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Abstract

Objectives To compare block sequential regularized expectation maximization (BSREM) and ordered subset expectation max-

imization (OSEM) for the detection of in-transit metastasis (ITM) of malignant melanoma in digital [18F]FDG PET/CT.

Methods We retrospectively analyzed a cohort of 100 [18F]FDG PET/CT scans of melanoma patients with ITM, performed

between May 2017 and January 2020. PET images were reconstructed with both OSEM and BSREM algorithms. SUVmax,

target-to-background ratio (TBR), and metabolic tumor volume (MTV) were recorded for each ITM. Differences in PET

parameters were analyzed with the Wilcoxon signed-rank test. Differences in image quality for different reconstructions were

tested using the Man-Whitney U test.

Results BSREM reconstruction led to the detection of 287 ITM (39% more than OSEM). PET parameters of ITM were

significantly different between BSREM and OSEM reconstructions (p < 0.001). SUVmax and TBR were higher (76.5% and

77.7%, respectively) andMTV lower (49.5%) on BSREM. ITMmissed with OSEM had significantly lower SUVmax (mean 2.03 vs.

3.84) and TBR (mean 1.18 vs. 2.22) and higher MTV (mean 2.92 vs. 1.01) on OSEM compared to BSREM (all p < 0.001).

Conclusions BSREM detects significantly more ITM than OSEM, owing to higher SUVmax, higher TBR, and less blurring.

BSREM is particularly helpful in small and less avid lesions, which are more often missed with OSEM.

Key Points

• In melanoma patients, [18F]FDG PET/CT helps to detect in-transit metastases (ITM), and their detection is improved by using

BSREM instead of OSEM reconstruction.

• BSREM is particularly useful in small lesions.

Keywords Fluorodeoxyglucose F18 . Positron EmissionTomography / ComputedTomography .Melanoma .Algorithms . Skin

neoplasms
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MIP Maximum intensity projection

MR Magnetic resonance

OSEM Ordered subset expectation maximization

PET Positron emission tomography

PSF Point spread function

SiPM Silicon photomultiplier

SUVmax Maximum standardized uptake value

TOF Time of flight

TVEC Talimogene laherparepvec

VOI Volume of interest

Introduction

Cutaneous malignant melanoma (CMM) is the 5th most com-

mon cancer inmen and the 6thmost common cancer in women

worldwide [1, 2]. The incidence of CMM increased in the last

40 years, partly attributable to improved screening programs,

with approximately 287,700 new annual cases globally [3].

Cutaneous and subcutaneous melanoma metastases are

very frequent and include microsatellite, satellite, and in-

transit metastases (ITMs). With the 8th edition of the

American Joint Committee on Cancer (AJCC), these three

different entities were merged into the single subcategory

“c” of the N classification (N1c, N2c, and N3c) [4]. The as-

sociation of such metastases with poor prognosis was demon-

strated by several studies [5–9]. In particular, ITMs occur in

2–10% of melanoma patients and are frequently associated

with the development of nodal and/or systemic metastases

[10], even in sentinel node-negative patients [11]. In 2015,

Beasley et al [12] have reported a 5-year survival rate of

59% in patients without regional nodal disease compared to

19% for those with nodal disease (including ITM).

To reduce melanoma-related mortality and distant metasta-

sis development, an earlier detection of ITM could be helpful,

although no such data exists currently. Moreover, ITM can be

treated both with novel systemic agents (as immune check-

point inhibitors and mitogen-activated protein kinase pathway

inhibitors) and with locoregional interventions (as surgery,

electrochemotherapy, isolated limb infusion or perfusion,

and oncolytic viral therapy) [13–18].

Typically, ITMs are detected during clinical examina-

tion of patients or by ultrasound (US) using high-

frequency (HF) probes, which is time-consuming, opera-

tor-dependent, and limited in terms of tissue depth and

small-sized lesions. 2-Deoxy-2-[18F]fluoro-D-glucose

positron emission tomography/computed tomography

([18F]FDG PET/CT) is typically used for the staging and

restaging of high-risk melanoma patients, mainly for the

detection of lymph node metastases and distant metasta-

ses. With the advent of digital PET and novel iterative

reconstruction techniques, the detectability of small-sized

[19] and faintly [18F]FDG-avid lesions has improved

considerably [20, 21]. Hence, digital PET/CT may play

a relevant role in the detection of the exact number, size,

and location of ITM and may subsequently impact patient

management and therapy-related decisions [18, 22–24].

The aim of our study was to assess the value of

[18F]FDG PET images reconstructed with block sequen-

tial regularized expectation maximization (BSREM) com-

pared to the clinical standard ordered subset expectation

maximization (OSEM) for ITM detection.

Material and methods

Patient selection

We retrospectively analyzed a cohort of 1575 consecutive

examinations of patients, who underwent a clinically indicated

[18F]FDG PET/CT scan on a digital scanner for the staging/

restaging of malignant melanoma at the University Hospital of

Zurich between May 2017 and January 2020. Only patients

with documented willingness to the use of their medical data

for research were included (423 examinations excluded) in

this retrospective, observational study. Our study was ap-

proved by the local ethics committee and was conducted in

compliance with ICH-GCP rules and the Declaration of

Helsinki. All reports of the remaining 1152 PET/CT scans

were reviewed for reported ITM presence. In each reported

case, the ITM presence on imaging was verified by one doubly

board-certified radiologist/nuclear medicine physician with 12

years of experience in oncological hybrid imaging (M.H.).

Hence, eligible patients matched all the following inclusion

criteria: (a) histologically provenmelanoma; (b) presence of at

least one in-transit metastasis described in report (based on

BSREM algorithm) and verified by the above-mentioned

reader; (c) PET/CT scan acquired on a digital scanner with

silicon photomultiplier (SiPM) technology; (f) availability of

both OSEM and BSREM reconstructions. The final study

cohort consisted of a total of 100 examinations.

At our institution, BSREM serves as clinical standard for

all oncological [18F]FDG PET exams carried out on digital

scanners, and OSEM is reconstructed by default in order to

ensure comparability with analog scanners without BSREM

technology. Pathological confirmation, clinical examination

including ultrasound, and outcome and/or imaging after 3–6

months served as the standard of reference for proving ITM.

In 65 of the 100 PET/CT scans, at least one ITM was histo-

logically proven. In the remaining 35 cases, the location of the

lesion (between the primary site and regional nodal basin,

along the lymphatic stream), clinical examination including

ultrasound, and outcome and/or imaging after 3–6 months

served as the standard of reference for the designation of a

lesion as ITM.
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PET/CT acquisition

All included patients underwent a PET/CT scan on a digital

scanner with SiPM technology (GE Discovery Molecular

Insights - DMI PET/CT, GE Healthcare). The injected tracer

activity was 221.53 ± 6.67MBq of [18F]FDG. After an uptake

time of 60 min and following CT acquisition both for attenu-

ation correction and anatomical correlation, PET data were

acquired in 3-dimensional time-of-flight (TOF) mode, cover-

ing the identical anatomical region of the CT.

PET image datasets were reconstructed with different stan-

dardized settings (all with a 256 × 256 pixel matrix):

1- OSEM: 3 iterations, 16 subsets, FWHMI of 6.3 mm, 1:4

Z-axis filter, and 6.4-mm Gaussian filter with both time-

of-flight (TOF) and point spread function (PSF) modeling

(OSEMPSF ; VUE Point FX with SharpIR, GE

Healthcare).

2- BSREM (Q.Clear, GE Healthcare) with both TOF and

PSF and a β-value of 450 (BSREM450) which represents

the institutional standard [25–28].

Quantitative imaging analysis

Quantitative analysis was performed by two readers, blinded

to clinical data. Readers were provided with de-identified im-

ages reconstructed with OSEM and BSREM, in random pa-

tient and reconstruction order. The task of in-transit metastasis

detection was assigned to the readers, and readers recorded the

slice position and SUVmax of all lesions detected. PET im-

ages were segmented using a dedicated workstation (GE

Healthcare). The following indices were recorded for each

lesion: location, metabolic tumor volume (MTV), maximum

standardized uptake value (SUVmax), and mean standardized

uptake value (SUVmean).

PET parameters were measured on PET images using a

volume of interest (VOI) including the whole lesion volume,

outlined with a 3D semi-automatic contouring tool, and ap-

plying a threshold set at 42% of the SUVmax. Target-to-

background ratios (TBR), defined as the ITM SUVmax

corrected for physiological blood pool SUVmean, were also

calculated [29]. All quantitative image analyses were per-

formed on both OSEM and BSREM reconstructions, using

cloned VOIs for both reconstructions.

Statistical analysis

Categorical variables are expressed as proportions, and con-

tinuous variables are presented as mean ± standard deviation

(SD) or median (range), depending on the distribution of

values. We assessed the number of ITM detected with either

reconstruction algorithm. Moreover, we assessed the

Table 1 Patient and primary tumor characteristics

Patient characteristics

PET/CT scan, n (%)

Staging 12 (12.0)

Restaging 88 (88.0)

Gender, n (%)

Male 60 (60.0)

Female 40 (40.0)

Age (years), median (range) 64.50 (21–91)

Activity injected (MBq), median (range) 229.50 (97–330)

Uptake time (min), median (range) 60.00 (43–92)

Blood glucose level (mmol/L), median (range) 5.20 (4.2–7.8)

Weight (kg), median (range) 77.50 (50–114)

Height (cm), median (range) 172.00 (147–195)

BMI (kg/m2), median (range) 26.75 (19.7–38.8)

Primary melanoma characteristics

Type, n (%)

Superficial spreading melanoma (SSM) 22 (22.0)

Lentigo malignant melanoma (LMM) 2 (2.0)

Acral lentiginous melanoma (ALM) 9 (9.0)

Nodular melanoma (NM)

Unknown

41 (41.0)

19 (19.0)

Location, n (%)

Head and neck 10 (10.0)

Torso 23 (23.0)

Arms 8 (8.0)

Legs 51 (51.0)

Unknown 8 (8.0)

Clark level, n (%)

II 2 (2.0)

III 10 (10.0)

IV 37 (37.0)

V 11 (11.0)

Unknown 40 (40.0)

Breslow, mean ± SD (range) 2.8 ± 2.5 (0.6–20.0)

Breslow, n (%)

< 1.0 mm 3 (3.0)

1.0–2.0 mm 31 (31.0)

2.1–4.0 mm 32 (32.0)

> 4.0 mm 23 (23.0)

Unknown 11 (11.0)

Ulceration, n (%)

Yes 54 (54.0)

No 28 (28.0)

Unknown 18 (18.0)

BRAF mutation, n (%)

Yes 37 (37.0)

No 35 (35.0)

Unknown 28 (28.0)

Note: BMI, body mass index; BRAF, v-Raf murine sarcoma viral onco-

gene homolog B; MBq, megabecquerel; PET, positron emission

tomography
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frequency of PET parameter changes (SUVmax, TBR, and

MTV) comparing BSREM with OSEM. Based on PET

Response Criteria in Solid Tumors (PERCIST), we consid-

ered a change in PET parameters of ± 30% (BSREM vs.

OSEM) as clinically relevant [30]. The Wilcoxon signed-

rank test was used to test for differences in lesional PET pa-

rameters among both reconstructions. Differences in image

quality among reconstructions were tested using the Mann-

Whitney U test and the Pearson test, with linear regression

used to calculate the correlation coefficients. Statistical signif-

icance was considered for p < 0.05. Statistical analyses were

performed using SPSS version 26.0 (IBM) [31].

Results

Patient and tumor characteristics

Patient and tumor characteristics are listed in Table 1 and

supplemental table S1. Eighty-eight percent of the scans were

performed for restaging, and 12% for initial staging purposes.

Before PET/CT, all patients had already undergone surgery

(100%; primary tumor and/or lymph node surgery) and sev-

eral other treatments, such as chemotherapy (4%), small mol-

ecule targeted therapy (15%), immunotherapy (47%), radio-

therapy (21%), TVEC (10, and other therapies (19%).

In our study, the mean follow-up time after the analyzed

PET/CT scan was 18.2 ± 1.5 (0.0–131.0) months. Fifty-four

PET/CT scans detected only ITM but no nodal metastases, 14

PET/CT scans detected ITM and lymph node metastases, and

32 PET/CT scans detected ITM and distant metastasis.

According to RECIST 1.1 criteria, favorable outcome (com-

plete response + partial response + stable disease) was higher

in patients with only ITM (34/54; 34% of the entire cohort)

compared to patients with ITM and lymph node metastases

(10/14; 10%) and patients with ITM and distant metastases

(15/32; 15%).

Differences in PET parameters between OSEM and
BSREM algorithms

Lesions suspected to represent ITM were detected by the

readers in all 100 PET/CT scans included in this study. The

majority of ITM (69.0%) were located in the legs, 16.4% in

the torso, 8.0% in the arms, and 6.6% in the head and neck.

Readers detected a total of 295 lesions with BSREM, 214

with OSEM. Overall, 8 of the detected lesions turned out false

positive (6 granulomatous inflammations, 2 lymph node me-

tastases, all confirmed by histopathology) in 8 subjects, who

underwent a restaging PET/CT scan. All of these lesions were

recorded by the readers with both BSREM and OSEM. All 8

false-positive lesions were present in subjects who had also

true positive lesions, i.e., ITM. Interestingly, all these false-

positive lesions were also initially considered clinically to rep-

resent ITM.

Using BSREM, readers correctly detected a total of 287

ITM, of which 206 were detected also with OSEM (difference

of 39%), equaling a mean per patient ITM number of 2.06 for

OSEM and 2.87 for BSREM (p < 0.001). In 20 PET/CT scans

(20% of cohort), ITM presence was detected only by BSREM,

but not by OSEM. With BSREM/OSEM, the number of in-

transit metastases detected per patient was 1 lesion (42% /

25% of cases, respectively), 2–5 lesions (44%/41%), and > 5

lesions (14%/14%).

All PET parameters (SUVmax, TBR, MTV) were significant-

ly different between BSREM and OSEM reconstructions

(p < 0.001), both for the entire cohort and for several sub-groups,

Fig. 1 PET parameters (a SUVmax, b TBR, cMTV) of in-transit metas-

tasis with OSEM and BSREM reconstruction
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such as ITM detected only with BSREM (retrospectively ana-

lyzed alsowith OSEM) and ITM in different anatomical locations

(head and neck, torso, arms, and legs respectively). In the entire

cohort, there was a difference (BSREMvs. OSEM; all p < 0.001)

in ITM SUVmax of +76.5% (mean 8.42 vs. 4.77), TBR of

+77.7% (mean 4.78 vs. 2.69), and MTV of - 49.5% (mean 1.01

vs. 2.00 cm3). Figure 1 shows the box plots of ITM PET param-

eters in OSEM and BSREM, respectively.

The latter result is consistent with the fact that BSREM detects

smaller lesions. As shown in Table 2, all these differences were

more pronounced for ITM that were missed with OSEM recon-

struction and retrospectively analyzed. Here, we observed an in-

crease in ITM SUVmax by +89.2% from OSEM to BSREM

(mean 2.03 vs. 3.84, respectively, p < 0.001), in ITM TBR by

+88.1% (mean 1.18 vs. 2.22, respectively, p < 0.001), and a

decrease in ITM MTV by -65.4% (mean 2.92 vs. 1.01 cm3,

respectively, p < 0.001).

SUVmax of ITM in BSREM and OSEM according to the

anatomical location are given in Fig. 2. The highest

differences in SUVmax between BSREM and OSEM were

found in the head/neck and in the legs, as shown in Table 3.

One representative example is given in Fig. 3.

We found significant differences in PET parameters be-

tween subjects with low and high BMI (cut-off 25), both for

OSEM and BSREM (p < 0.001), as shown in supplemental

table S2. Moreover, we found a negative correlation between

BMI and ITM SUVmax and TBR, and a positive correlation

between BMI and blood pool SUVmean and ITMMTV, more

pronounced on BSREM than on OSEM (supplemental table

S3).

Discussion

Our study is the first one (to the best of our knowledge)

reporting improved detection of in-transit metastases with

BSREM compared to the clinical gold standard OSEM. The

major findings of our study are as follows: (1) BSREM leads

Table 2 Characteristics of the in-transit metastases in OSEM and BSREM

OSEM BSREM Parameter difference in BREM

vs. OSEM (%)

p value*

In-transit metastasis (ITM) detected

Overall ITM number, n 206 287 (+81) + 39.32% -

Mean ITM per patient, mean ± SD; min-max 2.06 (± 2.29; 0–12) 2.87 (± 2.56; 1–12) + 39.32% -

ITM detected per patient, n

1 lesion 25 42 (+17) + 68.00% -

2–5 lesions 41 44 (+3) + 7.31% -

> 5 lesions 14 14 (+0) + 0.00% -

ITM location, n (%)

Head and neck 6 19 (+ 13) + 216.66% -

Torso 34 47 (+ 13) + 38.23% -

Arms 17 23 (+ 6) + 35.29% -

Legs 149 198 (+ 48) + 32.21% -

Blood pool SUVmean, mean ± SD; min-max 1.76 ± 0.24 (1.19–2.59) 1.77 ± 0.24 (1.19–2.58) + 0.56% 0.860

SUVmax, mean ± SD; min-max 4.77 ± 4.34 (0.68–46.32) 8.42 ± 7.39 (0.84–71.60) + 76.51% < 0.001

TBR, mean ± SD; min-max 2.69 ± 2.30 (0.39–24.90) 4.78 ± 4.20 (0.48–38.28) + 77.69% < 0.001

MTV (cm3), mean ± SD; min-max 2.00 ± 1.97 (0.18–10.01) 1.01 ± 1.33 (0.02–8.39) −49.54% < 0.001

In-transit metastasis (ITM) missed by OSEM reconstruction

Overall ITM number, n - 81 -

ITM location, n (%)

Head and neck - 13 -

Torso - 13 -

Arms - 6 -

Legs - 49 -

SUVmax, mean ± SD; min-max 2.03 ± 0.71 (0.68–4.41) 3.84 ± 1.78 (0.84–10.99) + 89.16% < 0.001

TBR, mean ± SD; min-max 1.18 ± 0.47 (0.39–3.39) 2.22 ± 1.02 (0.48–5.69) + 88.13% < 0.001

ITM MTV (cm3), mean ± SD; min-max 2.92 ± 2.32 (0.39–9.24) 1.01 ± 1.16 (0.04–6.17) − 65.41% < 0.001

Note: ITM, in-transit metastasis; TBR, target-to-background ratio

*p value was calculated with the Wilcoxon signed-rank test
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to the detection of more ITM thanOSEM (+39%more); (2) all

ITM PET parameters (SUVmax, TBR, MTV) are significant-

ly different between BSREM and OSEM (p < 0.001), with an

SUVmax increase by 76.5%, a TBR increase by 77.7%, and a

MTV decrease by 49.5% from OSEM to BSREM.

Several studies have highlighted the role of [18F]FDG PET/

CT in patients with advanced-stage melanoma, especially for

the detection of distant metastases during follow-up (sensitiv-

ity 82–100% and specificity 45–100%), leading to treatment

change in 13–74% of stage III/IV patients [32]. As recently

highlighted by Laudicella et al [33], digital PET systems and

new reconstruction algorithms lead to a more accurate diag-

nosis, staging, and therapeutic evaluation of melanoma pa-

tients through better image quality, higher spatial resolution,

Table 3 Characteristics of in-transit metastasis detected by OSEM and BSREM, according to location

In-transit metastasis (ITM) detected OSEM BSREM Parameter difference in BREM

vs. OSEM (%)

p value*

Head and neck, n (%) 6 19 (+ 13) + 216.66% -

SUVmax, mean ± SD; min-max 3.41 ± 2.03 (1.26–7.93) 6.03 ± 3.35 (1.83–14.05) +76.83% < 0.001

TBR, mean ± SD; min-max 2.21 ± 1.45 (0.70–5.31) 3.91 ± 2.43 (1.16–11.06) +76.92% < 0.001

MTV (cm3), mean ± SD; min-max 3.21 ± 2.74 (0.61–9.14) 1.14 ± 1.22 (0.08–4.46) − 64.48% < 0.001

Torso, n (%) 34 47 (+ 13) + 38.23% -

SUVmax, mean ± SD; min–max 4.56 ± 3.44 (0.68–18.57) 6.98 ± 6.32 (0.84–38.33) + 53.07% < 0.001

TBR, mean ± SD; min–max 2.63 ± 1.94 (0.40–9.83) 4.01 ± 3.47 (0.49–20.39) +52.47% < 0.001

MTV (cm3), mean ± SD; min–max 1.63 ± 1.28 (0.31–5.86) 0.91 ± 3.44 (0.68–18–57) − 44.17% < 0.001

Arms, n (%) 17 23 (+ 6) + 35.29% -

SUVmax, mean ± SD; min–max 2.97 ± 1.57 (1.10–7.37) 4.41 ± 2.94 (1.28–14.62) +48.48% < 0.001

TBR, mean ± SD; min–max 1.96 ± 1.07 (0.63–5.01) 2.90 ± 1.98 (0.72–10.01) +47.95% < 0.001

MTV (cm3), mean ± SD; min–max 2.67 ± 2.28 (0.44–8.70) 1.69 ± 1.80 (0.10–6.17) − 36.70% < 0.001

Legs, n (%) 149 198 (+ 48) + 32.21% -

SUVmax, mean ± SD; min–max 5.17 ± 4.82 (0.90–46.32) 9.46 ± 8.00 (1.28–71.60) +82.97% < 0.001

TBR, mean ± SD; min–max 2.84 ± 2.53 (0.45–24.90) 5.29 ± 4.58 (0.71–38.29) +86.26% < 0.001

MTV (cm3), mean ± SD; min–max 1.90 ± 1.94 (0.18–10.01) 0.94 ± 1.36 (0.02–8.39) − 50.52% < 0.001

Note: ITM, in-transit metastasis; TBR, target-to-background ratio

*p value was calculated with the Wilcoxon signed-rank test

Fig. 2 SUVmax of ITM in OSEM and BSREM reconstructions by location
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and more accurate image reconstruction. Aljared et al [34]

reported added value of BSREM reconstruction in a

melanoma patient, where four [18F]FDG-avid ITMs were de-

tected only on BSREM reconstruction. It was assumed that

Fig. 3 [18F]FDG PET/CT of a malignant melanoma patient with three

right-sided lower leg in-transit metastases, visible on maximum intensity

projection (MIP) images (a, arrow) as well as on axial CT and PET

images (b–d, white arrows), better defined by BSREM reconstruction

compared to OSEM reconstruction. BSREM reconstruction also yielded

higher SUVmax, lower MTV, and better noise characteristics compared

to OSEM reconstruction, as indicated by axial PET images (b–d)

Fig. 4 [18F]FDG PET/CT of a malignant melanoma patient with several

left-sided leg in-transit metastases, visible on MIP images (a). Of these,

the two proximal ones (black arrows) were detected only at BSREM

reconstruction. As shown in the axial images (b and c), BSREM yielded

higher SUVmax, lower MTV, and better noise characteristics compared

to OSEM. Despite their high uptake at BSREM and the location highly

suspicious for ITM, these two lesions had no anatomical correlate on CT

(white arrows), except for a slight skin thickening at one site. Both lesions

were subsequently confirmed by histopathology
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BSREM may have implications for the detection of small

lesions [35], such as ITM, and might influence therapeutic

decisions.

Our study’s results validate this hypothesis: BSREM iden-

tified 81 ITM more than OSEM (287 versus 206; +39%). In

20 patients, the presence of ITM was detected only with

BSREM, but missed with OSEM. This can be attributed to

the fact that focal uptake with higher activity concentration

tends to converge faster compared to the uptake with lower

activity concentration, so the convergence benefit of BSREM

reconstruction in providing more convergent foci compared to

OSEM [20, 23].

Thereof, a single lesion was detected in 17 cases and 2 to 5

lesions were detected in 3 cases. BSREM lead to the identifi-

cation of 1 lesion with an uptake below blood pool back-

ground (SUVmax 0.84 and TBR 0.48), 18 lesions with

MTV < 0.1 cm3, and 2 lesions with MTV = 0.02 cm3, corre-

sponding to a diameter of approximately 3 mm, which is in

line with Baratto et al [36], who detected lesions < 0.7 cmwith

digital PET systems (Fig. 4). Moreover, MTV was increasing

particularly with OSEM in lesions with low SUVmax, trans-

lating into the observed blurring effect with OSEM, and such

may serve as a measure of poor detectability. This also implies

that MTV is overestimated using OSEM, particularly in small

lesions.

Patients presenting with ITM on clinical examination

should undergo restaging including physical examination

and whole-body imaging in order to guide therapeutic op-

tions [12]. [18F]FDG PET/CT allows both ITM detection

and whole-body restaging at the same time. Moreover, the

identification of the exact number and site of in-transit

metastases is fundamental for the choice of the optimal

therapy: ITMs are typically resected if less than 3–4 lesions

and none larger than 5 cm; otherwise, locoregional treat-

ment should be evaluated, with a preference for TVEC in

the torso or head/neck ITM. Systemic therapy should be

chosen with a concurrent clinically evident metastatic or

nodal disease with or without the aforementioned simulta-

neous specific ITM treatment [16, 35]. In these terms, the

positive impact that BSREM, comparing to OSEM recon-

struction, could have in the evaluation of [18F]FDG PET/

CT images is evident.

Obviously, future prospective and comparative studies

with other reference methods for ITM detention are needed

to determine the added value of [18F]FDG PET/CT in evalu-

ating ITMs in a clinical setting and to analyze possible asso-

ciations between ITM number and site with recurrence-free

survival (RFS), distant metastasis-free survival (DMFS), and

melanoma-specific survival. In 2014, Solivetti et al [37] stud-

ied whether US could be replaced or integrated with other

techniques, such as [18F]FDG PET/CT and telethermography

(TT). All 52 ITMs in 15 patients in their study were detected

by HF-US (100%), 24/52 were detected by PET/CT (42.6%),

and 15/52 were detected by TT (27.7%). PET/CT reported

3.7% false positives, while no false positives were reported

by TT. Our study did not aim to compare different examina-

tion techniques; however, we hypothesize that these results

may be different in a larger cohort of patients and with the

use of new digital PET/CT systems. In our cohort, only 8 out

of 287 lesions finally resulted to be false positive (0.96% of

cases).

Finally, the impact of [18F]FDG PET/CT should be

evaluated considering also the contextual whole-body

(re)staging, which is compulsory after ITM detection.

Two different retrospective studies on two large cohorts

of melanoma patients with ITM (380 German and 11614

Australian patients, respectively) found that lymph node

involvement is an important prognostic factor in this co-

hort [38, 39]. Even if it was not the aim of our study, we

reported similar results with a higher favorable outcome in

patients with only ITM (34/54) compared to patients with

ITM and lymph node metastases (10/14) and patients with

ITM and distant metastases (15/32). Also in this context,

we expect that further studies will assess the benefit of

BSREM reconstruction in the evaluation of the global tu-

mor burden in malignant melanoma. Such would allow for

a more accurate assessment of the state of the disease,

taking into account the whole-body tumor burden, and its

impact on staging and follow-up.

Our study is not exempt from limitations. First, although

readers were blinded to the type of reconstruction used, an

experienced reader may recognize the actual algorithm

used based on the reconstructed images. Second, not all

ITMs were proven by histology. However, all lesions were

located in the subcutaneous adipose tissue between the

primary tumor site and the regional nodal basin, which is

suggestive for ITM, and lesions were also suspected to

represent ITM on ultrasound. It is known that rarely also

ectopic lymph nodes may exist in the subcutaneous adi-

pose tissue. Hence, some of the “ITMs” could actually

have represented lymph node metastases, which in turn

even would have led to an upstaging of patients. Notably,

lesions suspicious for ITM were not detected in anatomical

regions other than the one that harbored the primary tumor

in our cohort. Since PET/CT intrinsically represents a stan-

dard of reference for ITM detection, we cannot comment

on false-negative lesions. However, reporting diagnostic

accuracy of PET was also not the thrust of our study, and

such would require a comparison with ultrasound in order

to make sense. Of note, in our cohort, no additional ITMs

were detected with ultrasound besides the ones detected

with PET. Third, the exclusion of melanoma patients

scanned with analog PET/CT may have reduced the possi-

bility to give epidemiology information about ITM fre-

quency related to the entire patient population with malig-

nant melanoma.
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Conclusion

The detection of in-transit metastases in [18F]FDG PET/CT

has significantly impacted by the use of BSREM reconstruc-

tion. BSREMdetects significantly more (+39%) in-transit me-

tastases than OSEM, with a significant difference (all p <

0.001) in ITM SUVmax (+76.5%), TBR (+77.7%), and

MTV (- 49.5%) compared to OSEM.
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