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Nucleon generalized form factors from two-flavor lattice QCD
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We determine the generalized form factors, which correspond to the second Mellin moment (i.e., the first
x-moment) of the generalized parton distributions of the nucleon at leading twist. The results are obtained
using lattice QCD with N ; = 2 nonperturbatively improved Wilson fermions, employing a range of quark
masses down to an almost physical value with a pion mass of about 150 MeV. We also present results
for the isovector quark angular momentum and for the first x-moment of the transverse quark spin density.
We compare two different fit strategies and find that directly fitting the ground state matrix elements to the
functional form expected from Lorentz invariance and parametrized in terms of form factors yields
comparable, and usually more stable results than the traditional approach where the form factors are
determined from an overdetermined linear system based on the fitted matrix elements.
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I. INTRODUCTION

The understanding of hadron structure has greatly
evolved over the last decades. The collected knowledge
is parametrized by a large number of functions. Generalized
parton distributions (GPDs) are one set of such functions.
They parametrize, e.g., the transverse coordinate distribu-
tion of partons in a fast moving hadron and contain
information on how these distributions depend on the
parton or hadron spin direction. Pinning down all these
multivariable functions experimentally is unrealistic at
present. Therefore, lattice QCD has to substitute some of
the missing experimental data. With this article we con-
tribute to the effort of various lattice groups to provide
some of these needed results [1-13].

From the experimental point of view, GPDs play a
similarly important role for the description of exclusive
hadronic reactions as parton distribution functions (PDFs)
do for inclusive reactions. The most extensively studied
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channel is deeply virtual Compton scattering (DVCYS), i.e.,
Compton scattering with a highly virtual incoming photon
and a correspondingly large, spacelike momentum transfer
0% = —¢*. One advantage of DVCS is that the GPD matrix
element interferes with the well-known Bethe-Heitler cross
section for which the final state photon is emitted from the
scattered lepton. Thus the measured cross sections provide
not only information on the absolute value of the DVCS
correlators but also on their signs. In all generality,
including spin effects, the experimental analysis becomes
somewhat involved, as is, e.g., illustrated by the publica-
tions [14,15] of the HERMES experiment. For a recent
careful theoretical analysis and references to experimental
work see Ref. [16].

The theoretical understanding of GPDs and their
moments, the generalized form factors (GFFs), has already
a long history and is presented in the seminal work of
Refs. [17-21]. More recent reviews can be found in
Refs. [22,23]. The interest in some of the nucleon GPDs
(there exist in total eight) is increased by the fact that they
provide information on the elusive orbital angular momen-
tum of partons in the nucleon. However, the physical
interpretation in this case is not straightforward, because
there exist inequivalent definitions of orbital angular
momentum [19,24]. For recent discussions of this topic
see, e.g., Refs. [25-27] and the articles cited therein. In this
article we will not review the many fascinating aspects of
GPDs but concentrate on our lattice calculation of the
nucleon GFFs using well-established techniques for the
calculation of Mellin moments of GPDs; see, e.g., Ref. [28].
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We remark that recently new methods have been
proposed to obtain information on parton distribution
functions (PDFs), distribution amplitudes (DAs), transverse
momentum dependent PDFs (TMDPDFs) and GPDs that is
complementary to the computation of Mellin moments with
respect to Bjorken-x from expectation values of local
currents within external states; see, e.g., Refs. [29-34].
In these approaches Euclidean correlation functions are
computed and then matched within collinear factorization
to light cone distribution functions, employing continuum
perturbative QCD. For the example of DAs [33], some of us
are involved in calculations with these new techniques,
using the “momentum smearing” technique [35] to enable
large hadron momenta to be realized, and found results that
are consistent with, but less accurate than those obtained
from the lowest nontrivial moment. This may change as
smaller lattice spacings and larger computers become
available. Here we will only determine the first x-moment,
i.e., the second Mellin moment, to constrain the
nucleon GPDs.

This paper is organized as follows. In Sec. II we shortly
review definitions and the operator product expansion for
Mellin moments of GPDs. The lattice QCD techniques
used to extract GFFs are introduced in Sec. III followed by
a discussion of the numerical methods in Sec. IV. In Secs. V
and VI we present our results. Some preliminary findings
have been reported in Refs. [5,7,10]. Finally, we investigate
the transverse spin density of the nucleon in Sec. VII.

I1. BASIC PROPERTIES OF GPDS

The starting point is the off-forward nucleon matrix
element,

MP(x) = / * L N (o) OFAIN(p. ). (1)

o 4r

of a bilocal operator with quark flavor ¢,
OL(A) = g(=n/2)TU 3 q(+n/2). (2)

The Wilson line i/ in Eq. (2) connects —An/2 and +4n/2 on
the light cone (n> = 0). Depending on the Dirac structure,
indicated by the symbol I" in Eqgs. (1) and (2), one can
parametrize the matrix element M in terms of GPDs. For
leading twist these read (see, e.g., Refs. [28,36]),

M =0y, [(y_ ) ()| o

2my

M = 0(p'. o) {(y_y) | (Z )|viror o

2my

YAy H;{
- B 2my E;{
MG =0 o) || prar ||z | |UPe0) (30)
s Hy
) Ef
my

with ¢ = i[y*,y*]/2 and the nucleon spinors U(p', o)
and U(p,o). The GPDs, e.g., H? and E9, and the
corresponding tensor structures y* and io**A,/(2my) are
written as vectors, where we apply a standard scalar
product to simplify the notation and introduce the kin-
ematic variables,

A:=p' —p, p=( +p)2 (4)

For the antisymmetrization of indices we use the notation
...], e.g., B#CY == B*C¥ — C*B* =: A, B"C". The GPDs
are functions of the three variables (x, &, 1), such that H7 =
H(x, ¢, 1) etc. We define

ti=A2<0, fm=———, (5)

where t is the total momentum transfer squared which is
related to the virtuality Q> = —t. The longitudinal momen-
tum fraction x varies between —1 and 1 and the skewness &
between 0 and 1. Negative values of x correspond to plus or
minus (depending on the GPD) times the corresponding
antiquark GPD at —x. In this work we restrict ourselves to
the isovector case, and therefore we only consider the above
eight quark GPDs. An analogous set of gluonic GPDs
exists, which we will not address here. For a more detailed
discussion we refer the reader to Refs. [22,23,28,36-38].

In physical terms (for |x| > &) GPDs parametrize the
probability amplitude for a hadron to stay intact if a parton
is removed at the light cone point —4/2 and replaced by a
parton with different momentum at light cone time 4/2. In
practice, it is of crucial importance to find effective para-
metrizations of GPDs with a minimum number of param-
eters which are then fitted to experimental data; see, e.g.,
Ref. [16]. Lattice input in principle allows one to pin down
the values of these parameters; however, at present the
accuracy of such studies is for many GPDs not yet
sufficient to make a decisive impact.

As time is analytically continued to imaginary time to
enable the numerical evaluation on the lattice, the light cone
loses its meaning. The operator product expansion (OPE)
relates, however, Mellin moments of GPDs to local matrix
elements that are amenable to lattice calculation. For HY
and E9, for instance, these x-moments read (see, e.g.,
Refs. [28,36]),
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+1
/ dxx"™ " HY(x, £,1)
-1

n—1

)AL () + (=28)"Clo(V)=cven-  (62)

i=0,even

+1
/ dxx"1E4(x, 1)
-1
n—1

= (=28)"Co()|n=even-  (6b)

i=0,even

where the real functions A%(t), B(t) and C4(t) in the ¢-
expansion on the rhs are the GFFs. The case n =1
corresponds to the electromagnetic form factors F(t) =
Afy(t) and Fi(t) = BY,(t). For n =2 and t = 0 we obtain
the average quark momentum fraction A5; = (x),+, where,
for this example, we indicated g* = ¢ + g. Below we will
drop this distinction since in the case of the vector and
tensor GPDs the even moments automatically give the g
combination and the odd moments ¢~, while for axial
GPDs it is the opposite.

In principle one can determine Mellin moments of GPDs
for any n on the lattice, in practice one is restricted to the
lowest few n. The reason for this restriction is twofold. On
the one hand the signal to noise ratio becomes worse for an
increasing number of covariant derivatives. On the other
hand as n increases, mixing with lower-dimensional oper-
ators will take place, resulting in divergences that are
powers of the inverse lattice spacing a~!. In this study we
focus on the case n = 2, where such mixing does not occur.
Similarly to elastic form factors, the respective GFFs are
extracted from lattice calculations of two- and three-point
correlation functions where the currents are the local twist-
2 operators,

O (2) = S,,a(2)r"iD q(2), (7a)
Oy, (2) = Sﬂyé(Z)y"rsiByq(z), (7b)
Ora(2) = AwS,,q(2)i oD q(z). (7¢)

Here S,, and A, denote symmetrization (also subtracting
traces and dividing by n! for n indices) and antisymmet-
rization operators, respectively, and

= (5M _D_y) (8)

is the symmetric covariant derivative.
In the continuum we can decompose the matrix ele-
ments,

(N(p'.0)|Oy IN(p.0)) = U(p'.o")Dy  U(p.0). (%)

(N(p'.0)|O},IN(p.0)) = U(p'.0" DY, U(p.o).  (9b)

(N(p',0)|OF1IN(p,o)) = U(p', o)D" U(p,o),  (9¢)

with the nucleon four-momentum (p*) = (Ey(p), p). In
Sec. IIT we will show how we extract the matrix elements
from the temporal dependence of the three-point correlation
functions. The desired GFFs are contained in the Dirac
structures,

Yp* A%
D’(,’fq:SMD ic"A,p*/(2my) | - | BY |.  (10a)
AFAY my i
v yu},Spy AgO
D’j\.q:Sﬂy< s ><q ., (10b)
ysA¥p /(sz) B5,
io" p’ ATy
WAY 7/ (2m B
oy = A8, | l:]_/)( 2N> 0 (10¢)
pHAYpr [my Az
YA fmy By

Some aspects of GFFs have been more intensively dis-
cussed in the literature than others, in particular,

(i) As has already been mentioned above, in the
forward limit (t = 0), A%, equals the average quark
momentum fraction. Similar limits exist for AZO and
Al,, and the polarized and transversity PDFs,
respectively.

(ii) Furthermore, in this limit A%, and Bj, add up to
twice the total angular momentum of the quark ¢
plus that of the antiquark g in the nucleon (the Ji sum
rule [19]) such that

J= A0+ BLO)] ()

represents the quark contribution to the nucleon
spin. Combining J¢ with the quark spin contribution
%AEq, one can also obtain the quark orbital angular
momentum L, = J, — 1A%, We remark that this
decomposition is not unique [24].

(111) The five GFFs Azo, Bzo, ATZO’ BT20 and ATZO
parametrize, after Fourier transformation to impact
parameter space, the first x-moment of the trans-
verse spin density of a quark in a fast-moving
nucleon [39].
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III. EXTRACTING GENERALIZED
FORM FACTORS

On the lattice, the GFFs are extracted from combinations
of hadronic two- and three-point correlation functions in
Euclidean space-time. The two-point function reads

CH(P) =Y e PTNL (. F)N(0.0),  (12)

2/

X

where the nucleon destruction and creation interpolators A/
and V are appropriate combinations of u and d (anti)quark

fields,

N (t,X) = e®ul(t,X)[ub(¢,X)Cysd"(,X)],  (13a)

N (1. %) = e[t (1, %)Cysd (. X)T]ig (1. X).  (13b)
C is the charge conjugation matrix. The lattice three-point
function is expressed as

C22t(1’ t/’ﬁ/, ‘5) _ Ze_iﬁ/'}/eJFiz'(ﬁ'—ﬁ)

Xz

X (N (1, 7)O(1,2)N 4(0,0)).  (14)

In this work we only consider isovector currents O;
therefore, all quark lines are connected. To improve the
overlap of our interpolators in Egs. (13) with the physical
ground state we employ the combination of APE and
Wuppertal (Gauss) smearing techniques described in
Refs. [40-42]. This procedure reduces the impact of excited
states substantially. For the computation of Eq. (14), we use
the sequential propagator method [43] which implies fixing
the sink time 7. We use the projector,

PP == (14 yq)(—iy’ys) o, (15)

N =

and contract it with the open spin indices of Eq. (14) to
realize different spin projections and positive parity. For
p =1, 2, 3 we obtain the difference of the spin polarization
with respect to the quantization axis p, while p =4
corresponds to the unpolarized case. The positive parity
projection is only correct for zero momentum; however,
excited state contributions (including states of different
parity for nonvanishing momentum) are exponentially
suppressed at large Euclidean times z. (The outgoing
nucleon is projected onto zero momentum.)

The definition of the operator O in Eq. (14) depends on
the desired GFE. For the vector, axial and tensor GFFs at
leading twist-2 the operators are given in Eq. (7). On the
lattice we construct our operators as linear combinations of

O (2) = 3PV q(z), (16a)

Oy, (2) = a()r'rsV q(2), (16b)
Or4(2) = a(2)io"V g(2) (16¢)

In the case of the vector operator we work with multiplets
that transform according to two distinct irreducible repre-
sentations of the hypercubic group H(4) labeled as v, , and
v, . These are combinations of the operators in Eq. (16a)
given by

O =8,0) with 1<p<v<4  (17)

and
oy = % (Of) + 03, — 033 = OF). (18a)
0 = (0% = OL). (18b)
0% = (0}, - O}). (18)
respectively. The renormalized operators read
OL () = Z(p. )t On (B), (19

where we use u =2 GeV as the renormalization scale.
Note that the renormalization factors depend on the
multiplet; i.e., they slightly differ for v,, and wv,,.
Similarly, the axial operators are renormalized with factors

T T . . .
ZN’IS and Z'\;’S , substituting v, , > 1y, Vpp > Fayp i0

Egs. (17)—(19). The tensor operators are renormalized with

h
Z la
MS

listed in Appendix A.

A detailed description of the renormalization procedure,
that consists of first nonperturbatively matching from
the lattice to the RI'-MOM scheme [44,45] and then

translating perturbatively to the MS scheme, may be found
in Ref. [46]. To make the article self-contained we
summarize the basic steps in Appendix B, where we also
address the error propagation from the renormalization
constants to the GFFs. The relevant renormalization factors
are summarized in Table I. They result from a reanalysis of
the data presented in Ref. [46] and correspond to the
physical input r, = 0.5 fm [47] and r,AMS = 0.789 [48].
Table II lists the relative errors on the renormalized GFFs,
associated with the uncertainties in the renormalization
constants; these amount to about 2%.

In the following we demonstrate the extraction procedure
for the vector GFFs. The axial and tensor GFFs are treated
analogously. We start by expanding Eq. (14) in terms of
energy eigenstates,

h . S
and Z%‘ The operator multiplets used in this case are
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TABLEI. The renormalization factors used to translate our bare

lattice data to the MS scheme at u =2 GeV, obtained by
reanalyzing the data of Ref. [46].

p =520 p =529 p =540

Z;\/:S“ 1.090(19) 1.113(15) 1.140(16)

Z% 1.096(17) 1.117(21) 1.143(13)

Z;A; 1.083(16) 1.106(13) 1.134(14)

;Z_-é 1.118(16) 1.138(22) 1.163(13)

Z:\l/:; 1.115(19) 1.141(19) 1.171(16)

Z:/;g 1.129(20) 1.154(20) 1.184(16)
CH (e, 0, B, B) = Agy - e ExP) =D Ex(P)e

+ excited states, (20)

where the ground state amplitude reads

1
4Ey(P)EN(P)
X (N(p', 0’)I01“‘b|N(p o)) (N(p,0)|N4[0). (21)

A = SO )

The exponentials contain the energy of the nucleon as a
function of the considered spatial momentum, the
Euclidean operator insertion time z, and the sink time .
Up to lattice artifacts, the matrix elements of an operator
O’é%q(z) can be decomposed according to the Euclidean
versions of Egs. (9a) and (10a). In doing so, it is necessary
to distinguish between the two multiplets v,, and v,
[cf. Egs. (17) and (18)]. The decomposition can be written
as

/ / V2,alb
(N(p. 0|02

N(p.o)) = U(p'.d' )DL U(p. o). (22)
Applying the projection operator P? [cf. Eq. (15)] to C?P

yields

3 t -, o
(v, p,p): Zﬂj’ﬁaazrt’/p)
\/7Z _" fve En(p')(f'— EN(P)
+ excited states (23)
TABLE II. Relative error of the GFFs for the flavor combina-

tion u — d, induced by the uncertainty of the renormalization
constants. This error turns out to be almost independent of the
virtuality.

u—d u—d  Au—d  pu—d u—d u—d  Au—d  pu—d  pu—d
AZO B20 AZO B20 ATZO BT20 AT20 BT21 BTZO

0.019 0.019 0.015 0.034 0.020 0.020 0.020 0.027 0.020

with
w{Pr[=ipf + my]Do [~ipf + my]} (24)
= = 24
Y 4EN(P')EN(P)
and p:=iEy(P)ys+ p-7. The Z factors in Eq. (23)

depend on the overlap of our nucleon interpolation oper-
ators with the nucleon ground state. They vary with
momentum and smearing and can be extracted from the
two-point correlation function C2Pt,

The right-hand side of Eq. (24) contains the desired
GFFs. The prefactors can be computed by inserting the
respective Euclidean y-matrices. Here we restrict ourselves
to the final momentum p’ = 0. Taking all available
combinations of operators [cf. Egs. (17) and (18)], projec-
tions P? and momenta p for a fixed virtuality

2
0> =-t=( (\/mN+P \/m12v+52>7
(25)
we obtain a linear system of equations
Fy=My-gy (26)

with the GFF vector gy = (As(t), Bog(t), Coo(t))T. The
coefficient matrix My consists of the prefactors calculated
from Eq. (24), and F v 1s extracted from a fit of Egs. (20)
and (23) to lattice data for C?' and C*P'. The number of
columns of My is equal to the number of unknown GFFs
(in this case 3), but the number of rows depends on the
available combinations. In almost all the cases this yields
an overdetermined system of equations, meaning that the

number of elements in F v, denoted with dim F v, 18 larger
than the number of GFFs. Note that the individual rows of
My, are either real or imaginary.1

For a given ensemble this system of equations has to be
solved separately for each virtuality to yield the GFFs as
functions of t. In the general case we write Eq. (26) as

Fi = Mr - g, (27)

where I can take the values V, A, T and 57? is the vector of
the respective GFFs [cf. Eqs. (10)]. Due to equivalent
combinations of momenta and polarizations most rows in
the matrix My are equal or differ by a sign only. We average
the corresponding correlation functions, which improves
the signal-to-noise ratio considerably and reduces the
number of equations.

f a row vanishes, then it does not restrict the GFF, and we
remove it from the system of equations.
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TABLE III.

Parameters of the N = 2 lattice ensembles used in this study. Latin numerals in the first column serve as ensemble

identifiers. After the number of configurations N_,,; we list in parentheses the number of independent (randomly chosen) source
positions that we average over within each gauge configuration. Wherever this is indicated by parentheses after the sink-source
separation '/a, a smaller number of sources was used for this value. For more information about our setup we refer to Ref. [41].

Ensemble B a K 1% m, my Lm, N eont t'/a
[l 520  0.081  0.13596 323 x64  0.2795(18)  1.091(08)  3.69  1986(4) 13
[0l 5.29 0.071 0.13620 243 x 48 0.4264(20) 1.289(15) 3.71 1999(2) 15
il 0.13620 323 x 64  0.4222(13)  1.247(06) 490  1998(2) 15,17
| 1\ 0.13632 323 x 64 0.2946(14) 1.071(11) 342 2023(2) 7(1),9(1),11(1),13,15,17
™ \% 40° x 64 0.2888(11)  1.079(09)  4.19  2025(2) 15
|\ 64° x 64 0.2895(07) 1.072(05) 6.71 1232(2) 15
VII 0.13640 483 x 64 0.1597(15) 0.968(19) 2.78 3442(2) 15
Bvin 643 x 64 0.1497(13) 0.944(17) 347 1593(3) 9(1),12(2),15
X 5.40 0.060 0.13640 323 x 64 0.490(02) 1.302(11) 4.81 1123(2) 17
X 0.13647 323 x 64 0.4262(20) 1.262(09) 4.18 1999(2) 17
XI 0.13660 483 x 64 0.2595(09) 1.010(09) 3.82 2177(2) 17

IV. NUMERICAL METHODS

A. Gauge ensembles

Our analysis is based on the large set of gauge confi-
gurations produced by the QCDSF and the RQCD
(Regensburg QCD) Collaborations using the standard
Wilson gauge action with two mass-degenerate nonpertur-
batively improved clover fermions; see Table III. We have
three different lattice spacings 0.081 fm, 0.071 fm and
0.060 fm. Despite the O(a) improved action, we expect
discretization effects linear in the lattice spacing for our
matrix elements since the currents are not improved. The
pion masses range from about 490 MeV down to 150 MeV.
In terms of Lm, we cover values from about 3.4 up to 6.7.

B. Fitting two-point correlation functions

We parametrize our two-point correlation functions with
a two-exponential fit ansatz,

CP(1,p) = A(p)e P! + X(p)e P! (28a)

with

Ey(p) +my

A(p) = Z(p) EvF) (28b)

in order to create bootstrap ensembles for the fit parameters
A(p), Ex(p), X(p) and Y(p). To improve the signal, we
average over all momentum combinations which lead to the
same p°. Subsequently, we use Eq. (28b) to fix the overlap

factors Z(p') and Z(p) which are needed to factor out Fr-
from the three-point correlation functions [cf. Eq. (23)].
The fit parameters X () and Y (p) are introduced in order to
parametrize the contributions from excited states. The
parameter Ey(p) represents the nucleon energy (we do
not assume a functional form for the energy). However, our

analysis assumes continuum symmetries. Therefore we
restrict our lattice calculations to momenta whose fitted
values for Ey(p) are consistent with the continuum
dispersion relation (cf. Fig. 1),

Ef(P) = \/my + P~

The statistical errors are estimated by virtue of 500 boot-
strap ensembles. We carefully study the fit-range depend-
ence of the fit parameters. Therefore we consider the start
time slices 7;/a € {2,3} and vary the final time slice ;/a.
We find that the impact of ¢, /a on the values for the GFFs is
rather mild, and therefore we fix 7,/a = 2 in the following.
In Fig. 2 we demonstrate how we choose the final time slice

(29)

15 F
I= £
14 1 ES
E =
x
13T E T f S
i = % I =
= )
= = f f O]
4 Ef &= & =
1.2 i - S
. 3 =
¥ x = | R
LT =
¥ | SR
=
EF=E
L0 T =
F E
SIS I AN TS
FIG. 1. Overview of the nucleon energies for our ensembles.

We compare the energies Ey(p) and the errors extracted from a
two-exponential fit shown as black error bars with the energies
Ef, expected from the continuum dispersion relation, which are
depicted as colored boxes.
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1.0 ¢ -
UT 2
) [ ] Xdof
([ ]
0.8 1 (]
o [ ]
(]
12 F
error(Ex(tr/a)) error(Z(ty/a))
A min({error(En(ts/a))}) min({error(Z(ts/a))})
$
AL A A
10 +x : ; ; ;
14 16 18 20
tf/(l

FIG. 2. The top panel shows the correlated y3 ; as a function of
the final time slice ty/a for ensemble IV with Ey(p) =
1.33 GeV; the bottom panel shows the uncorrelated normalized
statistical error of the fit parameters £, and Z. For the case shown
we select the #7/a = 14 result.

t;/a. We also try single exponential fits and find that they
give similar results if one adjusts the fit ranges appropri-
ately. However, the resulting errors on A(p) are larger.
Hence we use the two-exponential fit ansatz for our final
analysis.

C. Three-point correlation functions

For the lattice calculations of three-point functions
we use the sequential source method where we set the

outgoing nucleon momentum p’ = 0 for all our ensembles.
We parametrize the data using Egs. (20) and (23) with
En(p') = my. The initial energy Ey(p) is determined from
the continuum dispersion relation (29). The momentum
restriction, which we discussed in the previous section,
translates to arange 0 < Q* < 0.6 GeV? for the three-point
functions. With Z(p’) and Z(p) having been determined
from the two-point correlation functions, the only free
parameter left is F. To achieve ground state dominance,
one has to make sure that aN; > ¢ > 7 > 0 [cf. Eq. (20)].
We consider 7 € [z, 7,] where 7, is well above zero and 7,
well below . The sink times vary with the ensemble (see
the last column of Table III). In Sec. IVE we examine
possible excited state contaminations.

D. Determination of the GFFs

As explained above, for every current ' =V, A or T,
quark flavor ¢ and virtuality —t, we need to solve the linear

system Eq. (27), i.e., .7? = M - g, to extract the relevant
form factors g from the vector of inequivalent matrix

elements F that correspond to nonvanishing rows of M.
Here we drop all indices like the quark flavor ¢ and I" for
convenience. In what follows m denotes the number of
independent form factors while n > m is the length of F.

Consequently, M is a nx m matrix of maximal rank,
i.e., rank(M) = m.

The determination of the form factors is carried out in
two ways. The first method consists of two steps: First we
extract the ground state nucleon matrix elements J; from
the lattice three-point function data c?%, restricted to the
range of insertion times 7 € [z, 7, ], through the numerical
minimization of the y>-function,

2F) =D sctfeovi!] bt (30)

j— /
Jj=1 77 =1,

where 5c§ is the difference

8¢t = 5 — F/Z(P)Z(p)e e~ En(b)r (3])

between the lattice data and the three-point function
parametrization Eq. (23). The inverse covariance matrix
covjf1 depends on the insertion times 7 and 7’. One can easily
generalize the fit to the situation of multiple source-sink
distances ¢ if this is required or include excited state
contributions. The index j € {1, ...,n} runs over all pos-
sible polarizations p and initial momenta p (keeping the
virtuality Q? fixed), which give nonvanishing contributions.

Once the fit parameters JF; are determined, one can
minimize

2= (Mj—F)* (32)

to determine the form factors g. The total number of
parameters for this method is m + n, and, in particular
for large virtualities, this number can be quite large (up to
50). This is not the only problem but it can happen that the
resulting e value is quite large, and it is not clear how one
should deal with such a situation.

Ideally, € should be zero but this is only possible if Fis
in the image of M [cf. Eq. (32)]. Motivated by this
observation, we carry out our fits employing a single step
method, which combines the two subsequent steps into a
single minimization problem, restricting the number of fit
parameters to the relevant degrees of freedom. We start
from the singular value decomposition,

M=U-2-VI (33)

with orthogonal matrices U € R™", V € R™ and the
matrix X € R, which has nonvanishing entries only on
the diagonal. The pseudoinverse £ is a m x n matrix that
can easily be obtained, computing the inverses of the
diagonal elements of X. Each vector F within the image
of M can be uniquely expressed as a linear combination

F@) = }m: ol (34)
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FIG. 3. Fit results using the single step minimization method.
We show ensemble VIII at the virtuality Q> = 0.277 GeV? in the
vector channel. This corresponds to a spatial momentum transfer
of 2-2x/L, where we have averaged over all equivalent lattice
directions. Three fit parameters @ = (a;, @, a3)T fully describe
eight three-point functions. Colored points lie in the fit range
[zy, 7] [cf. Eq. (30)]. On the left we show data for the u quark and
on the right for the d quark (omitting disconnected contributions).
The numbers in the legend refer to the channels listed in Table I'V.

of the first m column vectors of U. Note that m = rank(M).
Substituting F + F(a@) in Eq. (31) [and thereby Eq. (30)],
we obtain a modified y*-function that depends on the
parameters «;, where i € {1,...,m}. Finally, we convert
the extracted vector a to the desired GFF vector,

g=|[vEtUT] Za,u = [VE']a, (35)
i=1

where in the last step £ is truncated to a m X m square
matrix. In Fig. 3 we show for one example on the nearly
physical quark mass ensemble VIII that this method
works very well. In this case eight different lattice channels,
listed in Table IV, are well described in terms of three fit
parameters.

A comparison of the two fit methods shows that the
results are consistent within errors for all GFFs and for all
ensembles. The single step method, however, results in
somewhat smaller statistical errors and a smoother Q2
dependence, especially for the induced GFFs. In Fig. 4 we
directly compare the two methods. For the final results we
only use the single step method. In Fig. 5 we show all 7 ;
values of all fits used in this paper to extract all considered
GFFs: The correlated single step fits provide a very
satisfactory description of the data.

E. Excited states

For some of our ensembles we have three-point function
data for different source-sink separations. This allows us to
analyze the influence of excited states on the GFFs. Our
analysis is based on ensemble IV with five source-sink
separations in the range #'/a € [7,17] and on ensemble

TABLE IV. Individual operator contributions to the fits shown
in Fig. 3. The numbers in the legend of Fig. 3 correspond to the
channels below. We parametrize the spatial lattice momentum
qg= /}271'/ L in terms of &,,¢,, and e5 which are unit vectors in the
three spatial directions.

Channel P* O i Channel  #contrib.

0 Pt O +2¢, Imaginary 2
Ol 122, 2
0"“ 225 2
1 (’)11’2-” +2¢2, Real 2
+2¢, 2
2 o5 +2¢, Real 2
122, 2
3 (’);'2-” +2¢, Real 2
122, 2
4 P! 0} £2@,, +2¢; Imaginary 4
P2 O“’“ +2e,, £2eé5 4
p3 (f)g" +2¢2,, +2¢, 4
5 Pl b +2¢, Real 2
ov’« 122, 2

2 (o 5
P O%Z :l:2€1 2
o 122, 2

3 g 5
P3Ok +2¢, 2

V2.a Pl
o 122, 2
6 Pt O +22, Real 2
7 p4 (’)”2 b +224 Real 2
8;2 I 1 Cg—u t020
' - 10.18
0.24 1 T . 1 .
0'23 + I + & 0.1()

250227 i S s s S
0211 : T [ 1T -003
8%3 1 1 A & T —0.040
0181 g=u—d Pt " g=d | 0o

rt + + + + + + t + + + t i
0.80 single step method T | qg=1u ggg
0.72 two step method T | 3 b 70.30
0.64 T T0.15
=5 0.56 | + ———

048 [T T T T 7 oo
0.40 ‘ | 1 -0.16
0.32 ; LT ' _ g -0
0247, 4=u—d oL ca=d 1

00010205040006 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Q* [GeV] Q* [GeV?]

FIG. 4. Comparison of single step and two step fit methods for
the axial GFFs for ensemble VI. The right panels show A,, and
By, separately for the u and d quark (without disconnected
contributions), the left panels for the isovector case.
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Number of fits

2
Xdof

FIG. 5.
analysis.

y? distribution of all GFF fits performed for this

VIII with three source-sink separations in the range
! /a € [9,15]. In physical units ¥ = 15a corresponds to
about 1 fm. Ensemble VIII has data for eight values of Q2,
and this ensemble corresponds to an almost physical pion
mass. We show results only for this ensemble, but our
findings are consistent for both ensembles.

For the tensor and axial GFFs we find that within
statistical errors the Q° dependence is not affected by a
variation of 7. Only in the vector case, especially for A4;?,
excited state contaminations are visible (see Fig. 6).
We have tried to parametrize these excited-state contribu-
tions to the three-point function with various multiexpo-
nential fit ansitze. This, however, introduces additional
fit parameters, in particular the mass and the energy of the
first excited state. The first excitation in the three-point
function can be a multihadron state and hence its energy
will in general not be well approximated by the single
particle continuum dispersion relation. To parametrize
excited state contributions clearly several source-sink
separations are required. However, within present statistical
errors little movement is visible for ¢ = 0.9 fm, even in the
A,y channel where we achieve the highest accuracy; see
Fig. 6 for an example. We therefore have restricted our GFF
fits to ranges of = where the data are well described by a
single exponential (cf. Fig. 3). In all the cases ¢ is larger
than 1 fm.

0.24 t'}a:E) 1
2T ja=12 |
0207 i i t'/a=15 IS
0.18 1 1=
0.16 1 !
0.14 1
0351
0.30 T
0.25 T ” Y Is
0.20 T Y L
0.15 1 |

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Q@ [GeV?]

FIG. 6. The vector GFFs vs Q2 for different sink times ¢ for
ensemble VIII.

V. NUCLEON GFFS

Below we show results for the nucleon GFFs on a subset
of the ensembles listed in Table III. We restrict ourselves to
m, <300 MeV and m,L > 3.4 and analyze the quark
mass, volume and lattice spacing dependence. All results

refer to the MS scheme at 4 = 2 GeV.

A. Vector and axial GFFs

Results for the vector GFFs, A4;9, B4 and Ciy?, are
shown in Fig. 7 (left) as a function of Q> = —t. We see that
the discretization effects are negligible within errors (com-
paring ensembles I and XI, which give about the same pion
mass and a similar value for Lm;). Also the volume
dependence (cf. V and VI) is small, although there is a
slight trend towards larger values for B4 if Lm,, increases
from about 4.2 to 6.7. For A%;¢ and C45¢ we do not see any
volume dependence within present errors. Similar state-
ments hold for the quark mass dependence: For A% ¢ and
Ci4:¢ it is negligible within errors, but for B4 we see a
trend towards lower values if the pion mass decreases down
to 150 MeV (cf. VIII and VI). However, the latter could
also be a volume artifact, since there is also a clear
correlation between Lm, and B4 (cf. ensembles VIII,
Vand VI where Lm,, ~ 3.5, 4.2 and 6.7, respectively). A%;¢
and Bj; 4 have a roughly linear Q%> dependence for small
Q?, and CY4;? is zero within errors. This agrees with the
leading t-dependence expected from covariant baryon
chiral perturbation theory (BChPT, see below). We remark
that also the individual (quark line connected) u and d
quark contributions to C5y 4 are zero within error. So the
smallness of this generalized form factor is not due to an
approximate cancellation. For large Q” we expect that Asy d
exhibits a dipolelike Q”-dependence, which we saw in our
former study (cf. Fig. 2 of Ref. [5]).

Results for the axial GFFs are shown in the right panel of
Fig. 7. We see that a change of volume, quark mass or
lattice spacing has almost no effect on the data. Within
errors these effects cannot be resolved. Both form factors
grow approximately linearly for Q% — 0. For Egg 4 the
statistical errors become larger for Q> — 0 whereas the
errors for A4 ¢ are nearly independent of Q2.

B. Tensor GFFs

Continuing with the tensor GFFs, we show results for
Awsd Bisd Aud and BY5¢ in Fig. 8. The dominant form
factors are A%¢ and Bi5d. For the available virtualities
A4z rises linearly for Q> — 0, while B%;¢ remains more or
less constant, well above zero. Overall, the statistical errors
for A%5d are smaller than for B45¢. Volume, quark mass or
lattice spacing effects cannot be resolved within errors.

The other two GFFs, A4¢ and B¢, are smaller in
comparison and, besides a few outliers, are best described
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FIG.7. The vector and axial GFFs vs Q2. Left: A% ¢, B4y and C4;?; right: A4 and B45?. All results are for the isovector case and in
the MS scheme (u =2 GeV).

by a constant. However, a final conclusion cannot be drawn VI. EXTRACTION OF J*-4
as the statistical errors for both GFFs are rather large. We The GFFs A-(t) and BU-(t) are of particular interest

Iso study the li bination, )
2’80 stucy Hie Theat combinatiofn since for t — 0 they are related to the total angular
momentum [19],

By, = Biyy + 247y, (36) ved Vi uca d
J = 3 [A554(0) + B35 (0)]. (37)

which corresponds to the combination of GPDs E; +2H;  In order to estimate J“~¢ at the physical pion mass we
that is related to the Boer-Mulders function hi [49]. We analyze our data for A% 4(t) and BY;(t), employing the
find that the statistical error of B, is significantly smaller ~ BChPT formulas of Ref. [50], which, however, we truncate
compared to the individual errors of Bf,, and A%,, (see  at order m3,

Fig. 9). We will take advantage of this observation when

looking at the transverse spin of the nucleon in Sec. VII. (14 3g%)m2 log(m—f')
The results for B%gg are shown with the tensor GFFs in Ay d(L m,) = [1 - 16222 . }L
Fig. 8 for the same ensembles. The anticorrelations we find i

for B45d are present for all ensembles.

+ mzMy + muM4§ +{(T§ + mzTY)  (38)

7‘7 + + + + - + + + + + + = + + + + + —
0.261% Atz L0501 2 Bry | 10209 B
o o [
0.241 ! A" t0.25+ ‘ | I & T | ‘
& ' F1=
0.221 . 1000 0.161 -
0.201 ; v , ‘ |
: - W ] —0251 ¢ — ,
0.181 Lot l 0.127 ‘ ¢ . ]
—— —0.50 ; ' » ‘ | 1
| Al i
0.3+ — L - - - - a '
cu—d 0.241 ~d f ] o ]
0.21 i AT A ‘ By 0.08 T
0.16 -
0.11 | l r ! 4 ‘
0.0 i 0.08t S i T 0.041 -]
i ! | i i .
—0.1 i ] - ] 1 0.00 A‘#
—0.2¢1 -1 ! N
‘ ‘ ) ‘ ‘ ‘ —0.081 ‘ ‘ ‘ ‘ ‘ L 0.00 ) ) ) ) ) )
0.0 0.1 02 03 04 05 06 0.0 01 02 03 04 05 06 0.0 01 02 03 04 05 0.6
Q* [GeV] Q* [GeV?) Q* [GeV]

FIG. 8. The tensor GFFs A%¢, Biod, Aksd) Bisd and the linear combination Bl in the MS scheme (4 = 2 GeV).
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FIG. 9. Strong anticorrelations between BZ,, and A%, for the
example of ensemble VI.

and

22 m?
_ JaMz log(_f)
Bgod(t’ mﬂ) = 16f2ﬂ2” L + t(Tg + m%T?)

(1 +243)m? log (%)
1- 677 F—|LP + mzM5.

(39)

The fit parameters 77 and 7% are added since our data
extend up to virtualities —t ~ (770 MeV)? > m2; however,
these terms would naturally appear at the next order of
BChPT. We determine the parameters (L, M5, M4, T4, T9)
and (L,LB, M8, T8, T?) by carrying out combined fits to
our data sets for A454(t, m,) and B4;“(t, m,). The remain-
ing parameters in Eqs. (38) and (39) are constrained to
ga = 1.256, f, =92.4 MeV and y = 1.0 GeV.

Since it is not clear up to what values of —t and m,
BChPT is applicable, we perform fits to all ensembles
(set A) as well as fits using only ensembles with m, <
300 MeV (set B). In Fig. 10 we show the resulting fits for
t =0, where only in the case of A%? we can directly
compare to data points. For set A the fit parameters have
smaller statistical errors. For set B we see that A4
increases with m, — mP™ . For both sets we obtain values
for x3, of about 0.75; hence we cannot use the 7 ; value to
discriminate between the fit ranges. Instead, one may
interpret the difference between fits A and B as a systematic
uncertainty of the parameters. In Fig. 11 we show our fit for
set A as a function of Q? at two fixed values of the pion
masses (m, = 422 MeV and 150 MeV, ensembles III and
VIII). Obviously, our ansatz for the Q* and m2 dependence
describes the lattice data well.

Again, we study the effect of the uncertainties of the
renormalization constants using the strategy described in
Appendix B 2. The final results are collected in Table V,

e I T I—— i ——————— L=
e e A 58
0.20 T ( B
04 F
= )i
= @ @ [ _____ A |
0.3 T = =
// — B
oot
= @ A&
025+ =+
Z — B
0.00 0.08 0.16 0.24

m2 in [GeV?]

FIG. 10. From top to bottom A4;¢(0), B45?(0) and J*~¢ as a
function of the pion mass squared. The vertical solid line marks
the physical pion mass; the vertical dashed line indicates our
smallest pion mass. The A-band is from a fit of all our ensembles
and the B-band from a fit where ensembles with m, > 300 MeV
are removed. For A% ¢(0) we have lattice data which are shown in
the top panel for comparison.

where we also quote the total angular momentum J*~¢,
We refrain from extrapolating to Q2 = 0 and m, = m%" in
the other cases. Instead, in Table VI we give the results
for the form factors where no extrapolation in Q7 is
required, i.e., A45%(0), A% ¢(0) and A4 (0), for our nearly
physical point ensemble VIII. The moment A%;¢(0) =
(x),_, agrees well with the results of the global fits to
ensemble sets A and B and also the helicity and transversity

0.225§

0.200 j E VIl
01751 e S Te
0.1501 - | =
0.1251
0351 =
030+ = T ~
0257 el - 18
o201t s T
0151 s

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Q* [GeV?)

FIG. 11. Chiral fit A vs Q? for two distinct pion masses: 1, =
422 MeV (green) and 150 MeV (grey). The corresponding data
points (ensemble III and VIII) are shown as well.
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TABLE V. Results for A44(0, m,), B4;?(0, m,) and J*~4(m,,),
extrapolated to the physical pion mass mb using the ensemble
sets A and B (see the text). The first error is statistical, the second

error is due to the uncertainty of the renormalization constants.

Ensemble selection A B

A%d(o’ mghy) 0.195(06)(03) 0.210(08)(04)
B%d(O, mghy) 0.271(13)(03) 0.287(28)(04)
]u—d(mghy) 0.233(07)(03) 0.248(14)(04)

TABLE VL. Results for A4;9, Al? and Al at the nearly
physical pion mass m, = 150 MeV (ensemble VIII). The first
error is statistical; the second error is due to the uncertainty of the
renormalization constants.

Ensemble VIII Value

A454(0,m,) 0.213(11)(04)
A554(0,m,) 0.240(07)(03)
A56(0,m,) 0.266(08)(04)

moments A55%(0) = (x)5,_aq and Af6(0) = (x) 5,50 at
the physical point ensemble are in agreement with the
global data, see the top right panel of Fig. 7 and the top left
panel of Fig. 8, respectively.

Within the errors, our values agree with the isovector
results of Ref. [51].

VII. NUCLEON TOMOGRAPHY

We use our lattice results for the vector GFFs Ay(t),
By (t) and the linear combination Br,(t) [cf. Eq. (36)] to
investigate the transverse spin density of the nucleon. To
this end, we transform these GFFs to the impact parameter
space G(t) — G(b%) with

G(b%) = /dzée‘”’rALG(t = -A?) (40)
L (27[)2 1/
where we use the p-pole ansatz [52,53]

Go

0= Ty 0

for the interpolation of our lattice results. The impact
parameter b, is defined in the transverse x — y plane. It
measures the transverse distance from the “center of

momentum”
> xi=1 (42)
i

R, = E Fil X,
i

where x; is the momentum fraction of the ith parton

[52,54]. We define
bJ_ = (bx,by), bj_ = \/bi (43)

To compute the transverse spin density, we also have to
evaluate the derivative of G(b?) with respect to b?,
/(12 9 2
G (b3) = 5 G(BR). (44)
1

The Fourier transform (40) of the p-pole ansatz (41) can
be expressed in terms of the modified Bessel functions
K, [52],

GOm%(bJ_mp)p_le—l (blmp)
27P7l(p)

G(b}) = (45)
The transverse spin density p?(x,b,s,S ) describes the
probability to find a quark with longitudinal momentum
fraction x, flavor ¢ and transverse spin s | at a distance b |
from the center of momentum of the nucleon with trans-
verse spin S | . The explicit definition in terms of GPDs is
given in Eq. (8) of Ref. [52]. Here we consider the two
transverse spin combinations,

s, =(1,0)
S| :<0,0)

and S, =(0,0),
and S, = (1,0),

(46a)
(46b)

where the first line describes a transversely polarized quark
in an unpolarized nucleon and the second an unpolarized
quark in a transversely polarized nucleon. In terms of GFFs
the first moment of p4(x,b ,s,,S ) for these spin combi-
nations reads

(P)1(by.s1.8.)

1
:/ dxxp?(x,b,,s,,S )
-1

flAq oy €D ma s i pal (12
) 20(b1) —m(slBrzo(bl) +8 By (b1))- (47)
For arbitrary spins §, and s; Eq. (47) will contain
additional terms, and we refer the reader to Refs. [52,53].

We fit the GFFs for ensemble VI to the p-pole ansatz
Eq. (41). Due to the limited number of data points at our
disposal, where we restricted ourselves to the kinematic
range —t < 0.6 GeV?, we find it impossible to simulta-
neously determine all three fit parameters, p, m,, and G. In
particular the exponent p is strongly correlated with the
pole mass m ,. This is demonstrated in Fig. 12: An increase
of p results in a larger value of m,, whereas y3,; does not
significantly change. Therefore, we cannot constrain p.

This arbitrariness means it is difficult to obtain reli-
able, parametrization independent results for the moment
(p)4(b,,s,,S,) as a function of b, . This distribution has
been studied in the past (see, e.g., [53]), but we find that its
shape strongly depends on the value of p. In Fig. 13 we
show (p)?(b,,s,.S,) fors; =(1,0) and S, = (0,0) for
four distinct values of p ranging from 1.45 up to 3.0.
We see that with increasing p the density becomes less
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FIG. 12. The pole mass m,, and x5 as a function of the fixed
parameter p for ensemble VI. The colored lines correspond to fits
to A%, BY, and B, from top to bottom and flavor ¢ from left
to right.

localized in the impact parameter plane and the maximum
of the density is shifted away from the center. This also
holds for other spin combinations.

We discovered that some integrated quantities have a
much milder p-dependence, namely the half b | -integrated

moments,
AT
/ db, / db

-0.411

~N

S D O w &
QQQQQQQ

(p)i(s1.8S,) = Yi(by.s1.8,),

(48a)

(P)(s.8,) = Yi(by.s..8,).

(48b)

0.61
0.411
0.201
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-0.20T
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FIG. 13. The p-dependence of the transverse spin density for a
transversely polarized d-quark in an unpolarized nucleon. The
yellow cross indicates the maximum of the density. The black
contour lines are drawn equidistantly with a difference of 0.05.

\
A\

\
W\

14 16 18 20 22 24 26 28 3.0

FIG. 14. Dependence of (p)4 (s ,S,) and (p)?(s.,S,) on the
power p of the pole ansatz. The combination of transverse spins is
s, =(1,0) and S, = (0,0). The errors are statistical only. The
systematics due to the uncertainty of the power p amount to
about 0.02.

with the normalization factor,

+o0 +oo
zp_/ dbx/ dby(p)i(b..s1,81). (49)

The integrated moment (p)?(s,,S ) is the probability,
weighted with the longitudinal momentum fraction x, to
find a quark with flavor g in the upper part (b, > 0) of the
impact parameter space and (p)Z (s, S ) is the x-weighted
probability to find a quark with flavor ¢ in the lower part
(b, < 0). These integrated moments are a measure for the
asymmetry of the transverse spin density. They depend
much less on the value of p than (p)4(b,,s,,S ) does.
This is demonstrated in Fig. 14, where (p)¢ and (p)? are
shown as functions of p for the transverse spin combination
in Eq. (46a). Doubling p, both integrated moments change
by only 5% and 15%, respectively. We find this mild p-
dependence for all considered transverse spin and flavor
combinations and consider these integrated moments as the
better candidates for reliable lattice estimates. Our results
for (p)4 for up and down quark for our two transverse spin

M ot () (o)

(o)t

FIG. 15. Probability (weighted with x) to find a u- or d-quark
in the upper/ lower part (b, $0) of the impact parameter
space; left for a transversely polarized quark in an unpolarized
nucleon; right for an unpolarized quark in a transversely polarized
nucleon.
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TABLE VII. The half b -integrated moments for p = 2, also
shown in Fig. 15. The errors are statistical. The systematic error
of the p-dependence is about 0.02.

s; = (1,0) S. =(0,0) s; =(0,0) S, =(1,0)

(" 0.312 (26) 0.403 (12)
(p) 0.688 (26) 0.597 (12)
(p)d 0.262 (27) 0.666 (17)
(p)? 0.738 (27) 0.334 (17)

combinations [Eq. (46)] are shown in Fig. 15. The errors
shown are statistical only. The figure corresponds to the
power p = 2, and one may add systematic errors of about
0.02 due to the p-dependence; see Fig. 14. The numerical
values are listed in Table VIL

We see the probability of a transversely polarized u- or
d-quark in an unpolarized nucleon is higher (~70%) in the
b, > 0 part of the impact parameter space than in the
b, < 0 part (~30%). For a transversely polarized nucleon
however the probabilities of an unpolarized u- or d-quark
differ: The unpolarized d-quark is more likely in the b, < 0
part (67%), while a u-quark is more likely in the b, > 0
part (60%) of the impact parameter space.

VIII. SUMMARY

We have calculated all quark GFFs, corresponding to
operators with one derivative, of the nucleon GPDs at
leading twist-2. Our lattice calculation includes the domi-
nating connected contributions and neglects contributions
from disconnected diagrams. The available gauge ensem-
bles cover a wide range of quark masses and volumes.
However, the three available lattice spacings only vary from
0.081 fm down to 0.060 fm. Within errors, all GFFs show a
mild dependence on the quark mass, lattice spacing and
volume.

We have compared two different fitting strategies for the
GFFs and found that the direct fit method appears to be
more reliable. With this method the number of fit param-
eters is reduced to the relevant degrees of freedom. We
recommend to use this method in future studies. The final
results for the GFFs are shown in Figs. 7 and 8.

We have also studied the total angular momentum and
the transverse spin density of quarks in the nucleon. Both
quantities can be extracted from fits to our GFF data. For
the total angular momentum we obtain a similar estimate in
the isovector case as ETMC in Ref. [51]. Contributions
from disconnected diagrams are not included in our lattice
calculation. From Ref. [51] we know that these are small.
Nevertheless, in the isoscalar case they should definitely be
taken into account. For the second moment of the transverse
spin density we have found that its distribution in impact
parameter space strongly depends on the t-dependence of the
GFF data. The shape of the distribution depends on the value

of p that is used within a p-pole ansatz. High precision data
atsmall and large values of —t would be required to eliminate
this ambiguity. For integrated moments this situation
improves. In Fig. 15 we provide lattice estimates for the
x-weighted probabilities of a transversely polarized (unpo-
larized) light quark in the upper or lower part of the impact
parameter space, within an unpolarized (transversely polar-
ized) nucleon. Contributions from higher moments are not
yet available but constitute an interesting object for future
study.

ACKNOWLEDGMENTS

The ensembles were generated by RQCD and QCDSF
primarily on the QPACE computer [55,56], which was built as
part of the DFG (SFB/TRR 55) project. The authors gratefully
acknowledge the Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) for granting computer time on
SuperMUC at the Leibniz Supercomputing Centre (LRZ,
www.lrz.de) for this project. The BQCD [57] and CHROMA
[58] software packages were used, along with the locally
deflated domain decomposition solver implementation of
openQCD [59,60]. Part of the analysis was also performed on
the iDataCool cluster in Regensburg. Support was provided
by the DFG (SFB/TRR 55). A. St. acknowledges support by
the BMBF under Grant No. 05P15SJFAA (FAIR-APPA-
SPARC) and by the DFG Research Training Group
GRK1523. We thank Benjamin Glifle for software support.

APPENDIX A: OPERATOR MULTIPLETS
FOR THE TENSOR GFFs

In this study we use 16 linear combinations of operators
for the tensor GFFs. The first eight from the £, , multiplet
read

h . 2
= \/; 132+ 0123+ 0231)
2
h]a:\/;<042+ Oz4+ O 1)
h . 2
] —\/;< 143+ 0134+ O 1)
h a
= \/7 024% +5 0234 +5 0342)
h a
] \/_02{13}’
hla
\/_02{14}’
h "
" \/_03{14}’
h]u
=20} ,,,.
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The remaining eight make up the /4, ;, multiplet and read

I 1

Oy = \/;(0122 - 0133)»
I 1

Oy’ = \/;(0511 - 0533%
I 1

oy’ = \/;(Ogn - O§22>v

hip 1
0p’ = \/;(0411 O422>

iy

1
05" = \/;(0122 + Oly; = 20],),
. 1
014h - \/%(Oh + 0533 - 20;44)7
hy,
Olsh - \/><O§11 + 0322 20%44),

hip 1
O’ = \/%(0111 + Ol —20433).

APPENDIX B: RENORMALIZATION
PROCEDURE

The renormalization factors are products of perturbative
and nonperturbative parts,

ZMS ZMS I’Z?)I/bare' (Bl)
The nonperturbative factor ZO bare translates the bare lattice
data to the regularization scheme independent momentum
subtraction (RI'-MOM) scheme [44,45], while the pertur-
bative factor ZMSRV matches from the RI'-MOM to the MS

scheme. This is calculated in continuum perturbation
theory and is known for our operator multiplets to three-
loop accuracy [61].

1. Nonperturbative renormalization

The nonperturbative renormalization factors Zg'fbare are
extracted as follows. In a first step we gauge-fix a subset’
of our gauge configurations to Landau gauge and calculate
(in momentum space) the quark propagator

ZE‘”’ “(qq(x)gp(y))  (B2)

a[ia p

(color indices are suppressed) and the three-point functions

2 About
sufficient.

ten well-decorrelated configurations are often

E emir=y)(

Xyz

Gl (a.p) (V) Tu(2)3p(v)) (B3

with 7% (z) = g(z )FJVﬂq( ) = q(2)0}i(2)q(z). TV denotes
one of the sixteen possible products of Euclidean gamma
matrices, 71" - - - 74" (n, € {0,1}), and the covariant lattice
derivative acts on the respective left or right quark
propagators resulting from the integration over the quark
fields.

Next the vertex function I'p is constructed for each
operator O(0) by combining the appropriate G/#s and
amputating the fermion legs,

Lo(a, p) = S"(a. p)Go(a.p)S~'(a.p).  (B4)
The renormalized vertex reads
ZRI (a Mz)
B (p, u? = ZObae P a,p), B5
(pat) == o Tolar). (B9
where the RI'-MOM renormalization condition
1
—Tr(R Y21 (B6)

12 p2:,,2
is imposed in the chiral limit. The quark wave function

renormalization factor is given by

—iTr(y;0,5™ (a. p))

12p? )

Zy(a.p?) = (B7)

after extrapolation to the massless limit. In Eq. (B7) we
employ the lattice tree-level expression for the massless
quark propagator; i.e., we set ap, = sin(ap, ). Similarly we
use the lattice tree-level expression for the Born term Fg)) to
reduce lattice discretization effects. For the example of the
operator Oy, this reads

T (p) = i(r,by + 7.5,)- (BS)

2. Propagation of renormalization constant errors

Our estimates for the renormalization factors carry an
uncertainty which has to be propagated into the GFFs. We
do this in a very naive but conservative way by carrying out
the whole analysis both using the central values of the
renormalization factors and adding the error of these factors
to their central values. The difference between these two
sets of results is then due to the uncertainty of the
renormalization. This procedure is applied to all ensembles
and to all the available virtualities Q2. We find that the
relative error is almost independent of Q2 and the consid-
ered ensemble. Hence, for each GFF we decided to take the
largest value of this uncertainty as an estimator of the error.
These relative uncertainties are shown in Table II.
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