
ThEodorE: a Trace Checker for CPS Properties
Claudio Menghi

University of Luxembourg
Luxembourg, Luxembourg

claudio.menghi@uni.lu

Enrico Viganò
University of Luxembourg
Luxembourg, Luxembourg

enrico.vigano@uni.lu

Domenico Bianculli
University of Luxembourg
Luxembourg, Luxembourg
domenico.bianculli@uni.lu

Lionel C. Briand
University of Luxembourg
Luxembourg, Luxembourg

University of Ottawa
Ottawa, Canada

lionel.briand@uni.lu

Abstract—ThEodorE is a trace checker for Cyber-Physical
systems (CPS). It provides users with (i) a GUI editor for
writing CPS requirements; (ii) an automatic procedure to check
whether the requirements hold on execution traces of a CPS.
ThEodorE enables writing requirements using the Hybrid Logic
of Signals (HLS), a novel, logic-based specification language to
express CPS requirements. The trace checking procedure of
ThEodorE reduces the problem of checking if a requirement
holds on an execution trace to a satisfiability problem, which
can be solved using off-the-shelf Satisfiability Modulo Theories
(SMT) solvers. This artifact paper presents the tool support
provided by ThEodorE.

Index Terms—Monitors, Languages, Specification, Validation,
Formal methods, Semantics

I. INTRODUCTION

A common practice to check whether a system behaves as
expected is to collect and analyze execution traces. Traces are
sequences of records that contain information about the state
of the system variables. Each record is usually labeled with
a time-stamp, i.e., the time instant at which the record was
obtained. Traces are collected from simulations or during the
actual system execution. They are then analyzed by engineers,
to check whether they conform to the system’s requirements.

Trace-checking tools automatically verify whether traces
conform to system’s requirements. Specification-driven trace-
checking tools are a particular class of trace-checking tools
that take as input a trace to be analyzed and a requirement
specification, i.e., a property. They yield a Boolean verdict
indicating whether the trace satisfies (or violates) the property.

ThEodorE [1, 2] is a specification-driven trace-checker for
CPS properties. Figure 1 presents an overview of the main
components of ThEodorE: ThEodorE-GUI and ThEodorE-
checker.

ThEodorE-GUI allows engineers to express requirements
using the Hybrid Logic of Signals (HLS) [3], a new specifica-
tion language tailored to specifying CPS requirements. HLS
allows engineers to express CPS requirements as properties
that refer both to the time-stamps and the indices of the trace
records. In this way, HLS properties can easily express the
behavior of both cyber and physical components, as well as
their interactions.

ThEodorE-checker provides an efficient trace-checking pro-
cedure for properties expressed in HLS. ThEodorE reduces
the problem of checking an HLS property on a trace to a

Trace to 
SMT

ThEodorE-checker

 Satisfiability 
Checking

Verdict

Property
(HLS)

Trace

Property to
SMT 

!

"

 HLS 
Editor

ThEodorE-GUI

SMT
SMT

Figure 1: The main components of ThEodorE.

satisfiability problem, which can be solved using off-the-shelf
Satisfiability Modulo Theories (SMT) solvers. SMT solvers
have efficient decision procedures for several background
theories, making it possible to check whether a formula is
satisfiable.

In the following, we provide an overview of the tool support
provided by ThEodorE-GUI and ThEodorE-checker.

II. THEODORE-GUI

ThEodorE-GUI is implemented as an Eclipse plugin using
Xtext [4]. Figure 2 presents a screenshot of the ThEodorE-
GUI editor showing two requirements specified as properties:
property_01 and property_02. Each property is com-
posed of:

• Requirement (Requirement): a textual description of
the requirement captured by the property, included for
documentation purposes.

• Signals definition (Signal): the definition of the signal
identifiers used in the HLS specification, and the inter-
polation functions used to generate the missing values
of each signal in the trace. ThEodorE currently supports
the Constant and Linear interpolation functions.
When the value of a signal is missing in a record, the
Constant interpolation assigns the missing value of a
signal in a record to the value assigned to the signal in
the previous record. The Linear interpolation assigns
the missing value of a signal in a record to a new value
computed by connecting, with a hypothetical straight line,
the values assigned to the signal in the previous and in
the next record.

• Variables definition (Index, Timestamp, Num): the
definition of the timestamp, index and real-valued vari-
ables used in the HLS specification;

1



Figure 2: A screenshot of the ThEodorE-GUI editor.

• The HLS formula (Specification): the specification
of the property of interest in HLS [3].

The code shown in Figure 2 indicates that properties
property_01 and property_02 should be checked on
the trace (Trace) stored in file trace1.tsv, which is
associated with the identifier id1.

The ThEodorE-GUI also allows the user to specify the pre-
processing strategies used by ThEodorE (see [3]). Specifically,
the value assigned to Sample_Step (line 2) defines how to
pre-process the original trace:

• fixed-manual indicates that the fixed sample step
specified for each trace should be considered for pre-
processing. For example, the sample step to be considered
for pre-processing the trace id1 is one second (see
SampleStep at line 31).

• fixed-min indicates that the sample-step to be used
for pre-processing is the smallest sample-step among the
sample-steps of the records of the original trace.

• variable indicates that the same samples as in the
original trace are considered.

III. THEODORE-CHECKER

ThEodorE-checker (see Figure 1) takes as input a property
q expressed in HLS and a trace c. The usage workflow of the
tool includes the following steps:

• Translating the property q and trace c into formulae
expressed using the input language of the selected SMT
solver. The translation is implemented in Xtend [5], a
flexible and expressive dialect of Java. The translation is
automatically triggered by (i) changing the value assigned
to the Goal option (line 1 in Figure 2) from save, the
value used while editing the requirements, to generate,
and (ii) saving the file. The translation produces a Python
file for each trace-requirement combination; the generated
file uses the Z3 Python API for invoking the SMT solver.

Figure 3: An example output produced by the ThEodorE-
checker.

• Verifying the satisfiability of the SMT formula k, ob-
tained from the trace-requirement combination of in-
terest at the end of the previous step, using the SMT
solver. The satisfiability of k is checked by executing
the Python file generated as part of the first step; the
verification verdict is generated when the execution ends.
For example, as shown in Figure 3, the satisfiability of
the SMT formula corresponding to the trace-requirement
combination of trace id1 and the requirement specified
in property_01 is verified by running python3
property_01_id1.py, which is produced in the first
step.

The final verdict yielded by ThEodorE-checker can be “sat-
isfied”, “violated” or “unknown”. ThEodorE-checker yields the
definitive verdicts “satisfied” or “violated” when the solver
returns “UNSAT” or “SAT”, indicating, respectively, that k is
unsatisfiable or satisfiable. However, the solver may return an
“UNKNOWN” answer since the satisfiability of the underlying
logic used within the solver is generally undecidable. In
our case, this indicates that no conclusion is drawn on the
satisfiability of formula k, thus resulting in an “unknown”
verdict returned by ThEodorE-checker.

For example, Figure 3 shows a fragment of the output of
ThEodorE-checker, when checking property property_01
on trace id1; notice that the obtained verdict is “VIO-
LATED”.

ACKNOWLEDGEMENT

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No
694277), and NSERC of Canada under the Discovery and CRC
programs.

REFERENCES

[1] “ThEodorE,” https://github.com/SNTSVV/ThEodorE,
2020.

[2] C. Menghi, E. Viganò, D. Bianculli, and L. C.
Briand, “Theodore - trace-checker,” Feb. 2021. [Online].
Available: https://doi.org/10.5281/zenodo.4506795

[3] C. Menghi, E. Viganò, D. Bianculli, and L. C. Briand,
“Trace-checking CPS properties: Bridging the cyber-
physical gap,” in International Conference on Software
Engineering (ICSE). ACM, 2021.

[4] “Xtext,” https://www.eclipse.org/Xtext/, 2020.
[5] “Xtend,” https://www.eclipse.org/xtend/, 2020.

2


