting maps, we conducted the fingerprint
exercise on 5 different days over different crowd densities, averaging
the readings received across different days. Table 1 summarizes the key
data fields received in such RTLS reports, for both the Aruba and Cisco
deployments. Note that the channel and age information is absent from
the Cisco data. As the Cisco infrastructure was seen to generate updated
readings from all the APs, independent of association status, this system
does not require the use of our ‘stale data augmentation’ mechanism (to
be discussed in Section 5.1).

2 Real Time Location Services, a standard format for supporting continuous
location tracking.
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Fig. 1. Floor plan of building 1 (research center).

Fig. 2. Floor plan of building 2 (collaborative workspace).

Table 1
AP data as received from Aruba and CISCO-Meraki infrastructures.

Field Description Aruba Cisco

Timestamp AP Epoch time (Milliseconds) Yes Yes
Client MAC SHA1 of original MAC address Yes Yes
Age Elapsed seconds since AP received a

device’s frames
Yes No

Channel 2.4/5 GHz band on which device was
seen by AP

Yes No

AP MAC APs MAC Address Yes Yes
Associate status Association of a device with particular

AP
Yes Yes

RSSI Signal strength for a device as reported
by AP

Yes Yes

The fingerprint map consists of a mapping between each landmark
and the vector of averaged RSSI values reported by the APs for a
device placed at that particular landmark, as given in Eq. (1). Here,
𝐿𝑛 represents the landmark number and the 𝑁-dimensional (𝑁 = total
number of APs) vector ⟨𝐴𝑃𝑛, 𝑅𝑆𝑆𝐼𝑛⟩ gives the list of APs along with

the averaged RSSI value reported by the corresponding AP.

⟨𝐿1 ∶ ⟨𝐴𝑃1, 𝑅𝑆𝑆𝐼1⟩⋯ ⟨𝐴𝑃𝑛, 𝑅𝑆𝑆𝐼𝑛⟩⋯

𝐿𝑛 ∶ ⟨𝐴𝑃1, 𝑅𝑆𝑆𝐼1⟩⋯ ⟨𝐴𝑃𝑛, 𝑅𝑆𝑆𝐼𝑛⟩⟩ (1)

Online Phase: In the online phase, the APs individual report their
RTLS feeds (with the fields listed in Table 1) to our localization system.
After aggregating the entries for a single device (𝑀𝑁𝑘), the RSSI
distance (in signal strength space) is computed for each individual MN,
as indicated in Eq. (2), for each landmark. 𝐴𝑃 𝑘

𝑅𝑛 represents the real time
RSSI value received by an AP for the client and 𝐴𝑃 𝑙

𝐹 𝑛 represents the
fingerprinted RSSI value recorded for the 𝑙th landmark. Subsequently,
the landmark that is the nearest neighbor in the RSSI space, i.e., the
landmark with the smallest value of 𝐷𝑖𝑠𝑡(𝑙, 𝑘), is chosen as the best
estimate of the MN’s location. Note that the Aruba infrastructure ex-
plicitly provides an ‘‘age’’ field indicating the time elapsed since the last
measurement by the AP — in prior work [13], this field has been used
to filter out the stale readings, based on the belief that such correspond
to some past location of the client.

𝐷𝑖𝑠𝑡(𝑙, 𝑘) =
√

(𝐴𝑃 𝑘
𝑅1 − 𝐴𝑃𝐹1𝑙 )2 +⋯ + (𝐴𝑃 𝑘

𝑅𝑛 − 𝐴𝑃𝐹𝑛𝑙 )2 (2)
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Fig. 3. Floor plan of building 3 (common space — residential building).

3.2. Groundtruth verification

The above mentioned localization process results in an average
localization error of 8–10 m, which we empirically evaluated by mea-
suring the distance error observed between the ground-truth location
of the device and the location estimated by the localization system.
We then used the server-side RSSI readings to first compute the esti-
mated landmark location. For a given 𝐴𝑃𝑖, let 𝑅𝑆𝑆𝐼𝑖(𝐹 ,𝐿) denote the
fingerprinted RSSI value (at landmark 𝐿) and 𝑅𝑆𝑆𝐼𝑖(𝑅) represent the
measured RSSI value for the test client. Intuitively, the closer the MN’s
location to a specific landmark 𝐿, the smaller should be the difference
between 𝑅𝑆𝑆𝐼(𝑅) and 𝑅𝑆𝑆𝐼𝑖(𝐹 ,𝐿).

By varying the MN’s location, we can obtain different values for
this difference between the MN and its closest landmark 𝐿𝑛𝑒𝑎𝑟 (i.e., the
landmark to which the MN should ideally be localized): 𝑅𝑆𝑆𝐼 −
𝐷𝑖𝑓𝑓 (𝐿𝑛𝑒𝑎𝑟) = |𝑅𝑆𝑆𝐼𝑖(𝐹 ,𝐿𝑛𝑒𝑎𝑟) − 𝑅𝑆𝑆𝐼(𝑅)|. Fig. 4 reports the physical
distance error reported between the ground-truth and the estimated
landmark location vs 𝑅𝑆𝑆𝐼 − 𝐷𝑖𝑓𝑓 (𝑛𝑒𝑎𝑟), for different locations of
the MN. Via multiple experiments, we observe that, contrary to our
expectations, the MN’s localization error is usually much higher than
the minimum possible error (i.e., the distance to the nearest landmark).
In effect, this occurs because the MN’s RSSI distance to a farther (erro-
neous landmark) turns out to be smaller than 𝑅𝑆𝑆𝐼 −𝐷𝑖𝑓𝑓 (𝐿𝑛𝑒𝑎𝑟). For
example, when the measured RSSI error measured between the client’s
RSSI values and that of its nearest landmark is 2.2, the physical distance
error is expected to be ≤ 3𝑚; however, the observed distance error is
much higher (11.8𝑚). This implies that MN is incorrectly assigned to a
landmark that is quite distinct and far from 𝐿𝑛𝑒𝑎𝑟.

In addition, using the baseline localization system, we also observed
the total device count within each workspace. Fig. 5 plots the observed
vs. ground truth occupancy count of individual devices within the
Residential building space, over an observation duration of 45 min.
We observe that the estimated occupancy is always considerably higher
than the ground truth. We shall further analyze the reasons behind such
estimation error in Section 4.

4. Detailing the identified problems

The analysis performed on the data collected from multiple loca-
tions reveal several problems, of which we focus on tackling three that
are shown to have a significant impact on the accuracy and robustness
of the localization system.

4.1. Low cardinality

When attempting to connect to a WiFi network, a mobile device
broadcasts PROBE_REQUEST messages, typically across multiple chan-
nels. These messages are received by all APs in its vicinity. Typically,
the AP with the highest signal strength is chosen for association,
with all data frames subsequently unicast to this associated AP. Client

Fig. 4. True estimation error vs. Best-case error for different stationary locations
(research lab).

Fig. 5. Occupancy count (residential building): Expected vs. Estimated.

devices transmit PROBE_REQUESTS either in the 2.4 GHz or the 5 GHz
band, but based on the configuration set by the network administrator,
the APs either reply with the probe response in the same band as
requested by the device, or in the preferred 5 GHz band. (In modern
networks, the 5.5 GHz is selected preferentially, due to the larger
number of orthogonal channels which helps minimize cross-device
interference.) For devices which do not support the 5 GHz band, the
APs send probe response in 2.4 GHz space [30].

From our experimental data, we observed that the ‘‘associated’’ AP
provides updated RSSI measurements in each consecutive RTLS update
(i.e., every 5 s for the Aruba network). In contrast, the other (non-
associated) APs report fresh RSSI values only during the initial probing
phase, when the MN performs active scanning across all channels, but
subsequently does not generate any fresh RSSI reports [13] while the
MN is engaged in data communication with its associated AP. This
observation is corroborated by the Aruba specifications [29], which
state that the APs associated with a client device report the RSSI
values for clients based on the data frames, while the ones that are
not associated report the RSSI values purely based on measurements
of PROBE_REQUEST frames. Prior work [31] has also observed that
mobile devices tend to send more PROBE_REQUESTs in the 2.4 GHz
band (compared to 5.5 GHz), and that the transmission frequency of
PROBE_REQUESTS tend to decrease (to conserve energy consumption)
when an MN is in the vicinity of ‘‘known’’ SSID networks.

Due to the above-mentioned reasons, we tend to receive regularly-
refreshed updated RSSI values only from the associated AP, while
the other APs simply report the stale readings (observed during the
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Table 2
Data reported for client-ABC in the research center.

Timestamp Age AP MAC RSSI Associated status Client MAC

533 33 AP01 −74 0 ABC
535 2 AP02 −60 BSSID of Associated AP ABC
536 33 AP03 −65 0 ABC
536 34 AP05 −61 0 ABC

Table 3
Data reported for client-ABC in the residential building.

Access points SNR (Client-Reported) SNR (Fingerprinted)

AP01 12 30.4
AP02 24 10.6
AP03 9 37.6

infrequent probe phase). We report one such example in Table 2, which
shows the RSSI values reported by all the APs for a particular client.
The age parameter is low only for the associated AP (AP02), while
the other APs (𝑠𝑡𝑎𝑡𝑢𝑠 = 0) report the same stale RSSI values, but with
increasing age. State-of-the-art localization systems simply filter out
and discard such stale RSSI values; such elimination effectively causes
the localization process to utilize readings from only one AP, which
results in an increased estimation error.

4.2. Outlier location

Most APs have a fairly long range — in our university, we can hear
APs that are 60 m away. Accordingly in Fig. 1, the range of AP01 and
AP03 can extend well beyond the boundaries of the research lab, even
percolating to the next building. More specifically, the range is even
higher for the 2.4 GHz band, due to its lower attenuation properties.
For devices located within the fingerprinted building, this extended
range provides a benefit — it effectively increases the cardinality of
RSSI reports, thereby reducing the localization error. However, this
increased range also comes with a drawback for accurate occupancy
estimation: devices can attach to the WiFi network from locations
outside the fingerprinted region (e.g., from outside the building) and
can then erroneously be localized within the fingerprinted area. Such
errors arise because current localization techniques do not incorporate
any explicit outlier elimination logic, and thus can cause such clients
to be also included in occupancy estimates.

As an illustration of this phenomenon, Table 3 presents an example
of a device, reported by 3 different APs. The table plots both the
true SNR (higher the SNR, stronger the signal) value reported for
the MN (column Client-Reported), as well as the fingerprinted SNR
values corresponding to the landmark 𝐿 (column 𝐹 𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡𝑒𝑑) to
which the MN is currently localized. As observed, the RSSI values
reported by AP01 and AP03 are far less compared to the fingerprinted
values for the landmark, while AP02’s reported RSSI value is very
high. On visually inspecting these values, we can conclude that this is
likely an extraneous device, located outside the residential building’s
fingerprinted areas. However, as this outside area is not fingerprinted,
the localization algorithm has no mechanism to map this device to
such external landmarks, and will end up localizing the device to one
of the landmarks within the residential space.3 In turn, this will inflate
the occupancy count for devices. In Section 5.2.1, we shall show how
we can tackle this problem by effectively defining a permissible range
within which RSSI readings must lie to be accepted as legitimate clients.

3 One can conceivably argue that, in this specific case, we can address the
problem by fingerprinting the space outside the residential building. However,
this is not a tenable approach — for example, even devices on the streets
and parks outside can connect to this WiFi network, and it is not practical to
attempt to fingerprint all such areas.

Table 4
Time-varying estimated location (Landmark) vs. RSSI values for a stationary client
(Research Lab).

Client RSSI Estimated landmark Closest landmark (Ground-Truth)

AP01 : −50 L_64 L_64
AP01 : −52 L_64 L_64
AP01 : −56 L_65 L_64
AP01 : −64 (Outlier) L_64

Table 5
Fingerprint similarity across multiple (3 different)
landmarks.
Landmark Fingerprint values

4 AP01: −57; AP02: −45
5 AP01: −58; AP02: −41
6 AP01: −60; AP02: −43

4.3. Localization errors

The large errors observed in Fig. 4 are due to not just the problem of
low cardinality, but also due to the significant temporal fluctuation in
the reported RSSI values, even for stationary clients. As an illustrative
example, Table 4 enumerates a selected set of RSSI values, and the
resulting estimated landmark location, for a stationary client, compared
to its closest actual landmark, over a 5-min observation period. (Each
entry is based on the average of RSSI values computed over a 20 s
interval.) We observe that the estimated landmark itself fluctuates,
between not just two legitimate landmarks but also, occasionally, to lie
outside the fingerprinted area itself. Such fluctuations are due to effects
such as shadow fading and transient movement of passersby, and can
cause false positives/negatives in the location estimation process.

In addition, at certain locations, distinct landmarks may have fin-
gerprint values that are very close to one another in the RSSI space,
implying that even minor fluctuations in the RSSI readings can cause
the estimated location to fluctuate across such landmarks. Table 5
demonstrates one such example with three different landmarks (4, 5
and 6 as observed in Fig. 2) that are mutually at least 3 m apart
in the Collaborative space. We can see that the RSSI tuples for all
three landmarks are very similar. In Section 5.3, we shall see how the
incorporation of a temporal smoothing approach helps to tackle these
time-varying localization errors.

5. Proposed solution

In this section, we present our proposed solutions for the problems
defined in the previous section.

5.1. Low cardinality

Prior studies [32,33] have shown that the decline in PROBE_
REQUEST, and the consequent drop in AP cardinality, occurs for
stationary clients; in contrast, when a client moves (away from the
range of an AP), it effectively initiates a probing phase, which helps the
APs in the MN’s vicinity to obtain revised RSSI estimates. Accordingly,
we hypothesize that the reporting of the MN by a new AP is a marker
of significant movement by an MN. Our proposed solution exploits
this phenomenon — we effectively first classify if a device is in the
moving/probe vs. stationary stage, by observing whether there are new
APs (other than the currently associated AP) that have generated new
RSSI values. If so, this is likely due to the explicit PROBE_REQUEST
scans initiated by a moving MN; in this case, we use only the recent AP
reports, discarding all stale reports (those with timestamps older than
15 secs). However, if there are no new reporting APs, then we conclude
that the MN is still stationary (or has moved only by a small distance)
and then include even the older (stale) RSSI readings, as those readings
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Algorithm 1 Stationary Pattern Identification
for 𝑅 ∶ ⟨𝑅𝑇𝐿𝑆⟩ do
if 𝑅.𝐴𝑃 ≠ 𝐴𝑟𝑐ℎ𝑖𝑣𝑎𝑙𝑇 𝑎𝑏𝑙𝑒.𝐴𝑃 then

Add 𝑅𝑇𝐿𝑆𝐴𝑃 to ⟨𝐴𝑃𝐿𝑖𝑠𝑡⟩ for Location Estimation
𝑁𝑒𝑤𝐹𝑜𝑢𝑛𝑑=1 //Here, New Found indicates a new AP associa-
tion → client is moving.

end if
end for
for 𝑅 ∶ 𝑅𝑇𝐿𝑆 do
if 𝐴𝑟𝑐ℎ𝑖𝑣𝑎𝑙𝑇 𝑎𝑏𝑙𝑒𝐴𝑃 = 𝑅.𝐴𝑃 then
if 𝑅.𝐴𝑔𝑒 ≤ 𝐴𝑟𝑐ℎ𝑖𝑣𝑎𝑙_𝑇 𝑎𝑏𝑙𝑒_𝐴𝑃 .𝑎𝑔𝑒 then

Add RTLS AP to ⟨𝐴𝑃𝐿𝑖𝑠𝑡⟩ for Location Estimation
else if 𝑅𝑇𝐿𝑆𝐴𝑔𝑒 ≥ 𝐴𝑟𝑐ℎ𝑖𝑣𝑎𝑙𝑇 𝑎𝑏𝑙𝑒𝐴𝑔𝑒 ς 𝑁𝑒𝑤𝐹𝑜𝑢𝑛𝑑 ≠ 1 then

Add R record to ⟨𝐴𝑃𝐿𝑖𝑠𝑡⟩ for Location Estimation //Include
stale AP data.

else if 𝑅.𝐴𝑔𝑒 ≥ 𝐴𝑟𝑐ℎ𝑖𝑣𝑎𝑙𝑇 𝑎𝑏𝑙𝑒𝐴𝑔𝑒 ς 𝑁𝑒𝑤𝐹𝑜𝑢𝑛𝑑 = 1 then
Do Not Add R to ⟨𝐴𝑃𝐿𝑖𝑠𝑡⟩ for Location Estimation //new AP
found → ignore stale AP data.

end if
end if

end for

are likely to be persistent for a stationary device. Algorithm 1 outlines
the relevant pseudocode.

To justify this insight into MN behavior, we present empirical result
on the observed active scanning behavior and RSSI fluctuation as an
MN is progressively moved farther away from its currently-associated
AP. Fig. 6(a) represents the observed changes in RSSI reports generated
by one or more APs, as an MN is gradually moved farther (over a
range of 1.5–22 m) from its associated AP (AP01), with the MN staying
stationary at each location for ∼10 mins. We observed that the MN
performs active scans (which in turn generate new RSSI reports from a
nearby, but non-associated, AP02) when it moves to distances 9.6 and
16.4 m way. Even at these distances, the MN continues to maintain its
existing association with AP01, although its RSSI values have progres-
sively dropped to ∼−70 dB. The figure confirms that new RTLS reports
from non-associated APs occur very infrequently, and are generated
only when an AP moves sufficiently away from its currently-associated
AP, leading to low RSSI values and active scans.

Fig. 6(a) also shows that, as anticipated, the RSSI value continues
to fluctuate even at a single location. To provide some basic stability
to our localization approach, we compute the mean of each AP’s MN-
specific RSSI value over a period of 20 secs — i.e., roughly using 4
consecutive RTLS reports. Fig. 6(b) provides a box-plot of such 20-sec
averaged RSSI values at different distances from AP01. We can see that
this short-term averaging provides significant stability to the RSSI esti-
mates, which now exhibit the desired properties of monotonic decrease
and non-overlapping readings as the distance from AP01 increases.

5.2. Outlier elimination

To tackle the outlier problem, our approach is to eventually de-
fine an acceptable RSSI range, on a per-landmark basis, for each AP
associated with that landmark. Once such a range is defined, we can
then eliminate outlier MNs by first determining their predicted loca-
tion (landmark), using the conventional RSSI-nearest neighbor (NN)
approach, and then checking if the actual RSSI value lies within this
landmark’s acceptable range.

To create a boundary, we first divide each of the landmarks using
an 𝑁 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 (𝑁 = number of APs) Voronoi tessellation in the
signal-space. Fig. 7 shows such an example (Tessellation is shown for
two different sections (Sections 1 and 2) of Fig. 2 in SNR) for 𝑁 = 2 –
i.e., with two APs. (In practice, for each landmark, we restrict ourselves
to a 2-dimensional tessellation, involving the two (dominant) APs with

the strongest signal strength in the fingerprint DB. This was seen to
provide sufficient practical discrimination and is computationally sim-
ple.) The tessellation represents the variation observed by the dominant
APs, across different sections of the same collaboration space. We also
assume that we know the distance of representative boundary points of
the fingerprinted region from each of the APs. Outlier elimination then
consists of the following steps:

5.2.1. Boundary estimation
The first step involves estimating the likely RSSI values at each of

those boundary points. (Note that those points may not have been man-
ually fingerprinted.) To estimate this, we utilize a path-loss propagation
model as given in Eq. (3)

𝑃𝑅𝑆𝑆𝐼 = 𝛽 − 𝑛.𝑑 +𝑋𝛼 , (3)

where 𝑃𝑅𝑆𝑆𝐼 is the RSSI strength, 𝛽 is the transmitted power and
antenna gains, 𝑛 gives the path loss constant, 𝑑 defines the distance
and 𝑋𝛼 is the shadow fading defined by the Gaussian random variable
with zero mean. We first apply a regressor to the known AP-landmark
distances and RSSI(landmark) readings to learn the optimal model
parameters. Fig. 8 gives the straight line fit for the model for a given
(landmark, AP) combination. The shadow fading coefficient is esti-
mated by the average prediction error, according to 𝑋𝛼 =

∑𝑚
𝑖=1(𝑃𝑒𝑖−𝑃𝑜𝑖 )

2

𝑚 ,
where 𝑃𝑒𝑖 denotes the predicted value, 𝑃𝑜𝑖 the observed value and m is
the number of observed values.

Subsequently, we use the regressor to predict (without any addi-
tional fingerprinting) the RSSI readings at the representative boundary
points, and then use the average of these values to denote the global
minimum per-AP signal strength (𝛼𝐺𝑚𝑖𝑛) that an MN located anywhere
within the fingerprinting region should have. Similarly, we assume a
minimum distance 𝑑𝑚𝑖𝑛 (computed as the height of the floor, such that
any legitimate point should be > 𝑑𝑚𝑖𝑛 away from the AP) and compute
the global per-AP maximum permissible RSSI value 𝛼𝐺𝑚𝑎𝑥 (using the
regressor). This step, of using a propagation model to estimate the RSSI
values at boundary points, is important for ensuring that the Voronoi
cells lying on the boundary are bounded (i.e., form a convex polytope).

5.2.2. Legitimate range estimation
We next address the question: how do we define the real Voronoi

region (in the signal space) for each landmark? To tackle this question,
we need to define a range of legitimate RSSI values associated with
each (landmark, AP) combination. In particular, the legitimate RSSI
values, for 𝐴𝑃𝑖, for an MN that has been mapped to landmark 𝑙 are those
that both (a) lie within the global range (𝛼𝐺𝑚𝑖𝑛, 𝛼

𝐺
𝑚𝑎𝑥), AND (b) lie within

the Voronoi region of landmark 𝑙. We compute the set of points (in
the RSSI space) that satisfy both these criteria and accordingly define
an additional, per-landmark set of thresholds for each AP: {𝛼𝑙𝑚𝑖𝑛, 𝛼

𝑙
𝑚𝑎𝑥}.

At the implementation level, we employ the Bowyer–Watson algo-
rithm [34], which uses the per-AP fingerprinted RSSI values to create
the corresponding Delaunay triangles (dual of the Voronoi cells). Fig. 9
depicts the range estimation of each landmark.

5.2.3. Final outlier logic
Given the resulting Voronoi regions and a predicted landmark 𝑙

for a test client, we determine its location estimate to be legitimate
only if (i) if its RSSI readings satisfy the global thresholds (𝛼𝐺𝑚𝑖𝑛, 𝛼

𝐺
𝑚𝑎𝑥)

for every reporting AP, and (ii) if the RSSI readings are within the
permitted Voronoi space of the landmark’s two strongest APs (denoted
by 𝐴𝑃1(𝑙), 𝐴𝑃2(𝑙))–i.e., it satisfies the constraints given in Eq. (4):

𝛼𝑙𝑚𝑖𝑛(𝐴𝑃 1(𝑙)) ≤ 𝑃RSSI𝐴𝑃 1 ≤ 𝛼𝑙𝑚𝑎𝑥(AP1(l)) &

𝛼𝑙𝑚𝑖𝑛(𝐴𝑃 2(𝑙)) ≤ 𝑃RSSI𝐴𝑃 2 ≤ 𝛼𝑙𝑚𝑎𝑥(AP2(l)). (4)

Note that if a location is declared to be illegitimate, the client is then
mapped to the subsequent (second-most likely) location; this process
continues iteratively until a suitable and legitimate candidate location
is found or until all landmarks are exhausted (in which case the MN’s
location is declared as indeterminate).
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Fig. 6. RSSI & Scanning behavior vs. AP-MN distance.

Fig. 7. Voronoi tessellation — collaborative workspace.

5.3. Location estimation: Temporal smoothing

We next describe our temporal-smoothing process, which helps
tackle the intermittent or transient localization errors that occur due to
‘random’ fluctuations in instantaneous RSSI values. We first capture the
entire set of estimated landmarks computed over the observation period
𝑇 = 2.5 mins — i.e., the set of 150

5 = 30 landmarks computed once
every 5 s. We then take the MODE of all such landmarks to yield one
representative location, 𝑀𝑁𝐿𝑜𝑐 , for that MN over the specific period
𝑇 . We shall see that this smoothing process is quite simple, but highly
effective. Algorithm 2 details the temporal smoothing procedure.

5.4. Eliminating static devices

As a final step for improving the occupancy count, we introduce
the mechanism for static device elimination — i.e., filtering out de-
vices that are constantly present in the environment being monitored

Algorithm 2 Temporal Smoothing
{60 records retrieved for 2.5 mins interval for each client.}
for 𝑀𝑁 ∶ ⟨𝐶𝑙𝑖𝑒𝑛𝑡_𝐿𝑖𝑠𝑡⟩ do
for 𝑇𝑖 ∶ 𝑇1..60 do
if 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑂𝑢𝑡𝑝𝑢𝑡𝑖 = 𝐹𝑂𝑈𝑁𝐷 then

𝐿𝑂𝐶1..𝑁 = 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑂𝑢𝑡𝑝𝑢𝑡𝑖 {Retrieve the set of landmarks
estimated for the client}

end if
end for
𝑀𝑁𝐿𝑜𝑐 = 𝑀𝑂𝐷𝐸(𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑂𝑢𝑡𝑝𝑢𝑡𝑖) {𝑀𝑁𝐿𝑜𝑐 is the selected land-
mark location among all the locations observed for the client in
2.5 min.}

end for
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Fig. 8. SNR vs. distance relation for residential building.

Fig. 9. Voronoi tessellation — residential building.

but that exhibit no movement all. This is based on the empirical
observation that such spaces often have a set of WiFi-connected, but
non-personal devices, representing objects as diverse as Smart TVs,
network-connected cameras and network-connected check-in kiosks. In
the absence of effective filtering, such devices can contribute to device
count and inflate the total occupancy estimate.

Accordingly, we propose a novel heuristic for identifying and fil-
tering such static devices. The high-level idea is quite straightforward:
simply identify devices that are constantly & continuously observed
at one single location (landmark). However, this apparently-simple
problem turned out to be a bit more involved due to several empirically
observed artifacts, which make it difficult to distinguish between static
and transient devices: (a) some devices are active only occasionally
during a day (e.g., activating their WiFi interface only once every
2 h), and also only intermittently across days (e.g., only 3 days per
week); (b) even if the device is static, its location estimate fluctuates
constantly, due to changes in the wireless propagation environment.
Empirical observation showed that, while instantaneous device loca-
tions fluctuated, the set of 𝑡𝑜𝑝−𝐾 estimated landmarks for such a static

device remained unchanged (across all days for which the device was
observed) 98% of the time. Moreover, we observed that performing
this analysis using an observation period of 1 week provided robust
identification — this longer period minimized the likelihood of false
positives in the identification of static devices, while also reliably
capturing intermittently transmitting devices (we observed that certain
static devices generated WiFi signals only 42.8% (3 days) of the week).
The formal definition of the filtering logic is detailed in Algorithm 3
and consists of the following key steps:

• We observe the change in location pattern of devices across an
entire week; only devices that appear in the location logs on
≥ 𝑁 days in a week are potential static device candidates. (This
approach filters out a larger set of transient devices.)

• On a given single day, we observe the estimated set of locations
𝑌 (Y is a set of top-k (𝑘 = 3) locations) for a single client across
𝑋 slots, with each slot comprising of 𝑇 hours (𝑋 ∗ 𝑇 = 24). In
practice, we set 𝑋 = 6–i.e., consider 6 different 4-h slots per
day. We then determine (Eq. (5)), for each such slot, a single
representative location by computing MODE of all the estimated
locations (set 𝑌 ), for each such time period 𝑇 . Our filtering logic
checks for the change in 𝑌 across all the slots 𝑋1...𝑋6. If there
is no change observed (i.e., if the modal location of the device
is observed to remain constant across multiple time periods in a
day), the client is determined as static for that particular day.

𝑌𝑇 1 = 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛1 …𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑁𝑘

𝑌𝑇 2 = 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛1 …𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑁𝑚

...

𝑌𝑇𝑁 = 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛1 …𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑁𝑝

𝑌𝑋𝑖
= 𝑀𝑂𝐷𝐸(𝑌𝑇 1, 𝑌𝑇 2,… 𝑌𝑇𝑁 ) (5)

• If a device satisfies the above criteria, we additionally consider
possible changes in its estimated location across the entire week.
Our filtering logic observes the set 𝑌 (landmark locations for the
client estimated on a single day) for each day (represented as
: 𝑌𝐷𝑎𝑦1 for 𝐷𝑎𝑦1 and 𝑌𝐷𝑎𝑦𝑁 for 𝐷𝑎𝑦𝑁 ) the client was seen in
the WiFi records. The set of estimated locations for each day
(given by 𝑌𝐷𝑎𝑦1− > 𝑌𝑋1..6𝐷𝑎𝑦1

) is the locations observed across
all the time slots in a given day. From empirical observations,
we propose that the set of modal locations (𝑌𝑋1..6

) for a device
should remain constant across multiple days of the week OR at
least be a subset of the location observed across all the days of
the week, i.e., 𝑌𝐷𝑎𝑦𝑖 ⊆ 𝑌𝐷𝑎𝑦𝑗 ⊆ 𝑌𝐷𝑎𝑦𝑁 . Here, 𝑌𝐷𝑎𝑦𝑖 represents the
day on which maximum landmark locations were estimated for
the client.

If all of the above criteria are met, that device is identified and marked
as a static device. Note that the algorithm can be parametrized in
terms of a few variables (k, 𝑋, etc.) and can thus be customized to
possible differences in behavioral artifacts, across different locations,
by choosing different values for these parameters.

6. Results and discussion

In this section, we quantify the real-world performance of our
improved AP cardinality, outlier detection and temporal smoothing
methods, and show how they help improve the accuracy of occu-
pancy estimation. To demonstrate the robustness of our techniques, we
present results across the 3 different environments/spaces mentioned
before. The experiments were conducted at different times of the day,
with varying crowd levels and also using a variety of heterogeneous
mobile devices.
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Algorithm 3 Static Device Filtering Logic
for Each Day (𝑗) in the Week do

{For each slot in the day, find distinct clients and retrieve their
estimated locations. In our case, XSlot is 6 (Each slot is of 4 h,
covering 24-h in a day)}
for Each slot in XSlot do
for All Distinct Clients in slot do

⟨𝐶𝑙𝑖𝑒𝑛𝑡𝑠𝑙𝑜𝑡 ∶ 𝑌𝐿1...𝐿𝑁 𝐶𝑜𝑢𝑛𝑡⟩ = 𝑇 𝑜𝑝𝑘𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 {Store
Top-K estimated location for a client along with their count
for each slot}

end for
end for
for All distinct clients 𝐶 in ⟨𝐶𝑙𝑖𝑒𝑛𝑡𝑠𝑙𝑜𝑡⟩ do

{If client present in All slots, pick the highest count for each slot
and compare with all other slots}
if 𝐶 in 𝑠𝑙𝑜𝑡1...6 then

𝐶𝑌𝐿1...𝐿𝑁 ∶ 𝑀𝐴𝑋_𝐶𝑂𝑈𝑁𝑇 (𝑌𝐿1...𝐿𝑁 1)
for 𝑖 in 𝑠𝑙𝑜𝑡1...6 do

{If the landmark list is same for all slots, consider it as static
device for the day. j represents the day number}
if 𝐶𝑌𝐿1...𝐿𝑁 1 = 𝑀𝐴𝑋_𝐶𝑂𝑈𝑁𝑇 (𝑌𝐿1...𝐿𝑁 𝑖) then
⟨𝑆𝑡𝑎𝑡𝑖𝑐𝐷𝑎𝑦−𝑗 ∶ 𝐶𝑌𝐿1...𝐿𝑁 ⟩

{ < 𝑆𝑡𝑎𝑡𝑖𝑐𝐷𝑎𝑦−𝑗 represents the set of static devices for
Day-j}

end if
end for

end if
end for{For all static devices in the day}
for All ⟨𝑆𝑡𝑎𝑡𝑖𝑐𝐷𝑎𝑦−𝑗 ∶ 𝐶𝑌𝐿1...𝐿𝑁 ⟩ do
if 𝐶𝑌𝐿1...𝐿𝑁 is same for all j then

Admit C as Static Device.
end if

end for
end for
{The above logic applies for both bands 5 GHz and 2.4 GHz. The
same representation has been simplified for presentation.}

6.1. Improvement in cardinality

We discuss our observations on cardinality improvement primarily
across the two different buildings (i.e., the research lab and collab-
oration workspace), where we performed the bulk of our studies.
We compare our modified algorithm (which includes so-called stale
readings during the stationary periods of an MN) against the baseline
approach, which ignores such stale readings.

Fig. 10 plots the location estimation error (the distance of the
predicted location from the MN’s ground truth) for 4 different clients
(C1–C4), placed at different locations in the university research lab. We
see that the appropriately curated inclusion of stale RSSI data helps to
reduce the estimation error significantly, to less than 4 m in at least
75% of these cases. The smaller improvement for C2 was due to the
observed movement of multiple visitors through the area during the
study, which affected the underlying radio environment.

We also present the results on the location estimation error observed
in the collaboration workspace. We test the robustness of our approach
on heterogeneous mobile devices to observe their behavior while they
are stationary, and also as they are moved between the lift lobby,
section-S1, section-S2 and section-S6 (see Fig. 2). A device was placed
within each section close to a measured landmark for a duration of
20–25 mins to observe their stationary behavior and then moved to
the next section. It is to be noted that all these sections are covered
by 3 different APs (AP01, AP02 and AP03), with AP01 and AP02
being the dominant APs. This gave us an opportunity to understand the
behavior of devices when there is movement across an area covered by

Fig. 10. Location accuracy (with & without ‘Stale’ readings (research space)).

Table 6
Localization Error vs. AP Cardinality.

Time Location error (Without Stale) Location error (With Stale)

T1 (RSSI: −58) 12 m (Cardinality-1) 4 m (Cardinality-3)
T2 (RSSI: −55) 8 m (Cardinality-1) 2.5 m (Cardinality-3)
T3 (RSSI: −51) 3 m (Cardinality-1) 3 m (Cardinality-3)
T4 (RSSI: −53) 6 m (Cardinality-2) 6 m (Cardinality-3)

multiple APs. In contrast to the university research lab setting, where
the two APs that covered the lab were separated by a greater distance
(approx 22 m apart), the APs (AP01 and AP02) in the collaboration
workspace area were placed closer together (approx 10 m apart).

Fig. 11 plots the localization error (aggregated across different sec-
tions) for 5 different devices. Clients C1–C4 were moved between each
section, while the client C5 was kept stationary and was not moved
between the sections. We observe that the average localization error
using the baseline method (which filters stale readings) was 4–8 m,
with our augmented approach reducing this error to 2–5 m.

For clients C1, C2 and C4, the average error with and without the
stale readings is roughly the same (even though the std. deviation
for the error is higher for C1). This was due to the higher cardinal-
ity value of AP reports (average cardinality was ≥2), with at least
two APs reporting fresh readings for these clients 70% of the time.
For client C5, which remained stationary throughout the 1.5 h time
period, this AP cardinality is much lower; consequently, the use of
stale readings results in a significant reduction in the estimation error.
To further illustrate this point, Table 6 lists the localization error vs.
different cardinality readings observed for the client C5. We see that,
in addition to AP cardinality, the strength of the RSSI readings also
influence the localization error. At time instants T3 and T4, the client
is accurately localized to the expected landmark (3 m/6 m apart) even
with cardinality=1, due to the stronger received signals.

Dominance & Accuracy of Stay Episodes Our proposed method is
especially effective in tackling the cardinality problem during periods
when the MN is stationary. To quantify the importance of improved
localization during such stationary episodes, we analyzed the motion
traces of all clients, in the Research Lab, over an entire day. We
found that clients spent, on average, 92% of the day in a ‘‘stationary
state’’, with a mean stay duration of 372 min (and std. deviation.
of 180 min). Moreover, to evaluate the possibility of our algorithm
making false ‘‘stationary’’ inference, we experimented with multiple
client devices that were (a) either completely stationary, or (b) made
small movements (within 1–2 landmarks), over a 60 min duration. We
noted that the clients were classified as ‘‘stationary’’ (for the purposes of
Algorithm 1) in 100% of all such cases: while small movements resulted
in changes in the RSSI value reported by the associated AP, they do not
actually cause MNs to generate explicit PROBE_REQUESTs.



Ad Hoc Networks 115 (2021) 102443

11

A. Ravi and A. Misra

Fig. 11. Localization error (with & without ‘Stale’ AP readings (collaborative space)).

Table 7
Localization Accuracy vs. Cardinality.

Cardinality 1 2 3

Accuracy 15% 85% 92%

Table 8
Data reported for test client in the residential dorm.

Access points Client SNR Without threshold With threshold

AP01 11 Included 𝛼𝐺
𝑚𝑖𝑛(1) = 13.5; Excluded

AP02 17 Included 𝛼𝐺
𝑚𝑖𝑛(2) = 20.3; Excluded

AP03 15 Included 𝛼𝐺
𝑚𝑖𝑛(3) = 19.5; Excluded

To further demonstrate the benefit of improved cardinality, Ta-
ble 7 lists the location estimation accuracy vs. the cardinality of the
corresponding RSSI reports (for the Research Lab). A location esti-
mate is deemed to be accurate if the estimated location (landmark) is
identical to the ground truth (the landmark nearest the MN’s actual
location.) Clearly, the augmentation of cardinality provides dramatic
benefits, increasing the localization accuracy to ∼80%–90% (in contrast
to accuracy values less than 20% when cardinality=1).

6.2. Location outlier elimination

We next study the performance of our outlier elimination logic
across the 3 different spaces.

As explained earlier, the outlier algorithm discards those location
estimates that lie outside a permitted signal strength range defined for
each (AP, landmark) combination. As an illustration of the effectiveness
of this strategy, Table 8 lists the SNR values for a particular client that
was reported at a landmark in the residential dorm, even though it was
actually placed at a point outside the fingerprinted region. The table lists
the SNR value for the different APs. As observed, the client readings are
eliminated in all three cases, as the SNR values are seen to be outside
the AP-specific global thresholds.

Robustness of Outlier Detection: To test the ability of our tech-
nique to accurately separate outliers from legitimate estimates, we
conducted studies where an MN was placed at multiple distinct lo-
cations, under varying crowdedness levels, all of which are close to
the boundary, but (a) within the fingerprinted region (i.e., within the
research lab and sections {S1, S2, S6} of the collaborative space), and
(b) outside the fingerprinted region (i.e., in the {student lounge, lobby}
areas of the research lab and Lift Lobby for the collaborative space).
Table 9 lists the outlier detection results, for under both conditions for

Table 9
Outlier detector performance — Research lab.

Clients Ground truth Inferred-Legitimate Inferred-Outlier

C1 Inside boundary 82% 18%
C2 Inside boundary 75% 25%
C1 Outside boundary 15% 85%
C2 Outside boundary 14% 86%

the research lab, and shows that our outlier detection is robust (overall
accuracy = 82%), with both low false-positive and false-negative rates.

In Fig. 12(a) and (b), we study the accuracy of outlier detec-
tion/classification as a function of the MN’s true distance from the
region boundary. As expected, the classification error is higher as the
device moves closer to the edge of the fingerprinted region. Moreover,
we see that the classification errors is higher (∼20%, at distance =
1.2 m) when the MN is located within the fingerprinted region, as
opposed to when it is actually located outside the region of interest
(≤ 10%, at distance = 1.2 m). This suggests that our AP-specific
minimum threshold 𝛼𝑚𝑖𝑛 is a little more aggressive (higher) than ideal.
Note that our approach provides 100% accuracy in eliminating any
WiFi-connected devices are located 3 m or more beyond the region
boundary.

We further test the accuracy of the outlier detection in the collabo-
ration space and measure the false-positives and false-negatives across
various sections. We consider the lift-lobby as the outside region, while
the sections S1, S2 and S6 are inside the indoor space. Table 10 lists
the accuracy of outlier detection logic with the device placed within
the lift lobby, while Tables 11 and 12 enumerate the accuracy of
the outlier detection logic when the device was placed within the 2
sections, namely S1 and S2. As observed from the results, the overall
accuracy of outlier detection drops to 63%. The accuracy of the outlier
logic is much lower (22%) when a device is placed near the boundary
but within Section S1, while the accuracy is much higher (85.5%) when
a device is similarly placed in section S2. Our key findings are:

• Compared to the research lab settings, the accuracy is compara-
tively much lower, due to the very minimal separation between
the lift lobby and sections S1, S2 & S6. While a glass door
separates the lift lobby from S1 and S6, S2 and the lift lobby
are separated by a thicker wall. Moreover, the fingerprinted RSSI
values for AP01 at landmark-15 and in the lift lobby are almost
identical, differing by a measly 3 dBm. Due to unpredictable and
continuous changes in the environment as well as the device-
specific antenna characteristics, such small differences in RSSI
can generate localization errors, making it difficult to segregate
devices lying close to the separation boundary.
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Fig. 12. (b) Outlier elimination with respect to distance from boundary.

Table 10
Outlier detector performance — Collaboration space (Lift lobby).

Client Ground truth Inferred-Legitimate Inferred-Outlier Crowd-Density

C1 Lift lobby 22.8% 77.2% High
C2 Lift lobby 70.5% 29.5% High
C3 Lift lobby 90% 10% High
C1 Lift lobby 30.8% 69.2% Low
C2 Lift lobby 3% 97% Low
C3 Lift lobby 3% 97% Low

Table 11
Outlier detector performance — Collaboration space (Section — S1).

Client Ground truth Inferred-Legitimate Inferred-Outlier Crowd-density

C1 S1 50% 50% High
C2 S1 15% 85% High
C3 S1 10% 90% High
C2 S1 14% 86% Low

Table 12
Outlier detector performance — Collaboration space (Section — S2).

Client Ground truth Inferred-Legitimate Inferred-Outlier Crowd-Density

C1 S2 92% 8% High
C2 S2 78% 22% High
C3 S2 95% 5% High
C2 S2 77% 23% Low

• Due to the relatively closer proximity of the APs (AP01 and AP02
are separated by a distance of ∼11 m), devices that move from the
section S1 to the lobby, and vice versa, often remain attached to
their current AP and do not generate new PROBE_REQUESTs. In
such cases, the sparser cardinality of AP reports makes it harder
to identify and eliminate outliers.

• The outlier detection logic performed significantly better in iden-
tifying devices located in section S2 as legitimate, compared
to devices located in sections S1 and S6. In particular, devices
located in section S2 have more unique/distinct fingerprints for
the (AP01,AP02) tuple, compared to the landmarks in sections
S1 and S6, thereby helping to reduce the underlying localization
error.

6.3. Static device elimination

In this section, we discuss the results of our approach to eliminate
the static devices from the workspaces. We exploited the data collected

during the COVID-19 lockdown period to identify the ground-truth
static devices, as the academic buildings were closed for employee
access and we hypothesized that the WiFi data was generated only
by the static devices present within the workspace. We utilize these
devices as the ground truth, and compare this set of devices against
the set of devices, inferred as static by our automated logic during the
two week period prior to the start of the COVID-19 lockdown period.
We observed the following key properties:

• When applied to the test set (devices observed prior the lockdown
period), our static device filtering logic was successful in identi-
fying 55% of the ground-truth devices as static (true-positives),
while 45% was categorized as false-negatives. Devices classified
as true-positives were observed to have a set of estimated loca-
tions that remained constant both across different periods of a
single day, and across different days of the week.

• Among the 55% of the recognized static devices, 50% of the
devices generated WiFi reports on all days of the week; the other
50% were reported only on 3–4 days of the week. This obser-
vation suggests that static devices do not necessarily generate
location updates continuously, and underpins our decision to
require static devices to be present for at least 3 days/week.

• Among the 8 devices that generated apparent false-negatives
(i.e., we failed to identify as static, even though they continued to
be observed during the lockdown period), 5 were found to have
changed their estimated landmark location across different slots
within the same day, thereby excluding them from membership
in the static set. For the other 3 devices, their location was seen to
remain unvarying within a day, but was seen to vary substantially
across different days.

Overall, our static device elimination logic can itself be described as
moderately successful, with an F1-score of 0.75. Our studies reveal that
the automated identification of such static (or non-personal devices) is
not a trivial problem. Indeed, the development of improved methods for
identifying such non-personal devices (whether static or mobile, such
as mobile TVs or robots) remains an open and challenging question.
However, we shall shortly see (in Section 6.4) that even this modestly-
accurate static device elimination mechanism helps to improve the final
occupancy estimate.

6.4. Occupancy estimation

Direct, large-scale validation of the outlier detector logic is difficult,
due to the difficulty in obtaining ground truth. Instead, we now provide
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Fig. 13. Occupancy count for collaboration space.

an indirect evidence of the benefit of such outlier elimination —
namely, a dramatic improvement in the estimation of overall occupancy.
We analyzed the error in occupancy estimation, primarily across both
the collaborative space and the residential dorm, where the occupancy
exhibited significant fluctuation. (In contrast, the occupancy pattern of
the access-controlled research lab is relatively stable.)

In the collaborative space, we also manually surveyed the occupants
in sections {S1,S2,S3,S6} to record the number of WiFi-connected de-
vices each occupant possessed during the experimentation period. We
observed the entry-exit times of these occupants to estimate the number
of ground-truth devices at each interval, over an 1.5 h observation
window. In Fig. 13, we plot the ground-truth devices against the total
number of devices estimated for two different crowd-levels (high and
low). The device-count was estimated every 2.5 mins (with temporal-
smoothing and outlier elimination), and compared with the baseline
approach (which did not include threshold-based outlier elimination or
temporal-smoothing). Our experimental results show a 72.8% reduction
in the occupancy estimation error (compared to the baseline) under
high crowd density, and an even more dramatic 91.6% reduction in
the occupancy estimation error in a low-crowd environment. We make
the following observations:

• The higher occupancy error experienced by the baseline is due
to the devices from Sections S4 and S5 getting included within

Table 13
Average occupancy estimation error (collaborative space).

Baseline (without outlier
or static filtering)

Improved (static
filtering only)

Improved (cardinality +
static + outlier filtering)

109.3% 96.9% 27.05%

the region of study. This is also due to the erroneous inclusion of
devices that are present outside the collaboration workspace but
that are associated with one of the APs inside the space.

• The under-counting observed in the low-crowd scenario is due to
the devices in Section S6 being occasionally marked as an outlier
and being eliminated from the occupancy period.

• By observing the devices that were seen to be stationary through-
out the 1.5 h observation window, we found that the tempo-
ral smoothing logic helped in improving the overall localization
accuracy by 4%.

To understand the relative contributions from the different filtering
schemes, we plot, in Table 13, the average estimation error obtained
by our improved algorithm, but with/without outlier elimination and
static device filtering. In this specific case, most of the static devices
were identified to be outside the region of interest, and thus could be
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Fig. 14. occupancy count — with/without threshold-based outlier filtering.

eliminated purely by the use of outlier detection. However, static device
filtering (only for devices localized to sections {S1,S2,S3,S6}) achieved
an average 12.37% additional reduction in the occupancy error.

To study the occupancy estimation outcome in the residential build-
ing, we manually recorded the total occupancy in the public area over
a 1-h observation window. We further differentiated the occupancy es-
timates across 3 different landmarks: 𝐿8, 𝐿16 and 𝐿17. Fig. 14 plots the
ground truth as well as the estimate occupancy values, both with and
without our threshold-based outlier elimination mechanism. Consistent
with the prior exemplar (Table 3), we see that, without the threshold,
the occupancy is consistently over-estimated, as the count includes
several devices that attach to the indoor APs, even though the users are
located outside the building. We observed that the introduction of our
outlier-based elimination process results in an at least 80% reduction
in the occupancy estimation error, across all 3 landmarks.

On closer examination, we see that the improvement in estimation
accuracy is more dramatic for landmarks 𝐿16 and 𝐿17. These two
locations lie on the boundary of the building, making it more likely
for them to include extraneous MNs that connect to the APs but are
actually located outside. In contrast, for landmark 𝐿8, we see that,
in the absence of the threshold-based filtering, the occupancy count
(ground truth = 1) is erroneously estimated to be 0. This implies
that, the device actually located at 𝐿8 was incorrectly mapped to a
different landmark. This example illustrates a secondary benefit of
outlier detection: it not only eliminates devices located outside the
fingerprinted area, but also helps to improve the accuracy of location
estimation by rejecting location estimates that violate landmark-specific
thresholds (Eq. (4)). An analysis of a 9-h data trace showed that we
were able to eliminate (as outliers) approx. 18% of the clients that
were initially mapped to a location within the fingerprinted areas of
the building.

Results for the academic research lab are quantitatively similar
to the Collaborative Space and are not detailed here, due to space
considerations. As a quick summary, the use of suggested strategies
was seen to reduce the average occupancy estimation error to 27.5%,
compared to an average error of 109.3% obtained by the use of the
baseline methods.

7. Conclusion

In this paper we tackled two practical problems existing in the
implementation of accurate server-side indoor localization: (a) low
AP cardinality for stationary clients and (b) over-counting of devices
located outside the fingerprinted area. While the first problem might
be less acute in venues where users typically have low residency
times (e.g., in train stations), the second problem is universal. We
tackled the low cardinality problem by explicitly delineating stationary

periods for each MN, and using hitherto-discarded stale reports from
other APs to augment the cardinality of AP measurements. We also
tackled the over-counting or mis-attribution problem by effectively
using a Voronoi-tessellation approach to devise a per-landmark, per-AP
acceptable range of signal strength readings, and iteratively discarding
location estimates that did not conform to these ranges. In addition,
we also proposed a couple of additional filtering strategies, to mask the
transient fluctuations in location and to eliminate static, non-personal
devices present in such environments. Our empirical results prove that
these mechanisms have clear and significant practical impact: (a) they
reduce the median localization error for clients from ∼6–8 m to 4
m; (b) they reduce the error of aggregated occupancy estimates by
80+%; and (c) temporal smoothing helps reduce errors by ∼ 4%. In
ongoing work, we are integrating these mechanisms into our occupancy
monitoring system, and plan to utilize such occupancy estimates as part
of smart HVAC and lighting control mechanisms for energy-efficient
building operation.
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