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Abstract 

Background: The discovery of robust and trans‑ethnically replicated DNA methylation markers of metabolic pheno‑
types, has hinted at a potential role of epigenetic mechanisms in lipid metabolism. However, DNA methylation and 
the lipid compositions and lipid concentrations of lipoprotein sizes have been scarcely studied. Here, we present an 
epigenome‑wide association study (EWAS) (N = 5414 total) of mostly lipid‑related metabolic measures, including a 
fine profiling of lipoproteins. As lipoproteins are the main players in the different stages of lipid metabolism, examina‑
tion of epigenetic markers of detailed lipoprotein features might improve the diagnosis, prognosis, and treatment of 
metabolic disturbances.

Results: We conducted an EWAS of leukocyte DNA methylation and 226 metabolic measurements determined by 
nuclear magnetic resonance spectroscopy in the population‑based KORA F4 study (N = 1662) and replicated the 
results in the LOLIPOP, NFBC1966, and YFS cohorts (N = 3752). Follow‑up analyses in the discovery cohort included 
investigations into gene transcripts, metabolic‑measure ratios for pathway analysis, and disease endpoints. We identi‑
fied 161 associations (p value < 4.7 × 10−10), covering 16 CpG sites at 11 loci and 57 metabolic measures. Identified 
metabolic measures were primarily medium and small lipoproteins, and fatty acids. For apolipoprotein B‑containing 
lipoproteins, the associations mainly involved triglyceride composition and concentrations of cholesterol esters, 
triglycerides, free cholesterol, and phospholipids. All associations for HDL lipoproteins involved triglyceride measures 
only. Associated metabolic measure ratios, proxies of enzymatic activity, highlight amino acid, glucose, and lipid 
pathways as being potentially epigenetically implicated. Five CpG sites in four genes were associated with differential 
expression of transcripts in blood or adipose tissue. CpG sites in ABCG1 and PHGDH showed associations with meta‑
bolic measures, gene transcription, and metabolic measure ratios and were additionally linked to obesity or previous 
myocardial infarction, extending previously reported observations.
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Background
Dyslipidemia refers to abnormal levels of one or more 
lipids, such as plasma cholesterol, high-density lipopro-
tein cholesterol (HDL), low-density lipoprotein choles-
terol (LDL), and/or plasma triglycerides (TG) in blood, 
leading to complex cardiometabolic diseases such as 
atherosclerosis, type 2 diabetes (T2D), or myocardial 
infarction (MI) [1–5]. Due to their poor solubility in 
blood, lipids are transported in lipoprotein particles 
that can be categorized according to their size, density, 
and composition as shown in Fig.  1 [6–8]. Lipopro-
teins are main players of the exogenous, endogenous, 
and reverse cholesterol transport pathways, thus con-
tributing to lipid metabolism as illustrated in Fig. 2 [6, 
9]. The smallest lipid molecules contained in lipopro-
tein particles are saturated and unsaturated fatty acids. 
Unsaturated fatty acids consist of monounsaturated 
fatty acids (MUFA) and polyunsaturated fatty acids 
(PUFA). Omega-3 PUFAs (e.g., docosahexaenoic acid 

(DHA)) have been linked to prevention of metabolic 
disorders, whereas for omega-6 PUFAs (e.g., 18:2 lin-
oleic acid (LA)) inconsistent results exist [10]. Omega-3 
to omega-6 FAs ratios and branched chain amino acids, 
such as isoleucine, are associated with metabolic out-
comes [11–13].

There is mounting evidence that epigenetic mecha-
nisms play an important role in the regulation of meta-
bolic phenotypes and in other complex diseases [14–25], 
thus representing a possible therapeutic target [26–28]. 
While DNA methylation studies have highlighted sev-
eral robustly replicated methylation markers of cardio-
metabolic phenotypes [14–23], the full causal interplay 
is unknown. However, it has been proposed that most 
causal changes in methylation are a consequence rather 
than a cause of dyslipidemia and body mass index (BMI), 
therefore indicating that methylation may be more a bio-
marker of prevalent conditions rather than a predictor of 
incident conditions [20, 24, 25, 29–32].

Conclusion: Our study provides evidence of a link between DNA methylation and the lipid compositions and lipid 
concentrations of different lipoprotein size subclasses, thus offering in‑depth insights into well‑known associations 
of DNA methylation with total serum lipids. The results support detailed profiling of lipid metabolism to improve the 
molecular understanding of dyslipidemia and related disease mechanisms.

Keywords: CpG site, VLDL, LDL, HDL, Lipoprotein sizes, Lipoprotein composition, Fatty acids, Myocardial infarction, 
Obesity, NMR

Fig. 1 Lipoprotein composition. Lipoproteins can be categorized according to their size, composition, and density. The lattermost classifies them 
into chylomicrons, very low‑density lipoproteins (VLDL), intermediate‑density lipoproteins (IDL), low‑density lipoproteins (LDL), or high‑density 
lipoproteins (HDL). The less dense the particles are, the larger they are in size and the more lipids they contain [6–8]. Chylomicrons, VLDLs, IDLs, and 
LDLs are known as apolipoprotein B‑containing particles, due to their main structural protein, while HDLs contain apolipoprotein A‑I. Lipid and 
protein compositions are represented in approximated percentages [7]
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To this point, most of the epigenome-wide associa-
tion studies (EWAS) on metabolic measures of lipids 
have used conventional clinical measures, which reflect 
total concentrations of lipids in serum. However, the 
lipid composition, lipid concentration, and particle size 
of lipoproteins can be associated with disease risk inde-
pendently of total lipid concentrations [33]. Therefore, 
EWAS on detailed lipoprotein measures are warranted. 
A helpful tool in this regard is nuclear magnetic reso-
nance (NMR), which allows fine profiling of lipoproteins 
at a large scale [34–36]. NMR has successfully identified 
several new markers of metabolic disease [35, 36]. Up to 
now, three studies, including our previous investigation, 
have evaluated associations between serum metabolic 
measures and DNA methylation—with a limited sample 
size or a limited number of measures—identifying several 
loci linked to disease response mechanisms or environ-
mental insults [29, 37, 38]. To identify robust associations 
between DNA methylation and metabolic measurements, 

we conducted an EWAS of 226 serum metabolic meas-
ures with subsequent replication in three independent 
cohorts (N = 5414 total). Metabolic measure-associated 
CpG sites were followed up for their associations with 
gene expression, relevant metabolic measure ratios, and 
disease endpoints in the discovery cohort only.

Results
Serum metabolic measures are associated with DNA 
methylation
The main goal of our study was to identify robust asso-
ciations between DNA methylation and metabolic meas-
ures, thus identifying the most promising CpG sites 
for follow-up investigations. Therefore, associations of 
metabolic measures with CpG methylation were first 
assessed in the discovery cohort (KORA F4) and subse-
quently examined in three independent cohorts (LOLI-
POP, NFBC1966, and YFS) (Fig.  3). Characteristics of 
all cohorts are shown in Table  1. Mean ages ranged 

Fig. 2 The roles of lipoproteins in the exogenous, endogenous, and reverse cholesterol pathways. Exogenous lipoprotein pathway (orange 
background): Lipid metabolism starts after food intake when chylomicrons are formed in the small intestine through the exogenous lipoprotein 
pathway [6]. Endogenous lipoprotein pathway (green background): The liver takes up chylomicron remnants, and the endogenous lipoprotein 
pathway then begins with the formation of VLDLs. VLDLs mainly transport TG from the liver to other tissues, in this process converting to IDLs 
and LDLs through the emission of fatty acids, and an increase in their cholesterol content [6]. Reverse cholesterol transport (RCT) pathway (blue 
background): The RCT delivers cholesterol from peripheral tissues back to the liver in both a direct and indirect manner. While in the direct RCT 
pathway effluxed cellular cholesterol is loaded onto HDLs for transportation, in the indirect RCT pathway cholesterol from HDLs is exchanged for 
TGs and transported by chylomicrons, VLDLs, and IDLs [6, 9]. In lipoprotein particles, yellow circles represent lipids and blue lines represent proteins. 
Solid arrows represent paths through which changes in lipoproteins occur. Segmented arrows represent paths that fatty acids follow. Dotted arrows 
represent paths that CE and TG follow. CE: cholesterol esters; TG: triglycerides; FFA: free fatty acids; CETP: cholesterol ester transfer protein; HTGL: 
hepatic triglyceride lipase; LCAT: lecithin:cholesterol acyltransferase; LPL: lipoprotein lipase
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between 31.0 (NFBC1966) and 60.9 (KORA F4) years. At 
least in part due to their younger age at measurement, 
NFBC1966 and YFS participants were the healthiest, had 
no previous myocardial infarction, reported less hyper-
tension, and less lipid-lowering drug intake.

The discovery stage (N = 1662) consisted of 226 epi-
genome-wide association studies: 226 metabolic meas-
ures (Additional file  1: Table  S1) versus methylation 

levels of 468151 CpG sites—a total of > 100  M pos-
sible associations. The discovery EWAS of metabolic 
measures revealed 282 significant associations, includ-
ing 274 robust associations as defined by our sensitiv-
ity analyses (Fig.  4; Additional file  2: Table  S2). These 
274 associations had a percentage of explained metab-
olite-level variance ranging from 1.2% (cg19693031 
in TXNIP with isoleucine) to 12.4% (cg19610905 in 
FADS2 with omega-3 to FA ratio), covering 24 CpG 
sites annotated to 12 genomic locations (Fig.  4; Addi-
tional file  2: Table  S2): cg06500161 and cg27243685 
in ABCG1 (ATP-binding cassette sub-family G mem-
ber 1); cg11024682, cg15863539, and cg20544516 in 
SREBF1 (sterol regulatory element binding transcrip-
tion factor 1); cg00574958 in CPT1A (carnitine palmi-
toyltransferase 1A); cg19693031 in TXNIP (thioredoxin 
interacting protein); cg17901584 in DHCR24 
[24-dehydrocholesterol reductase]; cg14476101 and 
cg16246545 in PHGDH (D-3-phosphoglycerate dehy-
drogenase); cg07626482 and cg02711608 in SLC1A5; 
cg06690548 in SLC7A11 (solute carrier family 7 mem-
ber 11); cg07689907 in FADS1 (fatty acid desaturase 
1); cg00603274, cg06781209, cg11250194, cg19610905, 
cg25324164, cg01400685, cg27386326 in FADS2 (fatty 
acid desaturase 2); cg03440556 and cg24503796 in SCD 
(stearoyl-CoA desaturase); and cg07504977 in the pro-
moter region of LINC00263, a long non-coding RNA 
(lncRNA).

A meta-analysis (N = 3752) confirmed 161 of the 274 
robust associations (58.8%), covering 16 of the 24 CpG 
sites found in the discovery step, annotated to 11 of the 
12 genomic locations initially found, and 57 unique meta-
bolic measures (Figs. 3 and 4; Additional file 2: Table S2). 
Across replication cohorts we observed consistent direc-
tions of effects, but effect sizes tended to be smaller in 
NFBC1966 and YFS (Additional file  3: Table  S3; Addi-
tional file  4: Supplemental Results and Methods: Com-
parison across cohorts; Additional file 5: Table S4). For all 
274 associations, the effect direction of the meta-analysis 
was concordant with the discovery direction, even those 
that were not successfully replicated, and 240 (87.6%) had 
a meta-analysis nominal p < 0.05. For eight CpG sites, 
corresponding to 4 genomic locations, associations did 
not replicate (cg15863539 in SREBF1; cg16246545 in 
PHGDH; cg07626482 and cg02711608 in SLC1A5 (Solute 
Carrier Family 1 Member 5); cg00603274, cg06781209, 
cg19610905, and cg01400685 in FADS2) (Fig.  4; Addi-
tional file 2: Table S2). No further CpG sites were associ-
ated with additional loci coding for enzymes or proteins 
directly involved in lipoprotein metabolism. Follow-up 
analyses involved only the 161 replicated associations, 
except for the correlation analyses of associated meta-
bolic measures.

Fig. 3 Study design. Displayed is the study design of the present 
work. It comprises a discovery and replication stage with subsequent 
follow‑up analyses of the CpG sites associated with metabolic 
measures. All samples from the discovery and replication cohorts had 
methylation levels assessed using the 450 K BeadChip. *Data from 
publicly available databases
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Strong correlations between associated metabolic 
measures cluster DNA methylation in three groups
Strong correlations between associated metabolic meas-
ures found in the discovery cohort were observed for 
measures that showed the same directions of effect in 
associations with DNA methylation (Additional file  6: 
Figure S1). For instance, lipid compositions of larger 
VLDLs and TG measures in smaller HDLs showed strong 
positive correlations. We identified two groups of CpG 
sites showing most of their associations with lipoproteins 
(Fig. 4; Additional file 6: Figure S1). The first group con-
sisted of CpG sites in ABCG1, SREBF1, and LINC00263. 
Methylation at these CpG sites showed most of their pos-
itive associations with lipid concentrations in ApoB lipo-
proteins, TG composition and concentration of HDLs, 
total serum TG, and MUFA measures. The second group 
consisted of CpG sites in CPT1A and TXNIP, showing 
most of their negative associations with lipid concentra-
tions in ApoB lipoproteins, TG concentration of HDLs, 
total serum TG, MUFA measures, and isoleucine. A 
third group included CpG sites in PHGDH, SLC7A11, 
FADS1/2, and SCD. Methylation at these CpG sites only 
showed positive associations with PUFA measures and 
the degree of saturation of fatty acids.

Principal component analysis performed in the discovery 
cohort also points to these clusters of CpG sites. In EWAS 
of the top 8 principal components (PCs) of the metabolic 
measures data (see Additional File 4: Supplemental Results 
and Methods: Replication and meta-analysis; Additional 
file 7: Figure S2; Additional file 8: Figure S3), 6 CpG sites 
were found to be associated with PC1 (PC1 explaining 33% 
of the variance of the metabolite data) and 6 CpG sites were 
found to be associated with PC7 (2% explained variance) at 
a Bonferroni-corrected significance threshold of p = 0.05/
(8 × 468151) = 1.34e−8 (Additional file  9: Table  S5). No 
CpG sites were associated with both PCs. All sites were 
found in the discovery EWAS to be significant with at least 
one metabolite measure, and 9 of the 12 were found in the 
replicated results. The CpG sites associated with PC1 were 
annotated to the genes TXNIP, SREBF1 (2 sites), ABCG1 (2 
sites), and CPT1A. The CpG sites associated with PC7 were 
mapped to FADS2 (5 sites) and SCD.

DNA methylation is associated with fatty acids 
and the lipid concentrations and compositions 
in lipoprotein subclasses
Of the 161 replicated associations, 159 were related to 
lipid metabolism and 121 involved lipoprotein subclasses, 

Table 1 Characteristics of the study participants

Displayed are characteristics of the discovery (KORA F4) and replication studies. Continuous and categorical characteristics are given as mean (standard deviation) 
for continuous variables and proportions for categorical variables. For every characteristic the p value for a difference between studies is < 0.001, given by a one‑way 
ANOVA for continuous variables, and the Chi‑square test for categorical variables
a BMI: body mass index
b Drinks per day (directly proportional to g/day)
c TG: triglycerides
d NA: variable not available
e Self‑reported history

KORA F4 (N = 1662) LOLIPOP (N = 2805) YFS (N = 176) NFBC1966 (N = 771)

Age (years) 61.0 (8.9) 51.4 (10.1) 44.2 (3.3) 31.0 (0.3)

Sex = male 49.0% 68.0% 37.5% 43.7%

BMI (kg/m2)a 28.1 (4.8) 27.7 (4.4) 25.9 (4.5) 24.4 (3.7)

Current smokers 14.4% 8.9% 16.5% 26.2%

Ex‑smokers 41.5% 8.7% 25.6% 19.2%

Never smokers 44.1% 82.4% 58.0% 53.3%

Alcohol consumption (g/day) 15.5 (20.3) 6.38 (14.2) 0.716 (0.9)b 8.7 (14.3)

C‑reactive protein (mg/l) 2.5 (5.2) 4.2 (7.2) 1.4 (2.4) 1.85 (3.3)

HDL‑C (mmol/l) 1.7 (0.4) 1.3 (0.3) 1.7 (0.4) 1.7 (0.5)

LDL‑C (mmol/l) 2.1 (0.6) 1.9 (0.6) 2.1 (0.6) 2.0 (0.7)

Total cholesterol (mmol/l) 5.7 (1.0) 4.9 (1.1) 5.3 (1.0) 5.5 (1.4)

Total  TGc (mmol/l) 1.6 (0.8) 1.5 (0.7) 1.2 (0.6) 1.2 (0.7)

VLDL‑TG (mmol/l) 1.1 (0.8) 0.9 (0.6) 0.7 (0.6) 0.7 (0.5)

Total FA (mmol/l) 14.5 (2.4) 12.5 (3.0) 12.9 (2.3) 13.4 (3.5)

Hypertensione 45.5% 38.0% 19.3% 16.7%

Hospitalized myocardial  infarctione 3.6% 3.9% 0.0% 0.0%

Intake of lipid‑lowering drugs 16.2% NAd 4.0% 0.0%
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most of these being subclasses of ApoB lipoproteins 
(Fig.  4; Additional file  2: Table  S2). When considering 
sizes of ApoB lipoproteins, extra-large VLDLs showed 
only two associations, while medium and small VLDLs 
were the most associated subclasses, with almost 60 asso-
ciations altogether. All subclasses of ApoB lipoproteins, 
except extra-large and large VLDLs, had associations 
involving TG composition, with some subclasses addi-
tionally having associations with respect to cholesterol, 
cholesterol ester, and phospholipid composition. In terms 
of lipid concentrations of ApoB lipoproteins, almost all 
types of lipids showed associations in large, medium, and 
small VLDLs. In extra-small VLDLs and small LDLs, the 
concentration of TG was the only concentration associ-
ated with methylation. All associations for HDL lipo-
proteins, except for one featuring the diameter of HDLs, 
involved either TG composition or concentration of TG 
in medium and small HDLs. Associations with MUFAs 
and serum TG showed the same CpG sites and directions 
of effects as the associations pertaining to the ApoB lipo-
proteins. The CpG sites associated with PUFAs did not 
show associations with lipoproteins.

CpG sites associated with metabolic measures have been 
linked to metabolic traits
To investigate common environmental and lifestyle-
dependent drivers of the CpG site-metabolic meas-
ure associations, we performed searches in the EWAS 
Atlas and the MRC-IEU EWAS Catalog (Additional 
file  10: Table  S6) [39, 40]. All CpG sites were found 
with at least one association in these databases, except 
for cg07689907 of FADS1. cg00574958 in CPT1A was 
found in the most unique publications (33 total), most 

associations cited being lipid-related and metabolic-
related traits such as kidney disease and gamma-gluta-
myl transferase. The CpG sites of SCD have been less 
cited, appearing in only seven publications total, no 
outcomes being obviously related to fatty acids.

Genetic effects on associations between DNA methylation 
and serum metabolic measures
We next performed follow-up analyses to test spurious-
ness caused by genetic confounding in the replicated 
associations, i.e., whether the replicated associations 
between DNA methylation and metabolic measures (at 
p = 4.7 e−10) are driven by genetic variants in cis of the 
CpG sites. Thirty of the 161 CpG-metabolite associa-
tions became non-significant due to the influence of cis-
SNPs (cis-methQTLs) (Additional file 11: Table S7). For 
17 of the 30 pairs, the results did not reflect strong evi-
dence of genetic effects on the associations, as p values 
and coefficients changed only very little when adjust-
ing for SNPs. However, for 13 of the 30 pairs (with CpG 
sites all located in the FADS cluster), the addition of a 
single SNP radically decreased the magnitude of the 
estimated effect size (and its p  value) of the CpG site, 
likely indicating the association is being confounded by 
genetic effects (Additional file  11: Table  S7). Because 
each association involving CpG sites within the FADS 
region showed strong evidence of being confounded 
by genetic factors, we eliminated these CpG sites from 
further analysis. This left a total of 12 associated CpG 
sites in 9 loci, 56 unique metabolic measures, and 148 
total CpG-metabolic measure pairs carried forward to 
all further follow-up analyses (Fig. 3).

Table 2 Results of gene expression analysis of CpG sites associated with metabolic measures

Statistically significant associations between metabolic measure‑associated CpG sites and expression of cis-transcripts in whole blood (KORA F4, Bonferroni‑
adjusted significance threshold p < 0.05/480 = 1.0e−4) and subcutaneous fat (TwinsUK study, p < 0.05/521 = 9.6e−5). “Probe ID” and “Transcript_annotated_gene” 
are the transcript ID and annotated gene from the Illumina annotation files; CHR: chromosome location of the CpG site; distance: distance between the CpG site 
and the transcript based on positions given in the annotation files; beta value: beta‑coefficient; P: p value; P Bonferroni: Bonferroni‑corrected p value; N: number of 
observations in the model. All coefficients are change in log2‑transformed expression intensity per unit increase in methylation (beta value on 0–1 scale), except for 
subcutaneous fat, which is correlation assessed using the R‑package rmcorr 

CpG site CHR Probe ID CpG 
annotated 
gene

Transcript 
annotated 
gene

Distance Beta value P P
Bonferroni

N Tissue

cg16246545 1 ILMN_1704537 PHGDH PHGDH 0  − 2.77 1.44e−24 6.91e−22 634 Whole blood

cg24503796 10 ILMN_1689329 SCD SCD 0  − 1.45 2.39e−08 1.15e−05 633 Whole blood

cg03440556 10 ILMN_1689329 SCD SCD 0  − 0.57 7.43e−07 3.56e−4 609 Whole blood

cg06500161 21 ILMN_2329927 ABCG1 ABCG1 0  − 2.79 2.67e−07 1.28e−4 635 Whole blood

cg20544516 17 ILMN_1663035 SREBF1 SREBF1 1542  − 0.38 8.83e−10 4.59e−07 626 Subcutaneous fat

cg20544516 17 ILMN_1745806 SREBF1 PEMT 308200 0.27 1.64e−05 8.53e−3 626 Subcutaneous fat

cg20544516 17 ILMN_1811933 SREBF1 SHMT1 514197  − 0.37 2.85e−09 1.48e−6 626 Subcutaneous fat

cg20544516 17 ILMN_2328986 SREBF1 SREBF1 1208  − 0.28 1.26e−05 6.57e−3 626 Subcutaneous fat
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DNA methylation associated with serum metabolic 
measures is linked to transcriptional differences in blood, 
adipose tissue, and liver
We then explored associations between CpG sites show-
ing replicated associations, and gene transcripts within 
1  Mb in blood, adipose tissue, and liver (Table 2; Addi-
tional file 12: Table S8).

In the discovery cohort, we investigated a total of 480 
CpG site-transcript pairs in whole blood. cg06500161 
in ABCG1 and cg16246545 in PHGDH were negatively 
associated (Bonferroni p < 0.05/480 = 1.0e−4) with their 
corresponding gene transcript, results replicating those 
found in the BIOS QTL database [41] (Table 2; Additional 
file  12: Table  S8). The association involving cg16246545 
in PHGDH was slightly mitigated by adjustment for a 
cis-SNP, but remained strongly significant (p = 3.7e−14, 
results not shown). cg24503796 and cg03440556 in SCD 
were also negatively associated with SCD expression. 
Adjusting for SNPs in cis of the CpG sites had little or no 
effect on the results with regard to the expression results, 
except where noted.

We then performed an analysis using publicly available 
data for liver tissue (Karolinska Liver Bank cohort) for a 
total of 271 CpG site-expression probe pairs. In a limited 
sample of 92 individuals, no pairs were significant at a 
Bonferroni-corrected threshold (p < 0.05/271 = 1.8e−4), 
but three sites had negative associations with transcripts 
at FDR < 0.05: cg17901584 in DHCR24 with a transcript 
of TTC4; and cg24503796 and cg03440556 in SCD with 
transcripts annotated to CHUK and COX15, respectively 
(Additional file 12: Table S8).

Again using publicly available data, we performed a 
similar analysis for subcutaneous fat (TwinsUK study) 
for a total of 521 pairs. Only cg20544516 in SREBF1 
showed significant associations at a Bonferroni-corrected 
threshold (p < 0.05/521 =  9.6e−5), with one transcript 
annotated to PEMT, one to SHMT1, and two annotated 
to SREBF1. The associations of cg20544516 with the two 
transcripts of SREBF1 were replicated in the BIOS data-
base. There were four additional significant associations 
at FDR < 0.05: cg24503796 in SCD with one transcript of 
NDUFB8 and one of PAX2; cg20544516 in SREBF1 with 
a transcript of LOC201164; and cg19693031 in TXNIP 
with a transcript of DARS2 (Table  2; Additional file  12: 
Table S8).

Limited to no evidence for sex specificity in DNA 
methylation‑metabolic measure associations
In the discovery cohort, a CpG-by-sex interaction analy-
sis of the replicated pairs revealed no Bonferroni-cor-
rected significant (p < 0.05/148 = 3.4e−4) differences 
between men and women for the associations (Addi-
tional file  13: Table  S9). However, nominally significant 

(p < 0.05) associations were found for 15 pairs, 14 of 
which involved small or very small VLDLs and CpG sites 
in either SREBF1 or CPT1A.

DNA methylation is linked to a variety of metabolic 
pathways
As a further approach to link enzymatic activity of 
selected metabolic pathways with CpG sites showing rep-
licated associations, we examined 60 ratios of metabolic 
measures closely related to enzymatic substrates or prod-
ucts, or ratios linked to metabolic diseases in the discov-
ery cohort (Additional file  4: Supplemental Results and 
Methods: Associations with metabolic ratios from addi-
tional pathways, Additional file 14: Table S10). A total of 
189 associations were obtained for calculated ratios of 
metabolic measures (Bonferroni-corrected significance 
threshold of p < 0.05/(60 * 12) ≈ 6.9e−5). All 12 CpG 
sites were found to be associated with at least one ratio 
reflecting enzyme activity or linked to metabolic dis-
eases, such as 25 associations relating to glucose metab-
olism and 38 involving branched-chain amino acids. 
However, most of the associations were obtained with 
lipid ratios and, among all assessed CpG sites, the lowest 
p values were largely for associations with ratios related 
to lipid metabolism. Therefore, we then tested associa-
tions of the 12 CpG sites with 30 transcripts of proteins 
directly involved in lipoprotein metabolism such as 
enzymes, transfer proteins, and lipid transporters, most 
of these  located in trans to the CpG sites. Additional 
transcripts located within a ± 500  bp region were also 
included. We observed a total of four pairs showing asso-
ciations (Bonferroni-corrected significance threshold of 
p < 0.05/(62 * 12) ≈ 6.7e−5) (Additional file 15: Table S11).

DNA methylation associated with serum metabolic 
measures is linked to lipid‑related clinical phenotypes
We further investigated the relevance of the replicated 
associations for lipid-related clinical phenotypes in the 
discovery cohort. Building on our previous publica-
tions [15, 25], we tested whether CpG sites associated 
with metabolic measures were related to type 2 diabetes 
(T2D), obesity, myocardial infarction (MI), or hyperten-
sion (Table  3; Additional file  16: Table  S12). To explore 
the effects of lipid-lowering drugs on the relationships, 
we ran two models: one without this covariate (model 
1) and one with (model 2). Statistical significance was 
based on a Bonferroni-corrected threshold of p < 0.05/
(4 * 12) ≈ 1.0e−3.

cg19693031 in TXNIP showed a strong association 
with T2D (TXNIP: odds ratio (OR) = 0.56 for a 1 standard 
deviation increase in methylation, 95% confidence inter-
val (CI) = 0.47–0.69; model 1; Table  3), whereas seven 
CpG sites across six loci were significantly associated 
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with obesity (smallest p  value = 2.8e−7 for a site found 
in SLC7A11), among them one CpG site in PHGDH. 
The associations with both T2D and obesity were largely 
independent of lipid-lowering drug intake.

Associations with MI tended to be partially or com-
pletely mitigated when adjusting for the intake of lipid-
lowering drugs. cg06500161 in ABCG1 was positively 
associated with MI (p = 2.9e−5, OR = 2.02, CI = 1.45–
2.80, model 1), but the association lost significance when 
adjusting for lipid-lowering drugs, with a large reduction 
in the odds ratio (p = 0.025, OR = 1.50; CI = 1.05–2.15). 
Similar effects were observed for cg17901584 in DHCR24 
(p = 4.4e−4 for model 1, effect disappearing completely 
in model 2 with p = 0.4).

No CpG sites were associated with hypertension. 
Adjusting for SNPs in cis of the CpG sites had little or no 
effect on the results with regard to clinical phenotypes.

We additionally generated receiver operating charac-
teristic (ROC) curves for each of the CpG sites-clinical 
phenotype pairs significantly associated in model 1 or 
model 2 (Table 3; Additional file 17: Table S13; Additional 
file 18: Figure S4). For each pair and each model (M1 or 
M2), we plotted the ROC curve and calculated the area 
under the curve (AUC) for the model without the CpG 
site and for the model with the CpG site, to see whether 
the addition of the CpG site to the model significantly 
increases the model’s ability to predict the outcome. After 
incorporating the associated CpG sites into the mod-
els, five CpG site-outcome pairs for M1 and four for M2 
showed nominally significant (p < 0.05) increases in AUC, 
e.g., cg19693031 in TXNIP showed an AUC = 0.813 with-
out CpG site, and AUC = 0.834 with CpG site (p = 0.011).

Discussion
This EWAS of 226 mostly lipid-related serum metabolic 
measures is the largest to date incorporating the differ-
ent lipid concentrations and lipid compositions of lipo-
protein subclasses. Our EWAS revealed 161 replicated 
associations between 16 CpG sites in eleven loci and 57 
unique metabolic measures. All of the eleven epigenetic 
loci have been previously found to be associated with 
metabolic traits and processes, primarily based on clini-
cal and biochemical measurements of composite blood 
lipids [14–20, 22–25, 29, 37, 38, 42, 43]. Here, we uncover 
novel findings with regard to specific features of lipopro-
tein subclasses such as the lipid compositions and con-
centrations of each type of lipid in lipoproteins, giving 
deeper insights into the underlying biology of previous 
associations.

Results related to ApoB lipoproteins, particles involved 
in the endogenous lipoprotein pathway, suggest that 
DNA methylation is intertwined with the changes in 
lipid compositions and concentrations that all sizes of 

VLDLs, IDLs, and LDLs undergo along the pathway. 
Methylation at CpG sites in ABCG1, SREBF1, CPT1A, 
and TXNIP had most of their associations with ApoB 
lipoproteins. Although methylation at CpG sites of 
those genes showed additional associations with HDLs, 
MUFAs, or isoleucine, their primary relationships seem 
to be with ApoB lipoproteins. CPT1A was the only gene 
whose CpG site showed associations with ApoB lipo-
proteins but not with HDLs. Methylation at cg00574958 
in CPT1A was negatively associated with the concen-
tration of almost all types of lipids and the TG compo-
sition in VLDLs, IDLs, and LDLs, adding evidence of a 
possible link between hypermethylation at this site and 
healthier metabolic phenotypes [44, 45]. Methylation 
at cg00574958 was also negatively associated with the 
TG composition of small LDLs. As smaller LDLs eas-
ily diffuse through the arterial wall, their low-TG load 
promotes increased cholesterol uptake and therefore 
impedes atherosclerosis development [46–48]. CPT1A 
is highly expressed in the liver, where it initiates mito-
chondrial oxidation of long-chain fatty acids and there-
fore contributes to lower serum TG levels, suggesting a 
relation between a higher CPT1A expression and lower 
serum TG levels [49]. Although no association between 
methylation at cg00574958 and expression of CPT1A was 
observed, this CpG site was negatively associated with 
serum TG and MUFA levels, the lower levels of which in 
turn limit TG acquisition by lipoproteins. Furthermore, 
albeit only nominally significant, sex-varying associations 
of methylation at cg00574958 with small and very small 
VLDLs could partially explain reported lower concen-
tration and average size of circulating VLDLs in women 
compared to men [50]. In line with prior observations of 
sex-specific effects for Cpt1a in rodent lipid metabolism 
[51, 52], our results suggest a link between hypermethyla-
tion at cg00574958 and anti-atherogenic traits, possibly 
emphasized in females, further supporting that hyper-
methylation at this CpG site might be linked to healthier 
metabolic outcomes.

The reverse cholesterol transport (RCT) pathway deliv-
ers cellular cholesterol back to the liver in both a direct 
and indirect manner. The players of the direct RCT are 
HDLs, which are loaded with effluxed cholesterol from 
cells [9]. Apart from one association of larger HDL diam-
eters with methylation at a CpG site in DHCR24, all 
other HDL associations found involved the TG concen-
trations and compositions in small and medium HDLs, 
and CpG sites in ABCG1, SREBF1, LINC00263, and 
TXNIP. HDLs that are TG-rich promote the clearance 
of circulating HDLs [46, 53, 54]. Therefore our findings 
might be related to the impairment of the RCT through 
larger HDLs and to associations of CpG sites in ABCG1, 
SREBF1, and TXNIP with adiposity-related traits [20, 
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24, 44, 45, 55]. ABCG1, SREBF1, and TXNIP were addi-
tionally associated with ApoB lipoprotein features and 
fatty acids. While these three genes have recently caught 
a lot of attention as they have been frequently found to 
be associated with metabolic traits [15–18, 20, 22–25, 
29, 37, 44, 55], only sparse attention has been paid to a 
potential role of LINC00263 in metabolic features [25, 
32, 43]. In this study, LINC00263 was the only lncRNA 
associated with metabolic measures. Notably, methyla-
tion at cg07504977 in LINC00263 was solely associated 
with the TG concentration in small HDLs and no other 
metabolic measures, suggesting a specific role underlying 
previous general associations. First studies propose that 
LINC00263 is a sex-specific oncogene [56]. Its involve-
ment in metabolic disturbances is plausible as other genes 
involved in both cancer and metabolic disturbances have 
been reported [57]. No associations between methylation 
at cg07504977 and expression of LINC00263 or other 
transcripts have been identified by us or by others, per-
haps because of its absence on most commercial arrays. 
LINC00263 interacts with at least 100 mRNAs, lncRNAs, 
miRNAs, and transcription factors [56], a common char-
acteristic of lncRNAs [58]. The location of cg07504977 
overlaps an active histone mark region within the pro-
moter of LINC00263 [43], suggesting a role of meth-
ylation at this CpG site in the lncRNA transcription. 
Thus, it seems feasible that methylation at cg07504977 
could affect LINC00263 expression, which in turn could 
directly adsorb or regulate the expression of miRNAs, 
and indirectly regulate the expression of miRNA target 
genes, e.g., miR-128, which directly inactivates ABCG1 
[59, 60]. Our results link methylation at cg07504977 to 
obesity and support this CpG as an emerging target for 
metabolic outcomes.

The indirect RCT pathway exchanges TG and cho-
lesterol esters between VLDLs, LDLs, and HDLs, and 
is promoted by high levels of VLDLs with subsequent 
HDL clearance [6, 9]. Our results highlight methyla-
tion at cg06500161 in ABCG1 as a biomarker entangled 
not only in the endogenous lipoprotein and the direct 
RCT pathways, but also in the indirect RCT pathway. 
cg06500161 showed the highest number of associations 
involving ApoB lipoproteins and HDLs and the low-
est p values among all assessed CpG sites. In this study, 
cg06500161 was one of two CpG sites that exhibited 
associations with their respective gene transcript, meta-
bolic measure ratios, and disease endpoints. Moreover, 
transcripts of ABCG1 were additionally associated with 
CpG sites located in trans and annotated to DHCR24 
and CPT1A. Novel results for methylation at cg06500161 
include associations with the lipid concentrations of all 
types of lipids and the TG compositions in ApoB lipo-
proteins, and associations with the TG composition and 

TG concentration in smaller HDLs. Additionally, in line 
with the known function of ABCG1 in controlling the 
bioavailability and activity of the TG-hydrolysis enzyme 
lipoprotein lipase [61], the analysis of metabolic meas-
ure ratios showed the lowest p values for ratios involving 
serum total TG levels. CpG methylation has shown to 
be driven by TG levels and not vice versa [24]. Although 
ABCG1 promotes the net cholesterol efflux to larger 
HDLs in the direct RCT pathway [62, 63], and associa-
tions with ABCG1 transcription were found, no associa-
tions of cg06500161 with the cholesterol concentration 
or composition in HDLs were observed. Therefore, meth-
ylation at cg06500161 might be linked to a lower activity 
of TG-hydrolysis enzymes (e.g., lipoprotein lipase), which 
in turn enhances the indirect RCT pathway, and impedes 
observation of associations with cholesterol features in 
HDLs [15, 25]. However, a precise role of cg06500161 in 
lipid metabolism remains to be elucidated, as does that 
of lipid-lowering drugs in the relationship. The previously 
hypothesized influence of statins on methylation at this 
site [64], and its mediation on the association between 
statins and type 2 diabetes [65], suggest that methylation 
at cg06500161 could lie on the causal path between the 
apparent mitigating effect of lipid-lowering drugs and its 
association with MI.

The chemical structure of fatty acids (FA) allows 
their categorization according to their saturation into 
MUFAs or PUFAs. In blood, FAs are transported by 
ApoB lipoproteins and HDLs. Although not fully under-
stood, it has been proposed that MUFAs are mainly 
transported through the TG content of these lipopro-
teins, while PUFAs are mainly transported through the 
phospholipids or cholesterol ester content of lipopro-
teins [66]. We identified several associations for CpG 
methylation in SCD, FADS1/2, SLC7A11, TXNIP, and 
PHGDH with PUFAs. However, in line with previ-
ous studies, those in the FADS region appear to have a 
complex (epi)genetic architecture [37, 67–70]. The only 
CpG site showing associations with PUFAs, and addi-
tionally with the respective gene transcript, metabolic 
measure ratios, and disease endpoints was cg16246545 
in PHGDH. Since we found no associations between 
methylation at cg16246545 and lipoproteins, but we 
did see that methylation at this site was associated with 
omega-6 PUFAs such as linoleic acid (LA), PUFAs and 
DNA methylation might have an interrelation that 
does not involve lipoproteins. Omega-6 PUFAs intake 
has been associated with changes to DNA methyla-
tion and metabolic alterations [71]. Additionally, the 
inhibition of PHGDH induces changes in DNA meth-
ylation and broad changes in metabolism such as alter-
ations in nucleotide metabolism [72, 73]. Higher LA 
consumption might thus be related to methylation of 
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cg16246545. As we also found an association of this site 
with gene expression, this may be a pathway through 
which LA consumption leads to adverse metabolic out-
comes such as obesity. Previously, we demonstrated an 
association between PHGDH transcription and a CpG 
site only 50 bp downstream from cg16246545 [25, 74]. 
We hypothesize that not only a single CpG site, but 
rather a bigger genetic region which is overlapping 
active histone marks, contributes to the functional rele-
vance of cg16246545. Although we do not confirm neg-
ative associations of methylation at cg16246545 with 
serum total TG levels, we found novel associations with 
omega-6 FAs, fatty acids that are involved in regulation 
of TG levels [18].

The major strength of this work is the detailed informa-
tion presented by the serum metabolic measures relating 
to the sizes, lipid compositions, and lipid concentrations 
of the lipoprotein subclasses. All CpG sites found to be 
associated with metabolic measures have additionally 
been associated with many more cardiometabolic con-
ditions such as liver enzymes and hepatic steatosis [75] 
among others, thus extending the relevance of our find-
ings. The generalizability of our results to a broad range 
of populations seems plausible, as our study uses popu-
lation-based cohorts with different ethnic backgrounds 
[76]. We have confidence in our results owing to the 
overall large sample size of our study, the high percentage 
of replicated associations in the largest replication cohort 
(LOLIPOP), and the consistent directions of effect and 
Pearson correlations with the discovery cohort coeffi-
cients across all replication cohorts. However, NFBC1966 
and YFS replication cohorts showed smaller effect sizes 
than those found in the discovery cohort, perhaps due to 
the younger age and healthier status of NFBC1966 and 
YFS participants. Additionally, cross-sectional studies do 
not readily provide information on causation in the con-
text of DNA methylation, although recent studies imply 
an effect of lipid levels on DNA methylation rather than 
vice versa [24], and DNA methylation has often been 
considered a biomarker rather than a predictor [20, 24, 
25, 29, 31, 32]. Mendelian randomization studies involv-
ing meta-analyses of studies of larger sample sizes than 
investigated here are needed to unravel the causal struc-
tures of the associations presented in this work [30]. 
Further in vitro and/or in vivo studies could also clarify 
causes and functional consequences of lipid-related DNA 
methylation alterations. Another limitation is the fact 
that DNA methylation was analyzed in DNA extracted 
from whole blood, a mixture of different cell types, 
while the investigated metabolic measures largely origi-
nate from metabolic processes in the liver, muscle, and 
adipose tissue. Nevertheless, blood represents an easy-
to-obtain human tissue that can be used for predictive, 

prognostic, and intervention biomarkers, and so its 
detailed investigation is certainly warranted.

Our findings could potentially be used as part of a 
multifaceted approach that incorporates genetic data, 
epigenetic data, and genetic–epigenetic interactions for 
complex disease prediction [77], hence offering future 
researchers a building block for developing biomarkers 
for dyslipidemia and other cardiometabolic diseases.

Conclusion
In summary, serum metabolic measures were found to 
be associated with the methylation levels of interrelat-
ing genes involved in lipid metabolism and cardiometa-
bolic disturbances. We observed that DNA methylation 
is linked to the sizes, lipid compositions, and lipid con-
centrations of apolipoprotein B-containing lipoprotein 
and HDL subclasses. No evidence of a link between 
DNA methylation and PUFAs involving lipoproteins 
was obtained. Our results provide in-depth insights into 
previous metabolic trait-DNA methylation associations 
based on total concentrations of serum lipids and indi-
cate a complex regulation of the human metabolism pos-
sibly closely interrelated with epigenetic processes. We 
demonstrate the power of detailed metabolic measure 
profiling in large population-based cohorts to improve 
the molecular understanding of dyslipidemia and related 
disease mechanisms. Further studies are needed to clarify 
underlying functional mechanisms and identify pharma-
ceutical interventions for cardiometabolic disturbances.

Methods
Study design
The aim of this study was to identify the association of 
DNA methylation and a set of 226 mostly lipid-related 
NMR-measured serum metabolic measures. The design 
of the study comprised discovery and replication stages 
with subsequent follow-up analyses of the CpG sites 
associated with metabolic measures (Fig. 3). The discov-
ery stage consisted of an EWAS of metabolic measures 
from the KORA cohort with subsequent validation of 
robust associations in the LOLIPOP, NFBC1966, and YFS 
replication cohorts. In the follow-up studies we assessed 
potential genetic confounding of the obtained associa-
tions, whether the associations varied between the sexes, 
and whether the CpG sites were associated with meta-
bolic measure ratios, gene expression, and disease end-
points. Follow-up studies were performed in the KORA 
cohort using only those CpG sites that showed replicated 
associations with metabolic measures.

Discovery cohort
The Cooperative Health Research in the Region of 
Augsburg (KORA) study is a series of independent 
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population-based epidemiological surveys and follow-up 
studies of participants living in the region of Augsburg, 
Southern Germany. The studies have been conducted 
according to the principles expressed in the Declaration 
of Helsinki. The KORA F4 study, a seven-year follow-up 
study of the KORA S4 survey (examined 1999–2001), 
was conducted between 2006 and 2008. The standardized 
examinations applied in the survey have been described 
in detail elsewhere [78]. A total of 3080 subjects with ages 
ranging from 32 to 81 years participated in the examina-
tion. Anthropometric and serum measures were meas-
ured concurrently. Aliquots of whole blood were stored 
at − 80  °C for extraction of genomic DNA. In a random 
subgroup of 1802 KORA F4 subjects DNA methylation 
patterns were analyzed. Of the 1790 subjects who also 
had serum metabolic measures, 36 had detection rates of 
less than 95% over all measures and were eliminated from 
further analysis. Eight individuals were further elimi-
nated due to non-fasting status at the time of blood sam-
pling and 84 due to lack of valid methylation data, leaving 
a final sample size of 1662 subjects. Clinical phenotypes 
were defined as follows: type 2 diabetes (T2D), self-
report, or intake of glucose-lowering medication, exclud-
ing metformin; hypertension, ≥ 140/90 mmHg, or intake 
of anti-hypertensive medication; obesity, BMI ≥ 30; pre-
vious myocardial infarction (MI), self-report.

Replication cohorts
The London Life Sciences Prospective Population Study 
(LOLIPOP) is a prospective cohort study of ~ 28000 
Indian Asian and European men and women, recruited 
from the lists of 58 General Practitioners in West Lon-
don, UK, between 2003 and 2008. In 4060 samples of 
Indian-Asian subjects, anthropometric and serum meas-
ures were measured concurrently, and aliquots of whole 
blood were stored at − 80  °C for extraction of genomic 
DNA. DNA methylation was quantified in a subset of 
2805 participants.

The Northern Finland Birth Cohort 1966 (NFBC1966) 
is a prospective population-based birth cohort, in the 
two northernmost provinces of Finland (N = 12055) with 
children whose expected date of birth was in the year 
1966. In 1997–1998, a postal questionnaire on health, 
social status, and lifestyle was sent to the living cohort 
members, and those living in the original target area or 
in the capital area were invited for a clinical examina-
tion, including blood sample collection. Aliquots of 
whole blood were stored at − 80 °C for later extraction of 
genomic DNA. DNA methylation patterns were analyzed 
for 807 subjects randomly selected.

The Cardiovascular Risk in Young Finns Study (YFS) 
is an ongoing multicentre Finnish longitudinal popula-
tion study sample on the evolution of cardiovascular risk 

factors from childhood to adulthood. The study began 
in 1980, when 3596 participants between the ages of 3 
and 18 were randomly selected from the national popu-
lation registers. Anthropometric and serum measures 
were measured concurrently, and aliquots of whole blood 
were stored at − 80 °C for extraction of genomic DNA. In 
a subsample of 184 individuals randomly assigned from 
a follow-up in 2011, DNA methylation patterns were 
determined.

DNA methylation quantification
DNA methylation was quantified in bisulfite-converted 
genomic DNA from whole blood samples of all partici-
pants in both the discovery (N = 1662) and replication 
cohorts (N = 3752), using the Infinium HumanMeth-
ylation450 BeadChip (450  K BeadChip) (Illumina Inc, 
San Diego, CA, USA) in the discovery and replication 
cohorts. Further details on processing of the methylation 
data can be found in the supplemental methods (Addi-
tional file 4: Supplemental Results and Methods).

Serum metabolomics
Participants of all cohorts were in a state of fasting when 
blood samples were collected. Metabolite detection and 
quantification were performed on a high-throughput 
nuclear magnetic resonance (NMR) spectroscopy-based 
platform (Nightingale Ltd, Helsinki, Finland) [79, 80]. A 
total of 228 serum metabolic measures were assessed, 
and after data quality control 226 remained: 147 directly 
measured, mostly given in concentration units, and 79 
derived ratios, mostly given in percentage, such as the 
ratios of specific types of lipids to total lipids in lipo-
protein subclasses. The metabolic measures included 
six VLDL-, one IDL-, three LDL-, and four HDL-lipo-
protein size-subclasses. Each lipoprotein size-subclass 
was measured for concentration and composition of 
phospholipids, total and free cholesterol, cholesterol 
esters, triglycerides, and total lipids. Additionally, two 
apolipoproteins, eight fatty acids, eight glycerides and 
phospholipids, nine cholesterols, nine amino acids, one 
inflammatory marker, and ten small molecules involved 
in glycolysis, citric acid cycle, or urea cycle were meas-
ured. Further details on sample preparation and the 
metabolic measure data can be found in the supplemen-
tal methods (Additional file 4: Supplemental Results and 
Methods).

Statistical analysis
Epigenome‑wide association studies: discovery 
and meta‑analysis
The discovery stage in the KORA F4 (N = 1662) cohort 
was made up of 226 epigenome-wide association studies, 
one per investigated metabolic measure passing quality 
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control (Additional file 1: Table S1). Specifically, for each 
metabolic measure, 468151 linear regression models were 
examined, one per CpG site. Each model used the natu-
ral logarithm of the metabolic measure as the dependent 
variable and technically adjusted beta values (i.e., propor-
tion of methylation at the given CpG site) and covariates 
(detailed in Additional file  4: Supplemental Results and 
Methods) as explanatory variables. The covariates used 
in the linear models as potential confounders were age, 
sex, body mass index (kg/m2), c-reactive protein (mg/l), 
HbA1c (%), smoking status (current smoker, ex-smoker, 
or never smoker), alcohol consumption (g/day), lipid-
lowering drug use (yes/no), presence of hypertension 
(yes/no), history of self-reported myocardial infarction 
(yes/no), level of physical activity (high/low), total white 
blood cell count (/nl), and proportions of white blood cell 
types as estimated using the Houseman method [81]. Sta-
tistical significance was determined using a Bonferroni-
corrected threshold (p < 0.05/(468151 × 226) ≈ 4.7e−10). 
Following the discovery, we ran sensitivity analyses to 
examine the model assumptions and the robustness of 
the results (Additional file  4: Supplemental Results and 
Methods). We then tested for replication of those sig-
nificant CpG-metabolic measure pairs showing robust-
ness using a meta-analysis of the results of the three 
participating replication studies (LOLIPOP, N = 2805; 
NFBC1966, N = 771; YFS, N = 176; statistical significance 
p < 0.05/274 ≈ 1.8e−4).

Genetic effects analysis
Multi-omics analyses were performed in the discovery 
cohort for associated CpG sites. Conditional analyses 
were performed to investigate whether genetic variation 
(single nucleotide polymorphisms, SNPs) within 1  Mb 
of the CpG sites could drive the relationships between 
the metabolic measures and methylation. For each CpG-
metabolic measure pair, associated SNPs within 1 Mb of 
the CpG site were added singly to the models to deter-
mine the effect of the SNP on the association. Full details 
are given in the supplemental methods (Additional file 4: 
Supplemental Results and Methods).

Gene expression analysis
To study the interplay between the identified CpG sites 
and gene expression we examined associations with gene 
expression probes lying within 1  Mb of the significant 
CpG sites and extended these investigations to tissues 
beyond whole blood using data extracted from the Array-
Express database [82] for both subcutaneous fat (Twin-
sUK study, ArrayExpress references E-TABM-1140, and 
E-MTAB-1866 [83, 84]) and liver (Karolinska Liver Bank 
cohort ArrayExpress reference E-GEOD-61279 [85]). 
Statistical significance was determined in the discovery 

cohort as p < 0.05/480 ≈ 1.0e−4; p < 0.05/521 ≈ 9.6e−5 
for subcutaneous fat; and p < 0.05/271 ≈ 1.8e−4 for liver; 
based on the total number of CpG-expression probe pairs 
examined per tissue. Results from the BIOS QTL browser 
(FDR < 0.05), a database presenting whole blood expres-
sion-methylation associations [41, 86], were integrated 
into significant CpG-transcript associations. Additional 
details on the gene expression analysis can be found in 
the supplemental methods (Additional file 4: Supplemen-
tal Results and Methods).

Sex interaction analysis
Sex interaction analysis was performed in the discovery 
cohort for each replicated CpG site-metabolic measure 
association, excluding those involving CpG sites from the 
FADS region. The models were identical to the discovery 
models, but with a “sex × methylation” interaction term 
(males as reference sex). Statistical significance for the 
interaction coefficient was judged at a Bonferroni-cor-
rected threshold of p < 0.05/148 ≈ 3.4e−4.

Associations with serum metabolic measures ratios 
implicated in different pathways
In an attempt to identify specific steps of metabolic path-
ways that might be linked to DNA methylation in the 
discovery cohort KORA F4, we assessed association of 
CpG sites with additional ratios beyond those provided 
by the platform, using linear regression and adjusting for 
the same covariates used in the discovery EWAS. We cal-
culated additional ratios related to the lipolysis, proteoly-
sis, glycolysis, and ketogenesis pathways. Only associated 
metabolic measures and CpG sites from the replicated 
results were included. Statistical significance was deter-
mined as p < 0.05/(60 * 12) ≈ 6.9e−5. The tests for the 
associations of the 12 CpG sites with 30 transcripts of 
proteins directly involved in lipoprotein metabolism such 
as enzymes, transfer proteins, and lipid transporters was 
performed as for the gene expression analysis described 
for KORA F4 above and in the supplemental methods, 
but only looking additionally at probes within 500 bp, 
rather than 1 Mb. Statistical significance was determined 
as p < 0.05/(62 * 12) ≈ 6.7e−5. Further details on the selec-
tion criteria of ratios and transcripts can be found in the 
supplemental methods (Additional file  4: Supplemental 
Results and Methods).

Associations with clinical phenotypes
We next determined whether replicated CpG sites 
were associated with prevalent type 2 diabetes (T2D, 
self-report, or intake of glucose-lowering medication, 
excluding metformin; N = 148 cases, 1516 controls), 
hypertension (≥ 140/90 mmHg, or intake of anti-hyper-
tensive medication; N = 757 cases, 901 controls), obesity 
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(BMI ≥ 30; N = 497 cases, 1159 controls), or previous 
myocardial infarction (MI, self-report; N = 59 cases, 1602 
controls) in the discovery cohort. For each CpG site and 
each outcome, we performed logistic regression adjusted 
for all covariates as in the discovery analysis (excluding 
HbA1c for diabetes and BMI for obesity) (model 1). To 
explore the effects of lipid-lowering drugs on the rela-
tionships, we ran two models: one without this covariate 
(model 1) and one with (model 2). Statistical significance 
was determined at a Bonferroni-corrected threshold of 
p < 0.05/(4 * 12) ≈ 1.0e−3.

Additional details on the data preparation, statistical 
analysis of the discovery and meta-analysis, multi-omics 
analyses, and associations with ratios and clinical pheno-
types can be found in the supplemental methods (Addi-
tional file  4: Supplemental Results and Methods). All 
statistical significance was determined using Bonferroni-
corrected thresholds based on family-wise type I error 
rates of 0.05 and the number of relevant tests, except 
where noted.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1314 8‑020‑00957 ‑8.

Additional file 1: Table S1. List of the metabolic measures (N = 228) 
assessed in all cohorts.

Additional file 2: Table S2. Epigenome‑wide association study (EWAS) 
of metabolic measures. Presented are CpG site‑metabolic measurement 
pairs statistically significantly associated in the KORA F4 discovery study. 
Results for the discovery analysis in KORA (“KORA”), the sensitivity analysis 
in KORA (“_KORA_Sens”), LOLIPOP (“_LOLIPOP”), NFBC1966 (“_NFBC”), and 
Young Finns (“_YFS”) studies, as well as the results for the meta‑analysis 
(“_MA”) of these three replication studies, are presented. The scaled coef‑
ficients of the sensitivity analysis in KORA (“Coef_KORA_scaled”, i.e., both 
the log‑transformed metabolite measure and methylation beta value 
were z‑transformed prior to analysis) are also presented. The coefficients 
and p values for the discovery KORA analysis were calculated based on 
the results of 10 MICE imputed datasets and combined using the com‑
mands pool.scalar and micombine.chisquare, from the R packages mice 
and micetools, respectively. Discovery (KORA F4) significance based on 
p value < 4.73e−10; meta‑analysis significance based on p value < 1.80e−4 
(based on 274 pairs tested for replication). Gene, CHR, and Pos: gene, chro‑
mosome, and position annotation for the CpG site taken from the Illumina 
450 K annotation file; Coef: coefficient of the CpG site from the regression 
analysis; SE: standard error of the coefficient; P: p value for the regression 
coefficient; N: number of observations; P_Bonf: Bonferroni‑corrected 
p value for the given analysis; Explained_variance_KORA: percentage of 
explained variance of the log‑transformed metabolic measure by the 
CpG; Stat_Sig_MA: statistically significant in the meta‑analysis of the three 
replication studies. Unless otherwise specified, all coefficients are change 
in natural log‑transformed metabolite measurement unit (as given in 
Additional file 1: Table S1) per unit increase in methylation (beta value on 
0–1 scale).

Additional file 3: Table S3. Summary statistics comparing the 274 KORA‑
significant associations across the replication cohorts. Results are given 
as total number (proportion) or as p values calculated using the binomial 
distribution (n = number of valid models in the study), where the prob‑
ability for a single Bernoulli trial is given as *p = 0.5, **0.05, ***0.05/274. 
The number of valid models is the number of pairs for which results were 
available.

Additional file 4: Supplemental Results and Methods. In the Sup‑
plemental Results section a detailed comparison of the results obtained 
across cohorts can be found. In the Supplemental Methods section a 
detailed description of data processing for each of the population based 
cohorts can be found, as well as detailed specification on statistical and 
multi‑omics analyses.

Additional file 5: Table S4. Replication tables. Replicated associations 
are displayed by CpG site, CpG gene location, metabolite (metabolic 
measure), and metabolite type (metabolic measure type). A total of 274 
significant, robust associations in the discovery cohort (KORA F4) were 
found.

Additional file 6: Figure S1. Pearson correlations between metabolic 
measures associated with DNA methylation, KORA F4 data. Correlations 
among DNA methylation‑associated metabolic measures are shown. All 
metabolic measures found associated with methylation in the discovery 
cohort are included.

Additional file 7: Figure S2. Explained variance of the first 30 principal 
components of the metabolite measure principal component analysis, 
performed in the discovery cohort KORA F4.

Additional file 8: Figure S3. Presented are the first 8 principal com‑
ponents (PCs) of the metabolite data in KORA F4 (after scaling of the 
individual metabolites) coloured according to sex, intake of lipid‑lowering 
drugs, and smoking habits. “Expl. Var” is the variance explained by the 
given PC. Some clustering is observed for sex within the first 2 PCs, but no 
other obvious clusters emerge for any of the other phenotypes or PCs.

Additional file 9: Table S5. Results of the EWAS of metabolite meas‑
ure principal components. Presented are the statistically significant 
(Bonferroni‑adjusted P < 1.34e−8) results of the EWAS of the first 8 princi‑
pal components of the metabolite measures data in the discovery cohort 
KORA F4. CHR: annotated chromosome of the CpG site; Pos: annotated 
chromosomal position of the CpG site; Coef: coefficient of the CpG site in 
the regression model; SE: standard error of the coefficient; P: p value; PC_
explained_var: Explained variance of the metabolite principal component.

Additional file 10: Table S6. Results of look‑ups in two epigenome‑
wide association study (EWAS) catalogues, the EWAS Atlas [39] (Source: 
“EWAS_Atlas”) and the EWAS Catalog [40] (Source: “EWAS_Cat”). Shown are 
the catalogue results (significantly associated CpGs and traits) for all CpGs 
from our replicated metabolic measure‑CpG associations (16 CpG sites 
total). Chromosome (CHR) and chromosomal position (Pos) taken from 
the Illumina HumanMethylation450 v1.2 Manifest File, available from the 
Illumina website.

Additional file 11: Table S7. Genetically influenced CpG site‑metabolic 
measure associations. Results for the cis‑SNP analysis are presented. 
“Coef_discovery” and “P_discovery”: coefficient and p value for the discov‑
ery analysis for the given CpG site‑trait pair. “Count_conf_SNPs”: number 
of SNPs which, when added singly to the metabolic measure‑CpG site 
regression model, cause the pair to lose its statistical significance, as 
defined by the discovery threshold (p = 4.73e−10). “Coef_adj” and “p_adj”: 
coefficient and p value of the CpG in the model with the addition of the 
SNP causing the greatest effect (largest change in p value). “top_SNP”: 
name of the SNP causing the largest effect. “Loses_significance” indicates 
whether the addition of any SNP to the CpG‑metabolic measure regres‑
sion model causes the association to lose significance (i.e., “Count_conf_
SNPs” > 0). “Probable_SNP_confounding” indicates the addition of at least 
one single SNP to the model renders the association insignificant and 
drastically alters the results, indicated likely SNP confounding by 1 or more 
SNPs. NAs within the table indicate the absence of a SNP fulfilling the 
requirements of our conditional analyses for the CpG‑metabolic measure 
pair (i.e., the absence of a SNP being associated with both the CpG site 
and the metabolic measure). CHR: chromosome, pos: position, UCSC_Ref‑
Gene_Name_CpG: annotated gene name of the CpG site, all as given by 
the Illumina manifest file. N: number of observations in the model incor‑
porating the SNP. All coefficients are change in natural‑log transformed 
metabolite measurement unit (as given in Additional file 1: Table S1) per 
unit increase in methylation (beta value on 0–1 scale). *Drastic increase 
(factor > 100) of p value after addition of the SNP to the regression model.
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Additional file 12: Table S8. Results of gene expression analysis of 
CpG sites associated with metabolic measures. Displayed are the FDR 
(Benjamini‑Hochberg, < 0.05) statistically significant associations between 
metabolic measure‑associated CpG sites and expression transcripts in cis 
in whole blood (KORA F4, 480 CpG‑transcript pairs examined), subcutane‑
ous fat (TwinsUK study, 521 pairs examined) and liver (Karolinska Liver 
Bank cohort and the Dutch tissue cohort MORE/BBMRI obesity cohort, 
271 pairs examined). FDR‑adjusted p values were calculated for each 
tissue separately. “Probe ID” and “Transcript_annotated_gene”: transcript 
ID and annotated gene from the Illumina annotation files. “Distance”: 
distance between the CpG and the transcript according to the annotation 
files. CHR: chromosome; Distance: distance between the CpG and the 
transcript based on positions given in the annotation files; Coef: beta‑
coefficient; P: p value; FDR: FDR‑corrected p value; Bonf_P: Bonferroni‑cor‑
rected p value; N: number of observations in the model; “replicated_BIOS”: 
whether the association (where the CpG is matched directly, but the 
transcript is matched by annotated gene only), with consistent direction 
of effect, is found in the FDR < 0.05 significant BIOS QTL database. An “‑” 
indicates the CpG‑gene expression pair is not found in the FDR < 0.05 
significant results in BIOS. All coefficients are change in log2‑ transformed 
expression intensity per unit increase in methylation (beta value on 0–1 
scale), except for subcutaneous fat, which is correlation assessed using the 
R‑package rmcorr.

Additional file 13: Table S9. Results of the sex interaction analysis. 
Results for all 148 replication CpG site‑metabolic measure associations 
are shown for models identical to the discovery, but with additional 
“sex × methylation” interaction term. Presented are the obtained 
coefficient (interaction_coef ) for the term of the interaction between 
methylation and sex (0: male, 1: female), standard error of the coefficient 
(interaction_SE), p value of the coefficient (interaction_P), the Bonferroni‑
corrected p value of the coefficient (interaction_bonf_p), the methylation‑
metabolite measure coefficient for males (coef_CpG_Met_male), with the 
calculated females coefficient (coef_CpG_Met_female, i.e., coef_CpG_
Met_male + interaction_coef ), and number of observations for the model 
(N). No interaction coefficient results pass a Bonferroni‑corrected p value 
threshold of 0.05/148 ~ 3.4e−4 for statistical significance. All coefficients 
are change in natural‑log transformed metabolite measurement unit (as 
given in Additional file 1: Table S1) per unit increase in methylation (beta 
value on 0–1 scale).

Additional file 14: Table S10. Results of the associations with additional 
metabolic measure ratios as proxies of enzymatic activity or linked to met‑
abolic disease. Results for all 12 replicated metabolic measure‑associated 
CpG sites associations are shown. Presented are the coefficient (Coef ) of 
the CpG site from the regression analysis, standard error of the coefficient 
(SE), p value of the coefficient (P), Bonferroni‑corrected p value (Bonf_P) 
and number of observations for the model (N). A Bonferroni‑corrected 
p value threshold of p < 0.05/(60 * 12) ≈ 6.9e−5 is used for statistical signifi‑
cance. All coefficients are change in difference of natural‑log transformed 
metabolite measurement units (as given in Additional file 1: Table S1, i.e., 
log(metabolite 1) − log(metabolite 2)) per unit increase in methylation 
(beta value on 0–1 scale).

Additional file 15: Table S11. Results of the associations between CpG 
sites and expression of transcripts of genes codifying for enzymes or pro‑
teins directly involved with lipoprotein metabolism. Results are shown for 
those pairs passing a false discovery rate (Benjamini‑Hochberg) threshold 
of FDR < 0.05. Presented are the CpG sites and expression probe IDs; the 
annotated genes of the CpG site and expression probe; the chromosomes 
of the CpG site and expression probe; the chromosomal location of the 
CpG site; the distance between the CpG site and expression probe (where 
Inf indicates they are on different chromosomes); the coefficient (Coef ) of 
the CpG site from the regression analysis; standard error of the coefficient 
(SE); p value of the coefficient (P); Bonferroni‑corrected p value (Bonf_P); 
FDR‑corrected p value (FDR); number of observations for the model 
(N); and whether the association is significant at Bonferroni‑corrected 
threshold (based on 12 CpGs × 62 expression probes: p < 0.05/(12 * 
62) =6.7e−5 ). All coefficients are change in log2‑ transformed expression 
intensity per unit increase in methylation (beta value on 0–1 scale).

Additional file 16: Table S12. Results of the investigation into asso‑
ciations between metabolic measures‑related CpG sites and clinical 
outcomes. Listed are the CpG site‑clinical outcome (previous myocardial 
infarction, prevalent type 2 diabetes, obesity and prevalent hypertension) 
results for both model 1: logistic regression model with clinical outcome 
as dependent variable and technically adjusted methylation value as 
independent variable, adjusted for the following covariates: age, sex, BMI, 
C‑reactive protein levels, hemoglobin A1c levels (except for diabetes 
model), history of myocardial infarction (except for the myocardial infarc‑
tion model), smoking status, current hypertension (except for the hyper‑
tension model), physical activity, white blood cell count and estimated 
proportions of white blood cell type; or model 2, which is additionally 
adjusted for intake of lipid‑lowering drugs. P: p value of the association; 
OR: odds ratio for a 1 standard deviation increase in methylation; CI: confi‑
dence interval; FDR: false discovery rate p value based on the Benjamini–
Hochberg method applied to each outcome and model separately; M1: 
model 1; M2: model 2. *Association investigated using the KORA F4 data 
in [15]; **Association investigated using the KORA F4 data in [25].

Additional file 17: Table S13. ROC curve analysis for significant 
CpG‑outcome associations: Presented are the areas under the curve 
(AUC) for the receiver operating characteristic (ROC) curve analysis for 
each outcome‑CpG pair for which there exists a statistically significant 
association for either M1 or M2 (Table 3). Presented are the results for the 
intercept (mean) model and the model with the CpG sites and no other 
covariates; for M1 without and with the CpG site; and for M2 without and 
with the CpG site. Presented are the AUCs for the respective ROCs, and 
a p value for the null hypothesis that the addition of the CpG site to the 
model has no effect on the predictive performance of the model. The 
p value was determined using the R package pROC [87], command roc.
test, method “bootstrap”. The analysis was run in the KORA F4 dataset, and, 
to ensure comparability of the results, the ROC curves were generated 
using individuals with no missing values in any of the outcomes or covari‑
ates, and the methylation data were mean imputed.

Additional file 18: Figure S4. ROC curves for significant CpG‑outcome 
associations: Presented are the receiver operating characteristic (ROC) 
curves for each outcome‑CpG pair for which there exists a statistically 
significant association for either M1 or M2 (Table 3). The red line is the ROC 
curve for the model without the CpG, and the green line is the model 
with the CpG. Presented are also the areas under the curve (AUC) for the 
respective ROCs, and a p value for the null hypothesis that the addition 
of the CpG to the model has no effect on the predictive performance of 
the model. The p value was determined using the R package pROC [87], 
command roc.test, method “bootstrap”. The analysis was run in the KORA 
F4 dataset, and, to ensure comparability of the results, the ROC curves 
were generated using individuals with no missing values in any of the 
outcomes or covariates, and the methylation data were mean imputed.

Additional file 19: Table S14. Inflation factors for each epigenome‑wide 
association analysis. Presented are the genomic inflation factors (lambda) 
for all 226 EWAS run in the discovery analysis in KORA F4. All inflation fac‑
tors were calculated using complete case analysis.
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