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We discuss how SU(1, 1) coherent states from the discrete series allow for a natural coarse graining 
operation. The physical application is quantum theories based on a set of three extensive observables 
whose Poisson algebra is isomorphic to su(1, 1). In particular, we show that a Perelomov coherent state 
with representation label N j0 and spinor label z encodes the physics of N independent subsystems with 
labels j0, z. This property is suggested by existing results for the expectation values and variances of the 
observables. We prove that it holds for all higher moments. Our results in particular apply to a recent 
quantum cosmology model that has been derived using SU(1,1) group theoretic quantisation techniques. 
For it, it follows that a certain notion of fiducial cell independence holds exactly at the quantum level 
when using the coherent states.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Coarse graining is a notoriously difficult problem, yet of fun-
damental importance if one wants to understand large scale fea-
tures of a system with a large number of microscopic constituents. 
While a purely analytic understanding is usually out of the ques-
tion, one is still interested in toy models which can be coarse 
grained exactly. Such toy models may be applicable to certain 
physical situations that are sufficiently symmetric, such as the fol-
lowing one.

The physical setting that lead to this paper is quantum cosmol-
ogy [1]. Already in classical cosmology, one works with fiducial 
cells that capture only a finite part of the (possibly infinitely large) 
universe, but gladly accepts this tradeoff due to the homogene-
ity assumption. It is then of importance to establish that the final 
results do not depend on this choice of fiducial cell, which can 
be interpreted as a scale change in the system. While fiducial 
cell independence usually holds in classical cosmology, the situ-
ation is different for quantum cosmology due to the existence of 
a new quantum gravity scale. While fiducial cell independence is 
expected to hold for large cells, see e.g. [2] for an explicit confir-
mation, it is unclear what happens as the proper fiducial cell size 
approaches the quantum gravity scale. A general recent discussion 
can e.g. be found in [3].
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Given this situation, it would be interesting to know whether 
there exists a theory of quantum cosmology with a set of quan-
tum states that can be coarse grained exactly and whether fidu-
cial cell independence holds. In this paper, we will show that a 
recently proposed class of models [4,5] using SU(1, 1) group the-
oretic quantisation techniques qualifies. In particular, the repre-
sentation label j ∈ N/2 of SU(1, 1) Perelomov coherent states [6]
serves as a scale of the system. We will show that the physics (en-
coded in the expectation values of the three observables and their 
higher moments) of N independent cells with coherent state la-
bel | j0, z〉, z ∈ C2, is fully captured by a coherent state with label 
|N j0, z〉. This in particular requires to compare the scaling of mo-
ments with N to an analogous computation using beyond-Gaußian 
error propagation. Our computation builds on the earlier sugges-
tion [7], which was based on a quantum cosmology model [8]
where fiducial cell independence could only be argued for large 
cells using the results of [2]. We note that the recent work [9]
discusses a related, but conceptually different notion of scale in-
variance in the cosmological model [5], which also rescales an 
intensive quantity (the Hubble rate b). We will make our concept 
of fiducial cell independence more precise in the conclusion sec-
tion, as it requires some notions introduced in the main text.

Our result turns out to be quite general despite the intended 
application to quantum cosmology. We only require to consider 
three real observables, including the generator of time translations, 
that scale extensively and whose Poisson algebra is isomorphic to 
su(1, 1).
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. Group quantisation with SU(1,1)

In the following, we will recall the idea of quantising a given 
physical system by identifying the classical Poisson algebra with 
the Lie algebra of a group whose representation theory is known, 
specifically SU(1, 1), see [10] for a seminal contribution. We will 
remain rather abstract in this paper as our conclusions do not rely 
on the specific physical interpretation of the algebra elements. As 
an example, one may consider the quantum cosmological models 
discussed in [4,5], see also [11,12] for earlier research connecting 
SU(1, 1) with quantum cosmology.

We start with three phase space functions jz , j+ , and j− that 
satisfy the algebra

{ jz, j±} = ∓i j±, { j+, j−} = 2i jz . (2.1)

They are considered to be extensive observables, i.e. scale linearly 
in the volume of the system. Such quantities may be obtained by 
integrating densities over space, e.g. the volume and Hamiltonian 
densities in a cosmological model as in [4,5]. Reality conditions 
are such that j+ = j− and jz = jz . Alternatively, we could have 
considered the phase space functions jz , jx , and j y with j± = jx ±
i j y , so that jz , jx , and j y are all real and extensive.

Since our sole interest will be in those functions, we obtain 
the respective quantum theory by finding a representation of the 
Poisson algebra on a Hilbert space via the quantisation rule [·, ·] =
i{·, ·} with h̄ = 1. We are thus looking for linear operators ĵz , ĵ+ , 
and ĵ− satisfying

[ ĵz, ĵ±] = ± ĵ±, [ ĵ+, ĵ−] = −2 ĵz , (2.2)

which is equivalent to studying the representation theory of the 
Lie algebra su(1, 1).

As an example, the defining representation of su(1, 1) yields the 
operators

ĵz = σz, ĵ+ = σx + iσy, ĵ− = σx − iσy (2.3)

with

σz = 1

2

(
1 0
0 −1

)
, σx = 1

2

(
0 1

−1 0

)
, σy = −i

2

(
0 1
1 0

)
.

(2.4)

They act on a two-dimensional complex space which we coordina-
tise with the two complex numbers z0, z1 ∈ C that we combine 

into single spinor z =
(

z0

z1

)
. By construction, a finite transforma-

tion U = exp(iαkσk), k = z, x, y, acting on spinors as U · z preserves 

(z̃)† · ε · z with ε =
(

1 0
0 −1

)
. Note that since SU(1, 1) is non-

compact, this cannot be a unitary representation, e.g. w.r.t. the 
standard (positive definite) scalar product (z̃)† · z.

Rather, unitary irreducible representations of SU(1, 1) are nec-
essarily infinite-dimensional, see e.g. [13] for an overview. In this 
paper, we will be interested in the representations from the dis-
crete class with representation label (spin) j ∈ N/2. States in a 
representation space with spin j are labelled by magnetic indices 
m = j, j + 1, j + 2, . . ..1 Their scalar product reads 

〈
j,m

∣∣ j′,m′〉 =
δ j, j′δm,m′ .

We will not concern us with the precise action of ĵz , ĵ+ , and 
ĵ− on these representation spaces as a suitable choice of coher-
ent states will allow us in the next section to reduce the effective 

1 There are also analogous representations negative m that we will not consider 
here, as well as representations with j = 1

4 or j = 3
4 , and two continuous classes.
dimension of a representation space with label j to that of the 
above representation on spinors. This concludes our brief exposi-
tion of what one may call “group theoretic quantisation” as e.g. in 
[4].

3. Coarse graining

3.1. SU(1,1) coherent states, expectation values, and variances

Abbreviating L = 1
2 (|z0|2 −|z1|2), we define the usual normalised

SU(1, 1) coherent states [6],

| j, z〉 = (2L) j
∞∑

m= j

√(
m + j − 1

m − j

)
(z1)m− j

(z̄0)m+ j
| j,m〉 (3.1)

In the following, we will go through their properties and link them 
to the desired coarse graining interpretation. We restrict the spinor 
labels so that L > 0, which is preserved by the SU(1, 1) action.

Let us first note the property that an SU(1, 1) transformation 
acts only on the spinors (e.g. [4]), i.e.

U | j, z〉 = | j, U · z〉 ∀ U ∈ SU(1,1), (3.2)

which allows an important conclusion: when working with these 
coherent states, the effective dimension of the Hilbert space is fi-
nite dimensional and labelled by the two complex numbers z0 and 
z1. In particular, the dynamics, which is generated by an element 
of su(1, 1) (we assume the generator of time translations to be 
a linear combination of jz , j+ , and j−), leaves this subspace in-
variant. It should also be noted that the representation label j is 
invariant under the dynamics.

Next, we recall the expectation values of the three basic opera-
tors ĵz , ĵ+ , and ĵ− (e.g. [4]):〈

j, z
∣∣∣ ĵz

∣∣∣ j, z
〉
= j

|z0|2 + |z1|2
2L

:= j
vz

L
(3.3)〈

j, z
∣∣∣ ĵ+

∣∣∣ j, z
〉
= j

z̄0 z̄1

L
:= j

v+
L

(3.4)〈
j, z

∣∣∣ ĵ−
∣∣∣ j, z

〉
= j

z0z1

L
:= j

v−
L

(3.5)

Their scaling with j suggests to interpret j as a scale of the system 
that decouples from the scale-invariant state determined by vz , 
v+ , v− , and L, i.e. the spinors.

For this interpretation to be tenable, we need to also check the 
scaling of the variances as a function of j (e.g. [4]):

σ 2
z =

〈
j, z

∣∣∣ ĵ2
z

∣∣∣ j, z
〉
−

〈
j, z

∣∣∣ ĵz

∣∣∣ j, z
〉2 = j

2

(
v2

z

L2
− 1

)
(3.6)

σ 2+ =
〈

j, z
∣∣∣ ĵ2+

∣∣∣ j, z
〉
−

〈
j, z

∣∣∣ ĵ+
∣∣∣ j, z

〉2 = j

2

(
v2+
L2

+ 1

)
(3.7)

σ 2− =
〈

j, z
∣∣∣ ĵ2−

∣∣∣ j, z
〉
−

〈
j, z

∣∣∣ ĵ−
∣∣∣ j, z

〉2 = j

2

(
v2−
L2

+ 1

)
(3.8)

Standard Gaußian error propagation of uncorrelated systems tells 
us that variances add up, i.e. the variance of a coarse grained sys-
tem with representation label j is equal to j times the variance 
at j = 1, which is consistent with the linear scaling in (3.6)-(3.8). 
The scaling in e.g. vz on the other hand shows that interpreting 
a change in the spinors as a coarse grained scale change does not 
comply with error propagation. We also note that the relative er-
rors scale as σα〈 jα〉 ∝ 1√

j
, α = z, +, −, as a function of j, showing 

that the system behaves more and more classical as j increases. 
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On the other hand, relative errors do not scale with the spinors for 
large vα/L, showing that the system does not behave more and 
more classical as we zoom out by increasing the extensive quanti-
ties via the spinors.

These considerations support the above interpretation of j as a 
scale, while the spinor z sets the “intensive” quantum state of in-
dividual quanta in the system. This observation suggests the coarse 
graining interpretation advocated here, but it still may be that 
a coherent state with j > 1 does not fully capture the physics 
of j uncorrelated systems at j = 1 in that the higher moments 
�n

α :=
〈(

ĵα −
〈

ĵα
〉)n〉

, n ≥ 3, could be different. Surprisingly, this is 
not the case as we will show in the next section.

For pedagogical reasons, we chose to first explain our findings 
when coarse graining fundamental systems with j = 1. We will see 
however that we may choose any fundamental j0 ∈N/2.

3.2. Beyond-Gaußian propagation of errors

Let us first establish the short hand notation 
〈

ĵn
α

〉
j

=〈
j, z

∣∣∣ ĵn
α

∣∣∣ j, z
〉
. For the higher moments �n

α :=
〈(

ĵα −
〈

ĵα
〉

j

)n〉
j
, 

we abbreviate q = |z1|2
|z0|2 < 1 and first compute

〈
ĵn
z

〉
j
= (1 − q)2 j

∞∑
k=0

(
2 j + k − 1

k

)
qk(k + j)n (3.9)

= (1 − q)2 j
n∑

i=0

(
n

i

)
jn−i

(
q

∂

∂q

)i 1

(1 − q)2 j
(3.10)

and

〈
ĵn+

〉
j
= (1 − q)2 j

(
z̄1

z0

)n ∞∑
k=0

(
2 j + k − 1

k

)
qk (2 j + k − 1 + n)!

(2 j + k − 1)!
(3.11)

= (1 − q)2 j
(

z̄1

z0

)n n∑
i=0

(
q

∂

∂q

)i 1

(1 − q)2 j

1

i!
(

∂

∂k

)i
∣∣∣∣∣
k=0

× (2 j + k − 1 + n)!
(2 j + k − 1)! . (3.12)

Furthermore, 
〈

ĵn−
〉

j
=

〈
ĵn+

〉
j
. The moments then follow as

�n
α =

n∑
i=0

(
n

i

)
(−1)i

〈
ĵn−i
α

〉
j

〈
ĵα

〉i

j
. (3.13)

To compare the j-dependence of the higher moments with 
beyond-Gaußian error propagation, we need to discuss how higher 
moments behave in joint uncorrelated measurements. We consider 
j independent identical ensembles with a random variable x and 
denote them by xi , i = 1, . . . , j with expectation value functional 
〈·〉 (a priori different from 〈 j, z | · | j, z〉). We are interested in the 
coarse grained observable X := ∑ j

i=1 xi . Standard Gaußian error 
propagation follows from the independence assumption as

σ 2
X =

〈⎛
⎝ j∑

i=1

(xi − 〈xi〉)
⎞
⎠2〉

=
j∑

i=1

〈(xi − 〈xi〉) (xi − 〈xi〉)〉

= j
〈
(x − 〈x〉)2

〉
= jσ 2

x , (3.14)
i.e. products of two brackets where the index i is different van-
ish due to 〈xi − 〈xi〉〉 = 0. For higher powers n > 2, the derivation 
proceeds similarly: from the n sums with n independent summa-
tion indices ia , a = 1, . . . , n, terms will drop by the independence 
assumption unless every index ia appears at least twice in the 
product. One then needs to sum over all possibilities how this may 
happen and pick the correct combinatorial prefactors. The result 
can be obtained using the multinomial theorem and conveniently 
rewritten as〈
(X − 〈X〉)n〉 (3.15)

=
n∑

r1,...,r j=0:
n=r1+...+r j

n!
r1!r2! . . . r j!

〈
(x1 − 〈x1〉)r1

〉
. . .

〈
(x j − 〈x j〉)r j

〉

=
n/2�∑
m=1

j!
( j − m)!

∑
2≤k1≤...≤km :
n=k1+...+km

n!
k1!k2! . . .km!

×
n∏

p=2

1

(#ki = p)!
〈
(x − 〈x〉)p 〉(#ki=p) ,

where in the last line, (#ki = p) is the number of times an in-
dex ki takes the value p. The index m summed over first counts 
how many different values the indices ia take. The first coeffi-
cient counts the number of possibilities we can pick m different 
indices from all summation indices ia , accounting also for the pick-
ing order. All these choices lead to the same term due to the 
subsystems being identical. The second and third terms count the 
number of possibilities that a certain partitioning n = k1 + . . . + km

with 2 ≤ ki ≤ ki+1 can occur, i.e. how many of the n brackets 
have the same indices i1, . . . , im , ii �= iĩ , i, ̃i = 1, . . . , m, with the 
third term accounting for a double-counting when some of the 
ki agree. The upper bound n/2� for m is obtained for even n as 
n = 2 + 2 + . . . + 2 = 2m and odd n as n = 2 + 2 + . . . + 2 + 3 =
2(m − 1) + 3.

As an example, consider n = 4. m = 1 gives a term linear in j, 
whereas the partitioning 4 = 2 + 2 for m = 2 yields a non-trivial 
correction to this linear scaling as〈
(X − 〈X〉)4

〉
= j

〈
(x − 〈x〉)4

〉
+ 3 j( j − 1)

〈
(x − 〈x〉)2

〉2
. (3.16)

The combinatorial factor 3 accounts for the choices ()i1 ()i1 ()i2 ()i2 , 
()i1 ()i2 ()i1 ()i2 , and ()i1 ()i2 ()i2 ()i1 once the indices i1 and i2 are 
picked, taking into account the order of the picking, which gives 
another factor of j( j − 1).

We are now in a position to compare this result for beyond-
Gaußian error propagation to the j-dependence of the coherent 
states. As said before, we consider j as a label for the coarse grain-
ing of j independent identical subsystems. This leads to the claim〈(

ĵα −
〈

ĵα
〉

j

)n〉
j

(3.17)

=
n/2�∑
m=1

j!
( j − m)!

∑
2≤k1≤...≤km:
n=k1+...+km

n!
k1!k2! . . .km!

×
n∏

p=2

1

(#ki = p)!
〈(

ĵα −
〈

ĵα
〉

1

)p〉(#ki=p)

1

which means that the coherent states with label j, z encode all 
moments of the probability distribution coming from considering 
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j independent systems at level j = 1 with the same spinor label 
z. Since the dynamics of the system is generated by one of the 
three generators that acts only on the spinors, the dynamics of the 
coarse grained systems also agrees with the fundamental dynamics 
at j = 1.

Before continuing, consider again n = 4 as an example and α =
z. We obtain〈(

ĵz −
〈

ĵz

〉
j

)4
〉

j

(3.18)

= 2 j
|z0|2|z1|2

(|z0|2 − |z1|2)2

(
1 + 6( j + 1)

|z0|2|z1|2
(|z0|2 − |z1|2)2

)

= j 2
|z0|2|z1|2

(|z0|2 − |z1|2)2

|z0|4 + |z1|4 + 10|z0|2|z1|2
(|z0|2 − |z1|2)2︸ ︷︷ ︸〈(

ĵz−
〈

ĵz

〉
1

)4
〉

1

+ 3 j( j − 1)

(
2

|z0|2|z1|2
(|z0|2 − |z1|2)2

)2

︸ ︷︷ ︸〈(
ĵz−

〈
ĵz

〉
1

)2
〉2

1

from both computations, and thus agreement.

3.3. General form of results

So far, we have used j = 1 as a representation label for the 
subsystems to be coarse grained for pedagogical reasons. However, 
any j ∈ N/2 can be used. Let us therefore start with a set of N ∈
N identical independent systems with representation label j0. We 
claim that their dynamics is fully captured in the above sense by 
a coherent state with representation label j = N j0 and the same 
spinor labels as〈(

ĵα −
〈

ĵα
〉

j

)n〉
j

(3.19)

=
n/2�∑
m=1

N!
(N − m)!

∑
2≤k1≤...≤km :
n=k1+...+km

n!
k1!k2! . . .km!

×
n∏

p=2

1

(#ki = p)!
〈(

ĵα −
〈

ĵα
〉

j0

)p〉(#ki=p)

j0

.

Alternatively, similar arguments as above lead to

〈
ĵn
α

〉
j
=

n∑
r1,...,r j=0:

n=r1+...+r j

n!
r1!r2! . . . r j!

〈
ĵr1
α

〉
j0

. . .
〈

ĵ
r j
α

〉
j0

(3.20)

=
n∑

m=1

N!
(N − m)!

∑
1≤k1≤...≤km :
n=k1+...+km

n!
k1!k2! . . .km!

×
n∏

p=1

1

(#ki = p)!
〈

ĵ p
α

〉(#ki=p)

j0
, (3.21)

where we note that k1, . . . , km now may take the value 1 in ad-
dition, the first sum runs until m = n, and the product starts at 
p = 1. Since one can extract the coarse grained moments (3.19)
and expectation values of powers (3.20) from each other, both 
statements are equivalent. We prove (3.20) in the appendix.
3.4. Eigenvalues and their probabilities

In addition to the expectation values, we may also be interested 
how the eigenvalues and the probabilities to obtain them behave 
under coarse graining. We consider α = z. For the representation 
j0, the eigenvalues of ĵz are j0 +k, k = 0, 1, 2, . . .. After combining 
N such systems, the possible eigenvalues of the coarse observable 
are N j0 + k, k = 0, 1, 2, . . ., which agrees with the possible eigen-
values of ĵz in the representation N j0.

Even more can be said: from (3.1), we obtain the probability 
to measure the eigenvalue j0 + k with eigenvector | j0,k〉 in the 
representation j0 as

P j0,k := |〈 j0,k | j0, z〉|2 = (1 − q)2 j0qk
(

2 j0 + k − 1

k

)
. (3.22)

The probability to measure the coarse grained eigenvalue N j0 + k
is obtained as

P coarse
N j0,k =

∑
k1,...,kN =0:

k=k1+...+kN

P j0,k1 · P j0,k2 · . . . · P j0,kN . (3.23)

We show in the appendix that P coarse
N j0,k = P N j0,k , i.e. the coarse 

graining operation also captures the correct probabilities for the 
eigenvalues of ĵz .

4. Conclusion

We have demonstrated that SU(1, 1) coherent states have a 
natural coarse graining interpretation when rescaling the represen-
tation label j. This allows for an interesting application to quan-
tum cosmology based on [4,5], where one can capture the coarse 
grained dynamics of N non-interacting subsystems described by 
Perelomov coherent states with representation label j0 by a single 
Perelomov coherent state with label N j0. Our results hold for the 
time evolution of the expectation values of the observables and 
their higher moments, but we have not shown that all possible 
quantum properties of the states are captured.

For loop quantum cosmology, the present computation applied 
to [4,5] gives the first example where fiducial cell independence 
can be established exactly. The precise notion we use here is as 
follows. We fix the total physical spatial volume as a comparison of 
different physical spatial volumes means comparing different phys-
ical systems. The total volume is split into N identical cells which 
function as fiducial cells. Within each cell, we consider the three 
observables corresponding to the su(1, 1) generators. The coarse 
grained observables are defined as the sums of the cell observ-
ables. Initial conditions are set (identically in each cell) by specify-
ing the spinor z and the representation j defining (3.1). Evolution 
is generated by a linear combination of the observables. Our results 
show that instead of considering N such identical fiducial cells, we 
could have equally well considered a single cell with representa-
tion label N j and the same spinor label to compute the expec-
tation values of all moments of the three observables, including 
the correct dynamics. We note that it was crucial to correctly use 
Beyond-Gaußian error propagation to get the correct behaviour of 
the moments. It should be specifically emphasised that while the 
relative variances increase when lowering the cell size as j → j/N , 
this effect is exactly cancelled by considering a collection of N such 
cells and computing the coarse grained variances.

In the context of loop quantum gravity where [4,5] is situated, 
this provides the first example of a simplified model where it can 
be established that the collective dynamics of many (arbitrarily) 
low spins (representations) agrees (exactly) with the large spins 
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dynamics. In a broader context, this is an important step in es-
tablishing the classical limit of the theory for quantum states with 
many small instead of a few large quantum numbers. While the 
discussion in this paper was limited to quantum cosmology, one 
can also view the computation here as being embedded into full 
quantum gravity as discussed in [14]. Hence, it is of obvious in-
terest for future research to determine to which extent it can be 
generalised beyond the homogeneous and isotropic setting.
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Appendix A. Proofs

For the proofs, it is key to repeatedly use the identity

k∑
i=0

(
a + i − 1

i

)(
b + k − i − 1

k − i

)
=

(
a + b + k − 1

k

)
. (A.1)

We outline the proof for the expectation value 
〈

ĵn
z

〉
in detail. 

The proof for 
〈

ĵn+
〉

is analogous and requires an additional step 
sketched below. Coarse graining N identical systems leads to〈

ĵn
z

〉coarse =
∑

r1,...,rN =0:
n=r1+...+rN

n!
r1! . . . rN !

〈
ĵr1
α

〉
j0

. . .
〈

ĵ
r j
α

〉
j0

(A.2)

= (1 − q)2N j0
∑

r1,...,rN =0:
n=r1+...+rN

n!
r1! . . . rN !

×
⎛
⎝ ∞∑

i1=0

(
2 j0 + i1 − 1

i1

)
qi1(i1 + 2 j0)

r1

⎞
⎠

× . . . ×
⎛
⎝ ∞∑

iN=0

(
2 j0 + iN − 1

iN

)
qiN (iN + 2 j0)

rN

⎞
⎠

= (1 − q)2N j0

∞∑
i1,...,iN=0

q
∑N

k=1 ik

(
2 j0 + i1 − 1

i1

)

× . . . ×
(

2 j0 + iN − 1

iN

)(
N∑

k=1

ik + 2N j0

)n

= (1 − q)2N j0

∞∑
k1=0

k1∑
k2=0

. . .

kN−1∑
kN =0

qk1

(
2 j0 + kN − 1

kN

)

×
(

2 j0 + kN−1 − kN − 1

kN−1 − kN

)

× . . . ×
(

2 j0 + k1 − k2 − 1

k1 − k2

)
(k1 + 2N j0)

n

= (1 − q)2N j0

∞∑
k1=0

qk1

(
2N j0 + k1 − 1

k1

)
qk1(k1 + N j0)

n

=
〈

ĵn
z

〉
N j0

In the first line, we used the coarse graining (3.20) for N indepen-
dent subsystems. In the second line, we inserted the expectation 
values for representation label j0. In the third line, we used the 
multinomial theorem to perform the sum over r1, . . . , rN . In the 
fourth line, we rewrote the expression using the Cauchy product 
for multiple series. The fifth line is obtained by applying (A.1)
N − 1 times. Renaming k1 → k yields (3.9) for j = N j0 and the 
claim follows.

The proof for 
〈

ĵn±
〉

proceeds analogously. Instead of the multi-

nomial theorem, we have to use∑
r1,...,rN =0:

n=r1+...+rN

n!
r1! . . . rN !

(2 j0 + i1 − 1 + r1)!
(2 j0 + i1 − 1)! . . .

× (2 j0 + iN − 1 + rN)!
(2 j0 + iN − 1)! (A.3)

= (2N j0 + ∑N
k=1 ik − 1 + n)!

(2N j0 + ∑N
k=1 ik − 1)! ,

which again follows from a repeated application of (A.1). The proof 
of (3.23) is a simplified version of (A.2) and consists of the steps 
from lines three to five.
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