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1 Introduction and summary

Despite the fact that QCD is not conformal, supersymmetric, or infinitely strongly coupled,

and has only a small number (N = 3) of colors, the comparison of heavy ion phenomenology

with predictions based on AdS/CFT duality (of “holography”) has turned out to be quite

fruitful [1–16]. At temperatures above the QCD phase transition the lack of supersym-

metry is of minor importance and effects caused by the other differences can be described

– 1 –



J
H
E
P
0
8
(
2
0
1
9
)
0
0
5

perturbatively, either on the QCD or gravity side of the duality. For example, corrections

due to large but finite values of the ’t Hooft coupling λ = g2
YMN relevant for QCD can

be calculated perturbatively on the gravity side, while the effects of non-conformality can

be studied within QCD either perturbatively or using lattice gauge theory. Hence, it has

been possible to identify which results from holographic modeling of heavy ion collisions

should be more, or less, applicable to real QCD. Examples of observables with relatively

modest corrections due to finite coupling and non-conformality effects include the viscos-

ity to entropy density ratio [18], 4πη/s = 1 + 15 ζ(3)λ−3/2 ≈ 1.4 for λ ≈ 12, and the

short hydrodynamization time predicted by AdS/CFT duality based on calculations of the

lowest quasinormal mode (QNM) frequency [19]. For the latter quantity, finite coupling

corrections are larger than for η/s, but not so much as to change the picture qualitatively.

In this paper we study the hydrodynamic flow resulting from asymmetric collisions

of planar shocks in strongly coupled, maximally supersymmetric Yang-Mills theory. Our

work extends previous work on planar shock collisions [2, 3, 6, 11, 14] and, in particular,

the observation by Chesler, Kilbertus, and van der Schee of “universal” flow with simple

Gaussian rapidity dependence in the special case of symmetric collisions of planar shocks [1].

For such symmetric collisions, the authors of ref. [1] found that on a post-collision surface

of constant proper time lying within the hydrodynamic regime, τ = τinit & τhydro ≈ 2/µ,

the fluid 4-velocity is very well described by boost invariant flow,

uτ = 1 , uξ = u⊥ = 0 , (1.1)

(with ds2 ≡ −dτ2 + τ2 dξ2 + dx2
⊥), while the proper energy density is well described by a

Gaussian in spacetime rapidity,

ε(ξ, τinit) = µ4A(µw) e−
1
2
ξ2/σ(µw)2 . (1.2)

This proper energy density ε is defined as the timelike eigenvalue of the rescaled stress-

energy tensor,

T̂µν ≡ 2π2

N2
c

Tµν , (1.3)

so T̂µν uν = −ε uµ. The energy scale µ characterizes the transverse energy density of each

incoming shock and is defined by the longitudinally integrated (rescaled) energy density of

either incoming shock,

µ3 ≡
∫
dz T̂ 00(z ± t)incoming−shock . (1.4)

The longitudinal width w of the incoming shocks is defined as the energy density weighted

rms width [1]. For the specific choice τinit = 3.5/µ, ref. [1] found

A(µw) ≈ 0.14 + 0.15µw − 0.025 (µw)2 , (1.5a)

σ(µw) ≈ 0.96− 0.49µw + 0.13 (µw)2 . (1.5b)

For studying asymmetric planar shock collisions, we choose to work in the center-of-

momentum (CM) frame in which the transverse energy densities of the incoming shocks

are equal,

µ ≡ µ+ = µ− . (1.6)
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In this frame the two incoming shocks will have widths w+ and w−, and physical results

may now depend on two independent dimensionless combinations which we take to be µw+

and µw−.

Over a substantial range of incoming shock widths {w+, w−} ranging from 0.35/µ

down to 0.075/µ, we find that the spacetime region in which hydrodynamics is applicable

has little or no dependence on the shock widths, or their asymmetry, and is sensitive only

to the initial energy scale µ. Using the same definition of a hydrodynamic residual and

the 15% figure of merit chosen in ref. [1], we find that the boundary of the hydrodynamic

region of validity remains at

µ thydro ≈ 2 , (1.7)

even for highly asymmetric collisions.

Similarly, the fluid 4-velocity resulting from asymmetric collisions remains very close

to ideal boost invariant flow (1.1), while the post-collision proper energy density ε remains

well-described by a Gaussian. However, the amplitude A, mean ξ̄, and width σ of the

Gaussian rapidity dependence are now functions of both incoming shock widths,

ε(ξ, τinit) = µ4A(µw+, µw−) e−
1
2

(ξ−ξ̄(µw+,µw−))2/σ(µw+,µw−)2 . (1.8)

For asymmetric collisions, the outgoing energy density peaks at a non-zero mean rapidity

ξ̄ which is well-described by

ξ̄(µw+, µw−) ≈ Ξ
w+ − w−
w+ + w−

, (1.9)

where the coefficient Ξ is constant for τ > 2 (as shown below in figure 6) and has the value

Ξ ≈ 7 × 10−2. We find that the amplitude A is well-described by the geometric mean of

the symmetric collision results,

A(µw+, µw−) ≈
√
A(µw+)A(µw−) . (1.10)

In fact, after shifting the rapidity by ξ̄, we find that the geometric mean of the full sym-

metric collision rapidity distributions provides a good approximation to the asymmetric

collision results. For the width of the rapidity distribution, this implies that

σ(µw+, µw−) ≈
[

1

2
σ(µw+)−2 +

1

2
σ(µw−)−2

]−1/2

. (1.11)

For asymmetric collisions, the fit to the data provided by the this Gaussian model

is good, as may be seen below in figure 7, but is not quite as perfect as for symmetric

collisions. A more elaborate model, discussed in section 4.2, involves a weighted geometric

mean of the symmetric collision profiles and provides an even better description, valid over

a wider range of rapidity.

Given the above extension of the “universal” flow resulting from planar shock collisions

to the asymmetric case, we now have the ingredients needed to predict initial conditions for

the hydrodynamic flow resulting from collisions of bounded projectiles with finite transverse

extent, provided the transverse size of the incident projectiles is large compared to their
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(Lorentz contracted) longitudinal widths, so that spatial gradients in transverse directions

are small compared to longitudinal gradients. The following algorithm provides the leading

term in an expansion in transverse gradients:

• Regard the colliding system as composed of independent subregions in the transverse

plane, or “pixels”, with each pixel having a size δ ≡ 1/Qs which is small compared

to the transverse extent of the projectiles, but large compared to their longitudinal

widths.

• Let j label independent transverse-plane pixels, with p±z (j) the portion of the longi-

tudinal momentum of each incident projectile residing within pixel j.

• For each pixel j, transform to the CM frame in which the total longitudinal mo-

mentum within the pixel vanishes, and evaluate the resulting energy scale µ(j) and

incident projectile widths w±(j) for this pixel. Explicitly, µ(j)6 = 4 p+
z (j) p−z (j)/δ4.

• Use the planar shock results (1.1), (1.8)–(1.11), plus the constitutive relation for a

conformal fluid (4.2), to construct each pixel’s stress-energy tensor Tµν(j) at the

initial proper time τinit.

• Transform each pixel’s stress-energy tensor Tµν(j) from its CM frame back to the

original (lab) frame.

The result is a representation of the full system’s stress-energy tensor on the τinit initial

surface, with transverse variation on the pixel scale δ, suitable for use as initial data

for further hydrodynamic evolution. This procedure uses strongly coupled holographic

dynamics to map energy density profiles of the initial projectiles, which may include initial

state fluctuations and have non-vanishing impact parameter, into hydrodynamic initial

data, without the need to perform full 5D numerical relativity calculations which are very

challenging [8]. As noted above this procedure, based on planar shock results, should be

viewed as the first term in an expansion in (small) transverse gradients. It would, of course,

be interesting to derive, systematically, subsequent terms in this expansion.

Pixels near the periphery of the overlap region of colliding nuclei, illustrated in figure 1,

will have decreasing CM frame transverse energy density µ3 due to the rapid fall-off of the

transverse energy density of the colliding nuclei near their periphery. Given the fact that

the hydrodynamization time scales inversely with µ (1.7), this implies that pixels near the

periphery of the overlap region (shown in orange) will enter the hydrodynamic regime much

later than pixels in the middle of the overlap region.1 How this impacts an appropriate

choice of the initial Cauchy surface used in hydrodynamic modeling, and the resulting

uncertainties in estimates of, for example, the elliptic flow parameter v2, is deserving of

further study.

1When transforming from the CM frame back to the lab frame, the hydrodynamization time thydro
is nearly Lorentz invariant. More precisely, as discussed in section 4.2 and in ref. [1], the boundary of

the hydrodynamic regime is well-described as a Lorentz invariant hyperboloid relative to an origin with a

modest temporal displacement.
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Figure 1. Sketch of a peripheral heavy ion collision. The almond shaped overlap region forms

a quark-gluon plasma, not the spectator portions (shown in grey). The hydrodynamization time

increases rapidly as one approaches the boundary of the overlap region, whose shape influences the

value of the experimentally measured elliptic flow parameter v2.

The remainder of this paper is organized as follows. In section 2 we review the char-

acteristic formulation of general relativity in asymptotically anti-de Sitter spacetimes and

the initial data for planar shock collisions, largely following ref. [2]. Section 3 describes the

numerical procedure and software used to compute shock collisions, highlighting several

issues in greater detail than in ref. [2]. Results are presented in section 4, followed by a

brief final discussion in section 5. Readers primarily interested in results should feel free to

turn directly to section 4. Additional computational details are presented in the appendix.

2 Planar shock collisions in asymptotically AdS spacetime

2.1 Characteristic formulation

As shown in refs. [2–4, 8, 17], the characteristic formulation of general relativity, origi-

nally developed by Bondi and Sachs [20, 21], provides a computationally effective method

for handling the diffeomorphism invariance of general relativity when studying collisions

dynamics in asymptotically AdS spacetimes.

The characteristic formulation is based on a null slicing of the geometry in which

coordinates are directly tied to a congruence of null geodesics. We will use X ≡ (x, r)

to denote 5D coordinates, with x = (x0, xi) ≡ (t, xi) representing ordinary Minkowski

coordinates on the boundary of the AdS spacetime. Requiring that t = const. surfaces

be null hypersurfaces implies that the one-form k = ∇t is null, 0 = kA kA = gABkAkB,

which means that gtt = 0. Requiring the spatial coordinates xi to be constant along the

null rays tangent to kA implies that 0 = kA ∂Ax
i = gAB(∂At)(∂Bx

i), which means that

gti = 0. These conditions on the contravariant components of the metric then imply that

grr = gri = 0. Hence, under these assumptions the most general line element may be

written in the generalized infalling (or Eddington-Finkelstein) form,

ds2 = 2dt
[
β(X) dr −A(X) dt− Fi(X) dxi

]
+Gij(X) dxidxj . (2.1)

– 5 –
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It will be convenient to factor the spatial metric Gij into a scale factor Σ times a unimodular

matrix ĝ,

Gij(X) ≡ Σ(X)2 ĝij(X) , (2.2)

with det(ĝ) ≡ 1. One may fix one further condition, controlling the parameterization of

the null geodesics tangent to kA. Bondi and Sachs [20, 21] chose to fix the scale factor

Σ(X) = r, convenient for problems with spherical symmetry. We instead follow Chesler

and Yaffe [2] and choose to set

β(X) = 1 . (2.3)

This condition leaves a residual reparametrization invariance in the metric (2.1) consisting

of radial shifts,

r → r̃ = r + δλ(x) , (2.4)

with the shift δλ depending in an arbitrary fashion on the boundary coordinates x. Under

such a shift, the metric coefficient functions transform as

A(x, r)→ Ã(x, r̃) ≡ A(x, r̃−δλ) + ∂t δλ(x) , (2.5a)

Fi(x, r)→ F̃i(x, r̃) ≡ Fi(x, r̃−δλ) + ∂i δλ(x) , (2.5b)

Gij(x, r)→ G̃ij(x, r̃) ≡ Gij(x, r̃−δλ) . (2.5c)

From these transformations of A and Fi it is apparent that they may be regarded as

temporal and spatial components of a gauge field representing radial shifts. It is possible

to write the Einstein equations in a manner which is manifestly covariant under radial

shifts. To do so, it is convenient to define modified temporal and spatial derivatives,

d+ ≡ ∂t +A(X) ∂r , di ≡ ∂i + Fi(X) ∂r . (2.6)

Given these definitions, the Einstein equations,

RAB − 1

2
RgAB + Λ gAB = 0 , (2.7)

acquire a nested structure with the schematic form,(
∂2
r +QΣ[ĝ]

)
Σ = 0 . (2.8a)(

δij ∂
2
r + PF [ĝ,Σ]ji ∂r +QF [ĝ,Σ]ji

)
Fj = SF [ĝ,Σ]i . (2.8b)(

∂r +Qd+Σ[Σ]
)
d+Σ = Sd+Σ[ĝ,Σ, F ] . (2.8c)(

δk(i δ
l
j) ∂r +Qd+ĝ[ĝ,Σ]klij

)
d+ĝkl = Sd+ĝ[ĝ,Σ, F, d+Σ]ij . (2.8d)

∂2
rA = SA[ĝ,Σ, F, d+Σ, d+ĝ] . (2.8e)(

δji ∂r +Qd+F [ĝ,Σ]ji

)
d+Fj = Sd+F [ĝ,Σ, F, d+Σ, d+ĝ, A]i . (2.8f)

d+ (d+Σ) = Sd2+Σ[ĝ,Σ, F, d+Σ, d+ĝ, A] , (2.8g)
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Each equation is a first or second order linear radial differential equation for the indicated

metric component(s) or their modified time derivatives. The square brackets of each coeffi-

cient or source function indicates on which fields the term depends. Explicit form of these

equations, for the case of planar shocks, are given in appendix A.

Given the rescaled spatial metric ĝ on any time slice, plus suitable boundary con-

ditions, each radial differential equation may be integrated in turn, thereby determining

both the other metric coefficients and the time derivative of ĝ on that time slice. The

required boundary conditions may be inferred from the near-boundary behavior which can

be obtained by solving equations (2.8a)–(2.8g) order by order in r. One finds [2],

A =
1

2
(r+λ)2 − ∂tλ+ a(4) r−2 +O(r−3) , Fi = −∂iλ+ f

(4)
i r−2 +O(r−3) , (2.9a)

Σ = r+λ+O(r−7) , ĝij = δij + ĝ
(4)
ij r−4 +O(r−5) , (2.9b)

d+Σ =
1

2
(r+λ)2 + a(4) r−2 +O

(
r−3
)
, d+ĝij = −2 ĝ

(4)
ij r−3 +O(r−4) . (2.9c)

The coefficients a(4), f
(4)
i and ĝ

(4)
ij cannot be determined by a local near-boundary analysis.

Note that ĝ
(4)
ij is necessarily traceless (because ĝ has unit determinant). These coefficients

are mapped, via gauge/gravity duality, to the stress-energy tensor of the dual field theory.

In our infalling coordinates this relation is given by [2]

2π2

N2
c

〈Tµν〉 ≡
〈
T̂µν
〉

= h(4)
µν +

1

4
h

(4)
00 ηµν , (2.10)

with h
(4)
00 ≡ −2a(4), h

(4)
0i ≡ −f

(4)
i , and h

(4)
ij ≡ ĝ

(4)
ij . Here Nc is the number of colors in the

dual field theory, and η = diag(−1,+1,+1,+1) is the Minkowski metric tensor. Explicitly,〈
T̂00

〉
= −3

2
a(4) ,

〈
T̂0i

〉
= −f (4)

i ,
〈
T̂ij
〉

= ĝ
(4)
ij −

1

2
a(4) δij . (2.11)

The radial shift parameter λ(x) is completely undetermined in expansion (2.9) and

may be chosen arbitrarily. As in previous work [2–4, 8, 17], we use this freedom to set the

radial position rh(x) of the apparent horizon equal to a fixed value,

rh(x) = rh . (2.12)

It is sufficient to solve for the spacetime geometry in the region between the horizon and the

boundary because information hidden behind the horizon cannot propagate outward and

influence boundary observables. Thus, the choice (2.12) results in a convenient rectangular

computational domain.

With our metric ansatz (2.1), demanding a fixed radial position of the apparent horizon

leads to a condition on d+Σ [2]. To derive this condition, one may write the tangents to

a radial infalling null congruence in the form kA(X) = µ(X)∇Aφ(X) for some scalar

functions φ and µ. Demanding that the one-form k be null allows one to reexpress the

time derivative of φ in terms of spatial derivatives. Requiring that the congruence satisfy

the (affinely parameterized) geodesic equation kAkB;A = 0 allows one to reexpress the time

– 7 –
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derivative of the multiplier function µ in terms of its spatial derivatives. Given these time

derivatives, one may then compute the expansion θ = ∇ · k on the time slice of interest.

Demanding that the expansion vanish on a surface φ(X) = const. implies that this surface

is an apparent horizon. Applying this procedure to the metric ansatz (2.1) and specializing

to the case φ(X) = r leads to the desired condition [2],

d+Σ
∣∣
rh

= −1

2
(∂rΣ)F 2 − 1

3
Σ∇ · F . (2.13)

This condition must hold at all times if the radial position of the horizon is to remain fixed

at some given value rh. Consequently, on every time slice the condition

∂t d+Σ
∣∣
rh

= ∂t

[
−1

2
(∂rΣ)F 2 − 1

3
Σ∇ · F

]
(2.14)

is also required to hold. When combined with the Einstein equation (2.8g), this final

condition leads to an elliptic differential equation for the value of the metric function A

on the (apparent) horizon. Explicit forms of the horizon equation (2.13) and the horizon

stationarity condition (2.14) may be found in appendix A.

2.2 Solution strategy

To solve the nested form (2.8) of the Einstein equations, one requires appropriate boundary

data which picks out the correct solution for each equation. The needed boundary condi-

tions are determined by the homogeneous solutions of each equation and the asymptotic

behavior of the desired solutions. This information is summarized in table 1. From this

table one sees that a choice for the radial shift λ along with values of the asymptotic coef-

ficients a(4) and f
(4)
i are needed as boundary conditions for the Σ, Fi, and d+Σ equations

and serve to fix the coefficient of a homogeneous solution to the corresponding differential

equation. The asymptotic coefficients a(4) and f
(4)
i , proportional to the boundary energy

and momentum density, are dynamical degrees of freedom (in addition to the metric ĝij)

and are determined by integrating the stress-energy continuity equation as discussed below.

The radial shift λ(x) will also be treated as a dynamical degree of freedom, as described

below, and adjusted in a manner which ensures that the apparent horizon remains at a

fixed radial position.

Given this boundary data, together with the value of ĝ on some given time slice, the

radial differential equations (2.8a)–(2.8d) may each be integrated in turn, at every spatial

location xi, leading to a determination of d+ĝij on the time slice. Two boundary conditions

are needed to integrate the second order equation (2.8e) for the metric function A. As seen

in table 1, the value of the radial shift λ supplies one condition. The second boundary

condition is supplied by the value of A at the apparent horizon, which is determined by

solving the horizon stationarity condition (2.14).

Having determined both d+ĝ and A, the actual time derivative for the rescaled spatial

metric ĝ is then reconstructed as

∂t ĝij = d+ĝij −A∂r ĝij . (2.15)

– 8 –
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field homogeneous solution(s) near-boundary behavior

Σ ∼ σ(0) r1 + σ(1) r0 Σ ∼ r + λ

Fi ∼ f (0)
i r2 + f

(4)
i r−2 Fi ∼ −∂iλ+ f

(4)
i r−2

d+Σ ∼ a(4) r−2 d+Σ ∼ 1
2 (r+λ)2 + a(4) r−2

d+ĝij ∼ r−3/2 d+ĝij ∼ −2 ĝ
(4)
ij r−3

A ∼ a(1) r1 + a(2) r0 A ∼ 1
2 (r+λ)2 − ∂tλ

Table 1. Near-boundary asymptotic behavior of the homogeneous solutions to the radial differential

equations (2.8a)–(2.8e) for the indicated fields, together with the desired asymptotic behavior of

physical solutions. The asymptotic coefficients a(4), f
(4)
i , and ĝ

(4)
ij determine respectively the energy

density, momentum density, and traceless stress tensor of the dual field theory. The leading terms

in the near-boundary behavior of all fields except Σ are driven by the inhomogeneous source terms

in the various equations and do not correspond to homogeneous solutions.

Knowing d+Σ and A (on a given time slice), the near boundary expansion (2.9) shows that

the time derivative of the the radial shift λ(x) may be extracted as

∂tλ = lim
r→∞

(d+Σ−A) . (2.16)

Similarly, the asymptotic coefficient ĝ
(4)
ij determining the traceless stress tensor is extracted

from the boundary limit of either r4 (ĝij − δij) or −1
2r

3d+ĝij . This information then allows

one to determine the time derivatives of a(4) and f
(4)
i using the boundary stress-energy

continuity equation, ∇µ 〈Tµν〉 = 0, which is an automatic consequence of the Einstein

equations. Explicitly,

∂t a
(4) =

2

3
∂i f

(4)
i , ∂t f

(4)
i =

1

2
∂ia

(4) − ∂j ĝ(4)
ij . (2.17)

The above procedure, involving integration of a sequence of linear ordinary differential

equations in the radial direction plus one spatial elliptic equation on the apparent horizon,

determines the time derivatives of the dynamical data {ĝij , λ, a(4), f
(4)
i } given initial values

of this data on some time slice. These time derivatives are then input into a conventional

time integrator, such as fourth order Runge-Kutta, to advance to the next time slice where

the entire process repeats.

Overall, this characteristic formulation transforms the highly non-linear coupled Ein-

stein equations into a set of nested linear ordinary differential equations and first order time

evolution equations. We solve the radial differential equations, and the horizon stationarity

equation, using spectral methods as described in some detail in section 3 and appendix C.

2.3 Planar shocks

By “planar shock” we mean an asymptotically anti-de Sitter solution of the vacuum Ein-

stein equations whose boundary stress-energy tensor describes a “sheet” of energy density

which moves at the speed of light in some longitudinal direction and is translationally

– 9 –
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invariant in the other two transverse spatial dimensions. For regular solutions, such a

sheet of moving energy density will have some smooth longitudinal profile and non-zero

characteristic thickness.

Let {xi} ≡ (x⊥, z) denote spatial coordinates separated into transverse and longitudi-

nal components, and consider shocks moving in the ±z direction. To specialize the general

infalling metric ansatz (2.1) to the case of planar shock spacetimes, we impose translation

invariance in transverse directions plus rotation invariance in the transverse plane, which

implies that all metric components are functions of only of r and x∓ ≡ t∓ z, that Fi only

has a longitudinal component, and that the (rescaled) spatial metric has the form [2],

ĝ = diag(eB, eB, e−2B) . (2.18)

Consequently,

ds2 = 2dt (dr −Adt− Fz dz) + Σ2
(
eB dx2

⊥ + e−2B dz2
)
. (2.19)

The boundary asymptotics (2.9) implies that the “anisotropy” function B behaves as

B(x∓, r) = b(4)(x∓) r−4 +O(r−5) . (2.20)

For later computational convenience, let

u ≡ 1/r (2.21)

denote an inverted radial coordinate, so that the spacetime boundary lies at u = 0.

In general it does not seem possible to find analytic forms of planar shock solutions

using the infalling Eddington-Finkelstein (EF) coordinates (2.19). But analytic solutions

are available in Fefferman-Graham (FG) coordinates [3, 8, 24]. Using {x̃µ, ρ̃} ≡ {t̃, x̃⊥, z̃, ρ̃}
as our FG coordinates, with x̃± ≡ t̃± z̃ and ρ̃ an inverted bulk radial coordinate, the metric

ds2 = ρ̃−2
(
−dx̃+ dx̃− + dx̃2

⊥ + dρ̃2
)

+ ρ̃2 h(x̃±) dx̃2
∓ , (2.22)

is a planar shock solution describing a shock moving in the ±z direction with arbitrary

longitudinal energy density profile h(z). In the calculations described below, we use simple

Gaussian profiles with width w and longitudinally integrated energy density µ3,

h(z) ≡ µ3(2πw2)−1/2 e−
1
2
z2/w2

. (2.23)

The associated boundary stress-energy tensor is just

T̂ 00(t̃, z̃) = T̂ zz(t̃, z̃) = ±T̂ 0z(t̃, z̃) = h(t̃−z̃) , (2.24)

with all other components vanishing.

Focusing, for ease of presentation, on shocks moving in the +z direction, the transla-

tional symmetries imply that the EF and FG coordinates will be related by a transformation

of the form [2],

t̃ = t+ u+ α(t−z, u) , z̃ = z − γ(t−z, u) , ρ̃ = u+ β(t−z, u) , (2.25)

and x̃⊥ = x⊥.
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As discussed above, the required initial data for the characteristic evolution scheme

consists of the anisotropy function B plus the boundary data {a(4), f
(4)
z } and the radial

shift λ. Inserting a transformation of the form (2.25) into the FG metric (2.22), a short

exercise [2] shows that

B = −1

3
ln
[
− (∂zα)2 + (∂zβ)2 + (1− ∂zγ)2 + (u+ β)4(1− ∂zα− ∂zγ)2 h

]
, (2.26)

while the boundary data is given by

a(4) = −2

3
h , f (4)

z = h , λ = −1

2
∂2
uβ
∣∣
u=0

. (2.27)

To solve for the transformation functions {α, β, γ}, one approach, used in refs. [2, 3],

is to insert the transformation (2.25) into the FG metric (2.22) and demand that the result

have the EF form (2.19).2 To simplify the resulting equations, it is helpful to redefine the

transformation functions α and β via

α = −γ + β + δ , β = − u2ζ

1 + uζ
. (2.28)

One finds [2] that the functions ζ and δ satisfy a pair of coupled differential equations,

1

u2

∂

∂u

(
u2 ∂ζ

∂u

)
+

2uH

(1 + uζ)5
= 0 ,

∂δ

∂u
− u2

(1 + uζ)2

∂ζ

∂u
= 0 , (2.29a)

while γ satisfies a decoupled equation,

∂γ

∂u
− u2

(1 + uζ)2

∂ζ

∂u
+

u4

2(1 + uζ)2

(
∂ζ

∂u

)2

+
u4H

2(1 + uζ)6
= 0 , (2.29b)

with H ≡ h +
(
t− z + u+ δ − u2ζ/(1 + uζ)

)
. The desired solutions have the near-

boundary behavior

ζ ∼ λ+O(u3) , δ ∼ O(u5) , γ ∼ O(u5) . (2.29c)

Integrating equations (2.29) with boundary conditions ensuring the behavior (2.29c), and

inserting the resulting transformation functions into eqs. (2.26) and (2.27), yields the

anisotropy function B and associated boundary data describing of a single shock.

To construct initial data for colliding shocks, we superpose counter-propagating single

shock data at an initial time t0 when the two shocks are sufficiently widely separated that

their overlap is negligible,

B(u, z, t0) = B+(u, t0−z) +B−(u, t0+z) , (2.30a)

a(4)(z, t0) = a
(4)
+ (t0−z) + a

(4)
− (t0+z) , (2.30b)

f (4)
z (z, t0) = f

(4)
z+ (t0−z)− f (4)

z− (t0+z) . (2.30c)

2An alternative approach, used in ref. [8] for more general metrics, is based on observing that the curve

defined by fixed values of the EF boundary coordinates and all values of r, XA(r) = (t0, x
i
0, r), is a null

geodesic of the EF metric (2.1) with r an affine parameter. Therefore the same path in FG coordinates,

Ỹ (X(r)), will satisfy the geodesic equation d2Ỹ A

dr2
+ Γ̃(Y )ABC

dỸ B

dr
dỸ C

dr
= 0 with Γ̃A

BC denoting the FG

coordinate Christoffel symbols. Explicit forms of the resulting equations can be found in appendix B.
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However, unlike for the other functions, the overlap of the radial shifts λ± of the left and

right moving shocks in the region close to z= 0 is significant. Since we choose the shocks on

the first time slice to be well separated, we may regard the geometry in between as deviating

negligibly from pure AdS. This justifies modifying the initial shift function λ in the neigh-

borhood of z = 0, without changing the physical data {B(u, z, t0), a(4)(z, t0), f (4)(z, t0)}.
As in ref. [2], we adjust the initial radial shift by setting

λ(z, t0) = θ+(−z)λ+(t0−z) + θ−(z)λ−(t0+z) , (2.31)

with θ±(z) ≡ 1
2

[
1− erf(−z/(

√
2w±))

]
a smoothed step function.

In practice, we slightly modify the above superposition procedure. Following refs. [2, 3],

we replace eq. (2.30b) with

a(4)(z, t0) = a
(4)
+ (t0−z) + a

(4)
− (t0+z)− 2

3
ε0 . (2.32)

From the form (2.11) of the stress-energy tensor, one sees that ε0 is a constant additive shift

in T̂ 00. In other words, ε0 is an (artificial) uniform background energy density. Adding a

small background energy density helps alleviate numerical problems, as discussed below,

and physically means that the colliding shocks will be propagating through a background

thermal medium. If the background energy density ε0 is sufficiently small compared to

the energy densities in the colliding shocks, then the background will effectively be very

cold (compared to the energy scale µ of the shocks) and there will be little dissipation to

the medium. This modification is done purely for numerical convenience and we will be

interested in results extrapolated to vanishing background energy density.

3 Computational methods and software construction

The aim of this section is to describe the construction of a planar shockwave collision code

in sufficient detail so that an interested reader could create their own version with relatively

modest effort. Those primarily interested in results should skip to the next section.

3.1 Transformation to infalling coordinates

As explained in ref. [2] and the previous section, the transformation from Fefferman-

Graham to infalling coordinates may be computed by first solving for the congruence of

infalling geodesics in FG coordinates. Or, in the special case of planar shock geometries,

one can directly solve the simplified transformation equations (2.29). We implemented both

approaches, and found them to have comparable numerical efficiency. Here, we focus on

the direct approach of solving eqs. (2.29) for the case of a right moving shock. Henceforth,

for convenience, we also set µ= 1. Appropriate factors of µ can always be reinserted via

dimensional analysis.

We solve the coordinate transformation equations (2.29) in the rectangular region

u ∈ [0, uend], z ∈ [−Lz/2, Lz/2] using Newton-Raphson iteration (i.e., linearizing each

equation in the deviation of the solution from the current approximation), and solving the

resulting linear equations using spectral methods with domain decomposition.3

3A good introduction to spectral methods may be found in, for example, ref. [22].
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Periodic boundary conditions are imposed in the longitudinal direction and functions of

z are approximated as truncated Fourier series. This is exactly equivalent to characterizing

any function f(z) by a list of its values, {fl ≡ f(zl)}, on an evenly spaced Fourier grid

composed of Nz points,

zl ≡ Lz
(
− 1

2
+ l/Nz

)
, (3.1)

for k = 0, · · ·, Nz−1. Derivatives with respect to z turn into the application of a Fourier

grid differentiation matrix Dz = ‖(Dz)kl‖ applied to the vector of function values,

f ′(zk) =
∑
l

(Dz)kl fl . (3.2)

Explicit expressions for the Fourier grid differentiation matrix components (Dz)kl are given

in appendix C. A rather fine longitudinal grid is required to accurately represent thin shocks

within a large longitudinal box. We used Fourier grids with Nz = 960 for Lz = 12 and shock

widths down to 0.075.

To represent the dependence of functions on the radial coordinate u we first decompose

the domain [0, uend] into M equally sized subdomains, and then use a Chebyshev-Gauss-

Lobatto grid with Nu points within each subdomain. This amounts to using a radial grid

composed of the points

ujk ≡
uend

2M

(
2j − 1− cos

πk

Nu−1

)
, (3.3)

for j = 1, · · ·,M and k = 0, · · ·, Nu−1. The radial dependence of some function g(u)

is represented by the list of M × Nu function values on this grid, {gjk ≡ g(ujk)}, and

derivatives with respect to u turn into the application of a (block diagonal) Chebyshev

differentiation matrix Du applied to this list of function values,

g′(ujk) =
∑
l

(Du)kl gjl . (3.4)

Explicit expressions for the components of the Chebyshev differentiation matrix Du are

given in eq. (C.12). As discussed in ref. [2], using domain decomposition (i.e., M > 1)

helps to avoid excessive precision loss in the numerical evaluation of equations near the

u = 0 boundary, and allows the use of a larger time step without running afoul of CFL

instabilities. To integrate radial equations down to uend = 2, we used radial grids with up

to M = 22 domains and Nu = 12 points within each subdomain.

The product of these 1D grids defines our 2D spectral grid. Any function f(u, z)

becomes a set of Ntot ≡M ×Nu ×Nz values on these grid points,

{fjkl ≡ f(ujk, zl)} . (3.5)

Fortunately, the differential equations (2.29) are completely local in z. So these equations,

evaluated on the 2D grid with derivatives replaced by the corresponding differentiation

matrices, do not become a single set of 2Ntot (for eq. (2.29a)) or Ntot (for eq. (2.29b))

coupled algebraic relations. Rather they yield Nz decoupled systems, each involving 2MNu

(for eq. (2.29a)) or MNu (for eq. (2.29b)) variables.
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For each set of equations, linearization around some initial, or current, guess for a

solution leads to a set of linear equations of the generic form M f = −S, where f is the

unknown vector of function deviations from the current guess, S is the vector of residu-

als, and M is the spectral approximation to the linear operator which results from the

linearization of the differential equation (s) at some given value of z.

At this point, these linear equations are singular. First, u= 0 is a regular singular point

of the differential equations (2.29a) and (2.29b); one cannot simply evaluate, numerically,

these equations at u= 0. Moreover, solutions to these differential equations are, of course,

non-unique. One must complement the differential equations with suitable boundary con-

ditions to specify a unique solution. With spectral methods, fixing one of these problems

fixes the other. Prior to linearization, one simply replaces the (ill-defined) evaluation of

the equations at u= 0 by constraints encoding required boundary conditions.

Examining equations (2.29a) and (2.29b), one sees that the most general near-boundary

behavior is

ζ ∼ ζ−1 u
−1 + λ+O(u3) , γ ∼ γ0 +O(u5) , δ ∼ δ0 +O(u5) , (3.6)

for arbitrary values of the coefficients ζ−1, λ, γ0 and δ0. We want to set the leading

coefficients ζ−1, γ0 and δ0 to zero. To implement this Dirichlet condition for γ and δ

in a manner which avoids unnecessary precision loss when computing derivatives of these

functions at the boundary, it is convenient first to redefine

γ(z, u) ≡ u3 γ̃(z, u) , δ(z, u) ≡ u3 δ̃(z, u) , (3.7)

and then reexpress equations (2.29) in terms of γ̃ and δ̃. Unwanted solutions with non-

zero boundary values for γ or δ are then simply not representable when using our spectral

representation for γ̃ or δ̃. Similarly, using our spectral representation for ζ automatically

eliminates unwanted solutions where ζ has singular 1/u behavior.

The continuum differential equations imply that γ̃ and δ̃ both vanish, and have van-

ishing first derivatives, at the boundary. To deal with the u= 0 regular singular point

in the discretized equations for γ̃ and δ̃ it is sufficient to replace the equations at u= 0

with constraints setting γ̃ and δ̃ to zero. If we wished to fix the radial shift λ by simply

specifying its value, we could similarly redefine ζ = λ+ u ζ̃ and require ζ̃ to vanish at the

boundary. However, we found it more convenient to fix λ indirectly by demanding that ζ

vanish at our chosen value of uend. Referring to eqs. (2.25) and (2.28), one sees that this

condition will make the u = uend surface coincide with a surface of constant FG radial

coordinate, ρ̃ = uend. In other words, with this condition the FG computational domain

ρ̃ ∈ [0, ρ̃end] is the same as the EF domain u ∈ [0, uend].

The net effect of the above procedure, in the discretized equations for ζ, δ̃ and γ̃

at longitudinal position zl, is to replace the the (degenerate) equations at u= 0 by the

respective constraints4

ζM,Nu−1,l = 0 , δ̃1,0,l = 0 , γ̃1,0,l = 0 . (3.8)

4Although not required, we also replaced a second row in the linearized equation for ζ by the condition

that the first derivative of ζ vanish on the boundary,
∑

j(Du)0j ζ1,j,l = 0. The continuum equations

automatically imply this behavior, but imposing it explicitly in the discretized equations helped to minimize

precision loss associated with unwanted solutions that diverge on the boundary.
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In addition to applying boundary conditions at u= 0, when using domain decomposi-

tion one must also impose continuity conditions at subdomain boundaries. Our set (3.3)

of radial grid points redundantly duplicates the interior endpoints of each subdomain,

uj,Nu−1 = uj+1,0 for j = 1, · · ·,M−1, and hence two different rows of the linear equa-

tion Mf = −S represent the differential equation evaluated at the same physical point.

One could deal with this by eliminating the duplication of subdomain endpoints and suit-

ably redefining the differentiation matrix Du. But it is even easier to fix the problem

by simply replacing one of the rows representing an interior subdomain endpoint with

a constraint equation enforcing the equality of duplicated function values at this point,

fj,Nu−1,l − fj+1,0,l = 0.5

After these row replacements, the modified linear system is reasonably well conditioned

and, with a sufficiently good initial guess, Newton iteration rapidly converges quadratically.

To generate an initial guess, it is natural to work sequentially in z. If the shock is prop-

agating in the +z direction with the profile function h(z) having its maximum at z= 0,

then at the furthest point behind the shock, z0 = −Lz/2, the geometry deviates negligibly

from pure AdS and ζ = γ̃ = δ̃ = 0 is a fine initial guess. Thereafter, we use the converged

solution at each zi as an initial guess for the solution at zi+1. This provides a good initial

guess provided the longitudinal grid spacing is sufficiently fine.

The above procedure for solving the transformation equations (2.29) using spectral

methods works well as long as the radial depth uend to which one integrates is not too

large. The key advantage of this approach is that the precision of the obtained solutions

do not degrade near the boundary, even through u= 0 is a singular point of the differential

equations. That is to say, spectral methods are excellent for finding well-behaved solutions

of equations having regular singular points. However, as uend increases the linear operators

one inverts in this Newton iteration scheme become increasingly ill-conditioned. Unfor-

tunately, the depth to which one must integrate in order to locate the apparent horizon

(discussed next) after superposing shocks grows with increasing separation of the initial

shocks. We used two strategies to cope with this difficulty.

First, following refs. [2, 3], we added a small artificial background energy density ε0
when superposing shocks as described above. Increasing the background energy density

decreases the depth at which an apparent horizon forms. Second, after using the above

approach to find the transformation functions for u < uend, we integrate further into the

bulk by switching to an adaptive 4th order Runge-Kutta integrator, with the spectral

solution at uend providing initial data. (A description of this standard integrator is given

in appendix E.) For simplicity, we choose to integrate to a fixed value u = umax, instead of

a fixed value of ρ̃.

For our chosen range of shock parameters, with widths down to w= 0.075, using a

spectral grid down to uend = 2 worked well. With a longitudinal box size Lz = 12 and

5There is a subtlety involving the choice of which row to replace as, relative to a given interior subdomain

endpoint, one row approximates u derivatives using information on one side of the endpoint, while the other

row approximates u derivatives using information on the other side. Since the behavior of the transformation

functions is fixed, and known, at the u= 0 boundary, one should regard the transformation equations (2.29)

as describing the propagation of information from the boundary into the bulk. Consequently, one should

retain the row corresponding to uj,Nu−1 and replace the row corresponding to uj+1,0.

– 15 –



J
H
E
P
0
8
(
2
0
1
9
)
0
0
5

background energy densities in the range of 1–5% of the peak energy density, it turned out

that only a modest further integration with the adaptive integrator down to umax = 2.11

was sufficient to reach the apparent horizon throughout the longitudinal box.6 Having

transformed a right-moving single shock solution to infalling coordinates, and extracted

the resulting initial data {B+, a
(4)
+ , f

(4)
z+ , λ+} for evolution using eqs. (2.26)–(2.27), a simple

reflection generates corresponding data for a left-moving shock,

B−(u, z) = B+(u,−z) , a
(4)
− (z) = a

(4)
+ (−z) , (3.9a)

λ−(z) = λ+(−z) , f
(4)
z− (z) = −f (4)

z+ (−z) . (3.9b)

We construct initial data for counter-propagating shocks by combining single shock

solutions as described earlier in eqs. (2.30)–(2.32). We chose the initial time t0 for this

superposition so that the initial separation between the shocks, ∆z0 = −2t0, is large

compared to the shock widths. We used ∆z0 = 4 for symmetric collisions of broad shocks,

∆z0 = 2 for symmetric collisions of thin shocks, and ∆z0 = 3 for asymmetric collisions

of shocks.

For thin shockwave collisions with small background energy density, avoiding numerical

instabilities associated with short wavelength perturbations is challenging. As discussed in

ref. [2], it is helpful to damp discretization induced perturbations using appropriate filtering.

We constructed and applied smoothing filters to the initial data in both longitudinal and

radial directions. Details of these filters are presented in appendix D.2.

3.2 Horizon finding

After transforming chosen single shock solutions to infalling coordinates, as just discussed,

and combining two counter-propagating shocks as shown in eqs. (2.30)–(2.32), the final

step in the construction of initial data is locating the apparent horizon which serves as an

IR cutoff in the bulk.7

In our planar shock geometries, the apparent horizon condition (2.13) becomes

0 = d+Σ +
e2B

6Σ2

(
3F 2 ∂rΣ + 2Σ ∂zF + 4F Σ ∂zB + 2F ∂zΣ

) ∣∣∣
r=rh

. (3.10)

A radial shift, r = r̄ + δλ, corresponds in our inverted radial coordinates to

u =
ū

1 + ū δλ
. (3.11)

6For the parameters which we chose, displayed in table 2 and discussed below in section 4, it turned out

that using an adaptive integrator to probe deeper into the bulk was not essential, as the apparent horizon

was found to lie within the domain of integration reached with spectral methods. However, as we used

a relaxation algorithm to find the horizon, it was convenient to have additional surplus depth available,

especially for small values of ε0, since on some early iteration steps the current guess for the apparent

horizon would lie deeper than the final value, possibly beyond the spectral solution endpoint.
7One subtlety is that the transformation to infalling coordinates is only computed to some finite depth

umax. For a given configuration of initial shocks and chosen value of the background energy density ε0, it

is a matter of trial and error to find a value of umax for the transformation which is sufficiently deep so

that the apparent horizon lies above this depth, for all values of z within the computational domain. The

required value of umax increases with the size of the longitudinal domain and separation of the initial shocks.
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If ū ∈ [0, umax] represents the radial coordinate used in the transformation to infalling

coordinates, then we wish to determine the value of a further shift δλ(z) such that con-

dition (3.10) holds at some value of uh ≡ 1/rh which may, for convenience, be chosen to

equal the same value umax from the coordinate transformation. With this choice, δλ must

be negative for the sought-after apparent horizon to lie within the coordinate transforma-

tion domain.

Equation (3.10) is a nonlinear but ordinary differential equation for the shift function

δλ(z). To solve it, we use spectral methods (with the same Fourier grid in z) combined

with a root finding routine. Linearizing equation (3.10) in δλ allows us to apply Newton

iteration. Each iteration step starts with a trial value of the radial shift, δλ(m) in iteration

m, and computes the residual (i.e., the right-hand side of eq. (3.10)) and its variation with

respect to δλ, and solves the linearized equation to find an improved value δλ(m+1) of

the shift.

To evaluate the residual and its variation, we first integrate eqs. (2.8a)–(2.8c), using the

current value of B(z, u) and λ(z), to find the auxiliary functions Σ, F and d+Σ.8 After each

step we convert the spectral representation of B(z, u) to a new radial grid with grid points

shifted according to eq. (3.11). To do so, we perform off-grid interpolation using a sum of

Chebyshev cardinal functions [22] with coefficients given by the on-grid values of B(z, u).

For our settings of longitudinal box size and shock parameters, we found it advanta-

geous to choose the initial guess δλ(0) to be 0.1. It was also helpful to start with a relatively

large background energy density ε0 of about 10% of the peak shock energy density, and

then gradually decrease ε0 during each iteration step until it reached the desired final value

before Newton iteration convergence.

During time evolution, described next, solving the horizon stationarity condition (2.14)

on each time step yields the time derivative of the radial shift thereby providing the in-

formation needed to integrate λ forward in time. (The explicit form of eq. (2.14) for our

planar shock geometries is given in eq. (A.4).) To prevent discretization errors from driving

long term drift away from the desired horizon condition (3.10), we also directly recomputed

the apparent horizon position every 10–100 time steps using the above iterative procedure.

3.3 Time evolution

As described above in section (2.2), the data on any time slice needed to integrate forward

in time consists of {B(z, u), a(4)(z), f (4)(z), λ(z)}. To compute the time derivative of this

data, we successively solve eqs. (2.8a)–(2.8e) as discussed earlier. Explicit forms of these

equations are given in eqs. (A.2a)–(A.2e) of appendix A. We use the same multi-domain

spectral methods described above in section 3.1. These methods presume that functions

being represented by their values on the spectral grid are well behaved throughout the

computational domain.9 Our functions Σ and A have divergent near-boundary behavior,

8Explicit forms of these equations are shown in appendix A. After the first integration of these equations,

one could thereafter use off-grid spectral interpolation to evaluate the radially-shifted auxiliary functions

on the spectral grid. But it is just as easy to reintegrate eqs. (2.8a)–(2.8c) on every Newton iteration step.
9See, for example, ref. [22] for a good discussion of the connection between analyticity properties and

convergence of spectral representations.
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as shown in table 1, so for computational purposes we use redefined functions in which

the leading near-boundary behavior is subtracted. For most functions, we also choose

redefinitions such that the new functions either have known non-zero boundary values or

vanish linearly at the boundary. Specifically, we use the following redefinitions,

B(u, z, t) =

(
u

1 + uλ

)3

b(u, z, t) , (3.12a)

Σ(u, z, t) =

(
u

1 + uλ

)−1

+

(
u

1 + uλ

)4

σ(u, z, t) , (3.12b)

Fz(u, z, t) = −∂zλ+

(
u

1 + uλ

)2

f(u, z, t) , (3.12c)

d+Σ(u, z, t) =
1

2

(
u

1 + uλ

)−2

+

(
u

1 + uλ

)2

d+σ(u, z, t) , (3.12d)

d+B(u, z, t) =

(
u

1 + uλ

)2

d+b(u, z, t) , (3.12e)

A(u, z, t) =
1

2

(
u

1 + uλ

)−2

+ a(u, z, t), (3.12f)

We use factors of u/(1 + uλ) = (r + λ)−1 in these redefinitions, instead of pure powers

of u, so that the new functions transform simply under radial shifts. This is natural as

it preserves manifest radial shift covariance in the equations for the new functions, but is

not essential. In relations (3.12d) and (3.12e), and henceforth, d+σ and d+b are simply

names for redefined functions encoding d+Σ and d+B, respectively, and are not themselves

modified d+ time derivatives applied to σ or b.

Referring to table 1 and eq. (2.9), one sees that the new functions b and d+b vanish

linearly as u → 0, while f and d+σ have non-zero boundary values of f
(4)
z and a(4),

respectively. The new function a has a boundary value of −∂tλ which is an output, not an

input, of the radial integration determining a.

Arranging to have constant or linear near-boundary behavior of redefined functions

minimizes the precision loss which can occur when evaluating derivatives very near the

boundary. In particular, extracting the third power of u/(1 + uλ) in the definition (3.12a)

of b is essential for the numerical stability.

After inserting the redefinitions (3.12) into the relevant radial equations (A.2a)–(A.2e),

it is crucial to simplify the resulting equations, prior to numerical implementation, in

such a way that cancellations of terms with the most divergent near-boundary behavior

are performed exactly, analytically. When each radial differential equation is written in

canonical form (with a unit coefficient of the highest order u-derivative), no term in the

inhomogeneous source term of the equation should be more singular than 1/u for first order

and 1/u2 for second order equations, otherwise unnecessary precision loss will occur during

the numerical evaluation of the equation.10

10Such analytic simplification, eliminating what would otherwise be huge cancellations near the boundary,

is essential when performing calculations using machine precision (64 bit) arithmetic. If one instead uses
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In solving the successive radial equations eqs. (2.8a)–(2.8e) [or (A.2a)–(A.2e)], we

implement the following boundary conditions at u= 0 using the row replacement technique

described in section 3.1,

σ(0, z) = 0 , f(0, z) = f (4)(z) , d+σ(0, z) = a(4)(z) , d+b(0, z) = 0 . (3.13)

Equation (2.8a) [or (A.2a)] for Σ is a second order differential equation, but after con-

version to an equation for σ both homogeneous solutions are divergent at the boundary

and lie outside our spectral representation function space. Using row replacement to en-

code σ(0, z) = 0 (which is an automatic consequence of the differential equation for σ) is

the easiest way to handle the singular boundary point on the spectral grid. For the F

equation (2.8b) [or (A.2b)], after conversion to an equation for f only one boundary con-

dition fixing the coefficient f
(4)
z of the normalizable homogeneous solution is needed as the

spectral representation for f automatically precludes any non-normalizable homogeneous

solution. Likewise for the d+Σ equation (2.8c) [or (A.2c)], a single boundary condition

fixing the coefficient a(4) of the normalizable homogeneous solution is needed. For the

d+B equation (2.8d) [or (A.2d)], after conversion to an equation for d+b the one homo-

geneous solution is again outside the spectral representation function space, and encoding

d+b(0, z) = 0 via row replacement is again the easiest way to handle the singular bound-

ary point.

Finally, for the A equation (2.8e) [or (A.2e)], after conversion to an equation for the

new function a the non-normalizable homogeneous solution is automatically excluded by

the spectral representation for a. One boundary condition is needed to fix the coefficient

of the normalizable homogeneous solution. Referring to table 1, specifying the boundary

value of a is the same as fixing the time derivative of the radial shift, a(0, z) = −∂tλ(z).

But we do not wish to input some arbitrary choice for this time derivative. Instead, prior

to solving the A equation (2.8e) we first solve the horizon stationarity condition (2.14)

which determines the value of A on the horizon. This is an inhomogeneous differential

equation involving A and its first and second order longitudinal derivatives, evaluated on

the horizon. The explicit form is given in (A.4) of appendix A. Then, to solve the radial

equation (2.8e) [or (A.2e)], converted to an equation for a, we replace the u= 0 row in the

spectral discretization of this equation with a row fixing the value of a at the horizon, i.e.,

equating a(umax, z) to the value determined by the horizon stationarity condition.

To recap, every time step begins with the sequential solution of equations (A.2a)–

(A.2e), plus the horizon stationarity condition, using the same spectral methods and Cheby-

shev grid employed in the preparation of initial data. This yields Σ, F , d+Σ, d+B and

A, from which the ordinary time derivatives of B, a(4), f
(4)
z and λ are extracted using

relations (2.15)–(2.17). This is the information needed to integrate forward in time.

To perform time integration we use a discrete approximation with non-zero time step δt.

We specifically choose the well known fourth order Runge-Kutta method (RK4), which uses

four “substeps” each involving the evaluation of time derivatives, performed as described

arbitrary precision arithmetic (in, for example, Mathematica), one might think such careful simplification

prior to programming is unnecessary. However, failure to properly simplify expressions will then require

the use of extraordinarily high precision arithmetic with concomitant poor performance.
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above for each point on our longitudinal grid. (The relevant RK4 formulas are shown in

appendix E.)

A time step δt = 0.002 was used in all integrations, which was sufficient to deliver stable

evolution for all shock widths considered. For broader shocks (w > 0.3) a lower order time

integrator would have sufficed, but for shocks with width w < 0.1 we found using at least

RK4 to be essential, with our time step, to achieve accurate results. After each time step

of the evolution we filter the final results for the propagating data {B, a(4), f (4), λ} in the

longitudinal direction using a low-pass filter, as detailed in D, which damps the upper third

of the spectral bandwidth. The filtering is applied to the final RK4 outputs, not during the

RK4 substeps. This damps short wavelength discretization-dependent fluctuations; such

filtering should be viewed as a part of the spectral discretization prescription. We do not

apply filtering to any interim results while solving the radial equations (2.8a)–(2.8e).

4 Results

4.1 Calculated collisions

Using the above described techniques and associated software, planar shock collisions were

computed for various combinations of incoming shock widths. All initial shocks had Gaus-

sian profiles (2.23) and identical transverse energy density µ3. In units in which µ ≡ 1,

shock widths ranged between 0.075 and 0.35. For technical reasons involving the damp-

ing of numerical artifacts, as discussed above, an artificial background energy density was

added whose size ranged from 5.5% down to 1.2% of the peak energy density of the nar-

rower shock. Periodic boundary conditions were applied in the longitudinal direction, with

this dimension then discretized with a uniformly spaced (Fourier) grid having of up to

Nz = 720 points. The longitudinal period Lz was set to 10, 11, or 12 for collisions of

narrow, asymmetric, or broad shocks, respectively. In the radial direction, domain decom-

position with M = 22 subdomains of uniform size in the inverted radial coordinate u = 1/r

was used, with a Chebyshev-Gauss-Lobatto grid of Nu = 13 points within each subdomain.

Time evolution used RK4 time-stepping with a step size δt = 0.002 and total time duration

ranging from t = 5/µ to t = 6/µ. Table 2 lists the parameters of specific calculations.

Figure 2 shows the energy density T̂ 00(t, z), in units of µ4, for three representative

collisions. The top row shows symmetric collisions of shocks with widths w± = 0.35

(upper left) and w± = 0.075 (upper right), while the lower row displays results from the

corresponding asymmetric collision with (w+, w−) = (0.075, 0.35).

Local maxima in the energy density are present on the forward lightcone, as clearly

seen in figure 2. These local maxima lie outside the hydrodynamic region (discussed below).

In asymmetric collisions, the width of a given postcollision local maxima largely reflects the

width of the corresponding incoming projectile. As shown in figure 3, the amplitude of these

local maxima decay with the same power-law time dependence seen in symmetric collisions.

4.2 Hydrodynamic flow

At every spacetime event inside the forward lightcone of a collision, the timelike eigen-

vector and corresponding eigenvalue of the holographically computed stress-energy tensor
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run w+ w− Nz ε0

1 0.35 0.35 720 {0.055, 0.066}
2 0.25 0.25 480 {0.039, 0.045}
3 0.1 0.25 660 {0.015, 0.017}
4 0.1 0.1 600 {0.015, 0.017}
5 0.075 0.35 660 {0.012, 0.015}
6 0.075 0.25 660 {0.012, 0.015}
7 0.075 0.075 600 {0.012, 0.015}

Table 2. Physical and computational parameters of specific computed collisions. Shown are the

incoming shock widths w±, number of longitudinal grid points Nz, and background energy densities

ε0. Shock widths w± are measured in units of µ−1. The background energy density ε0 is in units of

the peak energy density of the narrower shock, or µ3w−1
+ /
√

2π. Computed results at the two listed

values of ε0 were used to extrapolate to vanishing background energy density.

Figure 2. The energy density T̂ 00(t, z) plotted as a function of time t and longitudinal position

z for symmetric collisions with shock width w± = 0.35/µ (upper left) and w± = 0.075/µ (upper

right), and the corresponding asymmetric collision (bottom) involving shocks of widths (w+, w−) =

(0.075/µ, 0.35/µ). All shocks have equal transverse energy density µ3.
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Figure 3. Comparison of time dependent amplitudes of the energy density maxima (associated

with the thinnest shock) in a symmetric collision of two narrow shocks of width w = 0.075 (solid

blue line) and an asymmetric collision of shocks having widths w = 0.075 and w = 0.25 (dashed

red line), with all incoming shocks having the same transverse energy density. Also shown is a t−0.9

asymptotic form (long dashed blue line). Except for short time transients (t . 0.3), the maxima in

the symmetric and in the asymmetric case behave identically. For t & 1.5 the amplitude decrease

is well described as t−0.9, as previously found in ref. [2].

determine the fluid 4-velocity uµ and proper energy density ε,11

T̂µν u
ν = −ε uµ , (4.1)

with normalization uµuµ = −1 and u0 > 0. Given the flow velocity and energy density,

we use the first order hydrodynamic constitutive relation to construct the hydrodynamic

approximation to the stress-energy tensor,

T̂µνhydro = p gµν + (ε+p)uµuν + Πµν , (4.2)

where the viscous stress (to first order in gradients) is given by

Πµν = −η
[
∂(µuν) + u(µu

ρ∂ρuν) −
1

3
∂αu

α(ηµν + uµuν)

]
+O(∂2) . (4.3)

For the conformal fluid of N = 4 Yang-Mills theory, the pressure p = ε/3 and the shear

viscosity η = (ε/3)3/4/
√

2.12

Following ref. [1], we define the spacetime region R in which hydrodynamics provides

a good description as the largest connected region within the future lightcone in which the

normalized residual,

∆ ≡ 1

p

√
δTµν δTµν , δT µν ≡ Tµν − Tµνhydro, (4.4)

measuring the difference between the holographically computed stress energy tensor and

its hydrodynamic approximation, is smaller than 0.15.

11A real timelike eigenvector (4.1) can fail to exist in spacetime regions where hydrodynamics is not

applicable [2, 23]. As we are interested in behavior in the hydrodynamic region, this is not a concern.
12This value for η has been rescaled by the same factor of 2π2/N2

c used in the definition of the rescaled

stress-energy tensor (1.3).
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Figure 4. The largest connected spacetime region R in which the hydrodynamic residual ∆ <

0.15 for a collision of narrow symmetric shocks, w± =0.075, on the left, and asymmetric shocks,

(w+, w−) = (0.1, 0.25), on the right. The red dotted line shows the hyperbola (t− 0.5)2 − z2 = τ2,

with τ = 1.5. For both asymmetric and symmetric collisions the region R starts at thydro ≈ 2.

For all collisions studied, symmetric and asymmetric, with various combinations of

incoming shock widths ranging from 0.35 down to 0.075, we found that the boundaries of

the region R differ very little from one another, as illustrated in figure 4.13 At z = 0 we

find that time at which hydrodynamics first becomes valid (i.e., ∆ < 0.15) to be essentially

the same for asymmetric and symmetric collisions and given by

thydro ≈ 2 . (4.5)

In the symmetric case this confirms earlier results found in refs. [1, 2].

For symmetric collisions, we reproduced the key results of ref. [1]: boost invariant

flow (1.1) within the hydrodynamic region to within a precision of O(10−3), Gaussian

rapidity dependence of the proper energy density (1.2) at fixed proper time, with the

amplitude and width of this Gaussian well described by the analytic forms (1.5) at τinit = 3.

Turning to asymmetric collisions of shocks with differing widths, we again find that

flow within the hydrodynamic region R is very close to ideal boost invariant flow (1.1),

as illustrated in figure 5 for rapidity ξ ∈ [−1, 1]. Moreover, the rapidity distribution of

the proper energy density on a surface of constant proper time τ � τhydro continues to

be well approximated by a Gaussian but now with a peak which is shifted away from

vanishing rapidity:

ε(ξ, τ) = A(w+, w−; τ) e
− 1

2
(ξ−ξ̄(w+,w−;τ))2/σ(w+,w−;τ)2 . (4.6)

13By suitably adjusting the filtering of discretization induced artifacts, as discussed in the appendix D,

we could decrease the background energy density in our computations of asymmetric collisions to about 1%

of the peak value of the energy density of the narrower shock. For asymmetric collisions it turned out to

be quite challenging to achieve high precision and numerical stability with significantly smaller background

energy densities. In this and subsequent figures, we perform a linear extrapolation to vanishing background

energy density using calculated results at the non-zero background energy densities shown in table 2. At

sufficiently late times, this linear extrapolation ceases to be a reliable approximation to the limit of vanishing

background energy density. A simple linear extrapolation, with our values of ε0, is adequate in the t ≤ 4

interval displayed in figure 4, which coincides with the time interval shown in ref. [1] of the hydrodynamic

region R.
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Figure 5. Left: the difference of the proper time component of the fluid velocity from unity, uτ −1,

plotted as a function of rapidity at proper time τ = 3 for the asymmetric collision (w+, w−) =

(0.075, 0.35) (black line) and the symmetric collisions w± = 0.075 (red dashed line) and w± = 0.35

(green dotted line). Right: the analogous comparison for the asymmetric collision (w+, w−) =

(0.075, 0.25) (black line), and corresponding symmetric collisions w± = 0.075 (red dashed line) and

w± = 0.25 (green dotted line). As in ref. [1] we find that uτ ≈ 1 with a deviation of a few parts in

10−3, showing that the fluid velocity is quite well described by boost invariant flow.

2 2.2 2.4 2.6 2.8 3 3.2 3.4
−0.1

−8 · 10−2

−6 · 10−2

−4 · 10−2

−2 · 10−2

0

τ

ξ̄

2 2.2 2.4 2.6 2.8 3 3.2 3.4
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4 · 10−2

6 · 10−2

8 · 10−2
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τ

ξ̄w++w−
w+−w−

Figure 6. Left: the rapidity shift ξ̄(w+, w−; τ) of the proper energy density distribution, as a

function of proper time τ , for asymmetric collisions with shock widths (w+, w−) = (0.075, 0.25)

(dashed red line), (w+, w−) = (0.1, 0.25) (solid blue line), and (w+, w−) = (0.075, 0.35) (dotted

black line). Right: the coefficient function Ξ(τ) ≡ ξ̄(w+, w−; τ)
(w++w−
w−−w+

)
for the same three cases.

Our results for the rapidity shift ξ̄(w+, w−; τ) are shown in figure 6 for three examples

of asymmetric collisions. To a good approximation, the width dependence of the rapidity

shift has a simple factorized form for τ & 2,

ξ̄(w+, w−; τ) ≈ Ξ
w+ − w−
w+ + w−

, (4.7)

with a coefficient Ξ ≈ 0.07 that is essentially constant for τ > 2.

We find that the rapidity distribution of of the proper energy density for the asym-

metric collisions is well approximated by the shifted geometric mean of the corresponding

symmetric collision results,

ε(ξ, τ ;w+, w−) ≈
[
ε(ξ − ξ̄(w+, w−; τ), τ ;w+, w+) ε(ξ − ξ̄(w+, w−; τ), τ ;w−, w−)

]1/2
.

(4.8)

– 24 –



J
H
E
P
0
8
(
2
0
1
9
)
0
0
5

−1 −0.5 0 0.5 1
0.1

0.15

0.2

0.25

0.3

0.35

ξ

ε

−1 −0.5 0 0.5 1
0.1

0.15

0.2

0.25

0.3

0.35

ξ

ε

−0.5 0 0.5
0.1

0.12

0.14

0.16

0.18

0.2

0.22

ξ

ε

−0.5 0 0.5
0.1

0.12

0.14

0.16

0.18

0.2

0.22

ξ

ε

Figure 7. The proper energy density ε as a function of rapidity ξ at constant proper time τ = 2

(first row) and τ = 3 (second row) for asymmetric collisions with (w+, w−) = (0.075, 0.35) (left) and

(w+, w−) = (0.075, 0.25) (right) displayed as the solid blue curves. On each plot, the red dashed

curve shows the geometric mean of the corresponding symmetric distributions shifted by ξ̄ as given

in eq. (4.7). Only at |ξ| & 1 is a slight deviation between the two visible.

The efficacy of this relation is illustrated in figure 7, which shows the proper energy density

as a function of the rapidity ξ at proper times τ = 2 (top) and 3 (bottom) for the case

of (w+, w−) = (0.075, 0.35) (left) and (w+, w−) = (0.075, 0.25) (right). In each plot the

solid blue line shows the asymmetric collision result while the red dashed curve shows the

shifted geometric mean of the corresponding symmetric collision results. For |ξ| < 1 this

model fits almost perfectly, while for |ξ| > 1 small deviations from this simple description

begin to show.

To motivate a more elaborate model which captures these deviations from the simple

model (4.8), let

〈X〉p ≡
[

1

2
X(w+)p +

1

2
X(w−)p

]1/p

(4.9)

denote the generalized mean with power p of some quantity X which is observable in

symmetric collisions of shocks with widths w+ and w−, and then define p[X] as the power
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Figure 8. The exponent p[A(τ)], defined as the solution to relation (4.10) for the rapidity distribu-

tion amplitude A, as a function of proper time τ , for collisions with (w+, w−) = (0.075, 0.35) (left)

and (w+, w−) = (0.1, 0.25) (right).

for which the generalized mean of symmetric collision results gives the result X(w+, w−)

of this observable in an asymmetric collision with shock widths (w+, w−). In other words,

p[X] is the solution to the equation

〈X〉p[X] = X(w+, w−) . (4.10)

Recall that the geometric mean is the p→ 0 limit of the generalized mean (4.9).

Figure 8 displays the resulting power p[A(τ)] for the amplitude A of the distributions

in rapidity of the proper energy density, as a function of proper time τ , resulting from

collisions with widths (w+, w−) = (0.075, 0.35) on the left and (w+, w−) = (0.1, 0.25) on

the right. One sees that p[A] is quite small, appearing to approach 0 at late times. Figure 9

directly compares the amplitude A(τ) for asymmetric collisions with the geometric mean of

the corresponding symmetric collision results. For times τ > 2, the difference is negligible.

To construct an improved model, let

g±(ξ, τ) ≡ e−
1
2
ξ2/σ(w±;τ)2 (4.11)

denote the Gaussian of a symmetric collision rapidity distribution (without the correspond-

ing amplitude). Then replace the geometric mean of the simple model (4.8) by a biased

mean of symmetric collision Gaussians,

ε(w+, w−; ζ, τ) ≈
√
A(w+; τ)A(w−; τ) g+(ξ−ξ̄, τ)1/2−a(w+,w−;ξ−ξ̄,τ)

× g−(ξ−ξ̄, τ)1/2+a(w+,w−;ξ−ξ̄,τ) , (4.12)

where, once again, A(w±, τ) is the amplitude of the rapidity distribution for symmetric

collisions of width w±, and the rapidity shift ξ̄ is given in eq. (4.7). If the bias a(w+, w−; ξ, τ)

vanishes, then this form reduces to the previous simple model (4.8).

Fitting the improved model (4.12) to our numerical results, we find that the resulting

bias function a(w+, w−; ξ, τ) is remarkably insensitive to the widths (w+, w−) and is also

constant for τ > 2 to quite good accuracy. Our results for a are displayed in figure 10 for the
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Figure 9. The amplitude A (or maximum of the energy density rapidity distribution) for asymmet-

ric collisions with (w+, w−) = (0.075, 0.35) (left) and (w+, w−) = (0.1, 0.25) (right), shown as the

(middle) blue line. In each plot, the upper (dotted) line and lower (solid) line show the amplitude

for the corresponding symmetric collision with wider or narrower width, respectively. In each plot,

the red dashed line, overlaying the middle blue curve, shows the geometric mean of the respective

symmetric collision results.
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Figure 10. The bias function a as a function of rapidity ξ, evaluated at τ = 2, for the cases

(w+, w−) = (0.075, 0.35) (green line), (w+, w−) = (0.075, 0.25) (red dashed line), and (w+, w−) =

(0.1, 0.25) (blue dotted line). The black line corresponds to the fitting function f(ξ) = − tanh(ξ)/4.

the cases (w+, w−) = (0.075, 0.35), (w+, w−) = (0.075, 0.25), and (w+, w−) = (0.1, 0.25)

which, as shown, differ negligibly from each other. The resulting bias function a(ξ) is well

described by the simple universal function

a(w+, w−; ξ, τ) ≈ a(ξ) ≡ −1

4
tanh ξ . (4.13)

To show the efficacy of the improved model (4.12) and the improvement as compared with

the simple model (4.8), we again compare in figure 11 the proper energy density rapidity

distributions from asymmetric collisions along with the predictions of the above improved

model (4.12) with bias function (4.13), for the same cases shown earlier in figure 7. As one

sees, the curves are now essentially indistinguishable.

– 27 –



J
H
E
P
0
8
(
2
0
1
9
)
0
0
5

−1 −0.5 0 0.5 1
0.1

0.15

0.2

0.25

0.3

0.35

ξ

ε

−1 −0.5 0 0.5 1
0.1

0.15

0.2

0.25

0.3

0.35

ξ

ε

−0.5 0 0.5
0.1

0.12

0.14

0.16

0.18

0.2

0.22

ξ

ε

−0.5 0 0.5
0.1

0.12

0.14

0.16

0.18

0.2

0.22

ξ

ε

Figure 11. The proper energy density ε as a function of rapidity ξ at constant proper time τ = 2

(first row) and τ = 3 (second row) for asymmetric collisions with (w+, w−) = (0.075, 0.35) (left) and

(w+, w−) = (0.075, 0.25) (right), displayed by the solid blue curve. The overlaid red dashed curve

shows the result obtained from the improved model (4.12), with bias function a(ξ) = − 1
4 tanh ξ,

and the respective Gaussian distributions for the corresponding symmetric collisions.

5 Discussion

The goals of this work were twofold: on the one hand by studying and quantitatively

modeling asymmetric planar shock collisions via holography, we aim to help bridge the gap

between descriptions of very early states of a quark gluon plasma formed during heavy ion

collisions and the later hydrodynamic regime to which the system evolves. On the other

hand, we also hope that a relatively didactic and detailed description of the computational

techniques and software construction will be useful to others.

By studying asymmetric collisions of planar shockwaves in AdS5, we found that the

simple “universal flow” description of symmetric shock collisions, found in ref. [1], general-

izes very naturally to asymmetric shock collisions. Within the hydrodynamic regime, the

fluid flow is extremely close to ideal boost invariant flow, while the proper energy density

has a Gaussian rapidity dependence. Characterizing the dependence on the amplitude and

widths of the initial shocks enabled the construction of a simple model for mapping initial
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state energy density distributions to hydrodynamic initial data, valid to leading order in

transverse gradients and having potential applicability to non-central collisions of highly

relativistic nuclei.

The hydrodynamization time was confirmed to be very insensitive to the widths of the

colliding shocks, and dependent only on the CM frame energy density. Viewing asymmetric

collisions of planar shockwaves as models for “pixels” within non-central collisions of finite

sized projectiles with large aspect ratios, this result implies that the hydrodynamization

time, measured in the lab frame, increases towards the fringes of the almond-shaped overlap

region that forms the post-collision quark-gluon plasma. Suitably modeling the initial

state transverse energy density as a function of the distance to the center of the Lorentz-

contracted nuclei allows one to estimate the hydrodynamization time of different layers of

the quark-gluon plasma.

Possible topics for future work include the analysis of non-local observables and en-

tropy production during asymmetric collisions of planar shocks, explicit comparison of

holographic results for localized shock collisions with our model for hydrodynamic initial

data, and systematic incorporation of higher terms in an expansion in transverse gradients

into this model.
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A Einstein equations for planar shocks

In this section we write down explicit forms for the Einstein equations (2.8a)–(2.8g) for

planar shocks. We parametrize the rescaled spatial metric ĝ as

ĝ =

eB 0 0

0 eB 0

0 0 e−2B

 , (A.1)

with a single anisotropy function B(u, t, z). (Recall that u ≡ 1/r.) The time-space metric

components Fx and Fy vanish due to rotational invariance in the transverse plane and, for

brevity, we write just F below in place of Fz for the remaining time-space component. The

resulting Einstein equations in our infalling coordinates have the schematic form:(
∂2
r +QΣ[B]

)
Σ = 0 , (A.2a)(

∂2
r + PF [B,Σ]∂r +QF [B,Σ]

)
F = SF [B,Σ] , (A.2b)(

∂r +Qd+Σ[Σ]
)
d+Σ = Sd+Σ[B,Σ, F ] , (A.2c)(

∂r +Qd+B[B,Σ]
)
d+B = Sd+B[B,Σ, F, d+Σ] , (A.2d)
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∂2
rA = SA[B,Σ, F, d+Σ, d+B] , (A.2e)(

∂r +Qd+F [B,Σ]
)
d+F = Sd+F [B,Σ, F, d+Σ, d+B,A] , (A.2f)

d+ (d+Σ) = Sd2+Σ[B,Σ, F, d+Σ, d+B,A] , (A.2g)

which specialize the general infalling form (2.8) to the case of planar shocks. Denoting

radial derivatives with primes, f ′ ≡ ∂f/∂r, and f,z ≡ ∂f/∂z for longitudinal derivatives,

the explicit form of the various coefficient and source functions are as follows:

QΣ =
1

2
B′2 , (A.3a)

PF = 2B′ + Σ′Σ−1 , (A.3b)

QF = 2B′′ + (6B′Σ′ + 4Σ′′) Σ−1 + 3B′2 − 4Σ′2 Σ−2 , (A.3c)

SF = 2B′,z + (4Σ′,z + 6B′Σ,z) Σ−1 + 3B,z B
′ − 4Σ′Σ,z Σ−2 , (A.3d)

Qd+Σ = 2Σ′Σ−1 , (A.3e)

Sd+Σ = − 2Σ +
e2B

12Σ3

{
8Σ
[
F
(
2Σ′,z + F ′Σ′

)
+ F 2 Σ′′ + F,z Σ′ + Σ,zz

]
+ 2Σ (F Σ′ + Σ,z)

(
8(F B′ +B,z) + F ′

)
− 4
(
FΣ′ + Σ,z

)2
+ Σ2

[
2F
(
4B′,z +B′ (7B,z + 4F ′) + F ′′

)
+ 2F ′,z + 4B′F,z

+ F 2
(
4B′′ + 7B′2

)
+ 4B,zF

′ + 7B2
,z + 4B,zz + F ′2

]}
, (A.3f)

Qd+B =
3

2
Σ′Σ−1 , (A.3g)

Sd+B =
3

2
B′ d+Σ Σ−1 − e2B

6Σ4

{
Σ2
(
2F ′,z +B′F,z +B,zF

′ +B2
,z +B,zz + F ′2

)
+ F

[
Σ(4Σ′,z+B′Σ,z+B,z Σ′−2F ′Σ′)+2Σ2

(
B′,z+B′(B,z+F ′)+F ′′

)
−8Σ′Σ,z

]
+ F 2

[
Σ
(
B′Σ′ + 2Σ′′

)
+ Σ2

(
B′′ +B′2

)
− 4Σ′2

]
+ Σ

(
BzΣ,z − 4F ′Σ,z + 2F,zΣ

′ + 2Σ,zz

)
− 4Σ2

,z

}
, (A.3h)

SA =
3

2
d+BB

′ − 6d+Σ Σ′Σ−2 + 2 +
e2B

4Σ4

{
− 8Σ

[
F (Σ′,z + F ′Σ′ + FΣ′′)

+ FΣ′,z + F,z Σ′ + Σ,zz + 2(F B′ +B,z)(F Σ′ + Σ,z)
]

+ 4
(
FΣ′ + Σz

)
2

+ Σ2
[
− 7(F B′ +B,z)

2 + F ′2 − 4
(
F
(
2B′,z +B′ F ′

)
+ F 2B′′ +B′ F,z +B,zz

)]}
,

(A.3i)

Qd+F = 2B′ − 2Σ′Σ−1 , (A.3j)
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Sd+F = − 2(A′,z + F A′′ +A′ F ′)− 2(B′ − Σ′Σ−1)(FA′ +A,z) +A′F ′

− 3d+B
[
F B′ +B,z + 2(FΣ′ + Σ,z) Σ−1

]
− 2
(
F (d+B)′ + (d+B),z

)
+ d+Σ

(
3ΣF ′ + 4(FΣ′ + Σ,z)

)
Σ−2 − 4

(
F (d+Σ)′ + (d+Σ),z

)
Σ−1 , (A.3k)

Sd2+Σ = − e2B

3Σ2

{
Σ
[
FA′,z + F

(
A′,z + FA′′ +A′F ′

)
+ 2
(
FA′ +A,z

)(
FB′ +B,z

)
+A′ F,z +A,zz − 2d+F (F B′ +B,z)− (d+F ),z − F (d+F )′

]
+
(
FΣ′ + Σ,z

)(
FA′ +A,z − d+F

)}
−A′ d+Σ +

1

2
Σ d+B

2 . (A.3l)

The condition (2.13) that the apparent horizon lie at a fixed radial position rh has the

explicit form (3.10). For planar shocks the horizon stationarity condition (2.14) becomes:

0 =A,zz +A,z

[
−F ′ − 2F

(
B′ − Σ′

Σ

)
+ 2B,z +

Σ,z

Σ

]
+

1

4
A

{
F ′2−2F ′,z−2F ′

(
2B,z+

Σ,z

Σ

)
−4F,z

(
B′− 3

Σ′

Σ

)
+F 2

[(
B′− 4Σ′

Σ

)2

− 6Σ′′

Σ

]
+ 4FF ′

(
B′ − Σ′

Σ

)
− 4F

(
B′,z + 2B′B,z − 6B,z

Σ′

Σ
+B′

Σ,z

Σ
−

Σ′,z
Σ
− 2

Σ,zΣ
′

Σ2

)
+ 4B,zz + 7(B,z)

2 + 16B,z
Σ,z

Σ
+

8Σ,zz

Σ
− 4(Σ,z)

2

Σ2
+ 24 e−2B

(
Σ′ d+Σ− Σ2

)}
+ F,z

(
2d+B −

d+Σ

Σ

)
− 3

2
F 2

(
d+BB

′ − (d+Σ)′

Σ
+ 4− 2d+Σ

Σ

(
B′ +

Σ′

Σ

))
− F

(
3(d+Σ),z

Σ
+ d+B

(
B,z −

4Σ,z

Σ

)
− d+Σ

Σ

(
3F ′ − 2B,z +

2Σ,z

Σ

))
+
e2B

4Σ2

{
−6 (d+B)2 Σ4 + F 4

(
B′ +

2Σ′

Σ

)2

+ 2F 3

(
B′ +

2Σ′

Σ

)(
2F ′ +B,z +

2Σ,z

Σ

)
+F 2

(
F ′2 + 4B,z F

′ + (B,z)
2 + (2F ′ +B,z)

4Σ,z

Σ
+

4(Σ,z)
2

Σ2

)}
. (A.4)

B Transformation to infalling coordinates

The metric

ds2
FG = ρ̃−2

(
−dt̃2 + dx̃2

⊥ + dz̃2 + dρ̃2
)

+ ρ̃2 h(x̃−) dx̃2
+ , (B.1)

with x̃± ≡ t̃ ± z̃, describes a single shock moving in the +z̃ direction using Fefferman-

Graham (FG) coordinates. It gives a solution to the Einstein equations for any longitudinal

profile function h(x̃+), To construct initial data decsribing two counter-propagating shocks,

we first transform a single shock solution to the infalling Eddington-Finkelstein (EF) form,

ds2
EF = −2dt

[
u−2 du+Adt+ F dz

]
+ Σ2

[
eBdx2

⊥ + e−2B dz2
]

(B.2)
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with the metric functions A, F , Σ, and B depending only on t−z and the inverted radial

coordinate u ≡ 1/r. In other words, the components guA all vanish except for gut = −u−2.

We relate the FG and EF coordinates according to

t̃ = t+ u+ α(t−z, u) , z̃ = z − γ(t−z, u) , ρ̃ = u+ β(t−z, u) , (B.3)

along with x̃⊥ = x⊥. Demanding that this change of coordinates yields a metric of the

desired form, i.e.,

(gEF)CD =
∂x̃A

∂xC
∂x̃B

∂xD
(gFG)AB , (B.4)

leads to the following equations for the transformation functions,

0 = −α′
(
α′+2

)
+ β′

(
β′+2

)
+ γ′2 +H(β+u)4

(
α′+γ′+1

)2
, (B.5a)

0 = −
(
α′+1

)
α,z +

(
β′+1

)
β,z − γ′ (−γ,z+1) +H(β+u)4

(
α′+γ′+1

)
(α,z+γ,z−1) , (B.5b)

0 = γ′ (2γ,z+1) + β2/u2 + 2β/u− α′ − γ′ , (B.5c)

arising from the specified values of (gEF)uu, (gEF)uz, and (gEF)ut + (gEF)uz, respectively.

Here primes denote radial derivatives ∂/∂u, and H ≡ h (t− z + u+ α+ γ). The depen-

dence of the functions H, α, β and γ on their two arguments of t−z and u is suppressed

for brevity. The desired solutions to eqs. (B.5) have the near-boundary behavior

α ∼ −λu2(1+λu)−1 +O(u5) , β ∼ −λu2(1+λu)−1 +O(u5) , γ ∼ O(u5) . (B.6)

Following ref. [2], it is helpful to redefine α and β in terms of two new functions δ

and ζ via

α = −γ + β + δ , β = − u2ζ

1 + uζ
. (B.7)

Inserting these expressions into equations (B.5) and taking appropriate linear combinations

of the results leads to a pair of coupled equations for δ and ζ,

∂δ

∂u
− u2

(1 + uζ)2

∂ζ

∂u
= 0 ,

1

u2

(
u2 ∂ζ

∂u

)
+

2uH

(1 + uζ)5)
= 0 , (B.8)

plus a single decoupled equation for γ,

∂γ

∂u
− u2

(1 + uζ)2

∂ζ

∂u
+

u4

2(1 + uζ)2

(
∂ζ

∂u

)2

+
u4H

2(1 + uζ)6
= 0 . (B.9)

Alternatively, starting from the infalling form (B.2), it is easy to show that curves

along which r ≡ 1/u varies with all other coordinates held fixed are null geodesics (with r

as an affine parameter). Since coordinate transformations are isometries, the same curves

must satisfy the geodesic equation expressed in FG coordinates, i.e.

d2Ỹ A

dr2
+ Γ̃ABC

dỸ B

dr

dỸ C

dr
= 0 , (B.10)
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where Γ̃ are the Christoffel symbols evaluated in FG coordinates. The solution Ỹ A(r) to this

geodesic equation which begins at boundary coordinates xµ = (t,x⊥, z) with null tangent
d
dr Ỹ

A(r) = (δAt + δAρ ) on the boundary directly gives the FG coordinates corresponding

to the event with EF coordinates of xM = (t,x⊥, z, 1/r). Parametrizing the resulting

coordinate transformation using eq. (B.3), the non-trivial t, z and u components of the

geodesic equation (B.10) lead to second order equations for the transformation functions,

α′′ = − 2 (α′+1)

u
+

2(α′+1)(β′+1)

β+u

+
1

2

[
H ′(β+u)4(α′+γ′+1)2 + 8H(β′+1)(β+u)3(α′+γ′+1)

]
, (B.11a)

γ′′ = − γ′ 2(β − uβ′)
(u(β + u))

− 1

2

[
H ′(β+u)4

(
α′+γ′+1

)2
+ 8H(β′+1)(β+u)3(α′+γ′+1)

]
,

(B.11b)

β′′ = − 2

u
β′ − 2

u
+

1

β

[
H(β + u)4(α′ + γ′ + 1)2 + (α′(α′ + 2) + β′2 − γ′2 − uβ′′)

]
.

(B.11c)

B.1 Near-boundary expansions

The transformation equations (B.5), with boundary conditions (B.6), may be solved order-

by-order in u. If one chooses the radial shift λ to vanish, then

α = u5
∞∑
i=0

ai u
i , β = u5

∞∑
i=0

bi u
i , γ = u5

∞∑
i=0

gi u
i , (B.12)

while with a non-vanishing radial shift λ one instead has

α =

∞∑
i=1

ui+1λi −
∞∑
i=0

ai u
i+5

∞∑
j=−

(
4 + j + i

j

)
λj uj , (B.13)

β =
∞∑
i=1

ui+1λi +
∞∑
i=0

bi u
i+5

∞∑
j=0

(
4 + j + i

j

)
λj uj , (B.14)

γ =
∞∑
i=0

gi u
i+5

∞∑
j=0

(
4 + j + i

j

)
λj uj . (B.15)

For our choice of a Gaussian profile function (2.23), the first six orders of expansions

coefficients are:

a0 =
4 e−

z2

2w2

15
√

2π w
, (B.16a)

a1 =
11 z e−

z2

2w2

60
√

2π w3
, (B.16b)

a2 =
37 z (z2 − 3w2) e−

z2

2w2

2016
√

2π w7
, (B.16c)

a3 =
768w7e−

z2

w2 + 23
√

2π (3w4 − 6w2z2 + z4) e−
z2

2w2

12096π w9
, (B.16d)
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a4 =
1896 zw7e−

z2

w2 + 7
√

2π z(15w4 − 10w2z2 + z4) e−
z2

2w2

21600π w11
, (B.16e)

a5 =
(−48456w9 + 89736w7z2) e−

z2

w2 − 67
√

2π (15w6 − 45w4z2 + 15w2z4 − z6) e−
z2

2w2

1425600π w13
,

(B.16f)

b0 =
e−

z2

2w2

6
√

2π w
, (B.16g)

b1 =
ze−

z2

2w2

10
√

2π w3
, (B.16h)

b2 = −(w2 − z2) e−
z2

2w2

30
√

2π w5
, (B.16i)

b3 = −z(3w2 − z2) e−
z2

2w2

126
√

2π w7
, (B.16j)

b4 =
116w7 e−

z2

w2 + 3
√

2π(3w4 − 6w2z2 + z4) e−
z2

2w2

4032π w9
, (B.16k)

b5 =
312z w7 e−

z2

w2 +
√

2πz (15w4 − 10w2z2 + z4)e
z2

2w2

8640π w11
, (B.16l)

g0 = − e−
z2

2w2

5
√

2π w
, (B.16m)

g1 = − 3z e−
z2

2w2

20
√

2π w3
, (B.16n)

g2 =
5(w2 − z2) e−

z2

2w2

84
√

2π w5
, (B.16o)

g3 =
−11z(z2 − 3w2) e−

z2

2w2

672
√

2π w7
, (B.16p)

g4 =
−32w7 e−

z2

w2 −
√

2π(3w4 − 6w2z2 + z4) e−
z2

2w2

576π w9
, (B.16q)

g5 =
−3408z w7 e−

z2

w2 − 13
√

2π z (15w4 − 10w2z2 + z4) e−
z2

2w2

43200π w11
. (B.16r)

Inserting these expansions into expression (2.26) for the metric anisotropy function yields

its near boundary expansion, B ∼
∑∞

i=4Bi u
i, with

B4 = − e−
z2

2w2

3
√

2π w
, (B.17a)

B5 =
e−

z2

2w2
(
20λw2 − 3z

)
15
√

2π w3
, (B.17b)

B6 =
e−

z2

2w2
(
−50λ2w4 + w2 (15λ z + 1)− z2

)
15
√

2π w5
, (B.17c)
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B7 =
e−

z2

2w2
(
2100λ3w6 − 63λw4 (15λ z + 2) + 3w2 z (42λ z + 5)− 5z3

)
315
√

2π w7
, (B.17d)

B8 =
e−

z2

2w2

10080π w9

[√
2π
(
− 58800λ4w8 + 7056λ2w6 (5λ z + 1)− 3w4 (2352λ2 z2

+ 560λ z + 15) + 10w2 z2 (56λ z + 9)− 15z4
)
− 280 e−

z2

2w2 w7
]
, (B.17e)

B9 =
e−

z2

2w2

30240π w11

[√
2π (282240λ5w10 − 14112λ3w8(15λ z + 4)

+ 72λw6(784λ2 z2 + 280λ z + 15)− 15w4 z (448λ2 z2 + 144λ z + 7)

+ 10w2 z3 (36λ z + 7)− 7z5) + 1120 e−
z2

2w2 (6λw9 − w7 z)
]
, (B.17f)

B10 =
e−

z2

2w2

453600π w13

[√
2π
(
− 6350400λ6w12 + 1905120λ4w10 (3λ z + 1)

− 1620λ2w8 (1176λ2 z2 + 560λ z + 45)

+ 15w6 (20160λ3 z3 + 9720λ2 z2 + 945λ z + 14)

− 90w4 z2 (270λ2 z2 + 105λ z + 7) + 105w2 z4 (9λ z + 2)− 14z6
)

− 84 e−
z2

2w2 w7 (5400λ2w4 − 4w2 (450λ z + 19) + 137z2)
]
. (B.17g)

C Pseudo-spectral methods

Pseudo-spectral methods are a class of mean weighted residual approximation techniques.

These methods provide highly efficient techniques for constructing accurate numerical ap-

proximations to linear differential equations of the form

Lf = g , (C.1)

with L being a linear differential operator. One approximates the solution f by a lin-

ear combination of a finite set of of basis functions, f (N) =
∑N−1

m=0 cm φm, and defines

the residual

R(N) ≡ Lf (N) − g . (C.2)

Given some scalar product (·, ·) for the function space in which the basis functions φm reside,

and a chosen sequence {ξm} of test functions, one solves for the coefficients {cm} of the

spectral approximation f (N) by demanding that the residual vanish on these test functions,(
ξm, R

(N)
)

= 0 , (C.3)

for m = 0, · · ·, N−1. Different weighted residual methods are distinguished by the choice

of the test functions. So-called “pseudo-spectral” or “collocation” methods are a subclass

of mean weighted residual algorithms in which one chooses the test functions to have point

support. In, for example, one dimensional problems one chooses

ξm = δ(x− xm) , (C.4)
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for some selected set of points {xm}. In other words, in pseudo-spectral approximations, one

demands that the residual vanish identically on some discrete set of grid points distributed

across the computational domain. For a given basis set {φm}, m = 0, · · ·, N−1, there is

a corresponding optimal choice of grid {xm}, m = 0, · · ·, N−1, namely the abcissas of a

Gaussian quadrature integration scheme associated with this basis set [22]. Given a choice

of N basis functions {φm} and associated spectral grid {xm}, it is convenient to define

“cardinal functions” {Cm} which are uniquely defined as linear combinations of these basis

functions which take the value 1 on a given grid point while vanishing on all other points,

Cm(xn) = δmn , m, n = 0, · · ·, N−1 . (C.5)

The original spectral approximation f (N) =
∑N−1

m=0 cm φm is then exactly equivalent to a

linear combination of cardinal functions,

f (N) =
N−1∑
m=0

fmCm , (C.6)

in which each coefficient is the value of the function approximation on a given grid point,

fm ≡ f (N)(xm).

For one dimensional problems on a finite interval, the most commonly used basis

functions are Chebyshev polynomials. There are actually two corresponding sets of optimal

spectral grids differing in whether the endpoints of the interval are themselves gridpoints.

It is easiest to deal with boundary conditions when endpoints are included in the spectral

grid in which case, for the interval [−1, 1], the appropriate N+1 point grid consists of

the points

xm = cos(mπ/N) , m = 0, · · ·, N . (C.7)

This is sometimes referred to as a Chebyshev-Gauss-Lobatto grid.

For problems on a periodic interval, a truncated Fourier series provides the most useful

spectral approximation. In this case, an appropriate 2N point spectral grid consists of 2N

evenly spaced points around the periodic interval. So, for the interval [0, 2π], one may use

xm = πm/N , m = 0, · · ·, 2N−1 . (C.8)

If the differential equation of interest (C.1) involves an M -th order differential operator,

L =
∑M

k=0 pk(x) dk

dxk
, then computing the values of the residual R on all grid points, using

the cardinal representation (C.6), requires the evaluation of up to M -th order derivatives of

each cardinal function at every point on the grid. This computation need only be performed

once, and defines a set of “spectral differentiation matrices” with components

(D
(N)
k )mn ≡

dkCn(xm)

dxk
, m, n = 0, · · ·, N−1 . (C.9)

Given these matrices, the application of the differential operator L to the spectral approxi-

mation of some function reduces to the application of the finite matrix L(N) ≡ ‖L(N)
mn ‖, with

L(N)
mn =

M∑
k=0

pk(xm) (D
(N)
k )mn , m, n = 0, · · ·, N−1 , (C.10)
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to the vector of function values on the spectral grid, (Lf (N))(xm) =
∑

n L
(N)
mn fn. Solving

for (the spectral approximation to) the solution of the differential equation (C.1) then

reduces to the standard algebraic problem of solving a finite system of linear equations.

C.1 Explicit expressions

Analytic expressions for cardinal functions and differential matrix components, for many

different sets of basis functions, may be found in appendix F of ref. [22]. For a Chebyshev

basis and the Chebyshev-Gauss-Lobatto grid (C.7), cardinal functions satisfying (C.5) are

given by

Cj(x) = (−1)j+1

(
1− x2

)
cj N2(x− xj)

dTN (x)

dx
, (C.11)

where Tk(x) denote Chebyshev polynomials of the first kind and cj ≡ 1 for 0 < j < N

while c0 = cN ≡ 2. The interior grid points lie at extrema of TN (x). Derivatives of these

cardinal functions, evaluated on the Gauss-Lobatto grid, can be evaluated explicitly. For

the first derivative one finds [22]

(D
(N+1)
1 )mn =

dCn
dx

∣∣∣∣
x=xm

=



1
6(1 + 2N2) , m = n = 0;

−1
6(1 + 2N2) , m = n = N ;

−1
2 xn/(1− x

2
n) , m = n with 0 < n < N ;

(−1)m+ncm/[cn(xm − xn)] , m 6= n .

(C.12)

Higher derivatives are obtained by taking powers of this matrix, D
(N+1)
k = (D

(N+1)
1 )k.

For the Fourier grid with endpoint (C.8), cardinal functions can be expressed as

Cj(x) =
1

2N
sin[N(x− xj)] cot

[
1

2
(x− xj)

]
, (C.13)

and the first two differentiation matrices are given by

(D
(2N)
1 )mn ≡

dCn
dx

∣∣∣∣
x=xm

=


0 m = n;

1

2
(−1)i+j cot

[
1

2
(xi − xj)

]
, m 6= n,

(C.14)

(D
(2N)
2 )mn ≡

d2Cj
dx2

∣∣∣∣
x=xi

=


−1

6
(1 + 2N2) , m = n;

1

2
(−1)i+j+1 csc2

[
1
2(xi − xj)

]
, m 6= n.

(C.15)

A linear transformation, y = ax + b, may be used to convert the above expressions into

forms appropriate for arbitrary finite intervals.
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C.2 Domain decomposition

The error in an N -term spectral approximation to some function u decreases exponentially

with increasing N , provided u satisfies appropriate analyticity conditions [22]. In practice,

this desirable behavior only holds as long as there is negligible round-off error from finite

precision numerical arithmetic. Unfortunately, differentiation matrices become increasingly

ill-conditioned as N increases and this leads to progressively worsening numerical errors in

the eventual solution of the linear system. Moreover, with Chebyshev grids, the spacing

between grid points is non-uniform and near the endpoints of the interval the grid spacing

decreases as 1/N2. This rapid decrease of grid spacing can lead to short wavelength (so-

called ‘CFL’) instabilities in time evolution problems.

These difficulties can be alleviated by partitioning the computational domain into

multiple subdomains, inside each of which one constructs an independent spectral approx-

imation. This is known as domain decomposition. In effect, one solves the differential

equation of interest independently in each subdomain with boundary conditions which en-

force appropriate continuity conditions connecting adjoining subdomains. Differentiation

matrices for the entire domain become block-diagonal.

For a one dimensional problem, if one partitions the full domain into M subdomains,

and uses an N -point Chebyshev grid containing endpoints within each subdomain, then

each interior subdomain boundary will appear twice in the resulting complete list of grid

points (3.3). For a second order differential equation, before solving the resulting linear

system, L(MN) f (MN) = g(MN), one simply replaces each pair of rows which represent

the same interior subdomain boundary by a near pair of linear equations which encode

continuity of the function,

f
(MN)
i,N−1 − f

(MN)
i+1,0 = 0 , (C.16)

and of its first derivative,

N−1∑
k=0

(D
(N)
1 )N−1,k f

(MN)
i,k − (D

(N)
1 )0,k f

(MN)
i+1,k = 0 . (C.17)

For further detail refer to ref. [22].

D Filtering

D.1 Longitudinal filter

Numerically filtering the propagating data, namely the functions {B, a, f, λ}, to remove

small amplitude noise, specifically cutoff-scale rapid variations in the longitudinal direction,

is essential to achieve stable time evolution with low background energy density, especially

for narrow shock collisions where a very fine longitudinal grid is required. The reasons

behind this, involving spectral blocking in non-linear equations, are discussed in refs. [2, 22].

Such filtering must be applied carefully. To maintain consistency of the solution of the

nested set of Einstein equations (2.8), we only filter at the end of each time step, not within

RK4 substeps and not in between solutions of the nested radial differential equations.
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Figure 12. Visualization of our low-pass Fourier filter for periodic functions. Modes with wavevec-

tor |k|/N & 2
3 are suppressed. The filter width δ is chosen to be 1/2.

There are many ways to implement a low-pass filter. For our periodic functions of z,

we use a smooth multiplicative filter in k-space. A cardinal function representation using

the uniform grid (C.8) and Fourier cardinal functions (C.13), φ(z) =
∑2N−1

j=0 φj Cj(z), is

exactly equivalent to a truncated Fourier series,

φ(z) =
N∑

k=−N
φ̃k e

ikz . (D.1)

with

φ̃k ≡
(1−1

2δ
N
|k|)

2N

2N−1∑
j=0

φ(πj/N) e−2πijk/N . (D.2)

We suppress the amplitude of modes with large |k| by multiplying the Fourier coeffi-

cients {φ̃k} by the filter function

F̃ (k) ≡ 1

2

(
1− erf

[
2π

δ

(
|k|
N
− Λ

)])
. (D.3)

The parameter Λ is the fractional bandwidth of the filter while Nδ/(2π) is the character-

istic width in wavevectors of the filter roll-off. We chose to use Λ = 2/3 and δ = 1/2.

Transforming back to real space produces the smoothed function

φ(z) ≡
N∑

k=−N
F̃ (k) φ̃k e

ikz . (D.4)

In practice, it is convenient to compute the real-space form of this filter by combining

expressions (D.2) and (D.4), yielding a convolution matrix which is computed once, and

then applied directly to function values on the longitudinal grid to yield filtered functions,

φ(zm) =
2N−1∑
n=0

Fn−m φ(zn) . (D.5)

D.2 Radial filter

After transforming single shock solutions to infalling coordinates, as described in ap-

pendix B, we found that moderately high derivatives of the resulting anisotropy function,
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such as ∂3
u∂

3
zb(u, z, t0), after the longitudinal filtering as just described, would still show

visible noise with rapid radial and longitudinal variation. Such noise grows and becomes

problematic upon time evolution. To suppress such artifacts in the initial data, we per-

form radial filtering on the initial anisotropy function in a matter designed to suppress

radial noise near the boundary while simultaneously ensuring the correct near boundary

asymptotic behavior.

We do this by first constructing, analytically, the near boundary expansion of the trans-

formation functions solving eqs. (2.28)–(2.29c), and thence the resulting metric anisotropy

function B(u, z, t0) via eq. (2.26) [or equivalently the rescaled function b(u, z, t0) defined

in eq. (3.12a)]. Explicit expressions for these near-boundary expansions appeared in ap-

pendix B.1. Let b(K)(u, z, t0) denote the K-term partial sum of the near-boundary ex-

pansion for the rescaled anisotropy function b(u, z, t0). We define a correction function

∆(K)(u, z) by the condition that(
∂

∂u

)m [
b(u, z, t0) + ∆(K)(u, z)

] ∣∣∣
u=0

=

(
∂

∂u

)m
b(K)(u, z, t0)

∣∣∣
u=0

, (D.6)

for m = 0, · · ·,K−1, while simultaneously requiring that ∆(K)(u, z), evaluated on the radial

grid, is only non-zero on the first K radial grid points closest to the boundary. On the left

side of condition (D.6), the radial derivatives are evaluated using the spectral derivative

matrix Du applied to the list of values of b and ∆(K) on the radial grid. These conditions

uniquely determine the correction function ∆(K) (represented on the spectral grid). The

corrected function bimproved ≡ b+ ∆(K) coincides with the input function b away from the

boundary (by more than K grid points), while having corrected values of radial derivatives

up through order K−1 at the boundary. Choosing K = 7, we find that this procedure is

effective in suppressing numerical noise in initial data up to quite high orders of derivatives

in both radial and longitudinal directions. Unlike a conventional filter, the effect of this

procedure is restricted to a small region near the boundary.

E Runge-Kutta methods

Given a first order differential equation for some Rk-valued function Φ(t),

d

dt
Φ(t) = F (t,Φ(t)) , (E.1)

with initial condition Φ(t0) = Φ0, the standard fourth order Runge-Kutta (RK4) algo-

rithm iteratively constructs an approximate solution Φ̃ at times tn ≡ tn−1 + δt, via the

recursion relation

Φ̃(tn+1; δt) ≡ Φ̃(tn) + δt

4∑
j=1

bj Kj(tn) , (E.2)

where

Kj(tn) ≡ F
(
tn + αj δt, Φ̃(tn) + αj δtKj−1(tn)

)
, (E.3)

with Φ̃(t0; δt) = Φ0. The coefficient vectors defining the RK4 “substeps” are given by

α =

(
0,

1

2
,

1

2
, 1

)
, b =

(
1

6
,

1

3
,

1

3
,

1

6

)
. (E.4)

– 40 –



J
H
E
P
0
8
(
2
0
1
9
)
0
0
5

To convert this method to an adaptive stepsize integration method, one needs a local

error estimation, i.e., some estimate of the difference between Φ̃(tn) and the desired solution

Φ(tn), assuming that Φ̃(tn−1) is correct, together with an algorighm for decreasing or

increasing the time step δt based on this error estimate. The easiest way to achieve this is

to compare the results of performing a single RK4 step with timestep δt versus two RK4

steps with timestep δt/2. The latter (more time consuming) calcuation will suffer from less

error due to timestep discretization and, if δt is sufficiently small, this difference will be a

decent approximation to the deviation from the true solution. We define

err(t+δt) =
∣∣Φ̃(t+δt; δt)− Φ̃(t+δt; δt/2)

∣∣, (E.5)

given a common starting value at time t. For the choice of norm, we use an L∞ norm,

or the maximum over all components of Φ̃. If the goal of the numerical calculation is to

achieve a relative precision of 10−a, then we adjust the time step according to

δtn+1 = δtn

(
10−a

err

)1/4

. (E.6)

The “learning rate” of this adaptive algorithm is governed by the exponent 1/4 in this

rule. This value reflects the fact that in the basic RK4 method, the error scales as (δt)4

for sufficiently small timestep δt. In our code we did not impose minimum or maximum

step sizes. And in our specific application of transformation to infalling coordinates, when

starting with an initial step size of δu = 0.0001 it turned out to be sufficient to update

the step size using eq. (E.6) and always advance directly to the next slice without further

adjustments. More generally, it can be necessary to reject a trial step and repeat the the

calculation with a smaller step size if the initial error exceeds the desired limit.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[19] S. Waeber and A. Schäfer, Studying a charged quark gluon plasma via holography and higher

derivative corrections, JHEP 07 (2018) 069 [arXiv:1804.01912] [INSPIRE].

[20] H. Bondi, Gravitational waves in general relativity, Nature 186 (1960) 535 [INSPIRE].

[21] R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat

space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].

[22] J.P. Boyd, Chebyshev and Fourier spectral methods, revised ed., Dover Books on

Mathematics, Dover, U.S.A. (2001).

[23] P. Arnold, P. Romatschke and W. van der Schee, Absence of a local rest frame in far from

equilibrium quantum matter, JHEP 10 (2014) 110 [arXiv:1408.2518] [INSPIRE].

[24] R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of

AdS/CFT, Phys. Rev. D 73 (2006) 045013 [hep-th/0512162] [INSPIRE].

– 42 –

https://doi.org/10.1103/PhysRevLett.111.181601
https://doi.org/10.1103/PhysRevLett.111.181601
https://arxiv.org/abs/1305.4919
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.4919
https://doi.org/10.1103/PhysRevLett.114.251601
https://arxiv.org/abs/1503.07114
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.07114
https://doi.org/10.1007/JHEP10(2015)070
https://arxiv.org/abs/1501.04644
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.04644
https://doi.org/10.1103/PhysRevLett.111.222302
https://arxiv.org/abs/1307.2539
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.2539
https://doi.org/10.1103/PhysRevC.92.064907
https://arxiv.org/abs/1507.08195
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.08195
https://doi.org/10.1007/JHEP09(2016)108
https://arxiv.org/abs/1607.05273
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.05273
https://doi.org/10.1007/JHEP11(2016)054
https://arxiv.org/abs/1609.03676
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.03676
https://doi.org/10.1103/PhysRevLett.115.241602
https://doi.org/10.1103/PhysRevLett.115.241602
https://arxiv.org/abs/1506.02209
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.02209
https://doi.org/10.1007/JHEP01(2017)026
https://arxiv.org/abs/1604.06439
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.06439
https://doi.org/10.1007/JHEP03(2016)146
https://arxiv.org/abs/1601.01583
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.01583
https://doi.org/10.1103/PhysRevLett.112.221602
https://arxiv.org/abs/1312.2956
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.2956
https://doi.org/10.1007/JHEP07(2015)116
https://arxiv.org/abs/1503.07148
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.07148
https://doi.org/10.1016/j.nuclphysb.2004.11.055
https://arxiv.org/abs/hep-th/0406264
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B707,56%22
https://doi.org/10.1007/JHEP07(2018)069
https://arxiv.org/abs/1804.01912
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.01912
https://doi.org/10.1038/186535a0
https://inspirehep.net/search?p=find+J+%22Nature,186,535%22
https://doi.org/10.1098/rspa.1962.0206
https://inspirehep.net/search?p=find+J+%22Proc.Roy.Soc.Lond.,A270,103%22
https://doi.org/10.1007/JHEP10(2014)110
https://arxiv.org/abs/1408.2518
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2518
https://doi.org/10.1103/PhysRevD.73.045013
https://arxiv.org/abs/hep-th/0512162
https://inspirehep.net/search?p=find+EPRINT+hep-th/0512162

	Introduction and summary
	Planar shock collisions in asymptotically AdS spacetime
	Characteristic formulation
	Solution strategy
	Planar shocks

	Computational methods and software construction
	Transformation to infalling coordinates
	Horizon finding
	Time evolution

	Results
	Calculated collisions
	Hydrodynamic flow

	Discussion
	Einstein equations for planar shocks
	Transformation to infalling coordinates
	Near-boundary expansions

	Pseudo-spectral methods
	Explicit expressions
	Domain decomposition

	Filtering
	Longitudinal filter
	Radial filter

	Runge-Kutta methods

