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We present a lattice QCD study of charmonium resonances and bound states with JPC ¼ 1−− and 3−−

near the open-charm threshold, taking into account their strong transitions to D̄D. Vector charmonia are the
most abundant in the experimentally established charmonium spectrum, while recently LHCb reported also
the first discovery of a charmonium with likely spin three. The D̄D scattering amplitudes for partial waves
l ¼ 1 and l ¼ 3 are extracted on the lattice by means of the Lüscher formalism, using multiple volumes and
inertial frames. Parametrizations of the scattering amplitudes provide masses and widths of the resonances,
as well as the masses of bound states. CLS ensembles with 2þ 1 dynamical flavors of nonperturbatively
OðaÞ improved Wilson quarks are employed with mπ ≃ 280 MeV, a single lattice spacing of a ¼ 0.09 fm
and two lattice spatial extents of L ¼ 24 and 32. Two values of the charm quark mass are considered to
examine the influence of the position of the D̄D threshold on the hadron masses. For the lighter charm
quark mass we find the vector resonance ψð3770Þ with mass m ¼ 3780ð7Þ MeV and coupling g ¼
16.0ðþ2.1

−0.2 Þ (related to the width by Γ ¼ g2p3=6πm2). Both quantities are consistent with their experimental
values, mexp ¼ 3773.13ð35Þ MeV and gexp ¼ 18.7ð9Þ. The vector ψð2SÞ appears as a bound state with
m ¼ 3666ð10Þ MeV. The charmonium resonance with JPC ¼ 3−− is found at m ¼ 3831ðþ10

−16 Þ MeV,
consistent with the Xð3842Þ recently discovered by LHCb. At our heavier charm-quark mass the ψð2SÞ as
well as the ψð3770Þ are bound states and the Xð3842Þ remains a resonance. We stress that all quoted
uncertainties are only statistical, while lattice spacing effects and the approach to the physical point (for the
light and strange quarks) still need to be explored. This study of conventional charmonia sets the stage for
more challenging future studies of unconventional charmoniumlike states.

DOI: 10.1103/PhysRevD.100.074505

I. INTRODUCTION

The charmonium spectrum determined from experiment
challenges our theoretical understanding of the internal

dynamics of mesons containing charm quarks. While
charmonia below the open-charm decay threshold are
found to fit within a quark-antiquark picture, the properties
of several resonances above the threshold, generally
referred to as XYZ states, call for exotic interpretations.
Various suggestions have been made based on phenom-
enological approaches, effective field theories, potential
models, etc. These include compact diquark-antidiquark
states, mesonic molecules, hybrid mesons with gluonic
excitations, or resonances generated through coupled
channel scattering. The theoretical approaches are moti-
vated by phenomenology and approximate certain regimes
of the strong interaction. However, a complete description
of the observed charmonium spectrum from quantum
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chromodynamics (QCD) also requires complementary
first principles nonperturbative calculations, which can
be performed using lattice QCD. Ab-initio determinations
of ground state charmonia, such as in Refs. [1–8], illustrate
the power of these nonperturbative approaches in precisely
determining masses and splittings. Lattice calculations
of other conventional charmonium bound states and res-
onances aim to satisfactorily describe well-understood
excitations and demonstrate the efficacy of the methods
employed. This gives confidence in investigations of
unconventional charmoniumlike states and of those for
which the experimental situation is less clear.
To date, several lattice QCD calculations of the excited

charmonium spectrum with isospin zero have been per-
formed within the single hadron approach, where one
employs only mesonic interpolators of c̄c type and assumes
that this qualitatively captures the single meson spectrum in
a finite volume [9–13]. So far, only one lattice study has gone
beyond the single-hadron approach, taking into account the
strong decays of charmonium resonances above the open-
charm threshold.1 In that study an exploratory determination
of the D̄D scattering amplitude in the l ¼ 1 and l ¼ 0 partial
waves was performed [16]. The low-lying vector and scalar
charmonium spectra were calculated in a single lattice
volume in the center of momentum frame (CMF). The
authors extracted the resonance and bound state parameters
in the vector channel, while the conclusions in the scalar
channel indicated different possible interpretations and left
several unresolved puzzles for both theory and experiment.
Note that all previous lattice studies of charmonium

were limited to the CMF [9–13,16–18]. However, lattice
calculations in the moving frames (i.e., with nonzero total
momentum) can provide additional information on the
relevant two-meson scattering amplitudes (for a review,
see Ref. [19]). The challenge in spectroscopy using lattice
techniques is that, due to the reduced symmetry on the
lattice, several J can contribute (in the CMF) to any given
lattice irrep. In the moving frames, the situation is much
worse as the finite volume spectrum in any lattice irrep gets
a contribution from states with different JP (in their rest
frame), as they are not good quantum numbers already in
the infinite volume continuum and also on the lattice.
As the first step, we extracted the excited charmonium
spectrum within the single hadron approach on the lattice
in multiple inertial frames and identified the continuum
quantum numbers [20]. Such a spin identified single-
hadron spectrum tells us where to expect effects from
resonances in different partial waves, which in turn
provides valuable information for the parametrization of
scattering amplitudes. Thus this study allows one to fully
exploit the data in moving frames in the present and related
future studies.

The current article presents a lattice QCD investigation
of charmonium resonances taking into account their most
important strong decay, which goes beyond the single
hadron approach. We focus on the scattering of a pair of D̄
and D mesons in the l ¼ 1 partial wave, which features
charmonium resonances and bound states with JPC ¼ 1−−,
to determine the respective masses as well as the couplings
with the D̄D scattering channel. We also consider the D̄D
scattering in partial wave l ¼ 3 yielding information on the
lowest charmonium resonance with JPC ¼ 3−−, for which
LHCb discovered a candidate named Xð3842Þ [21].
The D̄D scattering channel in partial wave l ¼ 1 is the

dominant hadronic decay mode of the ψð3770Þ (with
branching ratio Br ¼ 93� 9%). It is a well-established
vector resonance generally accepted to be predominantly a
conventional c̄c state. We therefore assume elastic D̄D
scattering, neglecting the influence of all other allowed
decay modes of the ψð3770Þ and of higher thresholds. The
determination of the relevant scattering amplitudes and
resonance parameters, such as the mass and decay width of
the ψð3770Þ, will serve as a demonstration of our realiza-
tion of Lüscher’s finite volume treatment. In contrast to
the only previous study [16], the D̄D scattering amplitude
in p-wave is determined utilizing the finite volume spec-
trum from two lattice ensembles with different physical
volumes, each in three different inertial frames. The study
is performed for two charm quark masses, one below and
one above the physical mc. In this way we explore the
dependence of the spectra on the position of the D̄D
threshold.
The recent LHCb discovery of the charmonium Xð3842Þ

with likely quantum numbers JPC ¼ 3−− [21] in part
motivates our investigation of this narrow state with
Γ ≃ 3 MeV. This resonance is also considered since it
inevitably affects the spectrum of vector excitations in
a finite hyper-cubic volume. While we are able to deter-
mine the mass of this charmonium resonance, the finite
volume spectrum in our lattice setup is not dense enough to
reliably estimate the very narrow width of this state.
The layout of this paper is as follows. In Sec. II, the

relevant quantization condition relating the infinite volume
scattering amplitudes to the finite volume energy spectrum
is discussed. The details of the lattice setup and related
technical information are briefly outlined in Sec. III. In
Sec. IV, our procedure for the determination of the excited
charmonium spectrum and our approach for dealing with
discretization errors in hadron observables involving charm
quarks is discussed. We summarize our findings in Sec. V
and conclude in Sec. VI.

II. SCATTERING IN A FINITE BOX:
LÜSCHER FORMALISM

In a Euclidean box of finite size, the QCD spectrum is
discrete. Energy levels corresponding to bound states are

1The strong decay of the Zcð3900Þ resonance with isospin 1
has been studied in the HALQCD approach [14,15].
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affected by exponentially suppressed finite (spatial) volume
effects, while a power law dependence on the size of the
box is expected for energy levels related to two-particle
states above the strong decay threshold. Lüscher’s finite
volume formalism and its extensions [22–25] (see the
review Ref. [19] to find more references) show that the
energy dependence of infinite volume scattering amplitudes
determines the discrete energy spectrum in a finite-sized
box with periodic boundary conditions.
We are interested in D̄D scattering, i.e., single-channel

scattering of spin-zero particles with equal masses, in
inertial frames with zero and nonzero total momenta P⃗.
In this case the scattering matrix SlðpÞ ¼ e2iδlðpÞ can be
expressed in terms of a single phase shift δlðpÞ in the
partial-wave l, where p is the momentum of each hadron
in the center of momentum frame. The spin of the system
is zero, since the scattering particles are spin-less and
the total angular momentum equals the orbital angular
momentum (J ¼ l).
The quantization condition connecting the infinite vol-

ume scattering amplitudes with the finite volume discrete
energy E of the eigenstates can be expressed in our case as

det½K̃−1
l ðEcmÞδl0l − BP⃗;Λ

l0l ðEcmÞ� ¼ 0: ð1Þ

Here the determinant is computed over all partial waves l
and Ecm is the eigenenergy in the center of momentum
frame. The real function K̃l parametrizes the infinite
volume scattering amplitude Sl and the transition amplitude
tl in the partial wave l as

ðρtlÞ−1 ¼ 2iðSl − 1Þ−1 ¼ p−2l−1K̃−1
l − i; ð2Þ

with ρ ¼ 2p=Ecm, or equivalently

K̃−1
l ðEcmÞ ¼ p2lþ1 cot δlðpÞ: ð3Þ

The kinematic variable p is the momentum of each D
meson in its center-of-momentum frame

p2 ¼ s
4
−m2

D; ð4Þ

with s ¼ E2
cm. We follow the definitions of K̃ in Ref. [26]

and the definition of tl used by the Hadron Spectrum
Collaboration (see, e.g., Ref. [27]).2 The factor p−2l−1 in
Eq. (2) ensures a smooth kinematic behavior of K̃ at the
threshold.
The box-matrix BP⃗;Λ

l0l ðEcmÞ, as introduced in Ref. [28],
depends on Ecm, the lattice spatial size L and the lattice
irreducible representation (irrep) Λ under investigation.

Its entries are customarily written in terms of the known
Z-functions defined in Ref. [22]. Note that B also has
off-diagonal entries in the partial wave indices l0 and l, due
to the reduced rotational symmetries in a hypercubic box.
The latter leads to the finite volume spectrum for any lattice
irrep containing information from scattering in multiple
partial waves.
The main focus of the present work are the resonances

and bound states of charmonium in the vector channel that
are related to D̄D mesons scattering in p-wave. In the
simplest approximation, in which the influence of higher
partial waves l > 1 are neglected, the quantization con-
dition in Eq. (1) allows one to compute δ1 directly from a
given measured energy level in a finite box. In this case, the
determinant condition reduces to the well-known Lüscher
relation [22]

p cot δ1ðpÞ −
2Z00ðp2Þffiffiffi

π
p

L
¼ 0; ð5Þ

for zero total momentum.
In the case when the effects of higher partial waves are

non-negligible, the properties of the scattering amplitudes
Sl are accessible only after finding and fitting a suitable
parametrization of all the relevant K̃l, so that the determi-
nant condition in Eq. (1) is solved for each of the energy
levels in the finite volume spectrum. The finite volume
mixing of even and odd partial waves is not allowed if the
scattering particles have equal masses [29,30], as in our
case. Hence the contamination of higher partial waves in the
l ¼ 1 excitations due to broken rotational symmetry can
occur only from odd partial waves l ¼ 3; 5;…. The con-
tributions from the l > 5 partial waves are expected to be
strongly suppressed in the near-threshold region explored
here and it can be neglected. We will therefore investigate
partial waves l ¼ 1 and l ¼ 3 (as well as their mutual
influence) through the finite volume quantization condition
of Eq. (1). We use the package TwoHadronsInBox to
compute the determinant in Eq. (1) when fitting the para-
metrization of the K̃-matrix to our energy levels, following
the “determinant residual” method [28].

III. LATTICE SETUP

The results presented in this work have been
determined from two Nf ¼ 2þ 1 ensembles labeled
U101 and H105 generated by the Coordinated Lattice
Simulation (CLS) consortium [31,32]. The inverse gauge
coupling is β ¼ 6=g2 ¼ 3.4 and the lattice spacing is a ¼
0.08636ð98Þð40Þ fm [33]. The lattice volume is T × L3 ¼
96 × 323 for H105 and 128 × 243 for U101. The Wilson-
clover action [34] is nonperturbatively improved to remove
the OðaÞ lattice artefacts, with the clover term set equal
to csw ¼ 1.986246. The strange and light hopping param-
eters are κl ¼ 0.13697 and κs ¼ 0.13634079, respectively,

2However, unlike in Ref. [26], we do not divide our energy
levels or physical quantities by the mass of the scattering
particles.
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leading to pion and the kaon masses of mπ ¼ 280ð3Þ MeV
and mK ¼ 467ð2Þ MeV. Note that the light quark mass
(ml) is heavier than its physical value while the strange
quark mass (ms) is lighter. This is because the U101 and
H105 ensembles lie on a trajectory where the physical
point is approached keeping the average quark mass
2ml þms fixed. The gauge and the fermion fields fulfill
open boundary conditions in the time direction and periodic
boundary conditions in the spatial directions. The total
number of configurations analyzed is 255 for the U101
ensemble and 492 for H105, with one configuration taken
every 20 and 16 MDUs, respectively, from two different
replica in each case.

A. Choosing the charm quark mass

The bare charm quarkmass, set by the hopping parameter
κc ¼ 1=ð2mc þ 8Þ for Wilson-type actions, is a parameter
to be determined with care. As we aim to study the strong
decay of near-threshold charmonium resonances, the par-
ticles relevant for tuning the charm quark mass are the
lowest c̄c-states, the J=ψ and the ηc, and the decay products
of their excited states, such as the D and Ds mesons. Away
from the physical point, the masses of all these particles
cannot be tuned simultaneously to their experimental values.
However, the most critical quantity for our current inves-
tigation is the position of the strong decay threshold relative
to the J=ψ and the ηc, rather than the mass of an individual
charmonium state. We aim to explore how charmonia near
and above the open-charm threshold depend on its position.
We also want to investigate the systematics coming from
the tuning of the charm quark mass. To this end we employ
two different values of κc given by 0.12522 and 0.12315,
corresponding to theDmeson mass being below and above
its physical value, see Table III. The main results for the
position of the resonances in physical units will be presented
relative to the spin average mass of the J=ψ and the ηc,

Mav ¼
1

4
ðmηc þ 3mJ=ψ Þ: ð6Þ

This is motivated by the fact that some of the discretization
effects (which can be significant at a lattice spacing of
a ≈ 0.09 fm) are canceled when computing energy dif-
ferences. The spin-average mass is equal to 3103(3) MeV
for κc ¼ 0.12315 and 2820(3) MeV for κc ¼ 0.12522. The
energy gap between Mav and 2mD is

Mav − 2mD ¼ −750ð3Þ MeV κc ¼ 0.12315

Mav − 2mD ¼ −703ð3Þ MeV κc ¼ 0.12522

Mav − 2mD ¼ −665 MeV experimental

Note that the relative position of the D̄D threshold with
respect to Mav is closer to the experimental value for
κc ¼ 0.12522 than for κc ¼ 0.12315.

B. Setup of the distillation algorithm

We employ the distillation method to compute our
correlation functions [35], i.e., the propagation of the
quarks is computed in the distillation space of the eigen-
vectors of the 3D Laplacian. As a consequence, we are able
to separate the construction of the interpolators from the
computation of the light and charm propagators without
resorting to storing full propagators. Only at a later time,
the quark-lines of the Feynman diagrams are contracted and
summed to obtain the entries of the correlation matrix. We
employ 90 and 150 eigenvectors of the lattice Laplacian for
the U101 and the H105 gauge field ensembles, respectively.
We use full distillation for U101. Full distillation is also
used on H105 for the charm propagators and the ϕ-matrices
(defined in Eq. (12) of Ref. [35]). The cost of full
distillation for the determination of light quark propagators
on the H105 ensemble would have been prohibitively
expensive, as 150 × 4 inversions of the Dirac operators
on a large volume would have been required for each flavor
and each time-source/sink. Therefore, we use stochastic
distillation [36] for the light quark propagators on the H105
ensemble only. The perambulator, defined as

τðt0; μ0; i0; t; μ; iÞ ¼ hvμ0i0 ðt0ÞjðD−1jvμi ðtÞiÞ; ð7Þ

requires us to compute the inverse of the Dirac matrix D
on a source jvμi ðtÞi which is zero everywhere except for
the time slice t0 and spin index ν, where it is equal to
the Laplacian eigenvector j. The number of inversions
required can be reduced by considering random sources.
We introduce Ns complex Z2 stochastic noise vectors

knðt; i; μÞ ¼
1ffiffiffi
2

p ð�1� iÞ; ð8Þ

using full-time dilution. The stochastic source given to the
multigrid solver is constructed for every time slice t as

jwnðtÞi ¼
X
j;ν

knðt; j; νÞjvνjðtÞi: ð9Þ

The perambulator can be approximated as

τðt0; μ0; i0; t; μ; iÞ ¼ 1

Ns

X
n

k†nðt; i; μÞhvμ0i0 ðt0ÞjðD−1jwnðtÞiÞ;

ð10Þ

which is equal to the exact expression of Eq. (7) in the limit
Ns → ∞, since

1

Ns

XNs

n¼1

k†nðt; i; μÞknðt; j; νÞ ≃ δijδμν: ð11Þ

Thanks to the use of full-time dilution in our stochastic
distillation scheme, there is no bias for contributions to the
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correlation matrix involving light annihilation diagrams.
However, we need to consider two independent sets of
random vectors for diagrams involving light quarks propa-
gating at different time slices. We therefore use two sets of
20 noise vectors, and we average over the two only for light
annihilation diagrams. Following this approach, we are able
to reduce the number of the expensive inversions of the
Dirac operator for the light quarks by a factor ten on our
largest volume. At the same time, we retain the advantages
of full-dilution for the purely charm contributions and
employ full distillation to compute the correlation functions
between c̄c-type operators, that need to be estimated
precisely for the study of charmonium excited states we
are interested in.

IV. ENERGY SPECTRUM

A. Determination of the finite volume spectrum

Many excited energy levels need to be accurately
determined on several different volumes and/or in different
momentum frames in order to extract the scattering matrix
according to Lüscher’s method. The excited energy spec-
trum Elat

n is extracted from Euclidean time two-point
correlation functions

CijðtÞ ¼ hOiðtÞO†
jð0Þi ¼

X
n

Zn
i Z

n�
j e−tE

lat
n ; ð12Þ

constructed from a basis of interpolators fOig with the
desired quantum numbers. Here Zn

i ¼ h0jOijni refers to the
operator state overlap.
Our main purpose is to investigate D̄D-meson scattering

in partial wave l ¼ 1. We determine the charmonium
spectrum in three lattice irreducible representations that
contain l ¼ 1 (they all also contain partial wave l ¼ 3):

iÞ ΛPC ¼ T−−
1 in the rest frame jP⃗j2 ¼ 0;

iiÞ ΛC ¼ A−
1 in the moving frame jP⃗j2 ¼ 1 and

iiiÞ ΛC ¼ A−
1 in the moving frame jP⃗j2 ¼ 2;

where each irreducible representation corresponds to a
different inertial frame, with total momentum P⃗. The values
of jP⃗j2 are given in units of ð2π=LÞ2. Note that charge
conjugation C is a good quantum number in all frames,
whereas parity P is a good quantum number only in the rest
frame. In order to reliably extract the relevant low energy
spectrum, a large basis of interpolators fOig that includes
single-meson as well as two-meson operators in all the
irreps is required.
For the single-meson interpolators, we follow the pro-

cedure proposed in Refs. [37,38] and construct all inter-
polators with up to two gauge covariant derivatives. As a
first step in the analysis, the spectrum is extracted using a
basis of these single-meson interpolators and, following the

spin identification procedure discussed in Ref. [20], the
continuum quantum numbers JP of the levels in the energy
region of interest are identified. In this way, we can
understand the quantum numbers of the energy levels
that are related to a naive c̄c description that enter into
our phase shift analysis.
The two-meson interpolators are built using the

projection

OD̄Dðp⃗1 þ p⃗2Þ ¼
X

R∈Gðp⃗1þp⃗2Þ
TΛ
r;rðRÞ�fD̄ðRp⃗1ÞDðRp⃗2Þ

− D̄ðRp⃗2ÞDðRp⃗1Þg; ð13Þ

where p⃗1 and p⃗2 are the momenta of the scattering particles
such that P⃗ ¼ p⃗1 þ p⃗2, R is a group element of the point
symmetry group G of the inertial frame with momentum P⃗,
TΛ
r;rðRÞ is the representation for the group element R in the

irrep Λ and r is the row of the irrep Λ. As D̄D is the
predominant decay mode of the ψð3770Þ resonance, we
include D̄D interpolators for all momentum combinations
within the relevant low energy region. In Table I, we show
the two-meson interpolators considered in our calculation
in each of the lattice irreps being analyzed. In this study, we
neglect the p-wave decay J=ψη and in addition the final
states including three or more hadrons, such as J=ψπþπ−

and J=ψπ0π0.
The inclusion of two-meson interpolators in the basis

brings additional Wick contractions. We compute all
relevant Wick contraction diagrams for the single- and
two-meson operators (see Fig. 1 of Ref. [16]). We exclude
diagrams with disconnected charm quark contractions,
that lead to the decay of charmonium into light hadrons.
The correlation functions constructed from the single and
two meson operators are averaged over the spin and
momentum polarization to increase the statistical precision.
We also bin our data in blocks of size equal to one, two and
four to correctly address the autocorrelation of our con-
figurations. For further details, see Appendix A.

TABLE I. List of two-meson interpolators OD̄D used in each
lattice irrep ΛðPÞC. For brevity we use the simplified notation
D̄ðp2

1ÞDðp2
2Þ, which refers to two-meson interpolators, with good

charge conjugation C, built from a D̄ and D meson operator with
momentum p⃗1 and p⃗2, respectively in units of 2π=L. The full
expressions for these interpolators are much longer and are
omitted for brevity.

jP⃗j2 ΛðPÞC OD̄D ¼ D̄ðp2
1ÞDðp2

2Þ
Oh 0 T−−

1 D̄ð1ÞDð1Þ
Dic4 1 A−

1 D̄ð1ÞDð0Þ
D̄ð2ÞDð1Þ

Dic2 2 A−
1 D̄ð2ÞDð0Þ

D̄ð3ÞDð1Þ
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The extraction of the energy levels proceeds via a
variational approach [39–41] by solving a generalized
eigenvalue problem (GEVP)

CijðtÞvinðtÞ ¼ λnðtÞCijðt0ÞvinðtÞ;
λnðtÞ ∝ e−tE

lat
n ð1þOðe−ΔEntÞÞ ð14Þ

for the correlation matrices in Eq. (12). We set t0 ¼ 2 in our
analysis. The eigenvalues λnðtÞ are fitted to a single or a
double exponential function and the quality of the fits is
compared to estimate the best fitting intervals. We remark
that increasing t0 leads to consistent results, however, the

errors also increase. Corrections to these fit forms arise
when using open boundary conditions in the temporal
direction and the source or sink time slice of the correlation
function is close to one of the boundaries. However, all our
measurements are made in the bulk of the lattice, 28 time
slices away from either boundary, and no such corrections
are observed.
In Figs. 1 and 2, we present the finite volume excited

energy spectrum (above the J=ψ) in all the three frames
studied for κc ¼ 0.12522 and κc ¼ 0.12315, respectively.
The statistical uncertainty is smaller on the H105 ensemble,
in part due to the larger number of configurations analyzed
compared to U101. The color coding of the levels indicates
the quantum numbers. Blue levels are related to the ψð2SÞ
bound state and the green levels are identified to have
quantum numbers JPC ¼ 3−−.3 The remaining levels in
red arise from charmonia with JPC ¼ 1−− and from D̄D

FIG. 2. Energy spectrum Elat
n in various lattice irreducible

representations for κc ¼ 0.12315, with the same notations and
color coding as in Fig. 1.FIG. 1. Energy spectrum Elat

n in various lattice irreducible
representations for κc ¼ 0.12522 for the U101 (L ¼ 24) and
H105 (L ¼ 32) ensembles. The blue energy levels correspond to
the naive ψð2SÞ energy levels, while the green points have been
identified as having JPC ¼ 3−−. The red points correspond to
the remaining energy levels, which arise from charmonia with
JPC ¼ 1−− and from D̄D. Black solid lines show the energies
of the noninteracting D̄ðp2

1ÞDðp2
2Þ lattice energy levels, where

p2
1;2 ¼ 0, 1 or 2, respectively in units of ð2π=LÞ2. The black

dashed line in the rest frame indicates the D̄D threshold, while the
grey dashed lines refer to the DsDs and D̄D� thresholds.

3This state appears twice for P⃗2 ¼ 2 according to [38] and
Table I of [20]: one level has helicity zero and the other helicity
two.

STEFANO PIEMONTE et al. PHYS. REV. D 100, 074505 (2019)

074505-6



scattering levels shifted due to interaction. We extract up to
4 or 5 excited states for each lattice irrep considered.
Within the energy range explored, we also observe a

2−− level in the A−
1 ðjP⃗j2 ¼ 2Þ spectrum. The helicity two

components of the 2−− state appear in this irrep as can be
seen from Table II of [38] and Table I of [20]. Taking the
naive energy level for κc ¼ 0.12522 and using the con-
tinuum dispersion relation, we determine the mass of this
state in its rest frame to be 3825(8)MeV, which is consistent
with the lowest 2−− charmonium state observed by Belle
[42] and BESIII [43]. The coupling of this excitation
with the rest of the spectrum is expected to be negligible
as, in a study of vector channel scattering of two equal mass
pseudoscalar mesons, JP ¼ 2− is an unnatural quantum
number and l ¼ 2 is an irrelevant partial wave. This level is
absent when we omit the relevant 2−− interpolators from the
operator basis, while the rest of the spectrum remains
unaffected. Hence we exclude this level from the amplitude
analysis and also do not show it in the figures.
The thresholds for the channels DsDs and D̄D�, which

are omitted in our simulations, are shown in Fig. 1 and 2.
These thresholds are lower than some of the employed
energy levels on the NL ¼ 24 ensemble, however we
expect that the effect of the omitted channels is very
small because they appear in p-wave and they open at
relatively high energy. Note that there are no close-by
two-particle levels of the omitted channels because they
appear in the p-wave. The influence of the omitted
channels on the results from the NL ¼ 32 ensemble is
expected to be negligible.4

B. Approach to dispersion relations and
charm-quark discretization errors

The lattice energy levels presented in Figs. 1 and 2 are
inputs to the quantization condition given in Eq. (1) (realized
using the TwoHadronsInBox package of Ref. [28]), which is
based on continuum dispersion relations. However, lattice
energy levels are subject to discretization effects and can

deviate from continuum expectations. Such lattice artifacts
are larger in magnitude for charm than for the light quarks u,
d and s, since, in dimensionless units, 1 ∼ amc ≫ amu=d;s

even on many currently available lattices. At finite lattice
spacing a, there are non-negligible deviations of the
dispersion relation Elat

D ðpÞ of the D-meson from its con-
tinuum counterpart

Econt
D ðp⃗Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ jp⃗j2
q

: ð15Þ

As is evident from Table II, there are non-negligible
deviations from Econt

D ðp⃗Þ particularly for the smaller physi-
cal volume (for which the lattice momentum is larger),
and hence care is required when extracting the scattering
matrix in the D̄D channel. In this section we describe our
approach to this issue.
First, we determine the energy shift of each interacting

eigenstate with total momentum P⃗ with respect to the
nearest noninteracting state D̄ðp⃗1ÞDðp⃗2Þ

ðΔEÞs ¼ ðElatÞs − ðElat
Dðp⃗1ÞÞs − ðElat

Dðp⃗2ÞÞs; ð16Þ

where p⃗1;2 ¼ n⃗1;2 2π
L and p⃗1 þ p⃗2 ¼ P⃗. All three energies

on the right-hand side (r.h.s.) are extracted from their
corresponding eigenvalues of the GEVP, separately. Here,
ðElatÞs is the energy of the interacting D̄D system,
presented in Sec. IVA, while ðElat

Dðp⃗1ÞÞs is the energy of

a single D meson with momentum p⃗1 measured on the
lattice. All are extracted on a given bootstrap or jackknife
sample s. If the scattering matrix is equal to the identity, the
phase shift is equal to zero and hence the energy shifts in
Eq. (16) should be equal to zero. Given that the quantiza-
tion condition is based on the continuum dispersion
relation,5 we ensure this important constraint is satisfied
by using the energies

TABLE II. Lattice energies of D meson for different momenta p2 compared to the continuum values from Eq. (15). Above p2 are
given in units of ð2π=LÞ2. The spin-averaged charmonium mass of Eq. (6) is also given.

aEDðp2 ¼ 0Þ aEDðp2 ¼ 1Þ aEDðp2 ¼ 2Þ aMav

κc ¼ 0.12522, NL ¼ 24 lat 0.7732(9) 0.8132(10) 0.8516(11) 1.2318(20)
cont � � � 0.8163(9) 0.8573(8) � � �

κc ¼ 0.12522, NL ¼ 32 lat 0.7711(6) 0.7942(5) 0.8166(6) 1.2348(13)
cont � � � 0.7957(9) 0.8296(8) � � �

κc ¼ 0.12315, NL ¼ 24 lat 0.8453(13) 0.8814(10) 0.9164(65) 1.3559(20)
cont � � � 0.8849(13) 0.9228(12) � � �

κc ¼ 0.12315, NL ¼ 32 lat 0.8433(6) 0.8642(5) 0.8844(6) 1.3587(14)
cont � � � 0.8659(8) 0.8878(8) � � �

4We have verified that masses and couplings of the extracted
charmonia from theNL ¼ 32 ensemble alone are compatible with
the ones based on combined fits of all volumes.

5The Lüscher Z-functions, that enter the box matrix B in the
quantization condition, have poles at energies E ¼ Econt

Dðp⃗1Þ þ
Econt
Dðp⃗2Þ with p⃗1;2 ¼ n⃗1;2 2π

L and p⃗1 þ p⃗2 ¼ P⃗, while tan δ in the
Lüscher-type relations is a sum of terms with Z-functions in the
denominator. Therefore δ ¼ 0 at those energies E.
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ðEcalcÞs ¼ ðΔElatÞs þ ðEcont
Dðp⃗1ÞÞs þ ðEcont

Dðp⃗2ÞÞs ð17Þ

as input to Eq. (1). The energies ðEcont
Dðp⃗1ÞÞs and ðEcont

Dðp⃗2ÞÞs
are computed from Eq. (15) using the lattice momenta
p⃗1;2 and the D-meson mass at rest (also determined
from the bootstrap or jackknife sample s). Note that, the
energies Ecalc are equal to Elat in the continuum limit
a → 0 by construction [Eqs. (16) and (17)]. Furthermore,
the above Ecalc also clearly provides a zero phase-shift
when ΔE in Eq. (16) is zero, even if non-negligible
heavy-quark discretization effects are present in our
simulation.

V. RESULTS FOR CHARMONIA
WITH JPC = 1− − AND 3− −

The ground state in the vector channel is the J=ψ ,
while the first excited state, the ψð2SÞ, lies below the
open charm decay threshold. Beyond these two states,
there is a relatively narrow resonance, the ψð3770Þ with
Γexp ≈ 27 MeV, and a broader resonance, the ψð4040Þ,
both which can decay to D̄D in p-wave.
The near-threshold charmonium resonance ψð3770Þ is

the main target in this investigation. In particular, we
aim to extract the pole position of the ψð3770Þ and its
coupling to D̄D, which is related to the ψð3770Þ decay
width. The study of the vector channel provides a
benchmark for our simulations enabling us to assess
systematic uncertainties which will also arise when
considering more complex cases where several decay
channels are involved (and for which the experimental
situation is unclear). We assume that the ψð3770Þ
resonance is only coupled with the D̄D scattering
channel and hence its parameters can be completely
determined from the elastic D̄D scattering amplitude.
Experimentally, the ψð3770Þ decays into D̄D with a
branching ratio of 93 −9

þ8
% [44]. In this work, we neglect

the effects from other hadronic decay modes, such as
J=ψη, J=ψπ0π0 and J=ψπþπ−, which collectively have a
branching ratio below 0.2%. We also neglect decays into
light hadrons through charm-annihilation.
Our second aim is to study the lowest 3−− charmonium

resonance. A candidate for this state referred to as the
Xð3842Þ6 was recently discovered by LHCb in D̄D decay
and has width Γexp ≈ 2.8 MeV [21].

A. Fits of the phase shift

We perform a combined fit of the energy levels calcu-
lated on the U101 and H105 ensembles using bootstrapping

for the determination of the uncertainties (see Appendix A
for details). The ground state level in each frame,
corresponding to J=ψ , is excluded from our fits. We
include the energy level corresponding to the ψð2SÞ to
use the maximal information from our spectrum and to
correctly describe the spectrum in the vicinity of the
threshold. The fitting forms we have explored for the
vector channel are the “double-pole”

p3 cotðδ1Þffiffiffi
s

p ¼
�

G2
1

m2
1 − s

þ G2
2

m2
2 − s

�−1
; ð18Þ

inspired by two states in the region of interest, the ψð2SÞ
and the ψð3770Þ7; and the “quadratic” form

p3 cotðδ1Þffiffiffi
s

p ¼ Aþ Bsþ Cs2; ð19Þ

where p2 ¼ s=4 −m2
D. Other parametrizations were inves-

tigated. A linear form did not describe the data well; a
triple-pole form would require additional data at large
momenta to enable a third pole to be resolved; a double
pole form with an additional constant is described in
Appendix C.
Although many partial wave amplitudes in principle

contribute to the finite volume spectrum in any given
irrep starting at the D̄D threshold, the effect of higher
partial waves should be small, unless there is a reso-
nance contributing to a higher partial wave in the energy
region of interest. The spin-identified finite volume
spectrum for charmonium from our previous investiga-
tion [20] indicates a low lying JPC ¼ 3−− resonance,
that contributes to the l ¼ 3 partial wave. In order to
investigate the effects of such a low-lying l ¼ 3 partial
wave excitation on the rest of the discrete spectrum, we
parametrize it with a simple Breit-Wigner form given by

p7 cotðδ3Þffiffiffi
s

p ¼ m2
3 − s
g23

: ð20Þ

Our fits include all the fourteen excited energy
levels we have been able to determine on the H105
and the U101 ensembles. For both κc, the fits are
more constrained by the data from the H105 ensemble.
The “double pole” fit is presented for the 1−− channel in
Fig. 3(a) for κc¼0.12522 and in Fig. 3(b) for κc ¼ 0.12315.

6The LHCb collaboration has not identified the quantum
numbers of this state but assumes JPC ¼ 3−− as the mass and
width of the Xð3842Þ fit model expectations.

7Here cotðδ1Þ ¼ 0 at s ¼ m2
1 and s ¼ m2

2. Between
these two energies, cotðδ1Þ has a pole and T has a zero at

s ¼ G2
2
m2

1
þG2

1
m2

2

G2
1
þG2

2

. The presence of a pole in cotðδ1Þ allows to

fulfill easily the consistency check in Sec. V C and the require-
ment that the parametrization should not predict unobserved
energy levels.
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For this parametrization [and Eq. (20)], we have been able
to fit all our data with

ðapÞ2lþ1 cotðδÞffiffiffiffiffiffiffi
a2s

p

¼

8>>><
>>>:

�
½0.63ð33Þ�2

½1.4966ð30Þ�2−a2sþ
½3.69ð37Þ�2

½1.5457ð32Þ�2−a2s

�
−1

l¼ 1

½1.568ð11Þ�2−a2s
½0.07ð3Þ�2 l¼ 3

ð21Þ

for κc ¼ 0.12522 with a χ2=d:o:f: ¼ 0.5, while
we have

ðapÞ2lþ1 cotðδÞffiffiffiffiffiffiffi
a2s

p

¼

8>>><
>>>:

�
½0.40ð50Þ�2

½1.63ð1Þ�2−a2s þ
½4.15ð13Þ�2

½1.6745ð17Þ�2−a2s

�
−1

l ¼ 1

½1.6883ð85Þ�2−a2s
½0.025ð17Þ�2 l ¼ 3

; ð22Þ

for κc ¼ 0.12315 with a χ2=d:o:f: ¼ 0.3.
The quadratic fit is presented for the 1−− channel

in Fig. 4(a) for κc ¼ 0.12522 and in Fig. 4(b) for
κc ¼ 0.12315. Compared to the double pole fit form,
the minimum of the correlated χ2 is more unstable
across different bootstrapping resamples, resulting in an
asymmetric distribution of the fitted parameters with
long tails. We therefore quote asymmetric uncertainties
for this parametrization. The fitted quadratic functional
form for κc ¼ 0.12522 is equal to

FIG. 4. p3 cot δ=
ffiffiffi
s

p
in the vector channel for (a) κc ¼ 0.12522

and (b) κc ¼ 0.12315, respectively. The red curve represents a
“quadratic” fit to the data. Color coding and conventions are as
in Fig. 3.

FIG. 3. p3 cot δ=
ffiffiffi
s

p
in the vector channel for (a) κc ¼ 0.12522

and (b) κc ¼ 0.12315, respectively. The red curve represents a
“double pole” fit. Only data points obtained from energy levels
arising from charmonia with JPC ¼ 1−− and from D̄D are shown
in the figures. Furthermore, we omit results for p3 cotðδÞ= ffiffiffi

s
p

with errors larger than 0.004 for clarity. The V ¼ 323 (V ¼ 243)
data are indicated by orange (blue) points. Finally, the violet error
band is determined from the central 68% of the bootstrap
distribution of the fitted curve. The distribution is in some cases
asymmetric and not centered on the red curve.
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ðapÞ2lþ1 cotðδÞffiffiffiffiffiffiffi
a2s

p ¼
8<
:

−0.601ðþ200
−240Þ þ 0.554ðþ200

−170Þða2sÞ − 0.1267ðþ380
−440Þða2sÞ2 l ¼ 1

½1.5639ðþ83−14Þ�2−a2s
½0.058ðþ94−55Þ�2

l ¼ 3
ð23Þ

with a χ2=d:o:f: ¼ 1.32, while for κc ¼ 0.12315

ðapÞ2lþ1 cotðδÞffiffiffiffiffiffiffi
a2s

p ¼
8<
:

−0.08ðþ11
−13Þ þ 0.107ðþ100

−80 Þða2sÞ − 0.028ðþ15
−17Þða2sÞ2 l ¼ 1

½1.6869ðþ33−32Þ�2−a2s
½0.042ðþ53−22Þ�2

l ¼ 3
ð24Þ

with a χ2=d:o:f: ¼ 1.15.
The quality of our fits for the combined channel case

is presented in Figs. 5, 6, 7 and 8, in terms of the Ω
function,

Ωðμ; AðsÞÞ ¼ detðAÞ
detððμ2 þ AA†Þ12Þ ; ð25Þ

as introduced in Ref. [28] to minimize the χ2 in the
“determinant residual method.” Here the matrix AðsÞ is
the argument of the determinant in Eq. (1) and μ ¼ 8 is a

regularization parameter, see Appendix A for further details
on the choice of μ. Each crossing of theΩ function with the
vertical axisΩ ¼ 0 represents a predicted energy level from
our parametrization, which can be compared with our
observed energy spectrum. The number of energy levels
is indeed equal to the number of solutions of Ω ¼ 0 in the
energy region between E ≃mψð2SÞ (the blue energy level)
and the highest level. In particular, there are two approx-
imately degenerate energy levels when the fittedΩ-function
has a double zero (this occurs for 3−− when P2 ¼ 2). We
remark that our scattering amplitude captures the energy

FIG. 5. Ω-function in the three lattice irreducible representa-
tions in various frames for the vector channel resulting from the fit
of all energy levels using the “double pole” fit ansatz for the
phase shift for κc ¼ 0.12315. The horizontal black lines help to
identify the exact position of the energy levels. In particular,
thicker lines are visible if two energy levels are close one another.

FIG. 6. Ω-function in the three lattice irreducible representa-
tions in various frames for the vector channel resulting from the fit
of all energy levels using the “double pole” fit ansatz for the
phase shift for κc ¼ 0.12522.
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dependence only in the energy region where we have data
and is not applicable outside of this region. There is an
additional crossing of Ω ¼ 0 in certain irreps for κc ¼
0.12315 in Fig. 5, however, it occurs for E < mψð2SÞ. The
amplitude is not constrained and is, therefore, not appli-
cable there.8

The parameters for the 3−− resonance are quite unstable
across the bootstrap samples, resulting in large uncertain-
ties, especially for the coupling g3. To check the stability of
the fits in the vector channel, we have also performed an
alternative analysis: the levels related to JPC ¼ 3−− are
identified (following the methods utilized in Ref. [20]) and
excluded from the fits. The resulting couplings and masses
for the 1−− resonance are found to be compatible with the
values quoted above and we can therefore conclude that the
influence of the 3−− resonance on the ψð3770Þ is negligible
in our simulation.

B. Bound states, virtual bound states and resonances

Experiments and lattice QCD determine the scattering
amplitudes tl for real energies. The physical interpretation

in terms of (virtual) bound states and resonances is however
conventionally performed by looking at poles of the tlðsÞ in
Eq. (2), continued to the complex s-plane

tlðsÞ ¼
1

ρ cotðδlÞ − iρ
;

ρ ¼ 2pffiffiffi
s

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

m2
D

s

r
: ð26Þ

The two Riemann sheets I and II, from the square root
branch cut are defined to have ImðρÞ > 0 and ImðρÞ < 0,
respectively.9 The product

ρ cot δl ¼
2

p2l

�
p2lþ1 cot δlffiffiffi

s
p

�
ð27Þ

is an analytic function of s only, where our lattice results for
p2lþ1 cot δl=

ffiffiffi
s

p
were expressed in terms of s in Sec. VA.

FIG. 7. Ω-function in the three lattice irreducible representa-
tions in various frames for the vector channel resulting from the fit
of all energy levels using the “quadratic” fit ansatz for the phase
shift for κc ¼ 0.12315.

FIG. 8. Ω-function in the three lattice irreducible representa-
tions in various frames for the vector channel resulting from the fit
of all energy levels using the “quadratic” fit ansatz for the phase
shift for κc ¼ 0.12522.

8This additional crossing would not occur if the slope of
p3 cot δ1=

ffiffiffi
s

p
was slightly bigger (in terms of the absolute value)

in the energy region E < mψð2SÞ of Fig. 9(b) (see also Appendix C
for details).

9The square-root branch cut for ρ is chosen in the conventional
sense, such that it runs from the threshold s ¼ 4m2

D to þ∞ along
the positive real axis. We neglect the effects from the left hand cut
and from the freedom in choosing the real part of iρ in Eq. (26)
(such as using a Chew-Mandelstam phase space), either of which
results in pole structure deep below the energy region being
studied.
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The scattering amplitude tl in Eq. (26) has a pole at a
given p if cot δðpÞ ¼ i. A bound state appears as a pole of
the tl matrix at p ¼ iκB, i.e., on the real axis below the
scattering threshold on the first Riemann sheet. A virtual
state appears as a pole at p ¼ −iκB, i.e., on the real axis on
the second Riemann sheet. In both cases κB denotes a real
positive number. It is convenient to express these pole
conditions in terms of the quantity p2lþ1 cot δ, which is
considered in the Sec. VA for l ¼ 1, 3. Such poles appear if
the conditions

p2lþ1 cotðδlÞ ¼ −ðp2Þl
ffiffiffiffiffiffiffiffiffi
−p2

q
ðbound stateÞ ð28Þ

p2lþ1 cotðδlÞ ¼ ðp2Þl
ffiffiffiffiffiffiffiffiffi
−p2

q
ðvirtual bound stateÞ ð29Þ

are fulfilled. A resonance corresponds instead to a pair
of poles away from the real axis above threshold on the
second sheet, influencing the physical region in the
first sheet.

C. Consistency check for a bound state
in partial wave l

The SðpÞ ¼ e2iδðpÞ matrix for a bound state has a pole at
p ¼ iκB, as discussed in the previous section. The analy-
ticity of the SðpÞ matrix near the real energy axes implies
the sign of the prefactor in front of the pole to be

SðpÞ ¼ −
ð−1Þliβ2
p − iκB

; ð30Þ

where β2 is a real and positive number. This functional form
is derived from the general form of the solutions for SðkÞ
continued to complex p in Ref. [45] [see Eq. (7.60)] and
applied for s-wave in, for example, in Ref. [46].
Equation (30) must be satisfied for all bound states, but
it does not apply to virtual bound states. We have explicitly
verified that the relation (30) with positive β2 is satisfied for
s-wave and p-wave bound states in 3D nonrelativistic
quantum mechanics for various forms of the potential
[square well, Yukawa, Wood-Saxon, and several other
forms of the type VðrÞ ¼ 1

rn exp ð−ArmÞ].
Let us express the condition in Eq. (30) in terms of

p2lþ1 cotðδlÞ in Eq. (28) which was fitted from our data.
For this purpose we consider the dependence of the
quantity

p2lþ1 cotðδlÞ −
�
−ðp2Þl

ffiffiffiffiffiffiffiffiffi
−p2

q �
ð31Þ

on p2 near the bound state pole, where it equals zero in
Eq. (28). Inserting in Eq. (31) cot δ ¼ iðSþ 1Þ=ðS − 1Þ

with S from Eq. (30), and expressing p with p2 as
p ¼ ijpj ¼ i

ffiffiffiffiffiffiffiffiffi
−p2

p
, we obtain

p2lþ1 cotðδÞ −
�
−ðp2Þl

ffiffiffiffiffiffiffiffiffi
−p2

q �

¼ −
2ð−1Þlð−p2ÞlðκB

ffiffiffiffiffiffiffiffiffi
−p2

p
þ p2Þ

ð−1Þlβ2 − κB þ
ffiffiffiffiffiffiffiffiffi
−p2

p : ð32Þ

Taking the derivative of the previous expression with
respect to p2 and evaluating it at p2 ¼ −κ2B, we get

d
dp2

�
p2lþ1 cotðδÞ−

�
−ðp2Þl

ffiffiffiffiffiffiffiffiffi
−p2

q ������
p2¼−κ2B

¼−
κ2lB
β2

< 0:

ð33Þ

The above condition implies that the slope of p2lþ1 cot δ
in terms of p2 has to be smaller10 than the slope of
−ðp2Þl

ffiffiffiffiffiffiffiffiffi
−p2

p
at the position of the bound state in partial

wave l, while it does not apply for virtual bound states.
Note that the position of the bound state is where these two
curves cross. The condition for s-wave was referred to as a
sanity-check in Ref. [46].
Let us now turn to the fitted phase shifts in Sec. VA and

investigate which results satisfy the condition of Eq. (30) or
equivalently the consistency check of Eq. (33). The slope of
p2lþ1 cotðδÞ (the red curves in Fig. 9) has to be smaller than
the slope of −ðp2Þl

ffiffiffiffiffiffiffiffiffi
−p2

p
(the blue curve in Fig. 9) where

these two curves cross. This is satisfied for the double-pole
fits, while it is not satisfied for the quadratic fit as can be
seen from Fig. 9. Note that all these slopes are negative, and
in this case the absolute value of slope for p2lþ1 cotðδÞ
has to be larger than the absolute value of slope for
−ðp2Þl

ffiffiffiffiffiffiffiffiffi
−p2

p
.

D. Bound states in the vector channel,
and mass and coupling of the ψð3770Þ

The physical parameters for bound states and resonances
are based on our fits of DD̄ scattering in p-wave. The first
step is to ensure that our fitted parametrizations fulfill
all the physical requirements, and in particular the con-
sistency check given by the condition in Eq. (33). The
double-pole fits in Sec. VA satisfy this condition, while the
quadratic fits do not, as explained in the previous sub-
section. Therefore, in the following, in terms of the physics
conclusions we focus on the double-pole fits.
The absolute value of the resulting amplitude tl¼1ðsÞ

[Eqs. (26) and (27)] in the complex energy plane is shown
in Figs. 10 and 11 for κc ¼ 0.12522 and 0.12315, respec-
tively. The locations of these poles on both Riemann sheets
are collected in Fig. 12. These poles are related to (virtual)

10Note that this applies for the values of these quantities, not
for absolute values of these quantities.
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bound states and resonances according to the general
criteria from Sec. V B. The final masses of various states
will be quoted according to

m ¼ mlat −Mlat
av þMexp

av ; ð34Þ

where the mass splitting ½m −Mav�lat with respect toMav of
Eq. (6) is determined from the lattice. Figure 13 and III
summarize our results for various states, which are
detailed below:

(i) κc ¼ 0.12522 (mD ¼ 1762ð2Þ MeV): For our
lighter charm quark mass there is a complex con-
jugated pair of poles in the second sheet corres-
ponding to the ψð3770Þ resonance, see Fig. 10(b).
Figure 10(a) shows a single pole of the t-matrix
on the real axis in the first Riemann sheet, corre-
sponding to the bound state ψð2SÞ. In addition,
there is a virtual bound state on the real axis on the
second sheet.
The parameters for the ψð3770Þ resonance are

extracted from the linearized (Breit-Wigner) behav-
ior of Eq. (21) in the resonance region

p3 cot δ1ffiffiffi
s

p
����
s≃m2

¼ 6π

g2
ðm2 − sÞ; Γ ¼ g2p3

6πs
: ð35Þ

FIG. 10. The amplitude modulus jtl¼1j of Eq. (2) for D̄D
scattering in the vector channel plotted in the complex energy
plane for κc ¼ 0.12522. The bound state (ψð2SÞ) is the pole on
the real axis of the first Riemann sheet (a), while the resonance
[ψð3770Þ] appears on the second Riemann sheet (b) as poles off
the real axis above the scattering threshold. In the same position, a
shoulder appears on the first sheet above threshold.

(a)

(b)

(c)

(d)

FIG. 9. ðapÞ3 cotðδ1Þ (red curves) for double pole (for (a) κc ¼
0.12522 and (b) κc ¼ 0.12315) and quadratic fits (for (c) κc ¼
0.12522 and (d) κc ¼ 0.12315) together with curves representing
the bound state (28) and virtual bound state (29) conditions. The
intersection of the red and blue curves corresponds to a bound
state, while the intersection of the red and orange curves
corresponds to a virtual bound state.
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The resonance width Γ can not be directly compared
to experiment since the phase space (proportional to
p3) for our unphysical D meson mass is different to
that in experiment. Therefore we extract the dimen-
sionless coupling g ¼ 16.0ðþ2.1

−0.2Þ that parametrizes
the ψð3770Þ → D̄D width. This coupling agrees
within errors with the experimental value gexp ¼
18.7ð9Þ obtained from Γexp. The resonance mass
equals m2 of Eq. (18). The fitted value is given in
Eq. (21) and [utilizing Eq. (34)] this yields a final
mass m2 ¼ 3780ð7Þ MeV, which is consistent with
the experimental value of 3773.13(35) MeV.
These parameters are verified by also considering

the location of the resonance pole in the amplitude
of Eq. (21), located at mpole

2 þ 1
2
Γpole ¼ 3780ð4Þ−

0.97ð63Þi MeV. The pole is plotted in Fig. 12. The
value of Γpole results from the formula on the right in
Eq. (35) to a coupling g ¼ 17ð9Þ,11 consistent with
the value quoted in the previous paragraph.

The mass of the ψð2SÞ bound state is obtained
from p3 cotðδÞ= ffiffiffi

s
p

of Eq. (21) by finding a pole for
real energies below threshold according to Eq. (28):
it corresponds to the crossing of the red and blue
curves in Fig. 9(a). The resulting mass in Table III is
about 20 MeV smaller than the experimental mass.

(ii) κc ¼ 0.12315 (mD ¼ 1927ð2Þ MeV): ψð3770Þ is a
shallow bound state for our heavier charm quark
mass, in contrast to experiment where it is a strongly
decaying resonance. It corresponds to a near-thresh-
old pole in the first sheet of Fig. 11(a), arising from
the fact that the crossing of our fits with the real axis
occurs on the left of the axis origin (below threshold)
in Fig. 3(b). The mass of the bound state m ¼
3776ð7Þ MeV in Table III is determined according
to Eq. (28) and corresponds to the near-threshold
crossing of the red and blue lines in Fig. 3(b).
The ψð3770Þ cannot strongly decay into D̄D, but we
still extract the coupling g ¼ 18.9ðþ0.8

−0.7Þ, which para-
metrizes the slope of p3 cot δ1=

ffiffiffi
s

p
near the real axes

according to Eq. (35).
The ψð2SÞ corresponds to the lighter of the two

bound states. Its mass m ≃ 3687 MeV, determined
from the bound-state condition of Eq. (28), has a
large error due to the huge uncertainty of the
coupling G2 in the double-pole parametrization in
Eq. (22). This mass is consistent within errors with
the value m ¼ 3665ð9Þ MeV obtained directly from

FIG. 12. Position of the poles of the ψð3770Þ and ψð2SÞ in the
complex energy plane for κc ¼ 0.12522. The red cross on the real
axis with an error bar is the pole of the ψð2SÞ appearing on the
first Riemann sheet. The gray points represent the position of the
ψð3770Þ pole on a given bootstrap sample on the second
Riemann sheet. The green ellipse in the inset represents the
error in the position of the ψð3770Þ pole, determined from
the distribution of the points inside the inset, excluding the
outliers. Each red cross corresponds to the position of a pole
provided by the ensemble average, while the vertical red line
marks the position of the scattering threshold. The horizontal axis
is shifted and converted in physical units according to (6) as
Reð ffiffiffi

s
p Þ ¼ Elat −Mlat

av þMexp
av .FIG. 11. The amplitude modulus jtl¼1j of Eq. (2) for D̄D

scattering in the vector channel plotted in the complex energy
plane for Riemann sheets I (a) and II (b) for κc ¼ 0.12315.
The semitransparent vertical plane represents the position of the
D̄D threshold.

11The phase space p2=s in (35) is extracted from mpole ≃
3780 MeV and threshold position 3772 MeV in Fig. 12 (phase
space in simulation gives also compatible result).
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the first-excited energy-level at P⃗ ¼ 0 and L ¼ 32.
This agreement is expected as the influence of the
threshold on a state which lies about 150MeV below
is very small. We quote the latter value as the final
result for the ψð2SÞ mass at this κc.

Our results for the masses of the ψð3770Þ and ψð2SÞ
states are summarized and compared to experiment in
Fig. 13 and Table III. The mass m and the coupling g for
the ψð3770Þ agree with the experimental values within
errors, which applies to both charm-quark masses con-
sidered. The mass of the ψð2SÞ is about 2σ below the
experimental value, which is not unreasonable given
the lack of continuum and quark-mass extrapolations to
the physical values.
The above results (that are based on a combined fit to

two different ensembles) are subject to a technical subtlety.
Both ensembles have been generated with the same bare
lattice parameters, but with different lattice sizes. Hence
sub-leading exponentially suppressed finite volume effects,
which are generally neglected in the Lüscher finite volume
formalism, can sometimes lead to different physical sit-
uations for different box sizes. Such a delicate situation can
happen when a pole singularity in the complex energy
plane is expected to be very close to the threshold: a small

volume may exhibit different physics from that of a larger
volume. For example, in our case for the lighter D-meson
mass, we see that our NL ¼ 24 data have a tendency to
prefer a bound state (unlike the NL ¼ 32 data), although
the data are compatible with a resonance within the large
errors. In order to confirm that our combined fit does not
lead to conclusions that are different from the physical
situation in the larger volume (where the neglected expo-
nential corrections are small) we performed an analysis of
the NL ¼ 32 data alone. We find the mass and the coupling
from such an analysis to be m2 ¼ 3782ð7Þ MeV and
g ¼ 15ðþ2

−1Þ, which are in agreement with the results from
our combined fits.

E. JPC = 3− − resonance

The LHCb collaboration recently reported the discovery
of the Xð3842Þ charmonium state in the D̄D invariant mass
[21] with a mass mexp ≃ 3842 MeV, a very narrow width
Γexp ≃ 2.8 MeV and likely quantum numbers JPC ¼ 3−−.
The presence of such a 3−− resonance was explored by
fitting the parametrization of the K̃ matrix in Eq. (1) to our
energy levels including the Breit-Wigner form in Eq. (20)
for l ¼ 3.

TABLE III. Summary ofmasses for resonances and bound stateswith JPC ¼ 1−− and 3−− studied in our lattice simulation and compared
to experiment [44]. The dimensionless coupling g parametrizes the width Γ ¼ g2p3=ð6πsÞ of the resonance decay ψð3770Þ → D̄D from
Eq. (35). Lattice results are given for two charm quark masses, where the corresponding values ofmD are given at the top of the table. The
splittingsm −Mav andm − 2mD are obtained taking solely lattice or solely experimental values ofmasses. The finalmassm resulting from
our simulation is quoted according toEq. (34). The last column contains the lattice results from the two-flavor simulation ofRef. [16] based
on “fit (i)” described in Sec. V F. For the masses marked with (*) we quote the kinetic masses (M2 in Eq. (3.1) of Ref. [16]) which are the
appropriate masses for the Fermilab approach [47,48] pursued in Ref. [16]. These differ from the rest masses by discretization effects.

Lattice (present work) Lattice (present work) Experimental
JPC κc ¼ 0.12315 κc ¼ 0.12522 D̄0D0=DþD− Lattice[16]

mD [MeV] 1927(2) 1762(2) m̄D ≃ 1867 MeV 1763ð22Þð18Þ�
mDs

[MeV] 1981(1) 1818(1) 1968.34(7)
Mav [MeV] 3103(3) 2820(3) 3068.6(2) 3119ð9Þð33Þ�
mπ [MeV] 280 280 m̄π ≃ 137 MeV 266

ψð3770Þ 1−− Bound state Resonance Resonance [44] Resonance
g 18.9ðþ0.8

−0.7Þ 16.0ðþ2.1
−0.2Þ 18.7ð9Þ 13.2(1.2)

m −Mav[MeV] 707(7) 711(7) 704.25(35) 715(7)
m − 2mD[MeV] −43ð8Þ 9(7) 38.52(35)
m ½MeV� 3776ð7Þ 3780ð7Þ 3773.13ð35Þa 3784(7)

ψð2SÞ 1−− Bound state Bound state Bound state [44] Bound state
m −Mav[MeV] 596(9) 597(10) 617.347(25) 605(6)
m − 2mD [MeV] −154ð10Þ −105ð11Þ −48.383ð25Þ
m ½MeV� 3665ð9Þ 3666ð10Þ 3686.097ð25Þ 3674(6)

Xð3842Þ 3−− Resonance Resonance Resonance [21]
m −Mav[MeV] 754ðþ4

−7Þ 762ðþ10
−16Þ 773.9(2)

m − 2mD [MeV] 4ðþ9
−3Þ 59ðþ11

−16Þ 108.2(2)

m ½MeV� 3822ðþ4
−7Þ 3831ðþ10

−16Þ 3842.7ð2Þ
aWe consider PDG fit estimate as the experimental value for the mass of the ψð3770Þ resonance throughout this article.
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The resulting mass for κc ¼ 0.12522 [see Eq. (21)] is

m3−− ¼ 3831
�þ10

−16
	
MeV: ð36Þ

The mass obtained from our lattice simulation is consistent
with the mass of the discovered Xð3842Þ state. This adds
confidence to the interpretation of the Xð3842Þ as a 3−−

charmonium resonance. The results for both values of the
charm quark mass are compared to experiment in Table III.
Our simulation is not sensitive to the width of this very
narrow resonance since there are no D̄D eigenstates in the
very narrow energy region m� Γ.12 In particular, the finite
volume lattice energy by itself would lead to compatible
results for the mass of the Xð3842Þ. For this reason we can
not compare the width or the Xð3842Þ → D̄D coupling
with experiment.

F. Comparison to previous results

Elastic D̄D scattering and its relation to the ψð2SÞ and
ψð3770Þ resonances have previously been investigated in a
lattice study in Ref. [16] for mπ ≃ 156 MeV and 266 MeV.
In this subsection we compare our current study to these
older results, focusing on those from the mπ ≃ 266 MeV
ensemble, since the pion mass is similar and the errors
are smaller. The most significant improvement over the

calculation in Ref. [16] lies in the use of two lattice volumes
at the same lattice spacing and light-quark masses, com-
bined with calculations in moving frames. The latter is
facilitated by a new approach to dealing with discretization
effects described in Sec. IV B along with the spin identi-
fication techniques pioneered in Ref. [49] and employed on
our ensemble(s) in Ref. [20]. The use of two volumes and
several moving frames results in a significant increase in
the number of energy levels obtained, which renders more
information on the dependence of the l ¼ 1, 3 scattering
amplitudes on Ecm.
One important consequence is that the JPC ¼ 3−−

resonance, which contributes to the same irreducible
representations on a hypercubic lattice, can now be
included in our fits. In Ref. [16] it had to be assumed
that after omission of an energy level related to the pre-
sence of this resonance, its effect on the remaining finite
volume energies was negligible. For our current ensembles
this assumption can instead be tested, and our results agree
with the mass of the recently observed Xð3842Þ [21].
The l ¼ 1 scattering amplitude in Ref. [16] was con-

strained only at three values of Ecm and the results for
ψð2SÞ and ψð3770Þ were summarized in Table V of
Ref. [16] for two types of fits. Fit (ii) in Eq. (5.6) was
similar to the “quadratic fit” used in the present work and
does not satisfy the consistency check of Eq. (30) for the
ψð2SÞ bound state (this constraint on the physical para-
metrizations was not checked in Ref. [16]). Fit (i) was the
Breit-Wigner fit of the energy region above threshold and
rendered the ψð3770Þ resonance parameters summarized in
the right column of Table III; the mass is consistent with
our present result while the coupling is somewhat smaller.
The ψð2SÞ mass m ¼ 3674ð6Þ MeV obtained from the
naive energy level (second level in Table III of Ref. [16])
agrees within errors with our present result. The two-pole
fit with four parameters could not be performed using just
three energy levels in Ref. [16].
Another advantage of the present study is the use of the

CLS gauge ensemble library, which in principle enables
us to extend the current study to further ensembles with
different lattice spacings and light quark masses, while
maintaining our current setup.

VI. CONCLUSIONS

We determined the elastic D̄D scattering amplitude in
the energy region of the ψð2SÞ bound state and the ψð3770Þ
resonance from lattice QCD simulations using the finite
volume Lüscher method. The results we obtain are from
simulations with 2þ 1 flavors of dynamical light quarks at
unphysical masses and at a single lattice spacing. We
investigate different parametrizations of the p-wave scat-
tering amplitude and impose a consistency check on the
extracted bound state poles to ensure the physical bound
state constraint in Eq. (33). Using a “double pole” para-
metrization defined in Eq. (18), the bound state mass of the

FIG. 13. The masses (m) of JPC ¼ 1−− and 3−− states obtained
for the two charm quark masses in our simulation, compared to
experiment. The masses are determined according to Eq. (34) and
the location of the D̄D threshold, denoted by dotted lines, is
presented in a similar way as ð2mD −MavÞlat þ ðMavÞexp. The
magenta diamonds denote resonances extracted from D̄D scat-
tering in partial waves l ¼ 1 or l ¼ 3. The magenta triangles
indicate bound states extracted from D̄D scattering. The blue
crosses denote states extracted as energy levels in the finite box.
All masses are also summarized in Table III.

12This applies for the width Γ ¼ Γexp, while the width Γ is even
narrower on our lattice due to smaller phase space.

STEFANO PIEMONTE et al. PHYS. REV. D 100, 074505 (2019)

074505-16



ψð2SÞ and the resonance parameters of the ψð3770Þ have
been extracted from a simultaneous fit to the energy
spectrum from three different moving frames and two
lattice volumes.
The lattice study of a near-threshold charmonium state

away from the physical point requires a careful choice of the
charm quark mass for the strong decay to D̄D to be allowed.
To this end, on each gauge field ensemble, we employ two
charm quark mass values leading to D-meson masses
100 MeV below and 60 MeV above the physical value.
The masses of the ψð2SÞ and ψð3770Þ, measured as
splittings from the spin-averaged ground-state mass, are in
good agreement with experiment for these values of the
heavy quark mass. The result for the coupling g of the
ψð3770Þ resonance with the D̄D scattering channel is
compatible with the experimental value, even for the charm
quark mass where the ψð3770Þ is a bound state. The results
from both heavy quark masses employed in this work, the
results from previous existing work and the corresponding
experimental values are summarized in Table III.
We also investigate the D̄D scattering in partial wave

l ¼ 3 that contains 3−− resonances. One of the aims is to
investigate how this partial wave contributes to the finite
volume spectra. Including the lattice energy levels related
to the lowest 3−− state in the amplitude analysis and
parametrizing the corresponding D̄D scattering amplitude
with a Breit-Wigner form [Eq. (20)], we are able to extract
the mass of this state. Nice agreement is found with the
mass of the recently discovered Xð3842Þ, which is inter-
preted as a 3−− charmonium resonance. However, we are
unable to reliably determine its coupling with the D̄D
scattering channel as the finite volume spectrum of D̄D
scattering channels are not sufficiently dense to be sensitive
to its decay width. We also find our results for the vector
channel remain unchanged with the exclusion of the l ¼ 3
partial wave from the amplitude analysis and hence con-
clude the influence of the low lying 3−− resonance on the
lattice estimates for the ψð3770Þ resonance parameters is
negligible in our calculation.
The main challenge for future determinations of scatter-

ing amplitudes in the charmonium spectrum will be the
presence of multiple coupled channels for the study of
conventional and exotic resonances away from the D̄D-
threshold. A first preliminary analysis of the scalar channel
has been presented in Ref. [50], and we plan to complete
the study in a forthcoming publication. In addition it would
be desirable to obtain a denser set of points by using more
and/or larger volumes, to reduce the discretization effects
by calculations on CLS ensembles with a smaller lattice
spacing, and to investigate the approach to the physical
point by utilizing ensembles with lighter pion masses. In
particular, discretization errors are an important source of
systematic uncertainty of our current work. Using the CLS
trajectory with physical strange-quark mass [32] would be
particularly attractive, as the splitting between theD andDs

mesons on these ensembles is closer to the physical
splitting and therefore results in a larger energy window
for elastic D̄D-scattering.
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APPENDIX A: ERROR DETERMINATION

A combined fit of the phase shift from the energy
spectrum in various lattice irreducible representations and
ensembles requires a careful consideration of all the sources
of correlations and systematic uncertainties. The fitting
interval used to extract the energy levels from Eq. (14) is
a well-known source of systematic error. An example of our
fits is presented in Fig. 14.We have performed fits for several
different intervals and compared the stability of the raw
energy shifts as defined in Eq. (16). We observed that the
dependency of the energy shifts on the fitting interval of
the scattering D-mesons is relatively small. There is a
dependence on the starting point of the fit of the excited
charmonium state, that stabilizes when the excited state
contamination is under control. The raw correlators are
binned to take into account the autocorrelations in our data
and we have chosen a bin size equal to two, after observing
that the error is stable if larger bin sizes are used.
Jackknife and bootstrapping are methods widely

employed in lattice QCD to determine the errors on
secondary quantities extracted or fitted from the raw data.
Each bootstrapping resample consists of 255 and 492
randomly chosen configurations from the U101 and
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H105, respectively. The first step in the analysis is the
determination of the covariance matrix for the correlated χ2

minimization of our K-matrix parametrization. This is
estimated simply as the standard correlation between two
variables as given by bootstrapping. The minimum of the
correlated χ2, defined from the Ω-function of Eq. (25) as
given in Eqs. (38) and (44) of Ref. [28], is recomputed for
each bootstrapping resample. We extract from here the
distribution of secondary derived quantities such as the
parameters of the K-matrix or the positions of the poles in
the complex plane. The Ω-function depends on an addi-
tional regularization parameter μ, and we have verified that
varying μ in the range between 2 and 16 does not change
the central value nor the error of the fitted parameters
significantly. The crossing with the vertical axis, determin-
ing the expected spectrum, does not change significantly if
μ is varied in the above interval, see Fig. 15. Note however
that the value of μ determines the slope and the curvature of
the Ω-function at the crossing.
Given that our fits combine two different ensembles with

a different number of configurations, single elimination
jackknife is not an optimal choice. However, it is worth to
compare bootstrapping and jackknife if we restrict the fits
to a single ensemble, say U101. Looking to Fig. 16, we can
see that jackknife (for which the spread of the resamples is
smaller by a factor

ffiffiffiffiffiffiffiffiffiffiffi
Nconf

p
compared to bootstrapping)

determines the error as a linear approximation of the
Lüscher Z-functions around the central value of the phase
shift. It might happen however that a given energy level lies
very close to a turning point of the Z-function, as in the
case of the four rightmost points of Fig. 16. In this situation,
the strong nonlinear nature of the phase-shift analysis could
result in a systematic underestimation of the error when

using jackknife. For the same reason, the bootstrap dis-
tribution of the phase shift is not symmetric and has long
tails. We therefore conclude that bootstrapping provides a
more reliable determination of the uncertainty compared to
jackknife for phase-shift studies.
The error on the fitted parameters, as well as on the

couplings and masses of the charmonium states, is deter-
mined as the standard deviation of the bootstrap samples,
except for the case when the distribution is asymmetrical
or has long tails. In this situation, we quote asymmetric
uncertainties as determined by the interval that fits 68% of

FIG. 16. Comparison of the error on the phase shift in the vector
channel as determined from bootstrapping and jackknife for the
U101 ensemble. Every green (red) point represents the phase shift
determined on a given bootstrap (jackknife) sample. The blue
cross represents the ensemble average. For jackknife, we rescale
the resampling points by a factor

ffiffiffiffiffiffiffiffiffiffiffi
Nconf

p
.

FIG. 15. Comparison of the Ω-function for the “double pole”
fit-form for κc ¼ 0.12522 for different values of the regulariza-
tion parameter μ (green for μ ¼ 16, blue for μ ¼ 2 and red for
μ ¼ 8). The crossings with the origin on the vertical axis are not
affected by the choice of μ.

FIG. 14. Effective masses of the eigenvalues of the GEVP for
the first five excited states for ensemble H105 and κc ¼ 0.12522
in the irrep A−

1 with total momentum jP⃗j2 ¼ 2. The masses
obtained from fitting the eigenvalues with a single exponential are
shown by the green band. The width of the band indicates the
error on the mass.
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the bootstrap samples, i.e., by an interval that excludes 16%
of the bootstrap samples from the left and right tail.

APPENDIX B: CORRELATION MATRICES OF
THE FITTED PARAMETERS

In this Appendix we include the correlation matrix C
between the parameters κi of the “double pole” fits
described in Sec. VA which fulfill the consistency checks
of Sec. V C. The correlation matrix is defined as

Cij ¼
hðκi − κ̄iÞðκj − κ̄jÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðκi − κ̄iÞ2ihðκj − κ̄jÞ2i

q ðB1Þ

where the expectation values appearing in the numerator
and the denominator are computed directly from the
bootstrapping distributions and κ̄i ¼ hκii.
For the “double pole” fit form, the six parameters κi

are given in the order m2, m1, m3, G2, G1 and g3. The
correlation matrices are

C¼

0
BBBBBBBBB@

1 −0.07 −0.33 −0.12 −0.11 0.06

−0.07 1 −0.04 0. −0.61 −0.02
−0.33 −0.04 1 −0.14 −0.14 −0.23
−0.12 0 −0.14 1 0.06 −0.19
−0.11 −0.61 0.14 0.06 1 −0.06
0.06 −0.02 −0.23 −0.19 −0.06 1

1
CCCCCCCCCA
;

for κc ¼ 0.12522, and

C¼

0
BBBBBBBBBB@

1 −0.05 −0.68 −0.26 0.12 −0.01
−0.05 1 −0.21 0.04 0.60 −0.01
−0.68 −0.21 1 0.02 −0.26 −0.04
−0.26 0.04 0.02 1 0.07 0.06

0.12 0.60 −0.26 0.07 1 −0.13
−0.01 −0.01 −0.04 0.06 −0.13 1

1
CCCCCCCCCCA
;

for κc ¼ 0.12315.

APPENDIX C: ALTERNATIVE
PARAMETRIZATION AIMING TO
DESCRIBE THE FULL VECTOR
CHARMONIUM SPECTRUM

The “double pole” fit form is able to reproduce the
charmonium spectrum including the ψð2SÞ, as discussed in
Sec. VA. The presence of an additional crossing of the Ω-
function below the ψð2SÞ is an interesting feature that
suggests the possibility of describing the full charmonium
spectrum including even the J=ψ . For example, by using a

slightly modified “double pole” fit form with an additional
linear parameter ρ

p3 cotðδ1Þffiffiffi
s

p ¼
�

G2
1

m2
1 − s

þ G2
2

m2
2 − s

þ ρ

�−1
: ðC1Þ

The corresponding Ω-function determined from the fits are
presented in Fig. 17. While the couplings and the masses

FIG. 17. Ω-function in the T−−
1 lattice irreducible representa-

tion in rest frames for the vector channel resulting from the fit
of all energy levels including the J=ψ using the modified
“double pole” of Eq. (C1) fit ansatz. (a) and (b) show the two
different volumes for κc ¼ 0.12315, while (c) and (d) show the
same for κc ¼ 0.12522.
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G1, G2,m1 andm2 are consistent within error with Eq. (21)
and (22) after the inclusion of the J=ψ , the parameter ρ
fluctuates strongly across the bootstrapping resamples.
Given that the spectrum below the ψð2SÞ is well separated
from the two resonances we are investigating, we can safely

exclude the J=ψ from our main analysis. We emphasize
again that our focus is the scattering amplitude in the
energy region above the ψð2SÞ (the consistency check of
Sec. V C would not be satisfied for the J=ψ with the
parametrization (C1)).
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