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Abstract Models for double parton distributions that are
realistic and consistent with theoretical constraints are cru-
cial for a reliable description of double parton scattering. We
show how an ansatz that has the correct behaviour in the
limit of small transverse distance between the partons can
be improved step by step, such as to fulfil the sum rules for
double parton distributions with an accuracy around 10%.

1 Introduction

To analyse data taken at the Large Hadron Collider in the best
possible way, it is of great importance to have sound theo-
retical control over the QCD dynamics of proton-proton col-
lisions. The mechanism of double parton scattering (DPS),
in which two partons in each proton participate in a hard-
scattering process, can give important contributions to par-
ticular final states and in particular kinematic regions. A
prominent example is the production of two W bosons with
the same charge [1–7], a channel that is also a background
in searches for new physics (see e.g. [8–10]). A variety of
DPS processes have been studied experimentally at the LHC
[6,11–21] and at lower energies [22–32] (see e.g. Figure 4 of
[19] and Figure 15 of [33] for overviews). Recent years have
seen significant progress in the QCD description of double
parton scattering, see e.g. [34–42] and the brief overview
in [43]. In particular, the formalism developed in [39,44–
47] extends the factorisation proofs for single Drell-Yan pro-
duction [48–50] to double parton scattering with colourless
final-state particles and achieves a consistent combination of
single and double parton scattering contributions to a given
final state. The non-perturbative quantities in DPS factorisa-
tion formulae are double parton distributions (DPDs), which
specify the joint distribution of two partons in a proton. In
the formalism just mentioned, these distributions depend in
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particular on the spatial separation y of the two partons in the
plane transverse to the proton momentum. Alternatively, one
may work with the transverse momentum Δ that is Fourier
conjugate to y.

Given the complexity of measuring and computing DPS
cross sections, a largely model-independent fit of DPDs to
experimental data, akin to what is done for single parton
distributions (PDFs), will not be possible for a consider-
able time. It is hence essential to develop realistic models
for DPDs. Considerable efforts have been made to compute
them in quark models [51–62], and lattice calculations of
Mellin moments of DPDs are underway [63,64]. In addition,
there are important theoretical constraints on DPDs. On the
one hand, there is the perturbative splitting of one parton
into two [34–39,41,42,45,57,65–76], which determines the
behaviour of DPDs at small y and likewise puts constraints
on DPDs depending on Δ. On the other hand, there are sum
rules [77,78], which involve DPDs integrated over y (or eval-
uated at Δ = 0) and express the conservation of momentum
and quark number. So far, only a small number of studies
[2,77,79–81] have used these sum rule to constrain DPDs,
and it is the goal of the present paper to continue this line of
work. Whereas the DPD models in [2,77,79,80] are formu-
lated for DPDs at Δ = 0, we work with DPDs in y space,
because these are the quantities required for computing DPS
cross sections in the formalism of [45].

This paper is organised as follows. In Sect. 2, we recall
the theory underlying our model construction, highlighting in
particular the nontrivial relation between DPDs depending on
y and those depending on Δ. The starting point for our DPD
model, taken from [45], is described in Sect. 3. In Sect. 4 we
give a few technical details about our numerical calculations.
In Sect. 5, we make a series of changes to our model DPDs,
improving at each step their agreement with the sum rules.
The scale dependence of our results is studied in Sect. 6,
before we conclude in Sect. 7.
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2 Theory

The model analysis in this paper is based on the theory for
double parton distributions developed in [45]. Let us briefly
present the most important results of that work for our con-
text.

Consider the distribution function Fa1a2(x1, x2, y;μ) for
finding two partons a1 and a2 in the proton. The momentum
fractions of the partons are x1 and x2, and y denotes their spa-
tial separation in the transverse plane. At leading order (LO)
in αs , the scale dependence of DPDs is given by evolution
equations

dFa1a2(x1, x2, y;μ)

d log μ2

= αs(μ)

2π

∑

b1

1−x2∫

x1

dz1

z1
Pa1b1

( x1

z1

)
Fb1a2(z1, x2, y;μ)

+ αs(μ)

2π

∑

b2

1−x1∫

x2

dz2

z2
Pa2b2

( x2

z2

)
Fa1b2(x1, z2, y;μ) ,

(1)

with the same DGLAP splitting functions Pab(v) that govern
the evolution of ordinary PDFs at LO. For simplicity, we take
a common factorisation scale μ for both partons in the present
work, but it is straightforward to use different scales μ1 and
μ2.

The behaviour of Fa1a2(x1, x2, y;μ) at small y = | y| is
dominated by the perturbative splitting of a single parton a0

into the observed partons a1 and a2. Evaluating the splitting
mechanism at LO in αs , one obtains

Fa1a2, spl,pt(x1, x2, y;μ)

∣∣∣
D=4−2ε

= μ2ε

y2−4ε

Γ 2(1 − ε)

π1−2ε

fa0(x1 + x2;μ)

x1 + x2

× αs(μ)

2π
Pa1a2,a0

(
x1

x1 + x2
, ε

)
, (2)

in D = 4−2ε dimensions, where fa0 is the PDF for partona0.
The function Pa1a2,a0(v, ε) is equal to the ordinary DGLAP
splitting function Pa1 a0(v) for ε = 0, and its form for nonzero
ε may be found in [82].

Instead of the DPDs F(x1, x2, y;μ) in transverse-position
space, one may also consider distributions depending on the
transverse momentum Δ that is Fourier conjugate to y. Since
according to (2) the distribution F(x1, x2, y;μ) behaves like
1/y2−4ε at short distances y, its Fourier transform w.r.t. y
requires an additional renormalisation in the ultraviolet.

One way to achieve this is to perform the Fourier trans-
form in 2 − 2ε transverse dimensions. This gives rise to a

1/ε ultraviolet pole that can be renormalised using standard
MS subtraction, after which one can set ε to zero. Owing
to this additional renormalisation, the evolution equations of
the resulting momentum space distributions F(x1, x2,Δ;μ)

differ from those of F(x1, x2, y;μ) by an inhomogeneous
term that can readily be deduced from (2). This inhomoge-
neous equation has long been known and discussed in the
literature [65–68,71,77].

An alternative is to start from the distributions F(x1, x2,

y;μ) in D = 4 physical dimensions and to cut off their 1/y2

singularity at short distances in the Fourier transform:

FΦ,a1a2(x1, x2,Δ;μ, ν)

=
∫

d2 y ei yΔ Φ(yν) Fa1a2(x1, x2, y;μ) . (3)

Here ν is a scale with dimension of mass, and Φ(u) is a
suitable function, which may be taken as a hard cutoff

Φ(u) = Θ(u − b0) with b0 = 2e−γ ≈ 1.12 , (4)

where γ is the Euler-Mascheroni constant. This choice of
b0 is such that certain analytical expressions simplify, see
[45,82].

Since the distributions in (3) differ from those defined
with MS subtraction only by the treatment of the ultravio-
let region, one can use the small y expression (2) to derive
a perturbative matching equation between the two types of
DPD:

Fa1a2(x1, x2,Δ;μ)

= FΦ,a1a2(x1, x2,Δ;μ, ν) + fa0(x1 + x2;μ)

x1 + x2

× αs(μ)

2π

[
log

μ2

ν2 Pa1a2,a0(v, 0) + P ′
a1a2,a0

(v, 0)

]

+ O
(
Δ2/ν2,Λ2/ν2, α2

s

)
, (5)

where we have abbreviated P ′(v, ε) = ∂P(v, ε)/∂ε and
v = x1/(x1 + x2). Here Λ denotes a non-perturbative scale.
It is understood that one should take ν ∼ μ to avoid log-
arithmically enhanced higher-order corrections . Under this
condition, the ν dependence cancels between the first and
second line of (5) within the stated accuracy. We will inves-
tigate this numerically in Sect. 6.2.

We remark in passing that the previous discussion can be
extended beyond LO. The higher-order forms of (2) and (5)
involve convolutions instead of ordinary products, and the
NLO kernels for unpolarised partons have been computed in
[82].

The distributions F(x1, x2,Δ;μ) are of particular interest
because at the point Δ = 0 they fulfil the sum rules formu-
lated in [77]. Abbreviating
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F(x1, x2;μ) = F(x1, x2,Δ = 0;μ) ,

these sum rules read

1−x1∫

0

dx2 Fa1qv (x1, x2;μ) = (Nqv + δa1,q̄ − δa1,q)

× fa1(x1;μ) (6)

∑

a2

1−x1∫

0

dx2 x2 Fa1a2(x1, x2;μ) = (1 − x1) fa1(x1;μ) (7)

and express the conservation of quark number and of momen-
tum, respectively. Here Fa1qv = Fa1q − Fa1q̄ denotes the
valence combination for quark flavor q, and Nqv is the num-
ber of valence quarks with flavour q in the target. Equivalent
sum rules can be written down for DPDs integrated over
x1, given the trivial symmetry relation Fa1a2(x1, x2;μ) =
Fa2a1(x2, x1;μ).

Note that naively F(x1, x2;μ) just corresponds to the inte-
gral of F(x1, x2, y;μ) over all y, as one would expect for a
sum rule. As discussed above, this simple correspondence is
however invalidated by the singular short-distance behaviour
of the y dependent distributions. As shown in [78], it is indeed
the momentum space DPDs defined with MS renormalisa-
tion and taken at Δ = 0 that appear in the above sum rules
(together with MS renormalised PDFs). Already in [77] it
was pointed out that the inhomogeneous term in the evolu-
tion equations for momentum space DPDs is essential for
ensuring that (6) and (7) are valid at all μ.

The matching relation (5) allows us to devise models for
the position space distributions F(x1, x2, y;μ), which are
the primary quantities needed to compute cross sections in
the formalism of [45] and at the same time to use the DPD sum
rules (6) and (7) as constraints for these models. In practice,
the sum rules will then only be fulfilled approximately and in
a particular range of momentum fractions. This is the strategy
adopted in the present work.

One might think of a different procedure and start with a
model for the momentum space DPDs F(x1, x2,Δ;μ), con-
structed such that the sum rules are satisfied exactly. Using
the extension of (5) to arbitrary values of Δ, given in [82],
one can then compute the functions FΦ(x1, x2,Δ;μ, ν). The
latter can be used instead of F(x1, x2, y, μ) to compute the
double parton scattering cross section, as shown in section 8
of [45]. This possibility shall not be pursued here. We note
that it has proven to be difficult to devise a general ansatz for
distributions F(x1, x2;μ) that satisfy the sum rules exactly,
with the only consistent solution so far being limited to the
pure gluon sector [80]. Until further progress is made in that
direction, the best one can achieve with either momentum
or position space models is that the sum rules are satisfied
approximately to a degree one deems satisfactory.

3 Initial model

As starting point of our work, we take the DPD model intro-
duced in [45]. Let us briefly recall its features and motivation.
We require that the DPDs have the small y behaviour given by
the perturbative splitting mechanism at LO. This is achieved
by using a two-component ansatz

Fa1a2 (x1, x2, y;μ)

= Fa1a2, int(x1, x2, y;μ) + Fa1a2, spl(x1, x2, y;μ) , (8)

where Fspl tends to the perturbative splitting form at small
y, whilst Fint remains finite in that limit. The μ dependence
of both components is required to follow the evolution equa-
tions (2). The physical idea behind the separation (8) is that
in Fa1a2, int the partons a1 and a2 originate from the “intrin-
sic” part of the proton wave function, whilst in Fa1a2, spl they
are obtained from a parton a0 in the proton by perturbative
splitting. It should be borne in mind that this is meant to
be a heuristic picture, rather than a distinction that could be
formulated in a field theoretically rigorous way.

For the intrinsic part of the DPD, we make an ansatz at the
scaleμ0 = 1 GeV. It consists of the product of two PDFs with
a factor for the y dependence and a “phase space factor” ρa1a2

suppressing the distributions close to the kinematic boundary
x1 + x2 = 1,

Fa1a2, int(x1, x2, y;μ0) = fa1(x1;μ0) fa2(x2;μ0)

× 1

4πha1a2

exp

[
− y2

4ha1a2

]
ρa1a2(x1, x2) (9)

with

ρa1a2(x1, x2) = (1 − x1 − x2)
2

(1 − x1)2 (1 − x2)2 . (10)

Apart from the factor ρa1a2 , this form is obtained if one
assumes that the two partons a1 and a2 in the proton are com-
pletely uncorrelated. Under that assumption, one can express
a DPD as a convolution

Fa1a2(x1, x2, y;μ0)

=
∫

d2b fa1(x1, b + y;μ0) fa2(x2, b;μ0) (11)

of two impact-parameter dependent PDFs fa(x, b), cf. [83]
and section 2.1 of [39]. If one furthermore assumes that the
impact-parameter dependent PDFs can be expressed in terms
of ordinary PDFs and a Gaussian impact parameter profile,
i.e.

fa(x, b;μ) = fa(x;μ) 1
4πha

exp
[
− b2

4ha

]
, (12)
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then the convolution integral in (11) yields a Gaussian with a
width that is the sum of the single-particle widths, i.e. ha1a2 =
ha1 + ha2 . For the single-particle widths we use the values

hg = 2.33 GeV−2, hq = hq̄ = 3.53 GeV−2, (13)

whose physical motivation is discussed in [45].
The phase space factor ρa1a2 ensures that the distributions

go to zero when approaching the kinematical boundary x1 +
x2 = 1. The first or second power of (1−x1−x2) is frequently
used in the literature, but as observed in [77], this results in
a strong violation of the sum rules in the region x1 � 1.
A much better agreement is obtained with a phase space
factor that does not yield any suppression in that limit. This
is achieved by dividing (1− x1 − x2)

n by (1− x1)
n (1− x2)

n .
For the “splitting part” of the DPD, we make the ansatz

Fa1a2, spl(x1, x2, y;μy)

= Fa1a2, spl,pt(x1, x2, y;μy) exp

[
− y2

4ha1a2

]
, (14)

where

Fa1a2, spl,pt(x1, x2, y;μy)

= 1

πy2

fa0(x1 + x2;μy)

x1 + x2

αs(μy)

2π
Pa1a0

(
x1

x1 + x2

)
(15)

is the splitting form (2) in D = 4 dimensions. As required
by theory, the ansatz (14) tends to the perturbative result for
small y, with power corrections of order y2/ha1a2 . At large
y, the 1/y2 falloff of the perturbative result is dampened by
the Gaussian factor in (14). For lack of better guidance, we
take the same parameters ha1a2 in this factor as in the intrinsic
part (9).

The splitting form (14) is evaluated at the scale

μy = b0

y∗ , y∗ = y√
1 + y2/y2

max

(16)

with ymax = 0.5 GeV−1. In the perturbative regime y �
ymax this corresponds to the natural choice μ ∼ 1/y, which
avoids logarithmically enhanced corrections from higher
orders. For large y, the scale μy approaches a limiting value
b0/ymax ≈ 2.25 GeV, which ensures that neither αs nor the
PDFs on the r.h.s. of (14) are evaluated at too small scales.

For the parton densities appearing in both (9) and (15),
we take the MSTW2008 LO distributions [84] with the small
modification described in sect. 3.2 of [77]. The latter ensures
that the d̄ and the s̄ PDFs are positive and thus admit a prob-
ability interpretation. For the strong coupling, we use the
starting value αs(μ0) = 0.682 adopted in the MSTW2008
LO analysis. Throughout this work, we fix the number of
active quark flavours to n f = 3.

4 Technical implementation

With the general prescription (5) and the two-component
model (8), the DPDs entering the sum rules are given by

Fa1a2(x1, x2;μ) = 2π

∫ ∞

b0/ν

dy y Fa1a2, int(x1, x2, y;μ)

+ 2π

∫ ∞

b0/ν

dy y Fa1a2, spl(x1, x2, y;μ)

+ Fa1a2, match(x1, x2;μ) , (17)

where the matching term

Fa1a2, match(x1, x2;μ) = fa0(x1 + x2;μ)

x1 + x2

αs(μ)

2π

×
[

log
μ2

ν2 Pa1a2,a0(v, 0) + P ′
a1a2,a0

(v, 0)

]
(18)

follows from (5). In (17) we have used that the position space
DPDs depend on y only via y. Whilst evaluating Fmatch is
straightforward, the numerical computation of the intrinsic
and splitting terms is more demanding. In the following para-
graphs, we give some details about our numerical implemen-
tation. A reader not interested in these technicalities may skip
forward to Sect. 5.

DPD evolution and grids To evolve Fint and Fspl from their
respective starting scales in (9) and (14) to the scale μ at
which the sum rules are to be evaluated, we use a modified
version of the code employed in the study [45], which was
itself a modification of the original code described in [77].
With this code, we compute position space DPDs on grids in
the momentum fractions x1 and x2, the interparton distance
y, and the renormalisation scale μ. The momentum fraction
grids are equidistant in the variables ui = log(xi/(1 − xi )).
We use 89 grid points in each xi direction, with the smallest
and largest xi values being xmin = 5 × 10−5 and xmax =
1 − xmin.

For the factorisation scale, we use 51 points on an equidis-
tant grid in log μ2, with largest scale μmax = 172 GeV. For
each grid point μi , we define a grid point in yi such that
μi = μyi with the function μy given in (16). This is con-
venient for evaluating Fspl at its starting scale. The smallest
value μmin on the μ grid thus corresponds to the largest value
on the y grid and is just slightly larger than the limiting value
b0/ymax ≈ 2.25 GeV of μy for infinitely large y.

It turns out that for evaluating the integrals in (17), the
y grid just described is not quite dense enough at small y
values, and that for Fspl we also need additional points at
large y. Extending the y grid appropriately, we end up with
60 points for the intrinsic part and 90 points for the splitting
part of the DPD.
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Integration At the starting scale μ0, the y dependence of
the intrinsic part Fint is given by a simple Gaussian factor.
This does not remain true at other scales μ, because quark
and gluon distributions mix under evolution and have differ-
ent Gaussian widths in our model. However, we find that at
the μ values we consider, the y dependence of the evolved
distributions Fint is reasonably well approximated by a linear
superposition of Gaussians with widths hqq , hqg , and hgg .
Determining the appropriate superposition by a fit for each
pair (x1, x2) on our grid, we can evaluate the first y integral
in (17) analytically.

This strategy does not work for the splitting part Fspl, for
which we perform the y integral numerically, using the values
of the distribution on the grid in y. Finally, the integral over
x2 in the sum rules is evaluated numerically, using the values
of Fa1a2(x1, x2;μ) on the x2 grid. For both the y and the x2

integrals, integration rules for equidistant grids with errors
of order 1/N 4 are used if N > 4, where N is the number of
grid points in the relevant integration interval.

5 Refining the model

In this section, we describe how the initial model described in
Sect. 3 is modified so as to fulfil the DPD sum rules to a good
approximation over a wide range in x1. The modifications are
performed in several steps, after each of which we quantify
the degree to which the sum rules are satisfied. To this end,
we follow [77] and consider the “sum rule ratios”

Ra1qv (x1;μ) =
∫

dx2 Fa1qv (x1, x2;μ)

(Nqv + δa1,q̄ − δa1,q) fa1(x1;μ)
, (19)

Ra1(x1;μ) =
∑

a2

∫
dx2 x2 Fa1a2(x1, x2;μ)

(1 − x1) fa1(x1;μ)
(20)

with a1 being a quark, an antiquark, or a gluon. Note that a
number sum rule ratio cannot be defined for Fddv in this way,
because the denominator of Ra1qv is zero in that case. The
same holds for Fa1sv unless a1 = s or a1 = s̄.

Postponing the discussion of Fddv to the end of this sec-
tion, we now take a closer look at the number sum rules
involving sv . We first observe that the PDFs underlying our
DPD model satisfy the relation fs(x) = fs̄(x), which is of
course stable under LO evolution. As a consequence, our
initial DPD model satisfies

Fssv = −Fs̄sv , Fa1sv = 0 for a1 �= s, s̄ (21)

at all scales μ. This will remain true with the modifications
made in the present section. One thus obtains Rssv = Rs̄sv
and needs to consider only one of these ratios. Furthermore,
the number sum rules for Fa1sv with a1 �= s, s̄ are satisfied
exactly. To prove the relations (21), we first note that they hold

separately for Fint(x1, x2, y, μ0) and for Fspl(x1, x2, y, μy)

in the model specified in Sect. 3. It is easy to see that they
are stable under LO evolution. Since they also hold for the
matching term in (17), they are valid for the distributions
Fa1sv (x1, x2;μ) entering the sum rules.

We will separately evaluate the contributions of the three
terms in (17) to the numerators of Ra1qv and Ra1 , so as to
see which part of the DPD model requires adjustment to
improve a specific sum rule. We will show plots for selected
sum rules that are representative of the general situation, or
– when there are large differences between sum rules – show
the best and worst cases.

Throughout this section, we evaluate the distributions (17)
for ν = μ = μmin, where μmin = 2.25 GeV is the smallest
value on the grid described in the previous section. Other
scale choices will be explored in Sect. 6.

5.1 Zeroth iteration: initial ansatz

Let us start with the DPD model described in Sect. 3 and
consider the momentum sum rules. They turn out to be sat-
isfied surprisingly well, as is illustrated in Fig. 1. Notice that
there is a rather large contribution from Fspl to Rg . This is
readily explained by identifying which parton combinations
can be produced by perturbative splitting at LO, namely qq̄ ,
qg, q̄g, and gg, as well as channels obtained from those by
interchanging the two partons. All 2n f + 1 DPDs appearing
in the g momentum sum rule thus receive a sizeable split-
ting contribution. By contrast, for the u momentum sum rule
shown in Fig. 1a there are just two parton combinations with
a large splitting contribution, namely uū and ug. Another
noteworthy feature is the relatively small size of the matching
contribution, which is a consequence of our choice ν = μ.

Let us investigate at this point the phase space factor ρa1a2

in (9). In some of the earlier works on DPDs, a simple factor
(1 − x1 − x2) has been suggested [85–88], whilst the more
recent study [89] argued that a factor (1 − x1 − x2)

2 is more
appropriate. Even higher powers n would be obtained if one
were to generalise the Brodsky-Farrar quark counting rules
[90,91] from PDFs to DPDs. Each of these variants leads
to a very strong suppression of DPDs in the region where
x1 ≈ 1 and x2 ≈ 0 (or vice versa), since in that region the
suppression from the phase space factor comes on top of
the suppression of the corresponding PDF. As discussed in
Sect. 3, it is more appropriate to divide (1−x1 −x2)

n by (1−
x1)

n (1−x2)
n for a given n in order to remove the phase space

suppression in the regions x1 ≈ 0 and x2 ≈ 0. Including this
division, we have investigated the momentum sum rules for
different values of n and find that best agreement is achieved
for n = 2, as is illustrated by the comparison of Fig. 2 with
Fig. 1(b).

Turning to the number sum rules, we find that these are
violated quite strongly in the initial model, as is illustrated in
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R
u
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(a) u momentum sum rule

R
g

Splitting Intrinsic Total
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x1

(b) g momentum sum rule

Fig. 1 Momentum sum rule ratios Ru and Rg for the initial model of
Sect. 3, evaluated at the scale μmin = 2.25 GeV. Shown are the individ-
ual contributions from the intrinsic and splitting parts in (17), as well as
the full result. The ±10% deviations from unity are indicated by a light

grey band. Not shown is the separate contribution from the matching
term Fmatch, which is negligible in this case. The remaining plots in
this section will follow the same conventions unless explicitly stated
otherwise

Fig. 2 The momentum sum
rule ratio Rg for different
powers n in the phase space
factor ρa1a2 = (1 − x1 −
x2)

n (1 − x1)
−n (1 − x2)

−n of
the intrinsic part (9). The case
n = 2 is shown in Fig. 1b

R
g

Splitting Intrinsic Total

0.0 0.2 0.4 0.6 0.8 1.0
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(a) n = 1, g momentum sum rule

R
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(b) n = 3, g momentum sum rule

Fig. 3 Number sum rule ratios
Ra1qv for the initial model. The
upper plots are for unequal
flavors of the two partons, and
the lower ones are for equal
flavours. The ratio Rduv is
completely dominated by the
intrinsic part of the DPD
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Fig. 3. The agreement does not improve with other choices
of the power n just discussed.

The adjustments discussed in the following will improve
the situation considerably. Let us at this point note that the
number sum rules for equal quark flavours (such as those in
the lower row of Fig. 3) can receive a substantial contribution
from g → qq̄ splitting at the starting scale μy of Fspl. This
contribution is negative for a1 = q and positive for a1 = q̄ ,
given that Fa1qv = Fa1q − Fa1q̄ .

5.2 First iteration: number effects and modified phase
space factor

In the first iteration of our model, we implement the same
two adjustments that were already made in [77]. To describe
these adjustments, it is convenient to specify the ansatz (9)
for Fa1a2, int with a1 and a2 taking the values qv, q̄, g instead
of q, q̄ , g (with qv denoting the linear combination q − q̄).
This switch from quarks and antiquarks to “valence” and
“sea” quarks is familiar from the parametrisation of ordinary
PDFs.

Following the argumentation in [77], it is natural to change
the ansatz for distributions with two valence quark labels so
as to take into account “number effects”, i.e. the fact that we
have a finite number of valence quarks in the proton, two u
and one d. To do this, we set Fuvuv,int to half the value given
by (9) and set Fdvdv,int to zero. The latter corresponds to the
simple intuition that the probability to find two “valence d
quarks” in the proton is nil. The second adjustment argued
for in [77] is to modify the phase space factor from the parton
independent form in (10) to

ρa1a2(x1, x2) = (1 − x1 − x2)
2

× (1 − x1)
−2−α(a2) (1 − x2)

−2−α(a1) , (22)

with

α(a) =
{

0.5 for a = qv

0 for a = q̄, g
(23)

Whilst the original form in (10) satisfies 0 ≤ ρa1a2 ≤ 1,
the phase space factor in (22) becomes greater than 1 when
the momentum fraction of a valence parton tends to 0 and
the momentum fraction of the other parton (valence or sea)
tends to 1. Due to the PDFs in the ansatz (9), the intrinsic
part of the DPD still goes to zero in that limit.

With these modifications, we find that the momentum sum
rules are further improved, such that for most of the x1 range,
relative deviations are less then 10%. This is illustrated in
Fig. 4, which is to be compared with Fig. 1 for the initial
model.

A more significant improvement is obtained for the num-
ber sum rules, as can be seen from the comparison of Fig. 5

with Fig. 3. The modified phase space factor yields a weaker
suppression for valence partons at large momentum fractions
of the other parton. This largely mitigates the steep decrease
of the sum rule ratios with x1 in the initial model. Taking into
account number effects strongly reduces the value of Ruuv at
low x1, which is much too high in Fig. 3c.

5.3 Second iteration: parameter scan for the phase space
factor

Given that there is no strong motivation to take the particular
value 0.5 for α(uv) and α(dv) in (23), it is natural to explore
whether tuning these parameters can improve the sum rule
ratios further. We have therefore performed a parameter scan
over these two powers. To quantify the degree to which the
sum rules are fulfilled, we introduce

δ =
0.8∫

xmin

dx1 |R(x1) − 1| (24)

as a quality measure for each sum rule ratio R, where xmin =
5 × 10−5. A global quality measure is then the sum δgl of
these measures over all sum rules, excluding of course the
cases for which Ra1qv cannot be defined, as specified below
(20).

Notice that in (24) we have taken an upper integration limit
of x1 = 0.8. This is because for very high x1, we consider
even large relative deviations from the DPD sum rules to be
acceptable: DPDs in this region are expected to be very small
and should hence not play any role in cross sections that are
of measurable size.

The values of δgl obtained in our parameter scan over
α(uv) and α(dv) are shown in Fig. 6. A minimum is reached
at

α(a) =

⎧
⎪⎨

⎪⎩

0.63 for a = uv

0.49 for a = dv

0 for a = q̄, g

(25)

which we take as the second iteration of our model.
As illustrated in Fig. 7a, the momentum sum rules are

not strongly affected by this change of parameters. The
same holds for number sum rules that do not involve u
quarks, which is not surprising because α(uv) has signifi-
cantly changed whereas α(dv) has not. Furthermore, we see
in Fig. 7b that the change in Rudv is very small. By contrast,
all number sum rules for uv are significantly improved in the
range x1 ≤ 0.8, as illustrated in the lower plots of Fig. 7.

One may wonder whether tuning other parameters in our
model can lead to further improvements. Candidates for such
an endeavour are the parameter ymax in the starting scale μy

of Fspl, as well as the widths ha1a2 of the Gaussian damping
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Fig. 4 Momentum sum rule
ratios for the first iteration of our
model, taking into account
number effects (explained in the
second paragraph of Sect. 5.2)
and the modified phase space
factor given by (22) and (23).
The corresponding plots for the
original model are shown in
Fig. 1
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Fig. 5 The same number sum
rule ratios as in Fig. 3, but for
the first iteration of our model
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Fig. 6 The quality measure δgl
defined after (24), evaluated as a
function of the powers α(uv)

and α(dv) in the phase space
factor. The right panel gives a
zoom into the parameter space
shown on the left α
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Fig. 7 Sum rule ratios in the
first and second interactions of
the model, which respectively
correspond to the powers (23)
and (25) in the phase space
factor R
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factor, which appears in both Fint and Fspl. We find, however,
that changing these parameters does not lead to a significant
decrease of δgl, and that the minimum of δgl is achieved for
parameter values very close to those specified in Sect. 3. We
hence leave these parameters at their initial values.

Notice that the Gaussian factor in the intrinsic part (9) of
the DPD is normalised such that its integral over all y gives
unity. Restricting this integral to y ≥ b0/ν has little effect,
which explains why a change of ha1a2 has almost no impact
on the contribution of Fint to the sum rules.

5.4 Third iteration: modifying the splitting part at large
distances

After several modifications to the intrinsic part Fint of our
DPD model, we now turn to the splitting part Fspl. While the
latter can be computed for perturbatively small y, its form at
large distance y needs to be modelled. We now modify the
initial ansatz (14) and multiply Fspl,pt by the superposition
of two Gaussians in y, with a relative weight depending on
the momentum fractions:

F̃a1a2,spl(x1, x2, y;μy)

= Fa1a2,spl,pt(x1, x2, y;μy) exp

[
− y2

4ha1a2

]

×
{

1 +
(

exp

[
y2

4h∗
a1a2

]
− 1

)
ga1a2(x1 + x2)

}
. (26)

The factor multiplying Fspl,pt can be rewritten as the sum
of two Gaussians, one multiplied with 1 − ga1a2(x1 + x2)

and the other multiplied with ga1a2(x1 + x2). For the new
width parameters h∗

a1a2
we make the same ansatz as we did

for ha1a2 , i.e. we set h∗
a1a2

= h∗
a1

+ h∗
a2

. We take values

h∗
g = 3.015 GeV−2, h∗

q = h∗̄
q = 5.375 GeV−2 (27)

such that the Gaussian factor exp
[
y2/(4h∗

a1a2
)−y2/(4ha1a2)

]

multiplying ga1a2 is approximately the same for all parton
combinations. Admittedly, the form (26) is rather special
among all possible functions that have the correct limit at
small y. Clearly, the requirement of fulfilling the sum rules is
not nearly enough to determine the functional form of DPDs
at large y, so that a particular ansatz must be made. Our choice
has the feature of introducing a nontrivial interplay between
the dependence on y and on the parton momentum fractions,
controlled by a one-variable function ga1a2(x1 + x2) for each
LO splitting process a0 → a1a2. We will find that this is an
adequate degree of complexity, in the sense that the sum rule
constraints are sufficient to determine this function.

Whilst strict positivity of F̃spl requires ga1a2(x1+x2) > 0,
the procedure described below yields negative values of this
function in some cases. We checked that the resulting full
DPDs Fint + F̃spl are still positive in the range of x1, x2 and
y covered by our DPD grids. This holds for all scales μ on
our grid, from the starting scale μmin = 2.25 GeV up to the
highest value μ = 172 GeV.

Let us first consider the splitting g → qq̄ , where q takes
one of the values u, d, s. This splitting feeds into the num-
ber sum rules for equal quark flavours, which at this stage
are least well satisfied. Judging the impact of the function
ga1a2(x1 + x2) is complicated by the fact that the ansatz (26)
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for F̃spl is made at the y dependent scale μy and needs to be
evolved to the scale μmin where we evaluate the sum rules.
For definiteness, we consider the sum rule

(Nqv + 1) fq̄ (x1; μmin) =
1−x1∫

0

dx2 Fq̄qv,match(x1, x2;μmin)

+
1−x1∫

0

dx2

∫
d2 y

[
Fq̄qv,int(x1, x2, y; μmin)

+ F̃q̄qv,spl(x1, x2, y; μmin)
]
, (28)

where here and in the following it is understood that the
integrals over y are restricted to y ≥ b0/ν = b0/μmin. To
simplify the determination of ga1a2(x1 + x2), we make two
approximations. Firstly, we use that for small y the initial
and modified splitting model do not differ significantly, i.e.

F̃q̄qv,spl(x1, x2, y;μmin) ≈ Fq̄qv,spl(x1, x2, y;μmin) . (29)

Secondly, we recall that for large y the scale μy is close to
μmin, so that we have

F̃q̄qv,spl(x1, x2, y;μmin) ≈ F̃q̄qv,spl(x1, x2, y;μy) . (30)

Combining both approximations gives

∫
d2 y F̃q̄qv,spl(x1, x2, y;μmin)

≈
∫

d2 y Θ(ysep − y) Fq̄qv,spl(x1, x2, y;μmin)

+
∫

d2 y Θ(y − ysep) F̃q̄qv,spl(x1, x2, y;μy) , (31)

where we use (29) below ysep and (30) above. Taking ysep =
1 GeV−1 ensures that (30) is rather well fulfilled, as μmin and
μy differ by at most 12%. We will find that |gqq̄ | < 12, which
corresponds to a relative discrepancy below 30% between the
l.h.s. and the r.h.s. of (29). While this may not seem to be
very precise, it will turn out to be sufficient for improving
the sum rules significantly.

Using (26) and (31), the sum rule (28) can be approxi-
mated as

kq̄(x1) =
def

(Nqv + 1) fq̄(x1;μmin)

−
1−x1∫

0

dx2 Fq̄qv (x1, x2;μmin)

=
1−x1∫

0

dx2

∫
d2 y Θ(y − ysep) Fqq̄,spl(x1, x2, y;μy)

× hqq̄(y) gqq̄(x1 + x2) , (32)

where Fq̄qv (x1, x2;μ) denotes the full DPD (17) in the sec-
ond iteration of our model and we have abbreviated

hqq̄(y) = exp
[
y2/(4h∗

qq̄)
]

− 1. (33)

Here we used that at the scale μy one has Fq̄qv,spl = Fq̄q,spl =
Fqq̄,spl and a corresponding relation for F̃a1a2,spl. Shifting the
integration variable on the r.h.s. of (32) from x2 to x = x1+x2

gives

kq̄(x1) =
x1∫

1

dx Kqq̄(x1, x) gqq̄(x) (34)

with

Kqq̄(x1, x) = −
∫

d2 y Θ(y − ysep)

× Fqq̄,spl(x1, x − x1, y;μy) hqq̄(y) . (35)

We recognise in (34) a Volterra equation of the first kind
[92]. We discretise this equation by taking both x1 and x on
the grid for DPDs discussed in Sect. 4. The integral over x
is turned into a sum using a simple trapezoidal rule in the
variable u = log(x/(1 − x)). The result is a linear system of
equations

(kq̄)i =
∑

j

(Kqq̄)i j (gqq̄) j (36)

with an upper diagonal matrix Ki j , which is readily solved
using Gauss–Jordan elimination.

In order to have an analytic formulation for our model, we
fit the obtained discrete values of ga1a2(x) to the form

g(x) = A + Bxb + C xc1(1 − x)c2 , (37)

for each of the splittings g → uū, g → dd̄ , and g → ss̄.
This reproduces the general shape of the numerical results
rather well, except for some deviations at very large x . The
resulting functions are shown in Fig. 8a–c, and the fitted
parameters are given in Table 1.

With these modified g → qq̄ splittings, the agreement of
the model with the q̄qv number sum rules improves signif-
icantly, as can be seen in Fig. 9b–d. Remarkably, the modi-
fication of the g → uū splitting improves not only the sum
rule for ūuv but also one for uuv , as seen in Fig. 9a.

At this point, we recall that the ratio Ra1qv is undefined for
Fddv . In order to quantify how well the number sum rule for
this distribution is satisfied, we introduce the modified ratio

R̃ddv (x1;μ) =
∫

dx2 Fddv (x1, x2;μ)

fd(x1;μ)
, (38)
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Fig. 8 Modification functions
ga1a2 (x) for the g → qq̄ and
g → gg splittings. For each
channel we display the fit to the
form (37) and the direct solution
of the discretised Volterra
equation (36). The direct
solution is shown as a dashed
curve with linear interpolation
between each data point
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Table 1 Parameters of the
modification functions ga1a2

defined by (26) and (37)

a0 → a1a2 A B b C c1 c2

g → uū −0.4193 1.0627 7.7448 60.8558 0.9881 2.2641

g → dd̄ −0.8020 1.7291 0.0988 932.0289 1.8515 6.8244

g → ss̄ −1.5409 3.0985 2.3609 49.8862 1.0964 7.2093

g → gg 25.8143 −26.1923 0.0600 −5.3466 0.0764 2.6904

Fig. 9 Change of the number
sum rules for equal flavours due
to the modification of the
g → qq̄ splittings at large y
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Fig. 10 Change of the sum rule ratio (38) due to the modification of
the g → dd̄ splitting at large y. The sum rule is exactly satisfied if
R̃ddv = 0

in which the zero prefactor in the denominator of (19) has
been replaced with unity. The ratio R̃ddv should be close
to zero. We see in Fig. 10 that this is indeed the case: the
modification of the g → dd̄ splitting improves not only the
sum rule for Fd̄dv

but also the one for Fddv . Altogether, we
have reached a satisfactory agreement of our model with all
number sum rules.

The modification of the g → qq̄ splitting also affects the
quark momentum sum rules, as illustrated in Fig. 11. In the
cases shown in the figure, the agreement of the momentum
sum rule becomes slightly worse, whereas the changes in the
remaining cases are insignificant. One could improve Rū and
Rd̄ by modifying the g → gū and g → gd̄ splittings, but
this would also affect the number sum rules ratios Rguv and
Rgdv . We refrain from such an exercise, considering that the
agreement shown in Fig. 11 is still satisfactory.

The sum rule ratio that is farthest away from 1 after these
improvements is the one for the gluon momentum sum rule.
This can be adjusted by modifying the g → gg splitting
at large y in the same way as discussed for g → qq̄ . The
parameters of the modification function ggg(x) are given in
Table 1, and the function itself is shown in Fig. 8d. The result-
ing improvement of the sum rule can be seen in Fig. 12, and
we have checked that none of the other sum rule ratios is
adversely affected by this final modification of our model.
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Fig. 12 Change of the gluon momentum sum rule due to the modifi-
cation of the g → gg splitting at large y

Let us finally take a look at the relative importance of
intrinsic and splitting contributions to the sum rules in the
final iteration of our model. In Figs. 13 and 14, we show the
situation for the same sum rules that were shown in Figs. 1
and 3 for our initial model. We find that for Ru , Rduv , and
Rgdv the main change between the initial and final versions
is due to the intrinsic part. By contrast, for Rg and Ruuv ,
and Rd̄dv there are important changes both in the intrinsic
and in the splitting parts, where the latter are restricted to the
small x1 region in the case of Ruuv . That these sum rules are
strongly affected by the splitting modification at large y was
already seen in Figs. 9a, c and 12.

In the final iteration of our model, the sum rules that
receive positive or negative splitting contributions larger than
20% in at least part of the x1 range are the momentum sum
rules for sea quarks (ū, d̄ , s̄, and s) and the number sum rules
for equal flavours (qqv and q̄qv). Compared with the initial
model, the contribution of the g → gg splitting to Rg has
strongly decreased due to its modification at large y.

6 Scale dependence

So far, we have evaluated the sum rules for DPDs and PDFs
at the scale μ = μmin = 2.25 GeV, and with the matching
between position and momentum space DPDs computed for

Fig. 11 Change of momentum
sum rules due to the
modification of the g → qq̄
splittings at large y
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Fig. 13 Momentum sum rule
ratios Ru and Rg for the final
iteration of our model. The
corresponding plots for the
initial model are in Fig. 1 and
those for the first iteration in
Fig. 4. Not shown is the separate
contribution from the matching
term Fmatch, which is negligible
in this case
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Fig. 14 Number sum rule
ratios Ra1qv for the final
iteration of our model. The
corresponding plots for the
initial model are in Fig. 3 and
those for the first iteration in
Fig. 5. The ratio Rduv is
completely dominated by the
intrinsic part of the DPD

R
du

v

Total

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

x1

(a) duv number sum rule

R
gd

v

Splitting Intrinsic Total

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

x1

(b) gdv number sum rule

R
uu

v

Matching Splitting

Intrinsic Total

0.0 0.2 0.4 0.6 0.8 1.0
− 0.5

0.0

0.5

1.0

1.5

2.0

x1

(c) uuv number sum rule

R
d d

v

Matching Splitting

Intrinsic Total

0.0 0.2 0.4 0.6 0.8 1.0
− 0.5

0.0

0.5

1.0

1.5

2.0

x1

(d) d̄dv number sum rule

a cutoff scale ν = μ. In this section, we investigate how the
sum rules change if these scales are chosen differently.

6.1 Renormalisation scale

As shown in [77], the DPD sum rules are preserved under LO
evolution. If they are approximately valid at some scale, one
may expect that they are still approximately valid when the
DPDs and PDFs are evolved to a different scale. We verified
that this is indeed the case for the DPD model developed in the
previous section. This is illustrated in Fig. 15 for momentum
sum rules and in Fig. 16 for number sum rules. We evolved
the distributions from μmin to μ = 144.6 GeV, which is a
point on our μ grid. The DPD matching at the high scale is
evaluated with ν = μ.

In the case of the g momentum and the guv number sum
rule, we notice that the individual contributions from Fint

and Fspl to the sum rule ratios change considerably under
evolution, while the sum of all contributions remains nearly

the same. This highlights the relevance of the perturbative
splitting mechanism for ensuring the scale independence of
the DPD sum rules, which was pointed out in a number of
different studies [70,71,78].

In the figures for the ūuv sum rule, we observe that the
oscillatory behaviour of Rūuv , which is a consequence of the
modified splitting term in our model, is less pronounced after
evolution to μ = 144.6 GeV. This is a typical feature of scale
evolution, which tends to “wash out” details of distributions
when going from low to high scales.

6.2 Cutoff scale

The matching relation given in (5) is only accurate up to
higher orders in αs and up to power corrections in Λ/ν. The
higher order analysis in [82] reveals that the term of order αn

s
in the matching relation is accompanied by up to n powers
of log(μ2/ν2). Varying ν around its “natural value” μ thus
provides an estimate of higher order and power corrections
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Fig. 15 Comparison of the
gluon momentum sum rule ratio
for the final iteration of our
model at two different scales.
The contribution of the matching
term is small and not shown R
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(b) g momentum sum rule at µ = 144.6GeV

Fig. 16 Comparison of number
sum rule ratios for the final
model at low and high scales.
The contribution of the matching
term is small and not shown
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(c) ūuv number sum rule at µ = 2.25GeV
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(e) duv number sum rule at µ = 2.25GeV
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in the matching relation. Following a widespread practice for
scale variations, we vary ν between μ/2 and 2μ, taking again
μ = μmin. The resulting variation of the sum rule ratios for
our final DPD model is illustrated in Fig. 17.

We find the ν dependence to be moderate, with changes of
10% or less in the sum rule ratios in almost all cases. These
variations are hence of the same order as the agreement of the

sum rule ratios with 1. The theoretical uncertainties reflected
by the ν variation also suggest that it is of limited value to
tune the sum rule ratios obtained for ν = μ much further
than we have done.

The only sum rule ratio with a larger ν dependence is
Rs̄sv , shown in Fig. 17d, which varies up to 20%. To under-
stand this, we note that the ν dependence of the splitting and
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Fig. 17 Cutoff scale
dependence of sum rule ratios,
evaluated at μ = μmin for the
final iteration of our model. The
solid curve is for ν = μ, and the
band corresponds to a variation
of ν between μ/2 and 2μ
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matching terms in (17) is stronger than the ν dependence of
the intrinsic term. The latter gives an important contribution
to all sum rule ratios, except for Rs̄sv , where within our model
it is strictly zero.

One might wonder whether a change of the scale ν could
systematically improve the agreement of our initial model
with the sum rules. The examples in Fig. 18 show that this
is not the case: the ν variation is not able to bring the ratios
Rū or Rūuv close to 1 for all x1 ≤ 0.8. We also note that the
change of the sum rules with ν is roughly of the same size
in our initial and final models. This justifies our choice of
ν = μ for the tuning of the model described in the previous
section.

7 Conclusions

The number and momentum sum rules for DPDs put impor-
tant constraints on DPD parametrisations. We have shown
that one can construct physically plausible models for DPDs
in position space that approximately fulfil these constraints.
Our starting point was the DPD ansatz used in [45], the con-
struction of which ensures the correct small y limit given by
LO perturbation theory, but does not take into account DPD
sum rule constraints at all. That ansatz was then sequentially
modified: we started by adapting the modifications discussed
in [77] to our case and furthermore tuned some model param-
eters, using parameter scans and a measure that quantifies
how well the sum rules are globally satisfied. In the last step,
we modified the form of the parton splitting term at large

y, where perturbation theory is not applicable and this term
has to be regarded as part of the non-perturbative model.
Whilst the specific form of that modification was motivated
more by practical considerations than by physical intuition,
our exercise shows that one can adapt position space DPDs
up to the point where all momentum and number sum rules
are satisfied within about 10% accuracy. An exception to
this statement is the region of parton momentum fractions
x > 0.8, where even ordinary PDFs are poorly known and
where double parton scattering processes will have tiny cross
sections.

We verified that the approximate validity of the sum rules
remains stable under evolution from low to high scales. Fur-
thermore, we find that the sum rules are robust under vari-
ation of the cutoff scale ν, which appears when converting
DPDs from position to momentum space. The largest ν vari-
ation is observed for the number sum rule that involves only
strange quarks, where we see effects of up to 20%. Since
the ν variation reflects in particular the size of uncomputed
higher orders in the parton splitting, and since we vary ν

around a central value of 2.25 GeV, we find a scale variation
of this size not too surprising. One can expect that the inclu-
sion of perturbative splitting terms at NLO, which have been
computed in [82], will improve the situation.

For any given DPD model and PDF set, one can verify
to which extent the sum rules are fulfilled. If they are vio-
lated significantly, one can unfortunately not fully deduce the
region of variables x1, x2, y in which the DPDs are unreli-
able, since the sum rules are integrated over one momentum
fraction and over y. If, however, one has a given functional
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Fig. 18 As Fig. 17, but for the
initial DPD model described in
Sect. 3
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form of DPDs and needs to choose its parameters, the sum
rules can be of more direct use. Whilst imposing that they
be satisfied exactly will in general be a condition that cannot
be fulfilled, the type of quality measure for the sum rules we
introduced in Sect. 5.3 provides a simple quantitative crite-
rion for the theoretical consistency of the model. In a more
sophisticated treatment, one should also take into account the
uncertainties on the PDFs, which appear on the r.h.s. of the
sum rules and typically are also an input to the DPD model.

Whilst perturbative calculations for double parton scat-
tering have been pushed to higher orders in recent years, the
construction of more reliable DPD models remains an out-
standing task. The present work shows that two major the-
oretical constraints on DPDs, namely the small y limit and
the sum rules (where y is integrated over) can be satisfied
simultaneously at least in an approximate way. Of course,
this theoretical input alone is not sufficient to pin down the
DPDs, and ultimately, the predictions obtained with any DPD
model should be compared with experiment. This will be a
huge endeavour and must be left to future work.
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