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Abstract: With the rapid development of photogrammetric software and accessible camera technol-
ogy, land surveys and other mapping organizations now provide various point cloud and digital
surface model products from aerial images, often including spectral information. In this study,
methods for colouring the point cloud and the importance of different metrics were compared for tree
species-specific estimates at a coniferous hemi-boreal test site in southern Sweden. A total of three
different data sets of aerial image-based products and one multi-spectral lidar data set were used to
estimate tree species-specific proportion and stem volume using an area-based approach. Metrics
were calculated for 156 field plots (10 m radius) from point cloud data and used in a Random Forest
analysis. Plot level accuracy was evaluated using leave-one-out cross-validation. The results showed
small differences in estimation accuracy of species-specific variables between the colouring methods.
Simple averages of the spectral metrics had the highest importance and using spectral data from
two seasons improved species prediction, especially deciduous proportion. Best tree species-specific
proportion was estimated using multi-spectral lidar with 0.22 root mean square error (RMSE) for
pine, 0.22 for spruce and 0.16 for deciduous. Corresponding RMSE for aerial images was 0.24, 0.23
and 0.20 for pine, spruce and deciduous, respectively. For the species-specific stem volume at plot
level using image data, the RMSE in percent of surveyed mean was 129% for pine, 60% for spruce
and 118% for deciduous.

Keywords: aerial images; multi-spectral lidar; Optec Titan; photogrammetry; species-specific propor-
tion; stem volume; UltraCam

1. Introduction

Forest companies commonly utilize lidar-based forest information, estimated pri-
marily using area-based methods [1–3]. In boreal forest, these methods deliver stand
level estimation accuracies in terms of relative root mean square errors (RMSEs) typically
in the range of 2.5–13.6% for basal area-weighted mean tree height, 5.9–15.8% for basal
area-weighted mean stem diameter and 8.4–16.6% for mean stem volume [3,4]. This gener-
ally outperforms traditional sources for forest management data, such as subjective field
inventory.

In forest management planning, tree species information is vital. Therefore, extending
the lidar methodology by adding spectral data, e.g., from aerial images, to achieve tree
species-specific estimates using various frameworks [5] such as non-parametric methods
like k-MSN [6] has been of interest. In [6], RMSEs of 33–52%, 56–63% and 84–103% for
pine, spruce and deciduous stem volume, respectively, were reported at plot level. The
corresponding figures for stand level accuracies were 28% for pine, 32% for spruce and
62% for deciduous stem volume [7]. However, combining lidar and aerial images generally
requires separate acquisitions as optimal flight specifications differ between the two sensor
types; the separate acquisitions, thus, increases the cost.

A new and interesting option for acquiring three-dimensional (3D) and spectral data
is multi-spectral airborne lidar. A three-sensor lidar system, with two near-infrared and
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one green laser, was used in a Canadian study to classify broadleaf and needle leaf trees
with a classification error of 4.6%; when separating eight species the error was found to
be 24.3% [8]. In a Finnish study [9], multi-spectral lidar was compared to uni-spectral
lidar combined with aerial images for assessment of species composition. The results for
multi-spectral lidar were in terms of RMSE for pine 18.2%, spruce 19.5% and broadleaved
19.5%, compared to the results for the combination of uni-spectral lidar and aerial images
with RMSE of 16.7%, 19.3% and 15.4%, respectively, at plot level.

Aerial images and stereo photogrammetry have been used in many studies to predict
structural forest variables with good accuracy [10–14]. Therefore, the option of using both
structural (3D) and spectral information from images is an interesting alternative. This was
studied in [10], using images with 60% forward and 30% side (60%/30%) overlap and the
method proposed in [6]. This method involves pre-classification of each point in the point
cloud to a specific tree species followed by k-MSN modelling to predict species-specific
stem volume. The results in [10] showed RMSEs of 90.6%, 26.4% and 72.6%, for pine, spruce
and deciduous mean stem volume, respectively, at stand level. In another study from
Norway [15], species-specific mean stem volume was estimated from both 60%/30% and
80%/30% overlapping image data, and simple averaging of spectral metrics was used at
plot level. The results in [15] showed RMSE of 43.3%, 35.0% and 80.1% for pine, spruce and
deciduous mean stem volumes, respectively, at stand level, for 60%/30% image overlap
data set. By increasing the image forward overlap to 80%, the accuracy increased slightly.
Comparing multi-spectral lidar to aerial images as a single sensor solution for assessing
tree species-specific stem volume, it was concluded in [16] that aerial images performed
marginally better than multi-spectral lidar and that the combination of uni-spectral leaf-on
lidar and aerial images was clearly better.

Spectral-based predictions and classifications are dependent on the quality of the aerial
images, specifically: type of sensor; atmospheric conditions; sun-sensor-target geometry
and phenology of the trees [17,18]. In [19], for example, ortho-rectified imagery and
template matching were used to identify the sunlit part of single tree crowns to classify
tree species with an overall accuracy of 89%. However, a shift in the relation of the spectral
properties for Scots pine and Norway spruce was seen between June and October image
data sets. Research has been aimed at calibrating sensors and performing radiometric
correction of aerial images to improve tree species classification [20,21]. Nevertheless, the
proximity effects, i.e., the effect of neighbouring trees on each other, in mixed stands was
found to influence the mean reflectance by 1–17% in the visible bands and up to 33% in the
near-infrared band, adding substantial classification errors [21].

Due to the rapid development of photogrammetric software and accessible camera
technology, land surveys and other mapping organizations now provide various point
cloud and digital surface model (DSM) products from aerial images often including spectral
information. The spectral content originates from the images, which are radiometrically
calibrated using the mapping camera software package with the aim of creating homoge-
nous looking image blocks and orthophotos [22]. Alternatively, more advanced methods
like radiometric block adjustment [23,24] can be done on the individual images. However,
when the spectral information is projected to the point cloud it can be done in different
ways as each point is seen in more than one aerial image [25]. Given a coloured point
cloud, there are different ways to extract information, i.e., metrics that could be used for
modelling tree species-specific variables like mean stem volume or tree species proportions,
considered a research gap in the review article [14].

The aim of this study is to compare how different methods for colouring image
point cloud data affects the accuracy of tree species-specific proportions and stem volume
estimations using standard image products. Different spectral metrics and their importance
for tree species estimation are also compared. A total of three different colouring options
are used on two seasonally different aerial image data sets (leaf-on and leaf-off). These
are also combined with the aim to improve estimation accuracy. Finally, a coloured DSM
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product available from the Swedish National Land Survey (Lantmäteriet) is included in
the comparison as well as a multi-spectral lidar data set.

2. Materials
2.1. Study Area

The study area is part of the Remningstorp forest estate, which is situated at 58◦30′ N,
13◦40′ E (Figure 1). The estate is privately owned by a foundation and managed for timber
production with a productive forest area of about 1200 ha. The terrain is relatively flat
with a topography varying between 120 m and 140 m above sea level. The forest is mainly
dominated by Norway spruce (Picea abies (L.) H.Karst.), Scots pine (Pinus sylvestris L.) and
birch species (Betula spp.).

Figure 1. Orthomosaic (© Lantmäteriet) overlaid with the positions of the 156 field plots used for the
modelling and an overview (inset) of the study area’s position showing the Nordic countries (© Esri).

2.2. Field Data

Circular field plots with 10 m radius were objectively surveyed in a regular quadratic
grid with 200 m spacing between adjacent plots over the study area in 2010 [26]. The starting
point of the grid was chosen randomly. Each training plot was surveyed using the methods
and state-estimating models of the Heureka forestry decision support system [27]. For
field plots with basal area-weighted mean tree height less than 4 m or basal area-weighted
mean stem diameter at breast height (i.e., 1.3 m above ground) less than 5 cm, height and
species of all saplings were recorded. For the remaining field plots, recording of tree species
and callipering of all trees at breast height including only trees greater than 4 cm in stem
diameter, and sub-sampling of trees to measure height and age, were performed. Heights of
callipered trees on the field plots were estimated using models relating tree height to stem
diameter [28]. Plot location was measured using differential code GPS with post-processing
producing sub-meter accuracy. The plots were re-surveyed in 2014 and 2015 using the same
inventory method. In total, 263 plots were surveyed. However, in the data pre-preparation
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process, plots that did not have data (field or remotely sensed) for both times, had a mean
tree height under 5 m or were clear-cut, were omitted from this study, leaving 156 field
plots unaffected. For these field plots, the basal area-weighted mean tree height range
was 6.0–28.1 m (mean 18.1 m), basal area 1.9–68.9 m2 ha−1 (mean 24.8 m2 ha−1) and the
mean stem volume 3.4–790.1 m3 ha−1 (mean 218 m3 ha−1) in year 2014. The corresponding
tree species-specific mean stem volume range was 0–355.1 m3 ha−1 (mean 43.0 m3 ha−1),
0–790.1 m3 ha−1 (mean 142 m3 ha−1) and 0–383.9 m3 ha−1 (mean 32 m3 ha−1) for pine,
spruce and deciduous, respectively. The distribution of species proportions of mean stem
volume for the plots are shown in Figure 2.

Figure 2. Histogram showing field surveyed species proportions of mean stem volume for (a) pine, (b) spruce and (c)
deciduous trees at 156 plots, in 10% interval classes as is common in Swedish forest management plans.

2.3. Aerial Images

Aerial images were captured on the 11th and 26th of July 2014 and the 11th and 8th of
May 2016 using UltraCam XP-wa and UltraCam Eagle Mark 1 digital camera, respectively
(hereafter referred to as data sets UC2014 and UC2016). The UC2014 images were acquired
with an image size of 17,310 × 11,310 pixels and a focal length of 70 mm (field of view 73◦)
at 2800 m and the UC2016 images were acquired with an image size of 20,010 × 13,080
pixels and a focal length of 80 mm (field of view 66◦) at 3700 m altitude above ground level
(a.g.l.), generating images with a ground sampling distance (GSD) of 0.25 m and with a
forward overlap of 60% and a side overlap of 30%. The images were block triangulated
using bundle adjustment and radiometrically corrected by Lantmäteriet, as part of their
operational aerial image production. The radiometric correction was conducted using a
model-based approach, which included correction of haze, atmospheric effects, hotspots
and an adjustment of the final colour tone [29], resulting in pan-sharpened colour infrared
(CIR) images (green, red, infrared) with an 8 bit radiometric resolution. As a comparison to
the UC2014 and UC2016 image data sets a photogrammetrically derived standard DSM
product from Lantmäteriet, generated from the same 2016 images, but filtered to 2 ×
GSD resolution, was also used (delivered as a regularly spaced point cloud in las-format;
UC2016DSM_SURE). The 2016 DSM product was not available for the year 2014.

2.4. Multi-Spectral Lidar

Multi-spectral lidar data were captured on the 21st of July 2016 using the Optec Titan
sensor mounted in a fixed wing aircraft flying at 400 m a.g.l. The Titan sensor has three
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separate lidars, two infrared (channel 1: 1550 nm and channel 2: 1064 nm) and one green
(channel 3: 532 nm). With a pulse rate of 225 kHz and a scan angle of 30 degrees the point
density is more than 30 points/m2. The intensity values of each lidar point was calibrated
by weighting with the distance to the sensor.

3. Methods
3.1. Stereo Photogrammetry

Photogrammetric processing of the images to produce point cloud data was done
using the SURE software [30], which generates a height value for each pixel using a
modified semi-global matching algorithm [31]. The software setting AERIAL6030 (pre-
defined settings optimized for aerial surveys with 60%/30% overlap) was used to define
parameters for point cloud generation. Finally, the point cloud, DSM and lidar height
values were transformed from height above mean sea level to height above ground level by
subtracting the height of the ground provided by the national digital terrain model (DTM)
from Lantmäteriet (with 2 m spatial resolution and 0.2 m vertical accuracy, [32]).

3.2. Colouring Options

The UC2014 and UC2016 point clouds generated by SURE have colour values as-
signed to each point. SURE colours the points by assigning the DN value from one of the
images in the stereo pair that has generated the point, but which is unknown. Using the
photogrammetric software Inpho [25], each data set was re-coloured into two new data
sets where for each point; (i) the spectral values of the nearest image was used and (ii)
the mean of the spectral values of all images where the point was visible was assigned.
These together with the DSM product and the multi-spectral lidar data sets resulted in
eight different data sets (Table 1).

Table 1. Data sets and different colouring methods.

Data Set Data Source Photogrammetric Product Colouring Method

UC2014_SURE 2014 aerial images SURE point cloud SURE
UC2014_Nearest 2014 aerial images SURE point cloud Nearest images
UC2014_Mean 2014 aerial images SURE point cloud Mean of images
UC2016_SURE 2016 aerial images SURE point cloud SURE

UC2016_Nearest 2016 aerial images SURE point cloud Nearest images
UC2016_Mean 2016 aerial images SURE point cloud Mean of images

UC2016DSM_SURE 2016 aerial images DSM SURE
Lidar2016_MS 2016 lidar Multi-spectral lidar Multi-spectral lidar

3.3. Spatial Metrics

Spatial predictor variables, i.e., point cloud metrics from the 3D-coordinates of the
points, were calculated from all data sets (for lidar, only channel 2 was used) using FU-
SION [33], which calculates various statistical summary measures of the point cloud data
at each training plot. Density metrics of points above a specific height threshold were cal-
culated using a height limit of 2 m, which is commonly used in lidar-based modelling [34].
All returns were utilized when metrics were calculated.

Lidar penetrates the canopy, giving echoes (points) within the canopy; therefore,
metrics like vegetation ratio (i.e., percentage of points over a certain height threshold)
describe forest density well and are often used in forest modelling [11,35]. However, for
image-based point clouds, which only describe the surface of the canopy, density metrics
like vegetation ratio tend to result in 0 or 1 and, thus, poorly describe the forest density.
Therefore, for the image-based point clouds, in addition to the metrics from FUSION, a
canopy height model (CHM) was generated, with 0.5 m GSD, assigning the maximum
height to each raster cell. Metrics describing the surface of the canopy were calculated
(i.e., mean of the following: canopy height, slope, aspect, surface ruggedness and surface
roughness [36] for each training plot. These metrics were also calculated with all no-
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data pixels (i.e., occluded areas) set to zero instead of being ignored in the calculation.
Additionally, using a filter approach, where a 3 by 3 pixel window identifies the centre cell
as local maxima if the eight neighbours have a lower or equal height value, was applied
and sum of squared heights of the local maxima were calculated from the image-based
CHM for each training plot. The sum of squared heights was also calculated from a CHM,
which had been smoothed using a 3 by 3 pixel mean filter. Using the planar position
of the local maximum, two spatial descriptive statistics was generated for each plot; (i)
spatial dispersion, calculated as the mean distance between nearest neighbours [37] and
(ii) deviations from spatial homogeneity using Ripley’s K function [38]. These other than
FUSION metrics were calculated aiming to improve the characterization of forest density
information from the image-based point clouds, but not calculated from the lidar-based
point clouds.

3.4. Spectral Metrics

Spectral predictor variables, i.e., point cloud metrics from the green, red and near-
infrared values of the points (for lidar: channel 1, channel 2, channel 3), were calculated
using FUSION for each plot. FUSION calculates various statistical metrics such as mini-
mum; maximum; mean; standard deviation; mode; covariance; skewness; moments and
percentiles, for each spectral band. For the image-based point clouds, the mean of the
spectral values was calculated from the CHM cells above 2 m and with an aspect facing
the sun (± 20 degrees of the sun’s position at the mean time of image acquisition), where
the remaining cells not satisfying these conditions were excluded in the calculation of the
metrics. The reason for setting up these criteria were to coarsely get the mean value of the
sunlit part of the crowns. This was not done for the lidar data since the illumination angle
and viewing angle is the same. The spectral predictor variables for the lidar data set were
calculated using the intensity of first and only returns. Due to the large number of derived
spectral metrics, the metrics were sorted in groups according to their origin and expected
operational applicability. Tree species estimations were then made and evaluated for each
group separately as well as in combination. The groups of metrics are outlined in Table 2.

Table 2. Metrics used in the study divided into five different groups with associated motivation for each group.

Group Metrics Motivation

A minimum, maximum, mean, standard deviation and variance of each
spectral band * fundamental distributional statistics

B

mode, covariance, skewness, L-moments (L1, L2, L3, L4), the 1st, 5th,
10th, 20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 80th, 90th, 99th

percentile and generalized means for the 2nd and 3rd power, of each
spectral band

extensive distributional statistics

C mean value of the sunlit part of the CHM for each band and normalised
by dividing the value for each band by the sum of all bands data from the sunlit part only

D groups A, B and C all spectral metrics
E groups A, B, C and all spatial metrics (see Section 3.3. above) all spectral and spatial metrics

* Mean, standard deviation and variance were normalised by dividing the value for each band by the sum of all bands.

Each colourized data set (Table 1) was then used together with each of the five spectral
groups (Table 2) to estimate species-specific proportions and mean stem volume. The
UC2014 and UC2016 data sets were combined based on colour method and spectral metric
groups to predict species-specific variables for year 2014.

3.5. Modelling
3.5.1. Stem Volume

Linear regression analysis was used to model the relationship between spatial vari-
ables and mean stem volume. Selection of final models was based on produced RMSE,
bias and adjusted R2 values, significance and correlation of metrics and studies of residual
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plots. In the first phase, the best metric was selected by testing all possible variables in a
simple linear model. In the second phase, the best performing metric was combined with a
second metric and the best model was selected. Thereafter, logarithmic and square root
transformation of the response variable, i.e., mean stem volume, were examined. Finally, a
third metric was added if it improved the model, and a maximum of three metrics were
selected for each model to avoid overfitting. Mean stem volume was predicted for each
data set, i.e., UC2014, UC2016, UC2016DSM_SURE and Lidar2016_MS, using the field data
from the corresponding year. For the data set where spectral data from both 2014 and 2016
images were used, the mean stem volume was predicted using the spatial metrics of the
UC2014 data set (the 2016 data set is leaf-off, generating poorer estimates of mean stem
volumes, [39]).

3.5.2. Species Proportion

Estimations of species-specific (pine, spruce and deciduous) proportions of mean stem
volume from the spectral metrics were made using a non-parametric method, rather than a
model-based approach. This, since the targeted proportions show complex dependencies to
the very large number of addressed metrics, and the technical difficulties in modelling finite
range processes (i.e., ratios limited to values strictly between 0 and 1) and skewed multi-
modal error distributions. Thus, estimations of the addressed species proportions from the
various metrics were developed using the non-parametric method Random Forest [40,41]
implemented in the R package randomForest [42,43]. In short, Random Forest combines
the ideas of regression trees and bootstrap aggregating (“bagging”, [40]) to fit and evaluate
a large number of regression trees (a “forest”). Each tree is fitted using a random sample of
the training data, and each node of the tree is defined by the best splitting variable out of a
small random selection of the independent variables, i.e., the metrics. Error and variable
importance are assessed using the training data left out (out-of-bag data). Given the forest
of regression trees, estimation is made using a majority of votes.

For each combination of data set, colouring method and metric group, the proportions
for pine, spruce and deciduous were predicted. Each species proportion was predicted
independently, but was normalised by division with the sum of all predicted species pro-
portions. Additionally, species-specific mean stem volume was calculated by multiplying
the predicted species proportion by predicted total mean stem volume. The predictions
were made by leave-one-out cross-validation at plot level, and accuracies were reported in
terms of RMSE and bias for mean stem volume, species proportions and species-specific
mean stem volume.

4. Results

Mean stem volume was predicted using the spatial metrics from each data set. The
metrics used in the regression models and the resulting RMSEs are shown in Table 3. The
RMSE in percent of surveyed mean stem volume varies only marginally between the
different data sets, ranging from 36.0% to 36.7%.

Table 3. Regression models of mean stem volume (see Section 3.5.1. above) used for each data set,
with corresponding RMSEs (absolute and in percent of the surveyed mean). SumH2 is the sum of
squared heights for the local maxima; Roughness is the surface roughness of the CHM; Elev.P25 is
the 25th height percentile and Elev.mean is the mean height.

Data Set Model RMSE
(m3 ha−1)

RMSE
(%)

UC2014 Vol = β0 + β1SumH2 + β2Roughness + εi 78.5 36.0
UC2016 Vol = β0 + β1SumH2 + β2Roughness + εi 82.8 36.7

UC2016DSM_SURE Vol = β0 + β1SumH2 + β2Roughness + εi 81.8 36.2
Lidar2016_MS Vol = β0 + β1Elev.P25 + β2Elev.mean + εi 82.5 36.6
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The lidar data set showed superior performance when predicting the species propor-
tions with accuracies of 0.22, 0.22 and 0.16 for pine, spruce and deciduous, respectively, in
terms of absolute RMSE. For the image-based data sets the accuracies ranged from 0.22 to
0.34, 0.21 to 0.34 and 0.16 to 0.30 for pine, spruce and deciduous proportions, respectively
(Figure 3). However, when comparing different colouring methods for the same data set
and metric group, the variation was small. Metric groups A and B performed well for
all the data sets and colouring methods, group D resulted in the poorest performance for
UC2014, whereas the poorest performing metric group for the 2016 data sets (UC2016 and
UC2016DSM_SURE) was group C.

Figure 3. Bar plots of RMSE for the estimation of species-specific proportions for each metrics group and colour method for
data set 2014; data set 2014 with spectral metrics from 2016; data set 2016 as columns. Mean and species-specific proportions
are shown in the rows.
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Comparing the years, the 2016 leaf-off data set generally had a lower RMSE for
identifying pine proportions than the 2014 data set, while for spruce, the 2016 data set
performed slightly better. The UC2016DSM_SURE data set, which is a filtered and thinned
point cloud, showed very similar performance as other UC2016 combinations. Combining
2014 leaf-on and 2016 leaf-off spectral data was better than using either data set alone,
resulting in the best performance for predicting species-specific proportions.

The best accuracy for the image data sets, measured as lowest mean of species-specific
stem volume RMSEs in percent of field surveyed mean, was found for the combination
of 2014 and 2016 spectral data, coloured by the mean value from the overlapping images
and group B metrics. The RMSE for the species proportion was 0.24, 0.23 and 0.20 for pine,
spruce and deciduous, respectively (Figure 3). For the species-specific stem volume at plot
level, the RMSE in percent of surveyed mean was found to be 129%, 60% and 118% for
pine, spruce and deciduous, respectively.

Compared to the field surveyed tree species proportions (Figure 2), the predicted
proportions are underestimated at the ends of the range and overestimated in the middle,
i.e., species-pure forests are underestimated and mixed forests are overestimated (Figure 4).

Figure 4. Histograms of predicted pine, spruce and deciduous proportion (left to right) shown in 10% interval classes of
156 plots for the best performing model-based predictions on image data.

5. Discussion

The best performance for tree species-specific proportion was achieved using multi-
spectral lidar. Compared to aerial images, lidar show no problems with sun-sensor-target
geometry, since the system provides its own illumination source, and illumination and
viewing angles are equal. This will, to a large extent, probably eliminate the problem of
reflectance anisotropy and reflectance from adjacent trees described as a large source of
error in species classification [21]. Compared to other studies where only aerial images
were used, the results of the present study (i.e., RMSE of 129%, 60% and 118% for pine,
spruce and deciduous, respectively, at plot level) have lower performance than, for example,
Ref. [15] who reported RMSEs of 56.2%, 42.0% and 91.7% for pine, spruce and deciduous
mean stem volume, respectively. Significant improvement in accuracy can be expected
when results are aggregated to stands, for example, as in [15], which showed RMSEs of
43.3%, 35.0% and 80.1% for pine, spruce and deciduous stem volume, respectively, at
stand level. In an earlier study, performed at the same study area as the present study
(Remningstorp), RMSEs of 90.6%, 26.4% and 72.6% for pine, spruce and deciduous stem
volume, respectively, were reported for stand level prediction [44].
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In [15], an extensive transformation of predictor variables and an exhaustive variable
selection method using best subset regression was used, aiming to find the best performing
models. However, in the present study, the aim was to compare the effects of point cloud
colorization; spectral metrics and seasonal data. Therefore, a simplified model approach
was used, which may account for lower RMSEs.

The method of colouring the point cloud showed marginal impact on the results.
This indicates that the method for colourization of the point cloud has little importance
when predicting species proportions or mean stem volume. One reason for this result may
be that the radiometric calibration done during the image post-production has already
manipulated the spectral values towards an average of the overlapping images and a
general tone for the image block. However, the aim with the relative radiometric calibration
is to minimize the difference in colour tone between similar objects in different images, to
improve image interpretation and analysis within the image block [20].

Group A metrics were as good or better than other metric groups, indicating that
simple mean values of spectral information at the plot are sufficient. Creating more
advanced metrics, group C did not improve the performance but rather had the opposite
effect, indicating that information from only the directly sunlit part of the canopy does not
improve performance. This is, to some extent, supported by the thorough study by [21],
which reported that the difference in reflectance was higher in the sunlit part of the crown
than in the self-shaded, for three tree species. This partly contradicts the results in [19],
where the sunlit part of the crowns were used to classify tree species with high accuracy
(88% and 89%), however, using a small evaluation data set and limited variation in view
angle. Another explanation may be that the CHM is not accurate enough to properly model
the sunlit part. The metric groups using many metrics (D and E), had lower performance
than groups A and B, and this is probably due to the large number of descriptive variables
used, making the parameter selection in Random Forest more difficult.

The difference in performance between seasons indicate that the prediction for specific
tree species varies with the spectral variation as a result of seasonal change in tree phenol-
ogy. This is because the spatial height distribution of the points and their spectral properties
vary due to the phenological state of the trees, especially deciduous, over the seasons [45].
However, this variation in spectral information over the seasons can be utilized if multiple
image data sets are used, indicated here by that the lowest RMSE result was obtained when
combining spectral data from 2014 and 2016 data sets. The RMSE clearly improved for
predicting deciduous proportion, which shows that the difference between foliated trees in
the summer and barren branches and the ground in the spring images improves prediction.
Changes in height distribution of the point cloud data between leaf-on and leaf-off images
has been suggested for deciduous forest mapping [39]; however, in this study, none of the
height metrics was ranked as top five in importance by Random Forest.

6. Conclusions

In this study, method of colorization marginally affected the prediction results for
tree species-specific proportions when radiometric correction has been applied to the
images. Simple mean values of the spectral metrics had the highest importance. Using
spectral data from two seasons improves predictions of species proportions, especially
proportion of deciduous trees. The predicted tree species proportions are underestimated
for species-pure plots and overestimated for mixed plots. Further research should be
directed towards the sub-plot level, for example, semi-ITC classification of tree species for
stand level aggregation to species proportion.
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