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The transverse-momentum-dependent (TMD) soft function is a key ingredient in QCD factorization of
Drell-Yan and other processes with relatively small transverse momentum. We present a lattice QCD study
of this function at moderately large rapidity on a 2þ 1 flavor CLS dynamic ensemble with a ¼ 0.098 fm.
We extract the rapidity-independent (or intrinsic) part of the soft function through a large-momentum-
transfer pseudoscalar meson form factor and its quasi-TMD wave function using leading-order
factorization in large-momentum effective theory. We also investigate the rapidity-dependent part of
the soft function—the Collins-Soper evolution kernel—based on the large-momentum evolution of the
quasi-TMD wave function.

DOI: 10.1103/PhysRevLett.125.192001

Introduction.—For high-energy processes such as Higgs
production at the Large-Hadron Collider, quantum chromo-
dynamics (QCD) factorization and parton distribution
functions (PDFs) have been essential for making theoretical
predictions [1,2]. But for processes involving observation
of a relatively small transverse momentum Q⊥, such as in
Drell-Yan (DY) production and semi-inclusive deep
inelastic scattering, a new nonperturbative quantity called
“soft function” is required to capture the physics of non-
canceling soft gluon radiation at fixed Q⊥ [3–6].
Physically, the soft function in DY production is a cross
section for a pair of a high-energy quark and antiquark (or
gluon) traveling in the opposite light-cone directions to

radiate soft gluons of total transverse momentumQ⊥ before
they annihilate. Although much progress has been made in
calculating the soft function in perturbation theory atQ⊥ ≫
ΛQCD [7,8], it is intrinsically nonperturbative when Q⊥ is
OðΛQCDÞ. Calculating the nonperturbative transverse-
momentum-dependent (TMD) soft function from first
principles became feasible only recently [9].
The main difference in such a calculation in lattice QCD

is that it involves two lightlikeWilson lines along directions
n� ¼ ð1= ffiffiffi

2
p Þð1; 0⃗⊥;�1Þ in ðt;⊥; zÞ coordinates, making

direct simulations in Euclidean space impractical.
However, much progress has been made in recent years
in calculating physical quantities, such as light-cone PDFs
using the framework of large-momentum effective theory
(LMET) [10,11]. The key observation of LMET is that the
collinear quark and gluon modes, usually represented by
lightlike field correlators [12–15], can be accessed for
large-momentum hadron states. A detailed review of
LMET and its applications to collinear PDFs and other
light-cone distributions can be found in Refs. [16,17]. More
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recently, some of the present authors have proposed that the
TMD soft function can be extracted from a special large-
momentum-transfer form factor of either a light meson or a
pair of quark-antiquark color sources [9]. Once calculated,
the TMD factorization of the Drell-Yan and similar
processes can be made with entirely lattice QCD comput-
able nonperturbative quantities [18–23].
The TMD soft function is often defined and applied not

in momentum space but in transverse coordinate space in
terms of the Fourier transformation variable b⊥. In addition,
it also depends on the ultraviolet (UV) renormalization
scale μ (often defined in dimensional regularization and
minimal subtraction or MS) and rapidity regulators
Y þ Y 0 [9,12],

Sðb⊥; μ; Y þ Y 0Þ ¼ eðYþY 0ÞKðb⊥;μÞS−1I ðb⊥; μÞ; ð1Þ

where the first factor is related to rapidity evolution
[described by the Collin-Soper (CS) kernel K], and the
second factor SI is the intrinsic rapidity-independent part of
the soft contribution. The rapidity-regulator-independent
CS kernel K is found calculable by taking the ratio of the
quasi-transverse-momentum-dependent parton distribution
function (TMDPDF) at two different momenta [20–25]. On
the other hand, calculating the intrinsic soft function on the
lattice has never been attempted before.
In this Letter, we present the first lattice QCD calculation

of the intrinsic soft function SI with several momenta on a
2þ 1 flavor CLS ensemble with a ¼ 0.098 fm [26], see
Table I. In particular we perform simulations of the large-
momentum light-meson form factor and quasi-TMD wave
functions (TMDWFs), whose ratio gives the intrinsic soft
function [9]. The Wilson loop matrix element will be used
to remove the linear divergence in the quasi-TMD wave
function. The CS kernel K can also be calculated from the
external momentum dependence of the quasi-TMD wave
function [16], and we will calculate it as a by-product. Our
result is consistent with that of quenched lattice calcula-
tions of TMDPDFs [25].
Theoretical framework.—The intrinsic soft function (SI)

can be obtained from the QCD factorization of a large-
momentum form factor of a nonsinglet light pseudoscalar
meson with constituents π ¼ q̄2γ5q1, with the transition

current made of two quark bilinears with a fixed transverse
separation b⃗ ¼ ðn⃗⊥b⊥; 0Þ,

Fðb⊥;PzÞ¼ hπð−P⃗Þjðq̄1Γq1Þðb⃗Þðq̄2Γq2Þð0ÞjπðP⃗Þic: ð2Þ

Here q1;2 are light quark fields of different flavors, and

P⃗ ¼ ð0⃗⊥; PzÞ. To extract the soft factor, operators and
mesonic states are chosen such that each of the four lines in
Fig. 1 are of a different flavor, as pointed out in Ref. [9].
The simplest scenario would correspond to the contraction
in Fig. 1, which shares the same topology as the so-
called connected insertion; thus, a subscript c is added on
the right-hand side of Eq. (2). By construction, the
disconnected insertion is not relevant in this scenario that
we will adopt in this Letter.
It can be shown that the form factor defined in Eq. (2) is

factorizable into the quasi-TMDWFΦ and the intrinsic soft
function SI [9,16]

Fðb⊥;PzÞ

¼SIðb⊥Þ
Z

1

0

dxdx0Hðx;x0;PzÞΦ†ðx0;b⊥;−PzÞΦðx;b⊥;PzÞ;

ð3Þ

where H is the perturbative hard kernel. The quasi-
TMDWF Φ is the Fourier transformation of the coordi-
nate-space correlation function

ϕðz; b⊥; PzÞ ¼ lim
l→∞

ϕlðz; b⊥; Pz;lÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZEð2l; b⊥Þ

p ;

ϕlðz; b⊥; Pz;lÞ

¼ h0jq̄1
�
z
2
nz þ b⃗

�
ΓΦWðb⃗;lÞq2

�
−
z
2
nz
�
jπðP⃗Þi: ð4Þ

In the above, Wðb⃗;lÞ is the spacelike staple-shaped gauge
link,

FIG. 1. Illustration of the pseudoscalar meson form factor F
calculated in this Letter. The initial and final momenta of the pion
are large and opposite. The transition “current” is made of two
local operators at a fixed spatial separation b⊥. tsep is the time
separation between the source and sink of the pion.

TABLE I. Parameters used in the numerical simulation. The
first row shows the parameters of the 2þ 1 flavor clover fermion
CLS ensemble (named A654) and the second one shows the
number of the A654 configurations and valence pion mass used
for this calculation.

β L3 × T a (fm) csw κseal msea
π (MeV)

3.34 243 × 48 0.098 2.066 86 0.136 75 333

Ncfg κvl mv
π (MeV)

864 0.136 22 547
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Wðb⃗;lÞ ¼ P exp

�
igs

Z
z=2

−l
dsnzAðnzsþ b⊥Þ

�

× P exp

�
igs

Z
b⊥

0

dsn⊥Að−lnz þ sn⊥Þ
�

× P exp

�
igs

Z
−l

−z=2
dsnzAðnzsÞ

�
; ð5Þ

nz and n⊥ are the unit vectors in z and transverse directions,
respectively. ZEð2l; b⊥Þ is the vacuum expectation value of
a rectangular spacelike Wilson loop with size 2l × b⊥,
which removes the pinch-pole singularity and Wilson-line
self-energy in quasi-TMDWF [9].
Since the UV divergence of the intrinsic soft function is

multiplicative [16], the ratio SIðb⊥; 1=aÞ=SIðb⊥;0; 1=aÞ
calculable on lattice is UV renormalization scheme inde-
pendent, where b⊥;0 is a reference distance that is taken
small enough to be calculated perturbatively. Thus, we can
obtain the result in the MS scheme through

SI;MSðb⊥; μÞ ¼
�
SIðb⊥; 1=aÞ
SIðb⊥;0; 1=aÞ

�
SI;MSðb⊥;0; μÞ; ð6Þ

where SI;MSðb⊥;0; μÞ is perturbatively calculable, e.g.,

SI;MSðb⊥; μÞ ¼ 1 −
αsCF

π
ln

μ2b2⊥
4e−2γE

þOðαsÞ: ð7Þ

In the present exploratory study, we will consider only
leading-order matching in Eq. (3), for which the perturba-
tive kernel is Hðx; x0; PzÞ ¼ 1=ð2NcÞ þOðαsÞ, indepen-
dent of x and x0. Using ϕð0; b⊥;−PzÞ ¼ ϕð0; b⊥; PzÞ under
parity transformation, we obtain

SIðb⊥Þ ¼
2NcFðb⊥; PzÞ
jϕð0; b⊥; PzÞj2 þOðαs; ð1=PzÞ2Þ; ð8Þ

where power corrections from finite Pz are ignored. Since
Pz is related to the rapidity of the meson, we henceforth
replace it by the boost factor γ ≡ Eπ=mπ. Equation (6) can
be written as

SI;MSðb⊥; μÞ ¼
Fðb⊥; PzÞ
Fðb⊥;0; PzÞ

jϕð0; b⊥;0; PzÞj2
jϕð0; b⊥; PzÞj2

þOðαs; γ−2Þ: ð9Þ

The ratio on the right-hand side of the above expression is
independent of the renormalization scale μ since only the
leading-order contribution is kept.
On the other hand, the quasi-TMDWF can be used to

extract the Collins-Soper kernel K using a method similar
to [20]

Kðb⊥; μÞ ¼
1

lnðPz
1=P

z
2Þ
ln

����CðxP
z
2; μÞΦMSðx; b⊥; Pz

1; μÞ
CðxPz

1; μÞΦMSðx; b⊥; Pz
2; μÞ

����
ð10Þ

¼ 1

lnðPz
1=P

z
2Þ
ln

����
R
1
0 dxΦðx; b⊥; Pz

1ÞR
1
0 dxΦðx; b⊥; Pz

2Þ
����þOðαs; γ−2Þ

¼ 1

lnðPz
1=P

z
2Þ
ln

����ϕð0; b⊥; P
z
1Þ

ϕð0; b⊥; Pz
2Þ
����þOðαs; γ−2Þ: ð11Þ

In the second line, again only the leading-order matching
kernel CðxPz; μÞ ¼ 1þOðαsÞ is used. The renormaliza-
tion factors for Φ are canceled. The rapidity-scheme-
independent CS kernel K is independent of μ in this
approximation because only the leading term has been kept.
While Eqs. (6) and (10) are exact and can be used for

precision studies in the future, Eqs. (9) and (11) are the
leading-order approximation used in this pioneering Letter.
Simulation setup.—For the present study, we use con-

figurations generated with 2þ 1 flavor clover fermions and
tree-level Symanzik gauge action configuration by the CLS
Collaboration using periodic boundary conditions [26].
The detailed parameters are listed in Table I. Note that
mπ ¼ 547 MeV instead of 333 MeV is used for valence
quarks in order to have a better signal. Physically, the soft
function becomes independent of the meson mass for large
boost factors γ.
To calculate the form factor in Eq. (2), we generate the

wall source propagator,

Swðx; t; t0; p⃗Þ ¼
X
y⃗

Sðt; x⃗; t0; y⃗Þeip⃗·ðy⃗−x⃗Þ; ð12Þ

on the Coulomb gauge fixed configurations at t0 ¼ 0 and
tsep for both the initial and final meson states. S is the quark
propagator from ðt0; y⃗Þ to ðt; x⃗Þ. Then we can construct the
three-point function (3pt) corresponding to the form factor
in Eq. (2),

C3ðb⊥; Pz;pz; tsep; tÞ

¼ 1

L3

X
x

TrhS†wðx⃗þ b⃗; t; 0;−p⃗Þγ5ΓSwðx⃗þ b⃗; t; tsep; p⃗Þ

× S†wðx⃗; t; tsep;−P⃗þ p⃗Þγ5ΓSwðx⃗; t; 0; P⃗ − p⃗Þi: ð13Þ
The quark momentum p⃗ ¼ ð0⃗⊥; pzÞ and the relation
γ5S†ðx; yÞγ5 ¼ Sðy; xÞ have been applied for the antiquark
propagator. We have tested several choices of Γ and will use
the unity Dirac matrix Γ ¼ I as it has the best signal and
describes the leading twist light-cone contribution in the
large Pz limit. Notice that the Γ ¼ γ4 case is subleading in
the large Pz limit and is less suitable, although the excited
state contamination might be smaller.
By generating the wall source propagators at

all the 48 time slices with quark momentum
pz ¼ ð−2;−1; 0; 1; 2Þ × 2π=ðLaÞ, we can maximize the
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statistics of the 3pt function with all the meson momenta Pz
from 0 to 8π=ðLaÞ (∼2.1 GeV) with arbitrary t and tsep.
C3ðb⊥; Pz; tsep; tÞ is related to the bare Fðb⊥; PzÞ using
standard parametrization of 3pt with one excited state,

C3ðb⊥; Pz;pz; tsep; tÞ ¼
AwðpzÞ2
ð2EÞ2 e−Etsep ½Fðb⊥; PzÞ

þ c1ðe−ΔEt þ e−ΔEðtsep−tÞÞ þ c2e−ΔEtsep �: ð14Þ

Aw is the matrix element of the Coulomb gauge fixed wall
source pion interpolation field, E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ Pz2
p

is the pion
energy, ΔE is the mass gap between pion and its first
excited state, and c1;2 are parameters for the excited state
contamination. Note that the pz dependence factor A2

w will
cancel.
The same wall source propagators can be used to

calculate the two-point function related to the bare
quasi-TMDWF,

C2ðb⊥; Pz;pz;l; tÞ ¼
1

L3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZEð2l; b⊥Þ

p X
x

TreiP⃗·x⃗

× hS†wðx⃗þ b⃗; t; 0;−p⃗ÞWðb⃗;lÞγ5ΓΦSwðx⃗; t; 0;Pz − p⃗Þi

¼ AwðpzÞAp

2E
e−Etϕlð0; b⊥; Pz;lÞð1þ c0e−ΔEtÞ; ð15Þ

where again we parametrize the mixing with one excited
state. Ap is the matrix element of the point sink pion
interpolation field. It will be removed when we normalize
ϕlð0; b⊥; Pz;lÞ with ϕlð0; 0; Pz; 0Þ. We choose ΓΦ ¼ γtγ5
to define the wave function amplitude in Eq. (4). Based on
the quasi-TMDPDF study in Refs. [25,27] with a similar
staple-shaped gauge link operator, the mixing effect could
be sizable when summing various contributions. In the
Supplemental Material [28], we report a similar simulation
but using the A654 ensemble. We find that the mixing
effects can reach order 5% for the transverse separation
b⊥ ∼ 0.6 fm. These effects will be included in the follow-
ing analysis as one of the systematic uncertainties, while a
comprehensive study on the mixing effects will be con-
ducted in the future.
The dispersion relation of the pion state, statistical

checks for the measurement histogram, and information
on the autocorrelation between configurations can be found
in the Supplemental Material [28].
Numerical results.—Figure 2 shows the dependence

of the norm of quasi-TMDWFs on the length l of the
Wilson line. As one can see from this figure, with
fPz; b⊥; tg ¼ f6π=L; 3a; 6ag, both the quasi-TMDWF
ϕlð0; b⊥; Pz;lÞ and the square root of the Wilson loop
ZE decay exponentially with length l, but the subtracted
quasi-TMDWF is length independent when l ≥ 0.4 fm.
Some other cases with larger Pz, b⊥, and t can be found in
the Supplemental Material [28]. Based on this observation,

we will use l ¼ 7a ¼ 0.686 fm as asymptotic results for
all cases in the following calculation.
We performed a joint fit of the form factor and quasi-

TMDWF with the same Pz and b⊥ with the parametrization
in Eqs. (14) and (15). The ratios C3ðb⊥; Pz; tsep; tÞ=
C2ð0; Pz; 0; tsepÞ with different tsep and t for the fPz; b⊥g ¼
f6π=L; 3ag case are shown in Fig. 3, with ground state
contribution (gray band) and the fitted results at finite t2
and t (colored bands). In this calculation, the excited state
contribution is properly described by the fit with
χ2=d:o:f: ¼ 0.6. The details of the joint fit, and also more
fit quality checks, are shown in the Supplemental Material
[28], with similar fitting quality.
The resulting soft factor as a function of b⊥ is plotted in

Fig. 4, at γ ¼ 2.17, 3.06, and 3.98, which corresponds
to Pz ¼ f4; 6; 8gπ=L ¼ f1.05; 1.58; 2.11g GeV, respec-
tively. As in Fig. 4, the results at different large γ are
consistent with each other, demonstrating that the asymp-
totic limit is stable within errors. We also compare the
intrinsic soft function extracted from the lattice to the one-
loop result in Eq. (7), with αsðμ ¼ 1=b⊥Þ evolving from

FIG. 2. Results for the l dependence of the quasi-TMDWF
with z ¼ 0, and also the square root of the Wilson loop which is
used for the subtraction, taking the fPz; b⊥; tg ¼ f6π=L; 3a; 6ag
case as a example. All the results are normalized with their values
at l ¼ 0.

FIG. 3. The ratios C3ðb⊥; Pz; tsep; tÞ=C2ð0; Pz; 0; tsepÞ (data
points) that converge to the ground state contribution at
t; tsep → ∞ (gray band) as function of tsep and t, with
fPz; b⊥g ¼ f6π=L; 3ag. As in this figure, our data, in general,
agree with the predicted fit function (colored bands).
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αsðμ ¼ 2 GeVÞ ≈ 0.3. The shaded band corresponds to
the scale uncertainty of αs: μ ∈ ½1= ffiffiffi

2
p

;
ffiffiffi
2

p � × 1=b⊥. Notice
that the b⊥ dependence of the former comes purely
from the lattice simulation, while that for the latter is
from perturbation theory. For ease of comparison, we also
tabulate the results for the soft function in the Supplemental
Material [28].
We can see a clear Pz dependence in the quasi-TMDWF

jϕlð0; b⊥; Pz;lÞj normalized with ϕlð0; 0; Pz; 0Þ, as in the
upper panel of Fig. 5. This dependence is related to the CS
kernel, as shown in Eq. (11), up to possible LMET
matching effects and power corrections of order 1=γ2.
Thus, we use Eq. (11) to extract the kernel in the tree-
level approximation and compare the result in the lower
panel of Fig. 5 with that of Ref. [25] and up to three-loop
perturbative ones with αsðμ ¼ 1=b⊥Þ. We estimate the
systematic uncertainty by combining in quadrature the
contributions from the operator mixing effects and from
the nonvanishing imaginary part of the quasi-TMDWF,
which should be canceled by proper treatments on higher-
order effects. For details, see the Supplemental Material
[28], in particular Secs. C and F. Our result is consistent
with that of Ref. [25].
Summary and outlook.—In this Letter, we have pre-

sented an exploratory lattice calculation of the intrinsic soft
function by simulating the light-meson form factor of four-
quark nonlocal operators and quasi-TMD wave functions.
Our result shows a mild hadron momentum dependence,
which allows a future precision study to eliminate the large-
momentum dependence using perturbative matching [16].
As a reliability check, the agreement between the CS kernel
obtained from our quasi-TMDWF result and previous
calculations shows that the systematic uncertainties, includ-
ing the partially quenching effect, the only leading pertur-
bative matching and missing power corrections 1=γ in
LMET expansion, might be subleading. Our calculation

paves the way toward the first principle predictions of
physical cross sections for, e.g., Drell-Yan and Higgs
productions at small transverse momentum.
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TMDPDF. Results based on quenched lattice calculations,
labeled as “Hermite” and “Bernstein” [25], are also shown for
comparison. Errors in the lower panel correspond to the statistical
and systematic errors from the nonzero imaginary part, as well as
the operator mixing effects.

FIG. 4. The intrinsic soft factor as a function of b⊥ with b⊥;0 ¼
a as in Eq. (9). With different pion momentum Pz, the results are
consistent with each other. The dashed curve shows the result of
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2
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