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Summary

The oncogene MYC plays an important role in B cell lymphoma pathogenesis. Despite

more than 30 years of MYC research there are still open questions concerning its func-

tion and how to target MYC in lymphomagenesis. Thus, this work aims to examine

the causal relationships between MYC and the transcriptome and metabolome in a B

cell lymphoma cell line by computational methods. The data set covers RNA-seq and

mass spectrometry measurements of the same cell line. The underlying data is purely

observational, no intervention is needed since causal inference techniques enable virtual

experiments in theory. The first part of this thesis addresses three issues:

First, the analysis of the RNA-seq data from cells with overexpressed MYC is challenging

since MYC is a transcriptional amplifier. There is no de novo activation of genes by the

elevated MYC, but an amplification of all presently expressed genes. This behavior is

accompanied with an increase in cell size and an increase of RNA amount. Thus, the

comparison of lymphoma cells with a high MYC expression with normal B cells by RNA-

seq standard pipelines is difficult, since current normalization methods require a constant

RNA amount across samples. I present a method that uses Drosophila melanogaster cells

as a spike-in to calibrate the data to the number of cells in the sample (Taruttis et al.,

2017). I demonstrate that, in case of transcriptional amplification in the B cell lymphoma

cell line the use of an external spike-in is mandatory to observe the global gene expression

changes. Furthermore, the Drosophila melanogaster spike-in normalization outperforms

other calibration methods, including the use of the commercially available ERCC spike-

ins.

Second, Maathuis et al. (2010) presented the first high throughput analysis of virtual

intervention experiments. Their ground-breaking IDA method (Maathuis et al., 2009)

will have a lasting effect on the field of systems biology. Further developments of the IDA

method recommended a subsampling strategy for the estimation of causal effects from

observational data (Stekhoven et al., 2012). I extend IDA and its extension CStaR by an-

alyzing the distribution of causal effects and call the method Accumulation IDA (aIDA)

(Taruttis et al., 2015). aIDA improves the prediction of causal effects in comparison to

Maathuis et al. (2009) and (Stekhoven et al., 2012).

Third, causal structure learning by the PC algorithm (Spirtes and Glymour, 1991; Kalisch

and Bühlmann, 2007), the first step of both IDA and aIDA, assumes that the underlying

structure is sparse. However, the application of the spike-in methods to B cell lymphoma

data sets with MYC overexpression results in highly correlated data. Thus, the under-

lying causal structure is very likely not sparse. I assume that this is a consequence of

the global role of Myc in gene expression (Lin et al., 2012; Nie et al., 2012). Thus, we
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observe no technical artifact but a real biological process. I show that using the MMHC

algorithm instead of the PC algorithm together with my accumulation method outper-

forms aIDA for highly correlated datasets. However, the MMHC-aIDA method breaks

down, too, when the density of the underlying causal structure becomes too high.

The second part of the thesis presents a causal inference analysis of a B cell lymphoma

cell line. We decided for the P493-6 cell line due to its doxycycline-dependant promoter

to switch MYC on or off, which allows for an examination of the causal relationships of

MYC under the same epigenetic conditions. RNA-seq and mass spectrometry data are

measurements of the transcriptome and the metabolome of the cell line and are the input

of the causal inference analysis. I show that the selection of the method to estimate the

causal effects highly depends on the data structure. While the highly correlated RNA-

seq dataset shows the best results with the MMHC-aIDA method, the mass spectrometry

data performs well with aIDA. The analysis of RNA-seq data shows that MYC upregu-

lates the majority of genes in the dataset. MYC further shows a positive causal effect on

the majority of the metabolites. These findings are in line with the hypothesis that MYC

is a trancriptional amplifier. Some of the causal effects of MYC on the transcriptome

and metabolome are already known, others can be high priority candidates for future wet

lab experiments.
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CHAPTER 1

Introduction

1.1 The oncogene MYC and its role in B cell lym-

phoma pathogenesis

1.1.1 B cell lymphoma - a very heterogeneous group of cancer

Cancer is a disease characterized by abnormal cell growth and the ability to spread

(metastasis) or to invade other neighboring tissues, which may occur in every tissue of

the body. The World Cancer Report documents approximately 18.1 million new cases and

9.6 million cancer related deaths in 2018 (Wild et al., 2020). Moreover, the World Health

Organization (WHO) assumes that the number of new cases increases by approximately

50 % within the next 20 years. From a genetic point of view cancer is caused by genomic

alterations. Lengauer et al. (1998) organizes the various amount of these alterations into

four groups: (i) the insertion or deletion of only a small number of nucleotides, (ii) a

gene amplification (increase of the number of copies of a gene), (iii) the chromosomal

translocation, which is a rearrangement of parts of two different chromosomes and (iv)

an alteration of chromosome number by gain or loss of whole chromosomes (aneuploidy).

There are more than 100 different types of cancer due to the high number of different

tissues that might be affected and the complexity of genetic arrangement. Ciriello et al.

(2013) summarizes the analysis of genomic alterations in the following two statements: (i)

tumors occurring in the same tissue can be highly diverse with respect to their genomic

profile (Network et al., 2012), (ii) whereas tumors from very different tissues can show

similar genetic patterns (Verhaak et al., 2010). Hanahan and Weinberg (2011) reduced
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the complexity of cancer to eight hallmarks, which provide a logical framework how cancer

emerges and develops:

1. Cancer cells stimulate their own growth.

2. Cancer cells disturb or switch off programs in the cell, that control proliferation.

3. Cancer cells avoid apoptosis.

4. Cancer cells have unlimited replicative potential.

5. Tumors require the induction of angiogenesis.

6. Cancer cells are able to invade neighboring tissues and to metastasize.

7. Cancer cells undergo a reprogramming of cellular energy metabolism.

8. Cancer cells defend themselves against attack by immune cells.

Lymphoma is a group of cancer, which affects the human cells that defend the body

against pathogens and infected cells, the lymphocytes. In 2018, 589.580 new cases of lym-

phoma and about 274.891 lymphoma related deaths have been reported worldwide (Bray

et al., 2018). There are two groups: Hodgkin and Non-Hodgkin Lymphoma. Hodgkin

Lymphoma are characterized by the existence of Reed-Sternberg cells, a distinctive cell

type used for diagnostic purposes. While the five year survival rate of Hodgkin lym-

phoma is about 90 %, the survival rate of Non-Hodgkin Lymphoma highly depends on

the subtype. There are more than 60 different subtypes of Non-Hodgkin Lymphoma.

About 90 % of Non-Hodgkin Lymphomas originate from a B cell, a type of white blood

cells, that plays a central role in the adaptive immune system. This specific immune

response eradicates invading pathogens, called antigens, without damaging any endoge-

nous molecules. These antigens are bound by the B cell receptor (BCR), which B cells

express on their cell membrane. A BCR consists of two heavy (H) polypeptide chains

and two light (L) polypeptide chains of immunoglobulines (Ig) covalently connected by a

disulfit bridge and CD79A and CD79B molecules, that transmit signals after BCR cross

linking (Küppers et al., 1999a). Each B cell produces exactly one highly specific kind of

immunoglobulines. Specific genetic processes during B cell development, that allow the

H and L chains for rearrangement and point mutations enable the B cells to build a wide

variety of more than 1012 different antibodies (Mårtensson et al., 2010). However, while

these mechanisms are responsible for the high flexibility and specificity of the human

adaptive immune response, they also carry a great danger. The need of these genetic re-

arrangements includes the high potential to end up in unwanted genetic alterations and
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with that may trigger lymphomagenesis (Basso and Dalla-Favera, 2015). Chromosomal

translocations, which do often involve an Ig gene and an oncogene, are a hallmark of B

cell lymphoma pathogenesis (Küppers and Dalla-Favera, 2001; Willis and Dyer, 2000).

The oncogene comes under the control of an Ig promoter, which leads to an uncontrolled

upregulation of the oncogene and with that triggers lymphoma pathogenesis. When a

lymphoma is developed at a certain state of the B cell development process, the genetic

state of the cell of origin is ”frozen” and this maturation state defines the lymphoma

subtype (Küppers et al., 1999b; Shaffer et al., 2002).

Thus, to understand the huge diversity of B cell lymphomas we need to get insights into

the B cell developmental process.

How does a B cell develop, which processes cause the genetic and functional

diversity of the antibodies and how do errors within these processes lead to

lymphoma? There are three specific breakpoints of chromosomal translocations which

can be assigned to three different stages of the developmental process (Küppers, 2005;

Robbiani and Nussenzweig, 2013):

(i) V(D)J recombination The B cell development starts in the bone marrow,

where a lymphoid progenitor cell evolves into a pre B cell that expresses a pre-BCR.

This pre-BCR consists of two Ig heavy (H) and surrogate light (SL) polypeptide chains.

The H and L chains consist of variable (V) and constant (C) regions. According to their

constant region the heavy chains are divided into five classes: the α, δ, ε, γ and µ chains.

And depending on that grouping the antibodies are classified as IgA, IgD, IgE, IgG and

IgM. The variable regions are completed by a Joining (J) and Diversity (D) region.

To build a functional antibody, the pre-BCR undergoes a process called V(D)J recom-

bination of the µ-chains which rearranges these V, J and D gene segments. This rear-

rangement enables the B cells to produce very diverse antibodies, which are important for

the adaptive immune response to new pathogens. Even if this process is well controlled

by different mechanisms (Jung et al., 2006), errors during V(D)J recombination pro-

cess can drive lymphomagenesis by introducing unwanted chromosomal translocations.

A well-examined example is the BCL2-IgH translocation in follicular lymphoma. The

BCL2 gene is located on chromosome 18 and encodes for the BCL2 family of regulatory

proteins (Adams and Cory, 2007). The translocation brings the BCL2 gene under the

control of a Ig heavy chain promotor (Jäger et al., 2000; Tsujimoto et al., 1985, 1988).

This leads to a dramatically increase of BCL2 expression and an increased BCL2 expres-

sion increases the probability of a cell to avoid apoptosis (Cleary et al., 1986; Tsujimoto
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et al., 1984), which is a hallmark of carcinogenesis (Hanahan and Weinberg, 2011).

(ii) Somatic hypermutation After V(D)J recombination the surrogate L chains

are replaced by corresponding valid L chains to form a IgM antibody. Thus, the IgM

antibody is the first antibody which is produced during B cell development. The affinity

of these IgM antibodies to bind their corresponding antigen is still low in comparison to

the other classes. To account for that, this class of antibodies is able to form pentamers

when it is secreted and with that the antigen is tackled by 10 antigen binding sites.

If this pre-BCR is functional and non-autoreactive, the immature naive B cell leaves

the bone marrow, starts to express IgD antibodies on its membrane and moves to the

secondary lymphoid organs, for example the spleen, the lymph nodes or the tonsils.

Immature B cells which do not pass this checkpoint undergo apoptosis (Rajewsky, 1996).

After activation by an antigen and mediated by T cells the naive B cells proliferate

intensively and form the germinal center. During its maturatin the germinal centers form

two separate compartments: the dark zone and the light zone. In the dark zoe of the

germinal centers the B cells undergo a process to remodel their immunglobulin genes

and to express high-affinity antibodies: the somatic hypermutation. The B cells are

extremely proliferative and undergo point mutations, gene amplifications and deletions

in the V regions of the BCR. This ensures a huge variety of different antibodies with

different affinity to the antigen. However, Pasqualucci et al. (2001) demonstrated, that

hypermutated regions of some protooncogenes are prone to chromosomal translocations in

Diffuse Large B Cell Lymphomas (DLBCLs). Thus, errors during somatic hypermutation

may introduce unwanted chromosomal translocations.

(iii) Class switch recombination The B cells with the BCR altered by somatic

hypermutation leave the dark zone of the germinal centers and enter the light zone.

Here the cells are selected by T helper cells and follicular dendritic cells for an improved

antigen binding. B cells which do not improve their affinity to the antigen by somatic

hypermutation undergo apoptosis. Some B cells reenter the dark zone to further improve

their affinity (De Silva and Klein, 2015). Before they leave the light zone these B cells

can do a class switch recombination, where the Ig gene of the constant region is changed

to build IgG, IgE and IgA antibodies. This results in the same antigen-binding domain,

but a different class of antibodies (Küppers, 2005). The five different classes of antibodies

can attack the antigens in different ways. They occur in different proportions and the

IgG is the largest group of antibodies. However, class switch recombination is the third

process which may generate chromosomal translocations. A well-described example is

the t(8;14) mutation, which brings the MYC oncogene under the control of an Ig gene.
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This translocation is a primary event during sporadic Burkitt’s lymphoma pathogenesis

(Taub et al., 1982; Janz et al., 2003; Küppers and Dalla-Favera, 2001; Dalla-Favera et al.,

1983; Ramiro et al., 2006). Finally, the high-affinity B cells mature to effector B cells,

which secrete huge amounts of antibodies to neutralize and destroy antigens and memory

B cells, that trigger a more effective immune response in case of re-infection with the

antigen.

Beyond the chromosomal translocations mentioned before, there are many other

different kinds of mutations, like deletions, insertions or other genetic alterations that

may trigger lymphomagenesis (Seifert et al., 2013). Each subtype of B cell lymphoma

can be assigned to a specific maturation state based on mutations in the Ig V region and

gene expression profiling. This assigned maturation state is termed the ”cell of origin”

(Shaffer III et al., 2012). For example, Burkitt’s lymphoma share a similar genetic profile

with the B cells in the dark zone of the germinal centers, while the DLBCLs share

similarities with the GC light zone B cells (Küppers, 2005). However, Shaffer III et al.

(2012) criticize the term ”cell of origin”, since pathogenesis may also start at an earlier

state of the maturation process. Thus, after the initial oncogenic event the maturation

of the B cell continues until secondary oncogenic hits determine the lymphoma subtype

(Shaffer III et al., 2012).

1.1.2 The MYC oncogene is a hallmark of B cell lymphoma

pathogenesis

MYC is located on chromosome 8 and plays a central role in B cell lymphomagenesis.

It encodes for transcription factor C-MYC and influences metabolism, proliferation and

cell differentiation. Together with MAX, MYC builds a complex, which binds DNA at

the E-box promotor region (Kretzner et al., 1992; Amati et al., 1993). MYC ’s oncogenic

potential appears, when it comes under the control of an Ig gene by chromosomal translo-

cation. The resulting upregulation of MYC can induce aggressive B cell lymphomas

(Dalla-Favera et al., 1982; Persson and Leder, 1984; Adams et al., 1985). Upregulated

MYC is detectable in 30% to 40% of DLBCLs and 70% to 100% of Burkitt lymphomas

(Sesques and Johnson, 2017; Johnson et al., 2012; Chisholm et al., 2015; Agarwal et al.,

2015; Perry et al., 2013). MYC plays an important role in every hallmark of B cell

lymphoma pathogenesis, which is underpinned by the following examples:

(i) Cancer cells stimulate their own growth. Even if proliferative signaling in

cancer cells is well understood, many details especially with respect to therapeutic ap-

proaches requires further research. Hanahan and Weinberg (2011) present three ways how
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cancer cells maintain the proliferative signaling. First, they produce ligands for growth

factors themselves. Second they send signals to normal cells in their environment, which

causes these normal cells to produce growth factors for the cancer cells. And third, they

increase the amount of growth factor receptors on their surface to become hyperrespon-

sive (Hanahan and Weinberg, 2011).

A major growth factor signaling pathway in humans is the PI3K-AKT-mTOR path-

way and the deregulation of this pathway may lead to cancer. In a nutshell, activated

Phosphoinositid-3-Kinase (PI3K) causes cell growth via Proteinkinase B (AKT), increases

metabolic activity and promotes survival (Cantley, 2002). The mechanistic Target of Ra-

pamycin (MTOR), a downstream effector of AKT consists of two different complexes.

The mTOR complex 1 (MTORC1) plays a major role in cell growth (Ma and Blenis,

2009) and the mTOR complex 2 (MTORC2) inhibits a MTORC1 repressor, the tuberous

sclerosis complex 2 (TSC2) via AKT. MTOR directly activates protein synthesis, lipid

synthesis and ribosomal biogenesis (Efeyan et al., 2012).

Deregulated MYC in Burkitt’s lymphoma increases the expression of MIR17HG a precur-

sor RNA for the micro-RNA miR-19 (Olive et al., 2009; Xiao et al., 2008). miR-19 is an

inhibitor of Phosphatase and Tensin homolog (PTEN ), a well-known tumor suppressor

gene which downregulates PI3K. Thus, the inhibition of PTEN increases the expression

of PI3K, which drives the survival of Burkitt’s lymphoma cells (Schmitz et al., 2012).

(ii) Cancer cells disturb or switch off programs in the cell that control pro-

liferation. Differentiated, mature cells have programs to inhibit cell growth and pro-

liferation. A lot of these programs involve tumor suppressor genes. A typical tumor

suppressor gene is the TP53 gene which is regulated by MDM2. During homeostasis,

without stress exposure MDM2 ubiquitinates and with that downregulates TP53. Af-

ter stress exposure, for example by oxidative stress or DNA damage, TP53 is activated.

When a cell is damaged TP53 triggers cell cycle arrest and, in case of irreparable cell

damage, activates apoptosis. In spite of the huge efforts during the past three decades

the detailed regulation mechanism is still unknown (Aubrey et al., 2016). MYC has a

contradictory function. On the one hand MYC increases proliferation, while on the other

hand MYC also drives apoptosis via TP53 (Hermeking et al., 1994). This process acts

as a failsafe programm to circumvent uncontrolled proliferation. However, in lymphoma

cells this second function is most often inactive. For example, about 30%-60% of Burkitt’s

lymphoma carry a TP53 mutation (Gaidano et al., 1991; Newcomb, 1995; Preudhomme

et al., 1995). In transgenic mice with a translocation similar to the translocation in the

majority of Burkitt’s lymphoma, Schmitt et al. (2002) observed that these phenotypes

are chemoresistant and develop fast to the terminal stage. In summary, the loss of TP53
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and the activation of MYC are an example for mutations that cooperate to increase

proliferation and survival.

(iii) Cancer cells avoid apoptosis. Normal cells share the ability to induce a pro-

grammed cell death to preserve the homeostatic balance of their tissues. Whenever a cell

is damaged and not able to fulfill its normal tasks anymore the program is activated, too.

BCL2 plays an important role in the regulation of programmed cell death, since it consists

of pro- and antiapoptotic units and primarily promotes cell survival (Vaux et al., 1988).

Usually, in absence of BCL2, MYC induces apoptosis via BIM (encoded by BCL2L11 ).

However, in more than 50% of DLBCLs BCL2 is upregulated and inhibits MYC mediated

apoptosis with no effect on the proliferative function (Hoffman and Liebermann, 1998).

Moreover BCL2 mediates chemoresistance (Schmitt and Lowe, 2001). While Reed et al.

(1988) demonstrated the oncogenic potential of BCL2, additional genomic alterations are

needed to develop an aggressive lymphoma and a chromosomal translocation of MYC

could take on this role (McDonnell et al., 1989). Neither a mutation of MYC nor a mu-

tation of BCL2 alone causes aggressive lymphomas. However, the combination of BCL2

mediated survival signals and proliferation signals provided by MYC, also known as a

type of Double-hit lymphomas results in low survival rates and a bad prognosis (Johnson

et al., 2009).

(iv) Cancer cells have unlimited replicative potential. The ends of the chromo-

somes consist of a special DNA structure, called telomers, which prevent the chromosome

ends from DNA damage (Muller, 1938; McClintock, 1941). The length of the telomers

is related to the life span of the cell since they shorten with increasing age (Harley

et al., 1990). Further telomere shortening directly causes cells to pass into a state called

senescence (Nelson and Kastan, 1994; Vaziri et al., 1997), characterized by viable cells

which cannot divide anymore (Sedivy, 1998). The enzyme complex telomerase which

adds telomeric repeats to the chromosome ends (Greider and Blackburn, 1987), hampers

this process. Kim et al. (1994) summarize that telomerase is not present in the majority

of normal mortal cell cultures, whereas it is present in the majority of immortal and

cancer cells. 85 % of human cancers upregulate telomerase to maintain their telomere

length and with that avoid to pass to senescence and crisis, while the remaining cancer

types use other processes to avoid telomere shortening (Cesare and Reddel, 2010). The

telomerase enzyme complex consists of the RNA part called telomerase RNA component

(TERC ) and the catalytic subunit telomerase reverse transcriptase (TERT). Different

studies suggest that MYC acitvates TERT directly (Greenberg et al., 1999; Wang et al.,

1998; Wu et al., 1999). Thus, MYC has a direct influence on keeping limitless replicative
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potential. Further, inversely Koh et al. (2015) found, that high levels of TERT positively

influence MYC stability and with that regulate lymphomagenesis.

(v) Malignant tumors induce angiogenesis Angiogenesis is the ability to form

new blood vessels from preexisting ones. This property is essential for the survival of

the tumors, since they have to ensure supply of oxygen and nutritients and they have to

maintain the possibility to get rid of carbon dioxide and metabolic waste (Hanahan and

Weinberg, 2011). MYC triggers the expression of the proangiogenetic factor VEGF and

represses thrombospondin, an antiangiogenetic factor (Baudino et al., 2002). Further in

lymphoma that carry a translocation between MYC and an Ig gene (MYC positive), the

repression of MYC puts a stop to angiogenesis and thrombospondin expression which is

essential for tumor regression. Thus, MYC induces angiogenesis in lymphoma and plays

an important role in tumor maintenance (von Eyss and Eilers, 2011).

(vi) Cancer cells are able to invade neighboring tissues and to metastasize

Cancer cells may on the one hand penetrate adjacent tissues, but, on the other hand,

spread to organs different and distant from the primary tumor and form secondary tu-

mors, which is known as metastasis. The ability of cancer cells to invade neighboring

tissues and to metastasize causes approximately 90% of cancer related deaths (Canel

et al., 2013; Li and Li, 2014; Mehlen and Puisieux, 2006). Metastatic spread is a complex

molecular process known as the invasion-metastasis cascade (Fidler, 2003; Gupta and

Massagué, 2006; Talmadge and Fidler, 2010). Following Leber and Efferth (2009) the

five steps of this cascade include: (i) invasion and migration of individual cells from the

primary tumor to neighboring, healthy tissues, (ii) the invasion of blood and lymphatic

vessels by the cancer cells, (iii) the circulation of cancer cells via the blood and the abil-

ity of these specialized, aggressive cells to tolerate the high concentration of oxygen and

cancer-cell-toxic lymphocytes, (iv) the potential of the cancer cells to leave the blood

stream again, and (v) the colonization of distant organs together with proliferation and

angiogenesis. E-cadherin, encoded by CDH1 (Huntsman and Caldas, 1998), mediates

cell-cell adhesions and the loss of E-cadherin is associated with increased cell motility,

tumor progression and metastasis (Birchmeier and Behrens, 1994; Canel et al., 2013). Ma

et al. (2010) have shown that MYC directly activates MIR-9, a miRNA, which represses

the expression of E-cadherin. These findings suggest that MYC also influences invasion

and metastasis. Roehle et al. (2008) found that MIR-9 is upregulated in follicular lym-

phoma. Further, Di Lisio et al. (2012) found an upregulation of MIR-9 in DLBCLs and

Marginal zone B cell lymphoma and Szenthe et al. (2013) point out, that MYC activates

miR-9 and miR-9 targets E-cadherin. These findings highlight the importance of miR-9
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for lymphomagenesis.

(vii) Cancer cells undergo a reprogramming of cellular energy metabolism

Normal healthy mammalian cells primarily convert glucose to pyruvat via glycolysis in

the presence of free oxygen to generate energy. Pyruvat is further processed to acetyl-

CoA, a key molecule in protein and lipid metabolism, by oxidation in the mitochondria

(Oxidative phosphorylation). In contrast, if oxygen is absent, normal cells transform

pyruvat to lactate (anaerobic glycolysis). Both metabolic pathways produce adenosine

triphospahte (ATP), a molecule used for intracellular energy transfer. However, while

oxidative phosphorylation produces 36 mol ATP per mol Glucose, the anaerobic glycolysis

supplies 2 mol ATP per mol Glucose. Warburg (1956) observed that cancer cells, even

under aerobic conditions, increase lactate production. This process is known as Warburg

effect or aerobic glycolysis. The benefits of the Warburg effect for the cancer cells and

whether its a cause or a consequence of cancer development is not fully resolved, yet

(Liberti and Locasale, 2016; Devic, 2016). However, the findings of Le et al. (2012)

suggest that the overexpression of MYC increases the glycolytic flux in MYC -driven

Burkitt lymphoma. Beyond these findings MYC also influences glutamine metabolism,

fatty acid and cholesterol metabolism and regulates ribosome biogenesis, protein and

nucleotide biosynthesis (Hsieh et al., 2015). Thus, MYC is a key manipulator of cellular

energy metabolism.

(viii) Cancer cells defend themselves against attack by immune cells The

immune system prevents cancer development at three levels: (i) it impedes the outbreak of

viral infections and with that lowers the probability for virus-induced cancer development,

(ii) it neutralizes pathogens fast and prevents chronic inflammation, which might lead to

DNA damage increasing the risk to develop cancer, and (iii) cells of the immune system

are able to detect cancer cells and to remove them (Swann and Smyth, 2007). Recently,

Casey et al. (2016) showed that MYC hampers this detection of tumor cells by inducing

the expression of CD47 and PD-L1. While PD-L1 sends a ”‘don’t find me”’ signal

mainly induced by IFN-γ, a pro-inflammatory molecule (Casey et al., 2016; He et al.,

2015), CD47 sends a ”‘don’t eat me”’-signal to macrophages and dendritic cells (Casey

et al., 2016; Spranger et al., 2016). Thus, MYC influences both, the adaptive immune

system via PD-L1 and the innate immune system via CD47.

These are just a few examples for the various functions of MYC during tumorigenesis.

MYC is deregulated in many different ways. In addition to gross genetic events like

insertional mutagenesis, amplification and chromosomal translocation (Meyer and Penn,
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2008), MYC is also activated by many signaling pathways, e.g. BCR- or NFκB-signaling,

without structurally affecting the location of the MYC gene (Sesques and Johnson, 2017).

A deregulation of MYC can be a primary event for example in Burkitt’s lymphoma or

a secondary event for example in MYC positive DLBCLs, which is often associated

with a poor prognosis (Johnson et al., 2009). However, deregulated MYC alone is not

sufficient for lymphomagenesis (Sander et al., 2012). Although upregulated MYC induces

proliferation in BL, MYC also triggers apoptosis by the activation of the p53 pathway and

by upregulating the proapoptotic gene BIM (Evan et al., 1992; Hoffman and Liebermann,

2008; Jacobs et al., 1999; Schmitt et al., 1999). More than inducing lymphomagenesis,

MYC cooperates with other mutations, as described above. But, the suppression of

MYC can reverse lymphomagenesis (Marinkovic et al., 2004). However this reversion

does not work in every context. Gabay et al. (2014) summarizes that for example a

knock out of TP53 expression (Giuriato et al., 2006) or a RAS activation (D’Cruz et al.,

2001) hampers the reversion of tumorgenesis. Thus, the physiological state of the cell

influences the response of the cells to MYC upregulation (Gabay et al., 2014).

1.1.3 MYC - a transcriptional amplifier and resulting conse-

quences for data normalization

The work of Lin et al. (2012) and Nie et al. (2012) suggests that MYC is a transcriptional

amplifier since they found that MYC leads to the induction of virtually all transcribed

genes by a factor of two to three, accompanied with an increase in cell size. Roughly

spoken, there is no de novo activation of genes by MYC, since MYC just amplifies the

expression of the presently expressed genes depending on the epigenetic background. This

behaviour directly influences the RNA amount in a cell. We can observe a much higher

amount of RNA in cells with deregulated MYC expression (Figure 1.1). Thus, the RNA

amount between cells with deregulated MYC and normal cells differs dramatically. This

observation is crucial for data normalization (Lovén et al., 2012), since current normal-

ization methods require the total amount of RNA between different conditions to be

constant (see (Li et al., 2017) for a summary of current normalization methods).

These normalization methods are based on the assumption that only a small number of

genes change their expression values, while the majority of genes stays constant. Thus,

the global upregulation of the majority of presently expressed genes induced by MYC is

a violation of this main assumption.

The effect of amplification on data normalization cannot be solved by a computational

method alone, since the crucial step happens in the wet lab. Whenever a fixed amount

of RNA is taken from our sample for further analysis, the information about the total
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Figure 1.1: RNA concentration of P493-6 cells for two levels of MYC. The
P493-6 cell line allows for the induction of MYC via a doxycycline depended promoter
to switch MYC on or off. ”‘Low”’ indicates the cells in the presence of doxycycline and
represents a low level of MYC expression, while ”‘High”’ indicates the cells in absence of
doxycycline and a high expression level of MYC. The induction of MYC in one million
P493-6 cells leads to an increase of the RNA amount per cell(n=10).

amount of RNA per cell is lost. We cannot decide whether there was a real increase of

the amount of RNA between two conditions or we just observe technical differences in

processing the samples, where we could simply account for. A solution is to measure

the amount of RNA before taking a fixed-sized aliquot from the probe (Aanes et al.,

2014). However this method is very inaccurate due to the different proportions of differ-

ent specimen of RNA within a sample. Moreover, there is a large spread in measurements

between different measurement set-ups, e.g. different methods, different technical equip-

ment, but also different operator time and skills (Aranda et al., 2009). By adding an

external standard to the sample, we can overcome this problem. Lovén et al. (2012) used

the commercially available External RNA control consortium (ERCC) spike in kit, which

consists of 92 poly-adenylated transcripts derived from Bacillus subtilis with lengths be-

tween 250 and 2000 nucleotides. Adding a fixed amount of these transcripts to the total

amount of RNA enables us to keep the information of RNA amount during the following
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experimental steps. Roughly spoken, if we take a fixed amount of RNA from our sample

after adding the ERCC spike in kit, we are able to reconstruct the initial quantity by

rescaling the sample with the ERCC transcripts.

If the number of cells in the sample is known, this method offers a new fix point for data

normalization. Now, we are able to rescale the gene expression levels to the total number

of cells instead of a fixed sized aliquot. This new method will open new insights, espe-

cially for comparisons between samples where the cells under different conditions contain

different amounts of RNA. However, since the ERCC spike-ins are added after cell lysis,

the method cannot account for the difference in RNA extraction. The work of Buettner

et al. (2015) suggests that also different stages in the cell cycle may lead to a difference

in RNA content. This indicates that differences in RNA amount are not a MYC -specific,

but rather a general phenomenon and a problem for the common normalization methods.

1.2 On the estimation of causal effects from obser-

vational data

1.2.1 Correlation does not imply causation

In science we distinguish between two kinds of data, observational (non-experimental)

data and interventional (experimental) data. Interventional data is data achieved from

a randomized experiment. In the simplest possible scenario the samples are (randomly)

divided into a treatment and a control group and we are able to observe the causal effect

of the treatment on our variable(s) of interest. Assume we want to examine how MYC

affects other genes in a certain cell line. In a randomized experiment we measure the

transcriptome of 10 samples where we knocked down MYC by the inhibitor 10058-F4

and 10 untreated control samples. We compare the results of knock-down and control

samples to directly estimate fold changes. And with that we know which genes are

mainly affected by the MYC knock down. In contrast to that, in an observational study

the treatment is not randomly assigned to the samples or there is no treatment of the

samples at all. We want to draw conclusions from a pure observation. As a counterpart

to the experiment described above, we just observe 10 gene expression profiles of the cell

line and we want to learn something about the causal effect of MYC on the other genes.

What is the difficulty of that question?

Assume you want to find out whether there is a causal relationship between smoking and

lung cancer of 30 year old women over 10 years. For an interventional study you have to

find e.g. 1000 30 year old women, who never had smoked before, assign randomly 500

of them to smoke 20 cigarettes per day for the next ten years and assign 500 of them
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to stay smoke-free in the same period. During this decade you register all cases of lung

cancer. Now, we are able to estimate the causal effect of smoking on getting lung cancer

within ten years for 30 year old women. Of course such a study is unethical and not

legally warranted. How would an observational study look like? We could select 500 non

smoking 30 years old women and 500 which smoked approximately 20 cigarettes per day

and register all cases of lung cancer for the next ten years. This is a feasible study, which

is compatible with basic moral principles and maybe we find a high correlation between

smoking and having lung cancer. However, the main problem is that (without taking

further assumptions (Peters et al., 2014)) there is no way to decide whether an observed

association between 2 variables is causal or not. Thus, the estimation of causal effects

from observational data is a very hard task.

A common example to illustrate the problem is the relationship between eating ice cream

in summer and drowning deaths. Plotting the number of people who drowned against ice

cream sales over the period of one or several years, we might infer that eating ice cream

causes drowning. But if we have a closer look to our example we will find that we did not

take the season and the air temperature into account. Assume that ”I” is the variable

for the ice cream sales, ”D” represents the variable for the number of drowning deaths

and ”S” describes the season or air temperature. Although we find a correlation between

”I” and ”D”, we find that ”I” and ”D” are independent given ”S” (see Figure 1.2). This

illustrates one of the main pitfalls in causal inference: the third common cause.

DI

S

Causation                                      Causation

Correlation

Figure 1.2: The third common cause. The observed correlation between I and D is
not due to a direct causal connection between I and D, but due to a third common cause
S, which has a causal effect on both I and D.

Another common problem is to infer the direction of causal effects between two variables.

Assume there is an alien which just arrived on earth for research and this alien is attracted
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by fire. Every time it observes a fire it also observes firemen. Since the alien does not

know about the function of a fire brigade it might assume that these firemen are the

cause of these fires, which is obviously not the case.

In summary a correlation between two variables X and Y may imply that

• X causes Y or

• Y causes X or

• there is a third common factor, which causes both X and Y or

• X and Y cause each other in a feedback loop or

• we observe a pure coincidence.

What does that mean for our observational study to detect the causal relationship between

smoking and lung cancer of 30 year old women over 10 years? Imagine there is a gene

which makes smoking highly attractive for some women and now imagine that the same

gene directly causes lung cancer. Then we have an unobserved third common cause in our

observational study and would maybe draw a completely different conclusion, if we include

this cause into our study. In the early 1950ties Professor Bradford Hill and Dr. Richard

Doll came up with some studies which described a connection between smoking and

developing lung cancer (Doll and Hill, 1950, 1952, 1954, 1956). Their observational studies

showed that there are more smokers among the patients with lung cancer than among

other patients. Thus, they concluded that smoking plays an important role in developing

lung cancer. However, the famous statistician Ronald Fisher strongly criticized these

studies, since correlation never implies causation and there might be other reasons like a

third common cause, which might explain the observed correlation (Fisher, 1958a,b,d,c).

And indeed, even if there are chemical mechanisms known today, which link smoking and

the risk of developing lung cancer (Hecht, 2002), there are also studies which identified

a genetic disposition for developing lung cancer (Amos et al., 2008; Hung et al., 2008;

Thorgeirsson et al., 2008). However, today there is a general consensus among scientists

and physicians, that smoking is a major risk factor for smoking (Torre et al., 2016; Cheng

et al., 2016; Swanton and Govindan, 2016; Malhotra et al., 2016). And Ronald Fisher not

only was a passionate smoker, but also worked as a consultant for the tobacco industry.

But he showed, if causal statements are derived from pure correlation, this offers weak

points of the analysis.

Obviously, it is a hard task to uncover causal connections, but sometimes interventional

studies cannot be conducted due to ethical aspects even if we know this would be the

better choice. In genetic studies there is another reason, why we sometimes have to refer
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to an observational instead of an interventional study. Imagine we want to find out the

causal effects of 10.000 genes on MYC. This would result in 10.000 interventional studies

(one for each gene), which is impossible to handle with reasonable effort in reasonable

time. An observational study would need much less effort, but the only information we

get is a correlation, which is not causally interpretable.

During this introductory section I will present in detail under which assumptions we can

infer causal effects from observational data. I summarize how we can estimate at least

an incomplete causal structure from observational data and how we can estimate causal

effects from that graph without doing any interventional experiments.

1.2.2 Estimation of causal effects from observational data when

the causal structure is known

First we need to define a mathematical representation of the causal structure. We assume

our causal relationships between genes to be a directed graph consisting of nodes X =

X1, ...,Xp and directed edges E = E1, ...,Es. The directed graph does not contain cycle,

and we call the graph directed acyclic graph (DAG). Every gene is represented by one

node in the network. Statistically, every node is a random variable whose values indicate

the expression levels of a gene. In this section we assume that the causal structure of

our problem is known. We call all nodes with incoming edges to a node X parents of X

(pa(X)). If a node X has two parents Y and Z, which are not connected to each other,

we call this pattern a v-structure and X is called a collider (Pearl, 2009) (Figure 1.3).

Edges represent conditional dependencies; nodes that are not connected represent

variables that are conditionally independent. Moreover, we interpret the edges causally.

If there is a directed edge X → Y , we assume that an experimental perturbation of

the expression level of X will affect Y , but not vice versa. This causal interpretation

is ensured by the Causal Markov condition first described by Kiiveri and Speed (1982).

The Causal Markov condition is defined as follows:

Definition 1.2.1 (Causal Markov condition by Spirtes, Glymour and Scheines,

section 3.4.1, p. 53 (Spirtes et al., 2000) ) Let G be a causal graph with a set of

vertices V and let P be a probability distribution over the vertices in V generated by the

causal structure represented in G. G and P satisfy the Causal Markov Condition if and

only if for every X in V, X is independent of V \ (Descendants(X) ∪ pa(X) ) given pa(X).

In other words: every observation of a gene X is statistically independent of all other genes

which are no descendents of X in the causal graph given the parents of X (X ⊥⊥ Y |pa(X),

with Y = V \ (Descendants(X) ∪ pa(X))).
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X1

Figure 1.3: Example of a DAG. The DAG consists of 5 nodes and 5 edges. The node
X1 is the parent of X2 and X3, X2 and X3 are the parents of X4 and X4 is the parent of
Y . X2, X3 and X4 form a v-structure and X4 is the collider of this v-structure.
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To determine all statistical independencies of a DAG and, thus, to characterize a set of

distributions which is compatible with that DAG we can apply the d-separation criterion:

Definition 1.2.2 (d-Separation by Judea Pearl, definition 1.2.3, p. 16, (Pearl,

2009) ) A path p is said to be d-separated (or blocked) by a set of nodes Z if and only if

i p contains a chain i → m → j or a fork i ← m → j such that the middle node m

is in Z, or

ii p contains an inverted fork (or collider) i → m ← j such that the middle node m

is not in Z and such that no descendant of m is in Z.

A set of nodes Z is said to d-separate X from Y if and only if Z blocks every path from a

node in X to a node in Y.

The converse of the Causal Markov Condition, the causal faithfulness condition en-

sures that all conditional independencies observed are due to the Causal Markov condi-

tion:

Definition 1.2.3 (Causal Faithfulness condition by Spirtes, Glymour and Scheines,

section 3.4.3, p. 56 (Spirtes et al., 2000) ) Let G be a causal graph and P a prob-

ability distribution generated by G. G and P satisfy the Causal Faithfulness Condition if

and only if every conditional independence relation true in P is entailed by the Causal

Markov condition applied to G.

A violation of this property is possible if for example the observations of two different

genes are connected by two different paths, which cancel each other out exactly. Thus,

we observe an independence (the causal effect is zero) even though the nodes are causally

connected.

For now we assume that we know the causal structure. Given this causal structure and

the observations of the genes, we want to determine the causal effect of a gene X on

another gene Y. More precisely we want to perturb the gene X and we want to observe

what happens to gene Y due to this intervention. However, we do not want to do this in

the wet lab. We want to perform a purely computational virtual intervention experiment.

Goldszmidt and Pearl (1992) introduced a new operator to probability theory to allow

for such an external intervention called the do-operator. The do-operator do(X = x∗)

sets the variable X to a fixed value x∗ and as a result X does not depend on its former

parents anymore. But how do we calculate the causal effect of a variable X on a variable

Y using this do-operator? Pearl (1993) introduced a graphical criterion called the back-

door criterion which provides the link between his do-operator and standard statistical

calculus.
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Definition 1.2.4 (back-door criterion by Judea Pearl, definition 3.3.1, p. 79,

(Pearl, 2009)) A set of variables Z satisfies the back-door criterion relative to an ordered

pair (X, Y ) in a DAG G, if

(i) no node in Z is a descendant of X.

(ii) Z blocks (see def. 1.2.2 ) every path between X and Y that contains an arrow into

X.

Pearls back-door adjustment enables the calculation of the causal effect:

Definition 1.2.5 (back-door adjustment by Judea Pearl, theorem 3.3.2, p. 79,

(Pearl, 2009)) If a set of variables Z satisfies the back-door criterion relative to (X, Y ),

then the causal effects of X on Y is identifiable and is given by the formula P (Y |X =

do(X = x∗)) =
∑

Z P (Y |X,Z)P (Z).

Further, it can be shown, that the true parents of a node X do always fulfill the Back-door

criterion relative to every ordered pair (X, Y ) (Pearl, 2009). We see

P (Y |do(X = x∗)) =

P (Y ) : Y ∈ paX∫
P (Y |X = x∗, paX)P (paX) dpaX : Y /∈ paX .

(1.1)

Following Rosenbaum and Rubin (1983), Maathuis et al. (2009) defined the difference

E(Y |do(X = x∗))− E(Y |do(X = x∗∗)) as ”causal effect”.

E(Y |do(X = x∗)) =

∫
Y · P (Y |do(X = x∗)) dy :(1.2)

=


∫
Y · P (Y ) dy : Y ∈ paX∫ ∫
Y · P (Y |X = x∗, paX)P (paX) dpaX dy : Y /∈ paX .

(1.3)

=

E(Y ) : Y ∈ paX∫ ∫
Y · P (Y |X = x∗, paX) dyP (paX) dpaX : Y /∈ paX .

(1.4)

=

E(Y ) : Y ∈ paX∫
E(Y |X = x∗, paX)P (paX) dpaX : Y /∈ paX .

(1.5)

=

E(Y ) : Y ∈ paX∫
E(Y |X = x∗, paX)P (paX) dpaX : Y /∈ paX .

(1.6)

We further assume our variables to be multivariate Gaussian and we conclude

E(Y |X = x∗, paX) = β0 + βxX + βT
paX

paX . (1.7)
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In summary βX from

Y = β0 + βXX + βT
paX

paX + ε : Y /∈ paX , (1.8)

is a consistent estimator of the causal effect of X on Y (Maathuis et al., 2009). If

Y ∈ paX the causal effect of X on Y is zero. The parents of X, paX , adjust the regression

for possible confounders that affect X and Y simultaneously, which could create spurious

correlations between X and Y . Note that there might be other sets of variables Z that

also fulfill the back-door criterion and can be used in the regression above instead of the

set paX .

This basis might help to solve the ”smoking - lung cancer problem”. The surgeons

from Doll and Hill (1950, 1952, 1954, 1956) claim that there is a direct effect between

smoking and lung cancer, which is shown by the graph in Figure 1.4 (a), while Fisher

would answer that there might be a third common cause, e.g. a genetic factor influencing

both, the urge to smoke and a higher probability of getting lung cancer as shown in

Figure 1.4 (b). If the genetic factor influencing both could be observed, the causal effect

can be calculated by applying the back-door criterion. The back-door criterion aims to

close all back-door paths (Figure 1.4 (b), red arrows), while leaving the front-door paths

(Figure 1.4 (b), green arrows) open. The causal effect of smoking on getting lung cancer

differs depending on the presence or absence of the genetic factor. Closing the back-door

paths means to take out the variation due to the genetic factor and to compare people

with the same genetic factor to each other which is equivalent with holding the genetic

factor constant. Thus, the causal effect observed does not depend on the influence of the

genetic factor on smoking anymore, since we control for this variable. However, if the

genetic factor is unobserved, the back-door criterion cannot be applied and the problem is

more complicated. Pearl (2009) offers another graphical criterion which still helps solving

the problem. He introduces another variable ”tar deposit in the lung” and applies the

front-door criterion to calculate the causal effect.

1.2.3 Causal structure learning

In the previous section we assumed that the causal DAG of the problem is known. A

DAG fully specifies the conditional dependencies of all nodes (Pearl, 1988), but not vice

versa. Several DAGs with the same skeleton of undirected edges and the same v-structures

(Pearl, 2009) encode the same conditional dependency structure (Verma and Pearl, 1990).

These equivalence classes of DAGs can be represented by completed partially directed

acyclic graphs (CPDAGs) that consist of the joint skeleton and the directed edges which
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Figure 1.4: The back-door criterion for the ”smoking - lung cancer problem”.
(a) Model which assumes a direct causal effect between smoking and developing lung
cancer. (b) Model which assumes a third common cause, a genetic factor, which influences
both the urge to smoke and the probability of getting lung cancer. Green arrows show the
front-door paths, red arrows show the back-door paths. (c) Application of the back-door
criterion to subfigure (b) with the aim to examine whether smoking causes lung cancer.

are common to all DAGs in the equivalence class (Chickering, 2002a). In many scenar-

ios, especially in biology, neither the DAG nor the CPDAG are known. For example,

the causal gene regulatory networks which explain the emergence of cancer are widely

unknown. Thus, we need to estimate the causal structure from the data we observe.

However, causal structure learning is NP hard (Chickering et al., 2004). For a set of n

vertices we can find 2n(n−1) possible directed networks (Harary and Palmer, 1973), e.g.

for 5 nodes there are 1.048.576 possible directed graphs.

Fortunately there is a huge amount of methods, which provide solutions. Structure

learning algorithms are divided into 3 main groups: (i)”search and score”, (ii)”constraint-

based” and (iii)”hybrid” algorithms (Daly et al., 2011). Search and score methods require

a score to determine how well the (estimated) graph fits the data. This scoring function

is optimized by a search algorithm. Several scoring functions might be used, for example

the Likelihood (Cooper and Herskovits, 1992), the Bayesian Information Criterion (BIC)

(Schwarz et al., 1978) or the Akaike Information Criterion (Akaike, 1974). Examples for

score and search algorithms are the Markov chain Monte Carlo model composition algo-

rithm (Madigan et al., 1995), the Sparse Candidate algorithm (Friedman et al., 1999), the

optimal reinsertion algorithm (Moore and Wong, 2003), Genetic algorithms (Larrañaga

et al., 1996a,b; de Campos and Huete, 2000; Wong and Leung, 2004; Gao et al., 2007) or

the Greedy Search algorithm (Chickering, 2002b).

Even if there are some search and score methods for causal inference (Heckerman, 1995),

the majority of causal structure learning methods are constraint based methods (Daly

et al., 2011). Constraint based algorithms use conditional independencies (CIs) to ex-
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plore the network structure. These CIs are explored by statistical independence tests on

triples X, Y and Z, where X and Y are single variables and Z describes a subset of nodes

in the network. If X and Y are independent given the set Z (X ⊥⊥ Y |Z), then the edge

from X to Y is removed from the graph. In general constraint based methods are much

faster than search and score methods. Testing whether X ⊥⊥ Y |Z requires looking at

the variables X, Y and Z while changing an edge in a score based method means that we

need to calculate a score over all variables in the network. Spirtes and Glymour (1991)

developed one of the most common constraint based algorithms, the PC algorithm. It

consists of two steps: the first step, which estimates the skeleton of the network and

the second step, where the v-structures are calculated and some further orientation rules

are applied to orient the edges. The parameter α of the PC algorithm influences the

sparseness of the estimated network, such that larger values of α increase the number of

edges in the network. However, the PC algorithm cannot direct all edges since different

networks with identical skeletons can encode the same conditional independence assump-

tions and thus can not be distinguished on observational data only (Verma and Pearl,

1990). The result of the PC algorithm is the equivalence class of graphs represented by

a CPDAG. Kalisch and Bühlmann (2007) showed that the PC algorithm is statistical

consistent and feasible for high-dimensional data up to thousands of variables as long as

the underlying DAG is sparse. The PC algorithm is order-dependent, which means, that

the result of the algorithm depends on the ordering of the variables, since this ordering

determines the statistical tests to be made. But Colombo and Maathuis (2014) proposed

some modifications of the PC algorithm to overcome of this order-dependence in parts.

Hybrid methods combine the concepts of ”search and score” and ”constraint based” meth-

ods. The Max-Min Hill-Climbing (MMHC) algorithm from Tsamardinos et al. (2006) is

a widely known representative of this class of structure learning algorithms. The first

part of the MMHC algorithm uses the constraint-based MMPC algorithm (Tsamardinos

et al., 2003) to reconstruct the skeleton of the graph, while in the second step a ”search

and score” strategy orients the edges based on the skeleton. An algorithm based on the

MMHC algorithm proposed by Nägele et al. (2007) allows the estimation of networks

with ten thousands of variables. This algorithm focuses on the Markov Blankets of each

node. A Markov Blanket is a special subgraph around a certain node, that contains all

other nodes of the graph, which are necessary to predict the behavior of that node and its

parents (Pearl, 1988). This variation of the MMHC algorithm estimates the Markov Blan-

kets around each variable and combines the results. The key benefit of this substructure

learning is the possibility to parallelize the estimation of Markov Blankets.
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1.2.4 Estimation of causal effects from observational data with

unknown causal structure

Section 1.2.2 describes how to estimate causal effects from observational data, when the

causal structure is known, and section 1.2.3 discusses the possibilities to estimate a causal

structure from observational data. In this section, I introduce ”Intervention calculus when

the Directed acyclic graph is Absent” (IDA, Maathuis et al. (2009, 2010)), which combines

these two ideas. IDA consists of two steps: First the PC algorithm estimates a CPDAG

from the observational data (Kalisch and Bühlmann, 2007) and then Pearl’s do calculus

(Pearl, 2009) is used to estimate the causal effects from observational data using the

estimated CPDAG in the second step. Since Maathuis et al. (2009) assume Gaussianity

the causal effect is estimated using equation 1.8. But there are undirected edges in a

CPDAG and this complicates the estimation of causal effects. However, the approach

of Maathuis et al. (2009) allows to estimate lower bounds of the effect size. The IDA

algorithm first enumerates all possible parent sets of a node X and then calculates causal

effects of X on the targets of interest for each of the possible parent sets by equation 1.8.

Thus, IDA estimates not necessarily exactly one, but a multiset of causal effects for each

ordered pair X and Y (see Figure 1.5 for an example). The minimum absolute value of

this multiset provides a lower bound of the absolute effect size. Maathuis et al. (2010)

show in applications that IDA outperforms regression-based methods in terms of number

of true positives versus number of false positives for the top 5000 predicted effects on the

transcriptome of yeast gene deletion strains from a large dataset of expression profiles of

wild type yeast. However, in simulations with large networks and medium sized datasets,

which are typical for many biological applications, networks often cannot be reconstructed

correctly. Meinshausen and Bühlmann (2010) suggest stability selection, a subsampling

strategy that is wrapped around IDA as a remedy. K subsets of the data are drawn and for

each of these subsets IDA estimates the lower bound of the effects. Finally, the effects are

ranked by how often they appear in the top q effects. This procedure is further improved

by the CStaR algorithm of Stekhoven et al. (2012) which repeats stability selection for

several values of q and the median rank over different values of q is used to calculate the

final rank of a causal effect. The CStaR algorithm outperforms plain IDA with respect

to true positive selections versus false positive selections (Stekhoven et al., 2012).

1.3 Outline

The thesis is organized in two parts:
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Figure 1.5: A CPDAG and its accompanying DAGs. There are three DAGs
((a)-(c)) belonging to the CPDAG on the left. If we are interested in the causal effect
of X1 on Y, IDA calculates the multiset of three causal effects of X1 on Y according to
the three DAGs corresponding to the CPDAG. In DAG (a) X1 has no parents and the
causal effect of X1 on Y is βX1 from Y = β0 + βX1X1 + ε. The parent of X1 in DAG (b)
is X2 and thus the causal effect of X1 on Y is βX1 from Y = β0 + βX1X1 + βX2X2 + ε
and similarly the causal effect of X1 on Y is βX1 from Y = β0 + βX1X1 + βX3X3 + ε for
DAG (c). The minimum absolute value of these thee causal effects is a lower bound for
the effect size.
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Part1: In this methodological part I derive methods to work on the following three

issues:

First, MYC is an transcriptional amplifier and we have to account for that during exper-

imental design. There are already methods described in Section 1.1.3 that deal with that

problem in transcriptomics, but these methods do not account for variability in cell lysis

during RNA extraction. Thus, I introduce a new calibration method for gene expres-

sion data measured under transcriptional amplification. This method uses spike-in cells

from Drosophila melanogaster to calibrate samples from different amounts of total RNA

(Taruttis et al., 2017). In comparison to the usage of the ERCC spike-in set described

in Section 1.1.3 the proposed method not only accounts for cell lysis effects but is also

cheaper and easier to handle than the ERCC spike-ins.

Second, causal inference from observational data is a hard task. From the introducing

Section 1.2 we know that there are already methods for the estimation of causal effects

from observational data and that a subsampling approach is highly recommended. How-

ever the described methods only estimate a lower bound of the causal effects and do not

use the causal effects of all multi sets. The method I propose is called accumulation IDA

(aIDA) and uses the mode of the distribution of causal effects to generate the causal

effect from the effects estimated from the subsampling runs. This advancement provides

an improvement of the already existing methods.

Third, an assumption of these causal inference methods is that the data underlying graph

is sparse. Since MYC is a transcriptional amplifier the graph underlying a dataset which

includes the gene MYC is very likely not sparse, since MYC influences nearly every gene

in the dataset. The spike-in calibration methods help to uncover this dense structure in

a transcriptomic dataset. Computationally, the calibration of the data using a spike-in

method will result in highly correlated data. So far it is unclear how to deal with this

high dependencies since they violate the assumption that the underlying graph is sparse.

I try to improve the estimation of causal effects from highly correlated observational data

by replacing the PC algorithm with a version of the MMHC algorithm.

Part II: Part II applies the algorithms and methods developed in Part I to a data

set, which is appropriate to examine the causal connections around MYC. The data set

consists of transcriptomic and metabolomic data to unravel causal connections between

genes and metabolites. I calibrate the RNA-seq data using the whole spike-in method

presented in section 2.4, which results in highly correlated data. Thus, I estimate the

causal effects of the genes on the metabolites and the causal effects between genes using

the MMHC-aIDA algorithm described in section 4.4, since it shows a better performance

on highly correlated data. Whereas aIDA (section 3.4) estimates the causal effects of
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the metabolites on MYC. Some of the discovered causal relations are already published,

others are indications for future experiments.

This thesis shows how causal inference methods enable insights into the interactions

between the gene MYC with other genes and the metabolome in the context of lymphoma.

The underlying data is purely observational, no experimental intervention is needed.

Both, the application of my new calibration method and the improved algorithms for

causal inference from observational data enable new insights into the complex functions

of MYC in lymphoma cells.
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Part I

Methods
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CHAPTER 2

External calibration with Drosophila whole-cell spike-ins delivers

absolute mRNA fold changes from human RNA-Seq data

2.1 Section introduction: Global changes of RNA

amount between conditions require special nor-

malization techniques

Standard RNA-seq microarray and qRT-PCR protocols start with a fixed size aliquot of

RNA. Nevertheless, technical variation in data generation results in variable library sizes

or total array intensities, which are addressed by computational normalization meth-

ods. However these purely computational normalization methods assume that the total

amount of RNA between different conditions to be constant. Every increase of a gene

must be compensated by the decrease of other genes, when a fixed size aliquot of RNA

is used as the reference point for the gene expression measurements. Even if usually not

reported, these measurements reflect percentages of the total transcriptome. This might

lead to a distorted view on cellular processes whenever this assumption is violated. In

fact using a fixed amount of RNA across samples can introduce artificial dependencies

between gene expression levels. Imagine two experimental conditions A and B. If a gene

constitutes 0.1% of the transcriptome in cells A and 0.05% of the transcriptome in cells

B, a fold change B
A

of 0.5 is estimated. However, imagine the amount of RNA in B is four

times higher than in A. Now, the estimated fold change B
A

is 2. In the relative scenario we

assume a constant amount of RNA across samples and observe a downregulation while
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Condition Number of Fold change of Total number Proportion Fold change
mRNAs of absolute numbers of mRNAs of gene X of proportions

gene X B vs. A B vs. A

A 100
2

100 000 0.1% 1
2

B 200 400 000 0.05%

Table 2.1: Example for fold change calculation under transcriptional amplification.

in the absolute scenario we take the change of RNA amount across samples into account

and find an upregulation between the conditions B and A (Table 2.1 shows an example.).

Indeed, we observe changes in RNA amount across samples: Buettner et al. (2015) de-

tected differences in RNA content of cells in different stages of the cell cycle and pointed

out that these differences affect interventional RNA-seq studies. Moreover transcriptional

amplification is caused by the induction of transcription factor MYC (Lin et al., 2012;

Nie et al., 2012) or lipo-poly-saccharid (LPS) (Sabò et al., 2014). But also heat shock

and serum starvation trigger global changes of the RNA amount (van de Peppel et al.,

2003).

This argument changes the reference point of gene expression data from a fixed size

aliquot of RNA to a fixed number of cells. The resulting gene expression values do not

add up to a fixed number. They are no percentages anymore. Nevertheless, relative and

absolute gene expression measurements are equal as long as the total amount of RNA

per cell stays almost constant across all samples.

To enable the change of the reference point from a fixed size aliquot to a fixed number of

cells an external standard is added to the sample at an early stage of the protocol, before

the fixed amount of RNA is taken from the samples. After that the standard protocols

and normalization techniques are applied and the data can be rescaled to a constant

number of cells. Lin et al. (2012) and Lovén et al. (2012) already used synthetic RNA

spike-ins for the normalization of microarray and RNA-seq gene expression data to the

number of cells. An alternative approach uses the amount of extracted mRNA quantified

by the total polyA+ content (Aanes et al., 2014). However, there is no approach so far

which controls cell lysis and RNA extraction which are crucial steps during the protocol.

To overcome this problem in the context of dynamic expression analysis studies Sun

et al. (2012) developed a whole cell spike-in method. Here, the cells of the organism

under study are mixed with cells from a spike-in organism. These mixed populations are

lysed an hybridized to custom microarrays containing probes from both organisms. This

idea can be transferred to RNA-seq as long as the reads from the spike-in organism can

be reliably separated from the organism under study. Continuing the work of Sun et al.

(2012) and Lovén et al. (2012) we show that Drosophila melanogaster is a suitable spike
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in organism for human RNA-seq profiling studies. And we show that the data calibrated

by the Drosophila melanogaster spike-in cells leads to better estimates of absolute fold

changes and outperforms synthetic RNA spike-ins.

2.2 Sample preparation and data analysis

2.2.1 Experimental design

To show that Drosophila melanogaster is a suitable spike-in organism for human cells

and that calibration on Drosophila melanogaster spike-in genes allows to observe gene

expression changes that refer to the absolute number of cells as reference point, we de-

signed a systematic dilution experiment to simulate variable amounts of total RNA in

fixed number of cells. 500 000 (condition A), 1 million (condition B), and 2 million (con-

dition C) P493-6 cells were mixed with 100.000 vital Drosophila melanogaster S2 cells

in triplicates. To compare this approach to the method of Lovén et al. (2012) we also

added external control RNAs devised by the External RNA control consortium (ERCC)

(Baker et al., 2005) to endogenous RNA. This ERCC kit consists of 92 poly-adenylated

transcripts from Bacillus subtilis with lengths between 250 and 2000 nucleotides. They

can serve two different purposes: (i) they monitor technical variance from RNA extrac-

tion via library generation to raw data analysis. The earlier in the protocol they are

added, the more steps are monitored. Moreover, rescaling the data to constant-spike in

intensities corrects for some of the technical variance. (ii) They can be used to change the

reference point from a fixed size aliquot of RNA to a fixed number of cells. This requires

adding them before the first fixed size aliquot of RNA is taken. Figure 2.1 summarizes

the setup of our dilution experiment. In a second experiment we show that global gene

expression changes may occur under different perturbations of the human cell line P493-6

and are observable only when the gene expression data is calibrated to the number of

cells in the sample. The P493-6 cell line allows for the ectopic induction of MYC by a

tetracycline-controlled transcriptional activation. Hence, these cells can be grown in a

”MYC -high” (no tetracycline added, MYC is expressed) and in a ”MYC -low” (tetracy-

cline added, ectopic MYC is repressed) state. One million P493-6 cells in ”MYC -high”

and ”MYC -low” state, respectively, were spiked with 100.000 Drosophila melanogaster S2

cells in 10 replicates for each MYC level and the polyA+ fraction of the transcriptomes

was sequenced. Further the ”MYC -low” cells were treated with α-IgM F(ab)2 fragments

referred to as ”BCR”, with sCD40L referred to as ”CD40L” and CpG (two replicates for

each stimulation). We refer to this experiment as the stimulation experiment. For each

sample the general experimental setup was the following: The mixed cells were lysed,
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Figure 2.1: Experimental setup. Condition A contained 500 000 P493-6 cells, con-
dition B one million P493-6 cells and condition C two million P493-6 cells. Samples
were spiked with 100 000 S2 Drosophila melanogaster cells, mixed, lysed, and total RNA
extracted. RNA was subjected to RNA sequencing and qPCR. Each condition A, B and
C, consists of three replicate samples.
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RNA was extracted and the ERCC spike-in RNA was added to allow for the comparison

between these synthetic spike-insand Drosophila melanogaster spike-in cells. Gene ex-

pression of the samples was measured by RNA sequencing. Maren Feist (Department of

Haematology and Medical Oncology of the University Medical Center Göttingen) carried

out all wet lab experiments. For details on sample preparation see Appendix A.

2.2.2 Preparation of a custom genome

After RNA sequencing the reads need to be assigned to their genomes. For this purpose I

constructed a concatenated genome consisting of the human and Drosophila melanogaster

reference genomes and the ERCC sequences. The human reference was GRCh38 from

ensembl, release 77 (Cunningham et al., 2015), the Drosophila melanogaster reference

was ensembl BDGP5, release 77 and the ERCC sequences were as provided by

https://tools.lifetechnologies.com/content/sfs/manuals/cms 095047.txt. This approach

ensures that each read is mapped once either to the human or the Drosophila melanogaster

genome or to the ERCC sequences. Thus, I get a clear assignment of each read to a

species.

I mapped all sequence libraries against this concatenated genome using TopHat version

2.0.13 (Kim et al., 2013) indicating an unstranded sequencing protocol (–library-type

fr-unstranded) and default settings for the remaining parameters.

2.2.3 Normalization and differential gene expression analysis

I assigned read counts to ensembl gene identifiers using featureCounts version 1.4.5 (Liao

et al., 2014). For all datasets, I selected all human genes with more than 100 counts for

each sample for normalization and differential gene expression analysis of the respective

dataset. Of the Drosophila melanogaster genes and ERCC transcripts, the ones with a

sum of at least 100 counts over all samples were kept. In the dilution dataset, addition-

ally, all genes with zero counts in at least one sample were removed such that different

calibration methods could be run on the same dataset. This resulted in 10028 human

ensembl genes, 6070 Drosophila ensembl genes and 43 ERCC transcripts for the dilution

dataset. In the dataset consisting of different stimulations of P493-6 cells in ”MYC -low”

conditions and unstimulated ”MYC -low” and controls, controls, 8477 human ensembl

genes, 7050 Drosophila ensembl genes and 52 ERCC transcripts are analyzed.

First, I normalized the data by library size factors calculated with DESeq2 (Love et al.,

2014), which refers to a fixed size aliquot of RNA as reference point. As I described

in Section 2.1 and shown in Table 2.1 I suggest to change the reference point from this

fixed size aliquot to an equal number of cells. For the calibration on the Drosophila
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melanogaster spike-in cells I calculated the library size factors on the counts of the

Drosophila melanogaster genes by DESeq2, and applied these to the human gene counts

of each sample. For the calibration based on ERCC synthetic gene counts I obtained the

scaling factors on the ERCC ’gene’ counts as described above, and applied these factors

to the human sample data. For all three scenarios I estimated the log2 fold changes

with DESeq2 (Love et al., 2014). All fold changes that meet the count cut off above are

included in the figures, irrespective of the significance of the fold change.

2.3 Results

2.3.1 Drosophila melanogaster cells are suitable spike-in cells

for human RNA-seq studies

We decided to use Drosophila melanogaster as spike-in organism since this allows the

use of the same lysis protocols like the human cells under study. Thus, we mixed these

spike-in cells with human P493-6 cells, lysed them, sequenced the RNA and I mapped

the resulting libraries to the concatenated genome. Reads that uniquely map to the

Drosophila melanogaster part of the genome are used to adjust the data to a fixed amount

of cells.

To validate this approach we selected two libraries from Drosophila melanogaster S2 cells

(accession numbers SRR569914 and SRR424185 ) and two libraries from human P493-6

cells (accession numbers: SRR567561 and SRR567562) from the SRA database (Leinonen

et al., 2010). All libraries have been sequenced in single end mode with 50 bp reads for

the Drosophila melanogaster S2 libraries and 40 bp reads for the P493-6 libraries. To

test how many false negative mapped reads are expected, I aligned the human libraries

to the human genome alone and to the concatenated genomes of Homo sapiens and

Drosophila melanogaster. The number of multi-mapped reads increased from 85,298,194

to 85,324,091 and from 84,178,617 to 84,205,272, respectively, which corresponds to an

increase of 0.02%. Thus, human reads can reliably be identified as human, after mapping

against the concatenated genome. Then I mapped the Drosophila melanogaster reads

against the concatenated genome with the result that less then 0.01% aligned against the

human part. This shows that Drosophila melanogaster can be used to calibrate the data

to total cell number. More results from cross mapping studies are shown in Tables 2.2

and 2.3. In summary the cross mappings between Drosophila melanogaster and human

genomes are negligible and with that we find that Drosophila melanogaster is a suitable

spike-in organism for the human P493-6 cells.

1i.e. reads uniquely mapped to Drosophila
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Library Reference Uniquely
mapped
reads

Multi-
mapped
reads

Gain of multi-mapped
reads

Gain of uniquely
mapped reads 1

absolute relative
(%)

absolute relative2

(%)

SRR567561
custom 106981050 14366462

1180 0.008 8052123 5.792
Human 98928927 14365282

SRR567562
custom 107646456 17351828

2923 0.017 1479379 1.008
Human 106167077 17348905

Table 2.2: Multi-mapped reads introduced by adding the Drosophila melanogaster
genome to the human reference genome.

Library Total number
of reads

Reference Reads assigned
to Human
genes

Reads assigned
to Drosophila
genes

True Positive
Rate

True Negative
Rate

SRR569914 48 million custom 416 35742573 - 99.9988%
SRR424185 37 million custom 72 27303679 - 99.9997%
SRR567561 140 million custom 80357899 464 99.9994% -
SRR567562 147 million custom 87443273 780 99.9991% -

Table 2.3: Summary of counts assigned to human and Drosophila melanogaster genes
(by featureCounts) of human and Drosophila libraries mapped to the concatenated
human-Drosophila reference genome (’custom’) and corresponding True Positive and True
Negative Rates.
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2.3.2 The calibration by whole cell spike-ins can be done in

multiple ways

In our dilution experiment (Section 2.2.1) the spike-in genes are distributed across the

whole spectrum of expression levels (Figure 2.2). I compare three ways of spike-in normal-
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Median: −0.0545
IQR: 0.267

(a) B versus A
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Median: −0.103
IQR: 1.11

(b) C versus A
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(c) C versus B

Figure 2.2: MA plots for the 3 conditions. M (e.g.: log2(
C
B

)) versus A
(1
2

log2(BC)) for the 3 calculated log2 fold changes. The expression levels of the Drosophila
melanogaster genes (green) cover the whole spectrum human genes (black).

ization: First, I decided to aggregate the data of the dilution experiment by computing

size factors on the spike-in genes and I apply these factors to the human genes using

DESeq2 (Love et al., 2014). If not stated differently, I will use this approach during the

whole chapter for data calibration.

Alternatively a loess regression on the spike-in genes as suggested by Lovén et al. (2012)

also adjusts the data to RNA amount per cell. And third, the upper quartile of the

spike-in distribution adjusts the data to the total number of cells.

I applied all three options for both, the ERCC kit and and Drosophila melanogaster cells

as external standards, but did not observe significant differences between the three differ-

ent computational methods (Figure 2.3). However, Figure 2.3 shows that the calibration

by Drosophila melanogaster cells outperforms the calibration by the ERCC kit.

2.3.3 Spike-in adjusted data provides estimates of differential

expression that are calibrated to the total number of cells

With the help of spike-in cells and ERCC kit, respectively, I calibrate our measurements

to a constant amount of cells. To validate that hypothesis I use the dilution experiment

(Section 2.2.1). By design the amount of total RNA increases linearly across the 3

2relative to uniquely mapped reads of human refernce genome
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Figure 2.3: Comparison of computational spike-in calibration methods. Three
different computational methods calibrate the spike-in data. The ”loess” method per-
forms a loess regression on the spike-in genes, ”upper quartile” uses the upper quartile of
the spike-in genes to scale the data and the ”size factors” method calculates the DESeq2
size factors using the spike-in genes. All methods have been applied to the dilution dataset
and the distance between the expected and the estimated log2 fold change was calculated.
All methods perform equally well. Further I tested two kinds of spike-ins the Drosophila
melanogaster spike-in cells and the ERCC spike-in kit. Drosophila melanogaster spike-in
cells outperform the ERCC kit for all three different methods.
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conditions A, B and C (Figure 2.4 (a)). I analyze this dataset (i) relative to a fixed amount

of RNA, (ii) to a constant number of cells across samples using the ERCC spike-ins and

(iii) to a constant number of cells across samples using the Drosophila melanogaster spike-

in cells. For (i) we use the library size corrected data for differential gene expression

analysis between the 3 conditions A, B and C. For (iii) the percentage of Drosophila

melanogaster decreases linearly with the total increasing amount of RNA (Figure 2.4).

Now, all reads in a sample are scaled such that the number of Drosophila melanogaster
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(b) Drosophila melanogaster raw counts

Figure 2.4: Comparison of RNA amount and Drosophila melanogaster raw
counts for the three conditions. While the RNA amount increases linearly across
the three conditions (a) of the dilution dataset, the Drosophila melanogaster raw counts
decrease (b).

reads stays constant across samples. I follow the same strategy for the ERCC spike-in

kit.

Figure 2.5 shows the distances between the expected log2 fold changes and the estimated

log2 fold changes for the three different calibration strategies. The data calibrated by

the fixed aliquot of RNA as reference point is not able to reproduce the expected fold

changes, while both methods which calibrate to a reference point which is related to the

total number of cells reproduce the expected fold changes well.
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Figure 2.5: Comparison of data calibrated by Drosophila melanogaster spike-
in cells or ERCC kit, respectively, to endogenously normalized data. Dis-
tances to true log2 ratios after calibrating the human gene expression data on Drosophila
melanogaster spike-in data (left), after calibrating on ERCC synthetic RNA spike-in
data (center), and after endogenous normalization (relative to a fixed weight human
RNA aliquot, right). The Drosophila melanogaster spike-in protocol outperforms the
calibration by ERCC kit and the endogenous normalization.
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2.3.4 Whole cell spike-in calibration outperforms other calibra-

tion methods

In addition to the above mentioned external spike-ins there are other methods to calibrate

the data. Since the whole spike-ins are a measurement of endogenous RNA in the samples,

one could also use a direct quantification of RNA. Thus, for the dilution experiment we

quantify the amount of total RNA per sample and apply a simple scaling approach to

the RNA-seq data for calibration. This approach is similar but not identical with the

method proposed by Aanes et al. (2014).

Computationally the RUVg tool provides an alternative approach for adjusting profiles

to an external standard (Risso et al., 2014). RUVg calibrates data relative to multiple

spike-in measurements, but also claims to detect general transcriptional amplification on

a purely computational basis. Figure 2.6 shows the deviations between expected log2

fold changes and log2 fold changes estimated by the three different approaches. Since

RUVg alone does not help to calibrate the data, we also scale the data before adjustment.

With that approach we are able to reproduce the expected fold changes. However, in our

dilution experiment the RUVg algorithm does not improve over our scaling approach.

2.3.5 Whole cell spike-in calibration affirms MYC driven gen-

eral transcriptional amplification in human P493-6 B-cells

Lin et al. (2012) and Nie et al. (2012) observed that in the human B cell line P493-

6 induction of the transcription factor MYC amplifies the transcription of almost all

actively transcribed genes in this cell line. I analyzed MYC driven general transcriptional

amplification in our spike-in assay and confirmed the results of Lovén et al. (2012). I

calibrated the human fraction of the RNA-seq data from the stimulation experiment by

the two different reference points: (i) to the number of human cells, by scaling the data to

constant accumulated Drosophila melanogaster read counts across samples, and (ii) to a

fixed size aliquot by scaling the data to constant library size of the human fraction. After

that I estimated the log2 fold changes between the ”MYC -high” and the ”MYC -low”

state of the cells. Figure 2.7(a) shows, that the results deviate substantially between the

two different reference points. Using the spike-in calibration, the median log2 fold change

is approximately two reflecting imbalanced changes, while endogenous calibration led to

log2 fold changes scattered around zero. Further we measured the amount of total RNA

for the 10 replicates for each condition and observed a fold change of 1.8 (Figure 2.7(b)),

which is in accordance with our spike-in calibration approach.
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Figure 2.6: Comparison of Drosophila melanogaster spike-in cell protocol
to different external calibration methods. Distances to the the expected log2 fold
changes on the dilution dataset using the Drosophila melanogaster spike-in cells, to-
tal RNA, RUVg using Drosophila melanogaster genes, and RUVg after scaling the data
to the upper quartile of the Drosophila melanogaster spike-in genes. The Drosophila
melanogaster spike-in protocol outperforms the calibration by total RNA and RUVg us-
ing the same Drosophila melanogaster genes, while RUVg after scaling the data to the
upper quartile of the Drosophila melanogaster spike-in genes performs equally well.
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Figure 2.7: Gene expression of P493-6 cells for two levels of MYC. (a) The log2

fold changes of P493-6 cells between the two different levels (n=10) differ substantially
between the two different reference points. While we observe a balanced gene expression
pattern for the endogenously calibrated data (relative to a fixed size aliquot of RNA),
we find a upregulation of most of the genes when applying the Drosophila melanogaster
spike-in protocol. (b) Induction of MYC in one million P493-6 cells leads to an increase
of RNA amount. (n=10)
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2.3.6 General transcriptional amplification in B cells is not lim-

ited to MYC regulation

Human P493-6 ”MYC -low” cells have been treated with different stimuli, namely acti-

vation of toll like receptor signaling by the dinucleotide CpG, activation of the CD40

pathway by CD40L, and activation of BCR signaling via cross linking the B-cell receptor

with an α-IgM F(ab)2 fragments. The estimation of log2 fold changes based on Drosophila

melanogaster spike-in calibrated data indicates that also CpG and BCR stimulations in-

duce general transcriptional amplification, while normalization based on human genes

only shows a balanced pattern. Unlike CpG and BCR stimulation, CD40L shows bal-

anced gene expression changes for both, Drosophila melanogaster spike-in cell calibration

and normalization based on human genes (Figure 2.8).

We find that global transcriptional amplification is not an artificial observation, but a

real physiologic process in B cells and only external calibration enables the observation

of this behavior. Further we find that if there is no transcriptional amplification, as in

the case of CD40L stimulation, the Drosophila melanogaster spike-in protocol is able to

detect this.

2.4 Discussion and conclusions

I described an RNA-seq profiling protocol that uses Drosophila melanogaster spike-in cells

for the calibration of human gene expression data. The Drosophila melanogaster spike-in

cells allow for an unbiased estimation of fold changes with respect to a fixed number of

cells. The RNA needs to be completely extracted, which deserves particular attention

during the RNA extraction protocol. Our method outperforms the external calibration

by the ERCC spike-in kit and by total RNA quantification. The whole protocol is exper-

imentally simple and inexpensive in comparison to the commercial ERCC kit.

Our spike-in protocol adds an additional reference point, namely the total number cells.

If required, the user can calibrate the data in both ways: using library size only based on

a fixed size aliquot of RNA as reference point or using Drosophila melanogaster spike-ins.

However, only with the spike-in corrected data I was able to estimate the expected log2

fold changes in our dilution experiment.

Furthermore, the Drosophila melanogaster spike-in cells outperform the ERCC spike-in

kit for two reasons. First, the whole cell protocol corrects technical variability in cell

lysis and RNA extraction. Since the ERCC kit is added after RNA extraction it cannot

monitor these variations. Second, in comparison to the 92 transcripts of the ERCC kit,

the Drosophila melanogaster spike-in protocol includes thousands of genes, that can be
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Figure 2.8: Gene expression of ”MYC -low” P493-6 cells under different stim-
ulations. Data was calibrated by Drosophila melanogaster spike-in cells (left) and en-
dogenously normalized (right) under different stimulations (BCR: B cell receptor stim-
ulation, CD40L: CD40 ligand, CpG: stimulation of Toll like receptor-signaling by the
dinucleotide). For BCR and CpG we observe an upregulation of nearly all genes when
applying the Drosophila melanogaster spike-in protocol, while we observe a balanced gene
expression pattern for the endogenous normalization.
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used for the calibration. As a result, the standard error of the calibration factors is lower

in the Drosophila melanogaster spike-in protocol.

Furthermore, we observed, that transcriptional amplification is not an artifact, but a

common biological phenomenon. The list of up- and downregulated genes varies substan-

tially between the two different reference points. Using a fixed size aliquot of RNA as

reference point increasing expression values must be compensated by decreasing others.

In presence of transcriptional amplification, the observed downregulation of genes might

not result from transcriptional repression but from the compensatory artifact associated

with this reference point. Thus, we strongly recommend to use our whole cell Drosophila

melanogaster spike-in protocol for differential expression analysis.

But also for the reconstruction of causal Bayesian networks we prefer the use of the spike-

in protocol. Most methods for causal Bayesian network reconstruction use constraint

based methods (Daly et al., 2011), thus they have to detect conditional dependencies

between genes. However, the choice of the reference point highly affects the joint distri-

bution of genes. Using a reference point which is associated with a fixed size aliquot of

RNA leads to compensatory artifacts in the gene measurements, which has an influence

on this joint distribution. This behavior influences the correlation structure between

genes and, thus, leads to a biased estimate of the causal Bayesian networks.
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CHAPTER 3

aIDA - A statistical approach to virtual cellular experiments

3.1 Motivation

The IDA method was ground-breaking, since Maathuis et al. (2010) were able to estimate

the causal effects of 5361 genes in 234 yeast deletion strains from 63 expression profiles

of wild type yeast. This was the first high throughput analysis of virtual perturbation

experiments. Thus, IDA will influence the research in the field of systems biology sig-

nificantly. Further improvements in the performance of IDA have been realized by the

CStaR algorithm (Stekhoven et al., 2012), which uses stability selection, a resampling

method wrapped around IDA that enhances the discovery of the causal effects.

However, both IDA and CStaR suffer from the poor quality of the estimated CPDAGs

(Figure 3.7). Due to the small number of observations in comparison to the high number

of variables, it is difficult to improve the accuracy of the estimated graphs (Kalisch and

Bühlmann, 2007). aIDA provides a more effective way to extract the causal effects from

inaccurate networks. The following two steps in the IDA/CStaR procedure offer room

for improvement.

1. The selection of a causal effect from an estimated multiset The estimated

CPDAG represents the equivalence class of the causal graph and is, thus, only partially

directed. For a given pair of nodes X and Y and a given estimated CPDAG, X might be

connected to other nodes via undirected edges. Thus, no unique set of parent of X can

be determined. In these scenarios for each possible valid set of parents a causal effect is

estimated. This leads to a multiset of causal effects. Both, IDA and CStaR, take the
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minimum absolute value of these multiset as a lower bound of the causal effect. This

approach ensures a guaranteed minimum size of the causal effects. However, whenever

there is an undirected edge between the cause and another node of the graph the minimum

absolute value will be zero (Section 1.2.2). Thus, the estimated causal effects are biased

towards zero. aIDA tries to overcome these biased estimates of causal effects.

2. The method to summarize the estimated causal effects from the subsam-

pling runs CStaR makes use of stability selection to find the most stable causal effects

with the highest scores. However, there can be stable medium sized effects which do not

appear within the top q causal effects. This behavior can lead to missed causal effects of

smaller effect sizes. If an estimated causal effect is valid or not depends on the adjust-

ment set Z in Definition 1.2.5. IDA and all its extensions use the parents derived from

the estimated CPDAG as adjustment set. If the parent sets derived from the CPDAG

are a valid adjustment set, then at least one of the estimated effects in M(X → Y ) is

valid, but it is unclear which one it is.

If the true underlying causal network is known, graph-based criteria (Tian and Pearl,

2002), e.g. the Back-door criterion (Pearl, 2003) help to determine the causal effects.

If the true causal network is unknown, aIDA assumes that the distribution of causal

effects across subsamples helps to estimate the accurate causal effects. Simulated data

from known causal networks helps to study the distributions of valid causal effects versus

invalid causal effects of the estimated CPDAG. Two observations support the advantages

of using the distribution of causal effects and with that the aIDA approach.

1. The estimated parents often lead to valid estimates of causal effects even

if they are not the true parents If the causal network underlying a dataset is

estimated correctly, we can estimate valid causal effects from it. But absolutely correct

estimated networks are rather unlikely. However they are also not required, since there

are mistakes, which do not affect the estimation of causal effects. In other words, as long

as the estimated parents fulfill the Back-door criterion relative to an ordered pair X and

Y, the estimation of correct causal effects is possible, even if they are not the true parents

of X.

To examine how often the Back-door criterion is fulfilled I generated random causal

DAGs and used them to generate artificial gene expression data (Details in section C). I

generated 50 samples for each random DAG of 1000 nodes. From that dataset I drew 100

subsamples of size n=25 and ran the PC-Algorithm as implemented in (Kalisch et al.,

2012) on each subsample, which led to 100 estimated CPDAGs. For all possible ordered

pairs of nodes X and Y I estimated the multisets M(X → Y ). In my simulation scenario
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the true parents of X are known and, thus, I can count how often the PC-algorithm

identified the true parent set. Following Pearl’s Back-door criterion the causal effects are

identifiable in these cases. However, there are other gene sets Z that fulfill the Back-door

criterion since finding the correct parents is sufficient, but not necessary to estimate the

true causal effects. Since the true underlying networks are known from the simulation I

was able to check, whether the Back-door criterion is fulfilled for the given adjustment set,

or not. Figure 3.1 shows that the estimated parent sets are not the true parents in most

of the cases. Nevertheless the Back-door criterion is fulfilled for the majority of estimated

sets. This leads to valid estimates of the causal effects even if the estimated CPDAGs

are highly inaccurate. My simulation study suggests that finding the true parents is

difficult, but finding a valid adjustment set is not. For example, in more than 40% of the

cause-effects pairs the Back-door criterion was fulfilled in more than 90% of the estimated

parent sets over the 100 subsampling runs, conversely there were no subsampling runs

that contained at least 90% true causal parent sets.

In addition to the simulations I also examined the reconstruction of biological networks.

To this end, I used data from the DREAM3 In-Silico Network Challenge (Marbach et al.,

2009, 2010; Prill et al., 2010). Two subgraphs from an E. coli transcriptional network

and three subgraphs from a S. cerevisae transcriptional network with 100 nodes each and

various degrees of sparseness (for details see Table 3.1) were used to sample 46 time series

for each subgraph. I the study I use the time point zero data. Figure 3.1 is consistent

with my findings in the simulated datasets, that the Back-door criterion is fulfilled for

the majority of cases, while the detection of true parents remains difficult.

2. Valid estimates of causal effects from subsampling runs generate peaks in

histograms over causal effects To illustrate the behavior of the estimated causal ef-

fects over multisets and subsampling runs, I used the 10 nodes toy graph in Figure 3.3(a).

I sampled data from that graph as described in Section C and took 100 subsamples of

that dataset. For each subsample I estimated the multiset of causal effects of node 6

Network Nodes Edges Regulators

Ecoli1 100 125 26
Ecoli2 100 119 19
Yeast1 100 166 60
Yeast2 100 389 71
Yeast3 100 551 81

Table 3.1: Overview of the data sets with 100 nodes from the DREAM3 In-Silico
Network Challenge
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Figure 3.1: Percentage of subsamples that fulfill the Back-door criterion or
where the true parents are detected for the artificial data setsThe Back-door
criterion is fulfilled frequently even if the PC algorithm rarely detects the true parents.
1000 cause-effect pairs were sampled randomly from a network with 1000 nodes. For each
of these pairs I counted how often the Back-door criterion was fulfilled by the estimated
parent sets within the 100 subsamples (black bars) and how often the parent set was the
true parent set (gray bars). The x-axis shows the percentage of estimated causal effects of
this 100 subsampling runs where the Back-door criterion was fulfilled. The y-axis displays
the proportion of the 1000 sampled cause-effect pairs for which at least x subsampling
runs fulfilled the criterion (black) or were the true parent sets (gray). The detection of
true parent sets is a very hard task, but meeting the Back-door criterion is not.
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where the true parents are detected for the DREAM3 challenge data sets
Percentage of causal effects where the estimated parents fulfill the Back-door criterion
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subsampling runs
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Figure 3.3: Example for the estimation of the causal effect of node 6 on node
10 for a small simulated data set using aIDA. (a) The causal network of the graph
with 10 nodes. The true causal effect of node 6 on node 10 (red) is 0.75. (b) The
histogram over the estimated causal effects from the 100 subsampling runs (gray) peaks
around the true causal effect (black vertical line). The red curve shows the estimated
density derived from the valid adjustment sets (estimated using parents, that fulfill the
Back-door criterion and the blue curve from invalid adjustment sets.
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on node 10. I pooled these estimates across multisets and subsamples and I showed the

distribution of causal effects in the light gray histogram of Figure 3.3(b). Additionally, I

estimated a smoothed density of all causal effects estimated from valid adjustment sets

(red curve in Figure 3.3(b)). I observed a peak in that estimated density around the true

causal effect, depicted by the black vertical line in Figure 3.3(b). This is due to the fact

that causal effects were estimated based on valid adjustment sets, and are, thus, unbiased

estimates of the true causal effect. The true parents of the cause are not necessarily the

only valid adjustment sets. Every other set of nodes, that fulfills the Back-door criterion

relative to the cause and the effect leads to unbiased estimates of the true causal effect.

In a second, blue curve I show the density of estimated causal effects that were not derived

from valid adjustment sets. This density is not centered around the true causal effect.

Since these values are derived from invalid adjustment sets, they can take any value and

I do not know anything about their distribution. The Back-door criterion is not the only

graphical criterion for valid adjustments (Tian and Pearl, 2002). Therefore, some of the

values might still be valid, while others are not.

If the majority of estimated causal effects were valid, I would expect them to have sim-

ilar values scattered around the true causal effect. Hence, I will observe a peak in the

histogram of estimates.

These observations suggest to pool the effects across multisets and subsamples and to

take the mode of the smoothed density as an estimate of the true causal effect. This idea

forms the basis of my aIDA algorithm.

3.2 The aIDA algorithm

The aIDA algorithm takes a set of expression profiles consisting of p genes observed in n

samples as input. The input data is purely observational, that means, that no perturba-

tion experiments have been performed. All samples are assumed to be drawn from the

same underlying joint distribution. The output is an ordered set of triples (X, Y,C), were

X and Y are genes and C is the estimated causal effect of X on Y . The list of causal

effects is sorted by the absolute value of C.

aIDA consists of the following steps (Taruttis et al., 2015):

1. Randomly draw K subsets of samples of size l (i.e.: l = 2
3
n, n

2
, ...), resulting in K

datasets.

2. For each of these subsets estimate a CPDAG using the PC-algorithm (Kalisch

et al., 2012) with sparseness parameter α, resulting in K CPDAGs on the same set
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of nodes.

3. For every ordered pair of genes (X → Y ) estimate the multisets M(X → Y ) of

causal effects and pool them across all subsamples.

4. Generate one histogram of estimated effects per gene pair (Accumulation step).

Smooth these histograms by a Gaussian kernel, detect the mode in the smoothed

histogram and use it as an estimate for the causal effect C of X on Y .

5. Collect all causal effects in a p× p matrix. Sort the effects by the absolute value of

C, and output this sorted list.

Step 1-3 are equal to the CStaR algorithm. But while CStaR takes the minimum absolute

value as a lower bound of each multiset, aIDA uses all values from the multiset. Since

the accumulation idea is added to the IDA concept, I call this algorithm accumulation

based IDA (aIDA).

3.3 Results

In this section I will demonstrate that aIDA outperforms CStaR with respect to partial

area under curve up to 100 false positives (pAUC(FP=100)) for both simulated datasets

and two gene expression microarray datasets from S. cerevisae. Both aIDA and CStaR

make use of the same implementation of the PC algorithm (Kalisch et al., 2012). For the

evaluation of the algorithms I need a ground truth. For the simulated datasets the true

causal effects are known from the simulation. In case of the S. cerevisae gene expression

datasets the target set of causal effects is calculated as described in Maathuis et al. (2010)

from an additional set of interventional data (see Section D.1 for details). Note that, since

the target set is derived from noisy experimental data, it is not the set of true causal

effects, but I expect an enrichment of causal interactions within that set.

3.3.1 Parameter calibration

The most critical parameter to calibrate, for both aIDA and CStaR is the sparseness

parameter α of the PC algorithm. An increasing α leads to denser CPDAGs and, with

that, to larger multisets. As a consequence, this leads to more regression coefficients,

which might increase the standard error of the estimated causal effect. In a first approach

I tested the recommended value for α from Maathuis et al. (2010) and Stekhoven et al.

(2012). However I observed that for both simulated and real gene expression data, the

estimated CPDAGs are too sparse in comparison to the graphs estimated in Maathuis
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et al. (2010) and Stekhoven et al. (2012). These findings are underpinned by a correction

of the PC algorithm to ensure an order-independent skeleton estimation which leads to

sparser graphs (Colombo and Maathuis, 2014). I calibrated α for the simulated dataset

such that I obtained CPDAGs with a density similar to the density of the true underlying

CPDAGs. I found that α = 0.5 represents a good choice of α (Figure 3.4). This also

leads to a better performance in comparison to smaller values of α (Figure 3.7). Figure

3.5 compares the network densities to a density derived from Balaji et al. (2006) for

the S. cerevisae datasets. For both values α = 0.01 and α = 0.5 the PC algorithm

underestimates the density of the network. Thus, the data suggests an even higher value

of α than 0.5. But due to runtime constraints I did not further increase α. To ensure a fair

comparison α and the 100 subsampled datasets are the same for both aIDA and CStaR.

And with that, both algorithms rely on the same set of estimated CPDAGs. All other

CStaR parameters were set to the values recommended by Stekhoven et al. (2012) (see

Section E for details). The bandwidth of the Gaussian Kernel was set to the default value

of the density() function from basic R, since calibration did not improve the estimation

of causal effects.

3.3.2 Performance on simulated datasets

I compared the performance of aIDA to the performance of CStaR on simulated datasets

generated from known causal Gaussian Bayesian networks. A comparison to plain IDA is

not necessary, since it has already been shown, that CStaR outperforms IDA with respect

to true positive selections versus false positive selections (Stekhoven et al., 2012). For

this comparison I simulated random graphs of size 100 and 1000 nodes, respectively. The

edge weights were sampled from a uniform distribution on the interval (0.1,1). These

weights represent the size of the direct causal effects between the nodes.

Performance on simulated datasets with 100 nodes First I simulated two sets of

10 datasets from small DAGs with 100 nodes and 50 or 1000 observations, respectively.

I applied aIDA and CStaR on this 20 datasets using 100 subsamples of size n
2

and α =

0.1. To measure the performance I calculated the partial areas under receiver operating

characteristics (ROC) curves (pAUC) up to 100 false positives shown in Figure 3.6. The

error bars correspond to standard errors across the 10 different datasets in each group.

The barplots illustrate, that aIDA outperforms CStaR with respect to pAUC up to 100

false positives.

Performance on simulated datasets with 1000 nodes Causal biological networks

are normally larger than 100 nodes. Since the PC algorithm becomes impractically slow
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Figure 3.4: Distribution of the number of parents for different values of α and
the true underlying DAG for the two sets of simulated datasets with 1000
nodes and 50 samples. The distribution of parents estimated using higher values for
the parameter α is more similar to the true distribution of the number of parents.
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Figure 3.5: Distribution of the number of parents for different values of α
and the true underlying DAG for the two S. cerevisae datasets. The number
of parents estimated using two different values for α are compared to a the number of
parents derived from the transcriptional regulatory network published by Balaji et al.
(2006). The higher value α=0.5 leads to e better estimation of network density.
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Figure 3.6: Comparison of the partial area under the ROC curve up to 100
false positives for 10 simulated datasets with 100 nodes, and n = 50 and n =
1000 samples. Red bars show values for aIDA, gray bars show values for CStaR. The
error bars indicate standard errors across the 10 datasets. aIDA outperforms CStaR for
both, 50 and 1000 samples with respect to partial area under the ROC curve up to 100
false positives.
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for datasets with more than 1000 nodes and a realistic choice of α, I tested the per-

formance of aIDA with random networks of 1000 nodes. To take several densities of

the networks into account I created 5 sparse random networks with approximately 1250

edges and 5 more dense graphs with approximately 2500 edges. From each random DAG

I simulated a dataset of 50 samples. Thereafter aIDA and CStaR were applied to the

datasets to reestimate the causal effects from the purely observational data. The barplots

in Figure 3.7 show the pAUC up to 100 false positives for the 5 datasets derived from

the sparse and dense networks generated as described above. The tuning parameter of

the PC algorithm was set to 4 different values. I achieve the best performance over all

values of α for α = 0.5 using the aIDA approach.

3.3.3 Application to gene expression data of S.cerevisiae dele-

tion strains

To examine the performance of aIDA in comparison to CStaR on real world datasets I

applied, both, aIDA and CStaR to two large scale yeast gene expression datasets. Both

datasets consist of both purely observational data and expression data from deletion

strains (Baudin et al., 1993; Wach, 1996) to define a gold standard target set. I estimated

the causal effects on the purely observational gene expression data by aIDA and CStaR,

respectively and validated my results using the associated interventional experiments.

Application to data from Hughes et al. (2000) The first dataset has already

been analyzed by IDA (Maathuis et al., 2010) and CStaR (Stekhoven et al., 2012) to

evaluate their performance. The observational data generated by Hughes et al. (2000)

consists of 63 wild type samples and the interventional data of 276 deletion mutants.

After preprocessing as described previously by Maathuis et al. (2010); Stekhoven et al.

(2012), 234 single gene deletion strains remain as interventional dataset (see Section C

for details). All data was measured on two-color cDNA microarrays with probes for 5361

genes.

Both aIDA and CStaR were applied to the same 100 subsamples of the 63 observations.

I estimated the multisets of causal effects M(X → Y ) for all genes from the 234 gene

deletion strains X and all measured 5361 genes Y . The interventional data acts as basis

for a target set, which is used for the classification of these predictions. I calculated ROC

curves up to 100 false positives for both algorithms, CStaR and aIDA. The curves in

Figure 3.8a illustrate that aIDA again outperforms aIDA under the given measurement.

Application to data from Lenstra et al. (2011) To add a second biological dataset

to my examinations I used the dataset from Lenstra et al. (2011). I am the first one who
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Figure 3.7: Comparison of the partial area under the ROC curve up to 100
false positives for the two sets of simulated datasets with 1000 nodes using
different values of α and using the true underlying networks. Red bars show
values for aIDA, gray bars show values for CStaR. The error bars indicate standard errors
across the 5 datasets. aIDA outperforms CStaR for α ∈(0.1,0.3,0.5) and yields the best
results for α =0.5 on both, sparse and dense datasets. Further aIDA shows a better
performance, when the true underlying network is known.
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Figure 3.8: ROC curves for the two S. cerevisae datasets up to 100 FP. The
red curve represents the ROC curve for aIDA, the gray curve shows the ROC curve for
CStaR, and the black line refers to random guessing. aIDA improves over CStaR for
both datasets. aIDA performs better than random guessing, while CStaR in case of the
dataset from Lenstra et al. (2011) at the beginning of the ranked list does not.

used this dataset for causal discoveries (Taruttis et al., 2015). Lenstra et al. (2011)

examined the interactions between chromatin and gene expression in S.cerevisiae by

analyzing mutants of chromatin machinery components. After preprocessing (Section C)

the interventional data consists of 138 gene expression profiles from single-gene deletion

mutants and 67 observations from wild types. All data was measured on two-color cDNA

microarrays with probes for 4890 genes. I found that on this dataset causal discovery is

possible. Again, aIDA outperforms CStaR for the ROC curves up to 100 false positives

(Figure 3.8b).

3.4 Discussion and conclusions

I introduced aIDA, a method to estimate causal effects from observational data without

any knowledge about the causal network underlying the data. aIDA is well-suited for

datasets with many variables but only few observations, which is a common situation in

biology, by embedding a subsampling strategy around the IDA approach from Maathuis

et al. (2009).

In contrast to previous approaches (Maathuis et al., 2009, 2010; Stekhoven et al., 2012),

aIDA uses the whole multisets of causal effects from K subsampling runs. My estimate
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of the causal effect is the mode of the density calculated over the whole K multisets of

causal effects.

The estimation of causal Bayesian networks assumes that the multivariate Gaussian distri-

bution is faithful to the DAG (Kalisch and Bühlmann, 2007), which means that statistical

conditional independence can be inferred from the underlying DAG. But faithfulness in

general is not testable (Zhang and Spirtes, 2008) and unfaithfulness of the population

cannot be ruled out in biological systems which often try to maintain a stable equilib-

rium state (Andersen, 2013). Furthermore feedback mechanisms cannot be captured by a

DAG. These limitations lead to the fact that IDA and thus Accumulation selection cannot

replace wet lab experiments, but can be a good tool for experiment design. Hence, here

it is very important to make good predictions at the top of the ordered list of absolute

causal effects, because this would be my most promising candidates for future experi-

ments.

I compared aIDA to CStaR (Stekhoven et al., 2012), a method which wrapped a stabil-

ity selection (Meinshausen and Bühlmann, 2010) around a subsampling strategy. aIDA

outperforms CStaR on both simulated and real world data sets from S. cerevisiae with

respect to partial area under receiver operating characteristics (ROC) curve up to 100

FP, and thus outperforms plain IDA (Stekhoven et al., 2012).
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CHAPTER 4

Estimation of causal effects from highly correlated data

4.1 Motivation

The application of spike-in calibration from Section 2.4 to a huge RNA-seq gene ex-

pression dataset may result in highly correlated data. Figure 4.1 shows the correlation

between the 500 most variable genes for two RNA-seq datasets of the P493-6 cell line.

The P493-6 cell line is a B cell lymphoma cell line that allows for an ectopic induction of

MYC by a tetracycline-controlled transcriptional activation (Gossen and Bujard, 1992;

Polack et al., 1996). The data set consists of 50 samples of P493-6 ”MYC-low” cells

(tetracycline added, ectopic MYC is repressed) and 50 samples of P493-6 ”MYC-high”

cells (no tetracycline added, MYC is expressed). Some samples are treated with combi-

nations of 5 different external stiumli (see Section A for details on data generation). I

applied spike-in normalization using DESeq2 size factors (Love et al., 2014) to the raw

counts (Taruttis et al., 2017). For a more detailed description on data generation I refer

to Section 5. We see that nearly every gene is highly correlated with all other observed

genes for both levels of MYC. This finding is a consequence of the global role of MYC in

gene expression (Lin et al., 2012; Nie et al., 2012). Thus, we observe no technical artifact

but a real biological process.

The estimation of causal effects from observational data requires the estimation of a causal

graph (Pearl, 2003; Maathuis et al., 2009). However, for the data sets shown in Figure

4.1 we expect that the underlying DAG is dense, since every gene has a high probability

to be connected to many other genes. This is a violation of the sparseness assumption

of the PC algorithm (Kalisch and Bühlmann, 2007) which is a common assumption in
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Figure 4.1: Correlation between the 500 most variable genes for the P493-
6 gene expression datasets after spike-in calibration Application of Drosophila
melanogaster spike-in calibration results in highly correlated genes for both levels of
MYC.

causal structure learning (Daly et al., 2011). And in fact this violation leads to a poor

performance with respect to partial area under receiver operating characteristics curve

(pAUCROC) (see Figure 4.2, see Section C for details on data generation).

However, Tsamardinos et al. (2006) claim that their MMHC algorithm requires signifi-

cantly less tests, so that they perform less test errors and, thus, achieve a better network.

I will make use of this advantage by replacing the PC algorithm within the IDA approach

by a modification of the MMHC algorithm. Furthermore the performance of the MMHC

algorithm does not decrease as fast as the performance of PC algorithm does, when the

available sample size is relatively small and MMHC is faster than the PC algorithm

(Tsamardinos et al., 2006). These statements suggest the use of MMHC algorithm not

only for highly correlated data, but also for sparse networks.

The MMHC algorithm consists of two steps. In the first step, the skeleton is estimated by

the Max-Min Parents and Children (MMPC) algorithm (Tsamardinos et al., 2003). Af-

ter that a Bayesian-scoring hill-climbing algorithm orients the undirected edges. Nägele

et al. (2007) described an extension of the MMHC algorithm which makes the algorithm

applicable to thousands of variables: Instead of estimating the whole DAG, Nägele et al.

(2007) estimate the Markov Blankets around every variable using the MMHC algorithm.

This allows for the parallelization of the algorithm and ensures an increase in speed.
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Figure 4.2: Relation between performance of aIDA and correlation structure
between variables. Datasets consist of 1000 nodes and 50 samples. The sparse
(approximately 1250 edges per graph) and the dense (approximately 2500 edges per
graph) dataset are the datasets described in Section 3.3.2. The very dense datasets consist
of approximately 20000 edges and the extremely dense datasets consist of approximately
50000. Extremely dense graphs result in a worse performance with respect to partial area
under ROC curve up to 100 false positives. (a) Quantile plots of correlation coefficients
between variables of the sparse (purple curve), dense (pink curve), very dense (orange
curve) and extremely dense (green curve) datasets. As expected denser graphs result in
higher correlation coefficients between variables. (b) Barplots of the partial area under
ROC curve up to 100 false positives for the four sets of datasets (”sparse”, ”dense”, ”very
dense”,”extremely dense”). The tuning parameter of the PC algorithm was set to α =0.5,
which is more optimal for dense graphs.
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After that a ”feature partial directed graph” (fPDAG) (Dejori et al., 2005) summarizes

the Markov Blankets. With a fPDAG it is possible to describe uncertainties in Bayesian

network structure such that to each pair of nodes it assigns a probability for the existence

of an edge and its orientation.

However, for the estimation of causal effects the whole CPDAG is not required, but the

parents of the causes. Thus, for this purpose it is sufficient to estimate the Markov Blan-

kets around causes without constructing a fPDAG. Driven by these ideas I developed

the MMHC-aIDA algorithm, which uses the MMHC algorithm to estimate the Markov

Blankets around the causes of interest, instead of estimating the whole CPDAG.

4.2 MMHC-aIDA algorithm

The MMHC-aIDA algorithm takes a set of expression profiles consisting of p genes ob-

served in n samples as input. The input data is purely observational, that means, that no

perturbations experiments have been performed. All samples are assumed to be drawn

from the same underlying joint distribution. The output is an ordered set of triples

(X, Y,C), were X and Y are genes and C is the estimated causal effect of X on Y . I call

the number of causes of interest Nx with 1 ≤ Nx ≤ p . The list of causal effects is sorted

by the absolute value of C.

1. Randomly draw K subsets of samples of size l (i.e.: l = 2
3
n, n

2
, ...), resulting in K

resampled datasets.

2. For each of these subsets and for each cause X estimate a Markov Blanket around

X, resulting in Nx ×K Markov Blankets

3. For every ordered pair of genes (X → Y ) estimate the multisets M(X → Y ) of

causal effects and pool them across all subsamples.

4. Generate one histogram of estimated effects per gene pair (Accumulation step).

Smooth these histograms by a Gaussian kernel, detect the mode in the smoothed

histogram and use it as an estimate for the causal effect C of X on Y .

5. Collect all causal effects in a p× p matrix. Sort the effects by the absolute value of

C, and output this sorted list.

Steps 1 and 3-5 are similar to the aIDA algorithm presented in Section 3. MMHC-aIDA

only differs in the way how the parents of the causes for the estimation of causal effects

are calculated from the observational data (step 2).

Since the MMHC algorithm is used to estimate the Markov Blankets around the causes

and with that the parents of the causes X, I call this algorithm MMHC-aIDA.
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4.3 Results

4.3.1 Performance on simulated datasets

I tested the performance of MMHC-aIDA with random networks of 1000 nodes. To take

several densities of the networks into account I created 5 sparse random networks with

approximately 1250 edges, 5 dense graphs with approximately 2500 edges, 5 very dense

graphs with approximately 20000 edges and 5 extremely dense graphs with approximately

50000 edges. From each random DAG I simulated a dataset of 50 samples. Thereafter

aIDA, CStaR (Stekhoven et al., 2012) and MMHC-aIDA were applied to the 20 datasets

(4 levels of sparseness × 5 datasets for each level of sparseness ) to reestimate the causal

effects from the purely observational data. The barplots in Figure 4.3 show the pAUC up

to 100 false positives for the 5 datasets derived from the sparse and the dense networks

generated as described above. The tuning parameter of the PC algorithm was set to

α = 0.5. From Section 3 we already know that aIDA outperforms CStaR on the partial

area under curve up to 100 false positives. And also MMHC-aIDA perform better than

CStaR for the two network densities. However, for the sparse and the dense network aIDA

also outperforms MMHC-aIDA. What about networks with much higher density and as

a consequence of that highly correlated data? The MMHC algorithm claims to improve

over the PC algorithm due to less test errors. Does only the change of the network

estimation algorithm improve the performance aIDA on more dense networks? Figure

4.4 shows barplots of the pAUC up to 100 false positives for the 5 datasets derived from

the very dense and the extremely dense networks. For the very dense networks MMHC-

aIDA outperforms aIDA, but for the extremely dense networks the performance of both

algorithms drastically breaks down. This underpins the assumption that the MMHC

algorithm is more suitable for highly correlated data, and MMHC-aIDA should be the

method of choice in those cases.

4.4 Discussion

I introduced MMHC-aIDA for the estimation of causal effects from highly correlated

data. High correlations between genes are a result of the Drosophila melanogaster spike-

in calibration and are a consequence of MYC ’s global role in gene expression of B cells

(Lin et al., 2012; Nie et al., 2012).

MMHC-aIDA did not improve over aIDA for more sparse datasets, but for very dense

data sets. The performance for both, MMHC-aIDA and aIDA, breaks down for extremely

correlated data. Unfortunately, to my knowledge, no highly correlated biological datasets,

that consist of both an observational dataset with at least approximately 50 samples and
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Figure 4.3: Comparison of the partial area under the ROC curve up to 100
false positives for the two sets of simulated sparse and dense datasets with
1000 nodes for α=0.5. Blue bars show values for MMHC-aIDA, red bars show values
for aIDA, and gray bars show values for CStaR. The error bars indicate standard errors
across the 5 datasets. Both aIDA and MMHC-aIDA outperform CStaR. However aIDA
shows the best performance.

64



very dense extremly dense

0e
+

00
2e

−
06

4e
−

06
6e

−
06

8e
−

06

Figure 4.4: Comparison of the partial area under the ROC curve up to 100
false positives for the two sets of simulated very dense and extremely dense
datasets with 1000 nodes for α=0.5. Blue bars show values for MMHC-aIDA, red
bars show values for aIDA. The error bars indicate standard errors across the 5 datasets.
For the very dense data MMHC-aIDA outperforms aIDA, while for the extremely dense
data the performance of both algorithms is poor.
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a huge set of interventional data exists. Thus, an evaluation of performance on highly

correlated biological data is impossible so far.

Estimating causal effects from extremely high correlated data is a difficult task and could

not be solved by the MMHC-aIDA algorithm. However, he MMHC-aIDA algorithm

performs better on highly correlated data than aIDA does. In summary there is more

research is required for that particular problem. A starting point could be the work of

(Mandozzi and Bühlmann, 2016a) and (Mandozzi and Bühlmann, 2016b).
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Part II

Causal analysis of MYC -dependent

gene expression and cell metabolism

of a B cell lymphoma cell line
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CHAPTER 5

Experimental setup and data preparation

5.1 Experimental setup

To examine the causal interactions of the gene MYC with the transcriptome and the

metabolome under different MYC expression levels we selected the P493-6 cell line, a

model organism for cell cycle activation by MYC in lymphoma cells. The P493-6 cell line

allows to examine the causal relationships of MYC under the same epigenetic conditions.

For this purpose the cells contain a doxycycline depended promoter to switch MYC on

or off. Untreated P493-6 cells are highly proliferative due to a strong overexpression of

MYC (”MYC -high”). The treatment with doxycycline hampers the expression of MYC

(”MYC -low”) by the inducible Tet-Off expression system (Gossen and Bujard, 1992; Po-

lack et al., 1996). However the ”MYC -low” cells may also proliferate slowly in presence

of doxycycline and estradiol via a viral EBNA2-ER fusion protein (Yustein et al., 2010;

Sabo et al., 2014).

The causal interactions of MYC with the transcriptome and the metabolome of the

P493-6 cells are inferred from ”MYC -high” and ”MYC -low” state of the cell line. The

experimental setup consists of 100 samples. 50 are in ”MYC -high” and 50 in ”MYC -low”

state. The majority of samples is treated with combinations of five different stimuli in

two different dosages to stimulate many different genetic and metabolic pathways. The

activated pathways play a central role in B-cell maturation, germinal center reactions

and lymphomagenesis. Anti human IgM F(ab)2 fragment (α-IgM) activates the BCR

signaling pathway. sCD40L (CD40) treatment results in TNF (tumor necrosis factor)

activation. rhIGF-1 (IGF) activates insulin growth factor 1 and rhIL-10 (IL10) activates
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interleukin 10. ODN2006 (CpG) positively stimulates the toll like receptor via the dinu-

cleotide CpG. The dosage levels are treatment dependent (see Table A.1 for details).

The experiment was designed in 10 batches (days) with 10 probes per batch. To re-

duce batch effects, we decided upon a special experimental design. Each batch contains

two untreated control samples, one in ”MYC -high” and the other in ”MYC -low” state.

Further we included one sample for each MYC state with a single stimulation in the

highest dosage. The remaining six samples per batch are left for random combinations

with at least two different stimuli and random dosages (see Table 5.1 for a scheme of

the experimental design). The five different stimuli activate pathways that play a central

Batch CD40L BCR IGF CpG IL10 Myc Batch CD40L BCR IGF CpG IL10 Myc
1 1 1.0 0.0 0.0 0.0 0.0 H 51 6 1.0 0.0 0.0 0.0 0.0 H
2 1 0.0 1.0 0.0 0.0 0.0 L 52 6 0.0 1.0 0.0 0.0 0.0 L
3 1 0.0 0.0 0.0 0.0 0.0 L 53 6 0.0 0.0 0.0 0.0 0.0 L
4 1 0.0 0.0 0.0 0.0 0.0 H 54 6 0.0 0.0 0.0 0.0 0.0 H
5 1 0.0 1.0 1.0 1.0 1.0 H 55 6 0.0 0.0 0.0 0.2 1.0 H
6 1 1.0 1.0 1.0 1.0 1.0 H 56 6 0.2 0.2 0.2 1.0 1.0 H
7 1 1.0 1.0 0.0 1.0 0.0 H 57 6 0.2 1.0 1.0 0.0 0.0 H
8 1 1.0 0.0 0.0 1.0 1.0 L 58 6 1.0 1.0 0.0 1.0 1.0 L
9 1 0.2 1.0 1.0 0.0 1.0 L 59 6 1.0 1.0 1.0 1.0 1.0 L

10 1 0.0 0.0 0.0 1.0 1.0 L 60 6 0.2 0.0 1.0 0.2 1.0 L
11 2 0.0 1.0 0.0 0.0 0.0 H 61 7 0.0 1.0 0.0 0.0 0.0 H
12 2 0.0 0.0 1.0 0.0 0.0 L 62 7 0.0 0.0 1.0 0.0 0.0 L
13 2 0.0 0.0 0.0 0.0 0.0 L 63 7 0.0 0.0 0.0 0.0 0.0 L
14 2 0.0 0.0 0.0 0.0 0.0 H 64 7 0.0 0.0 0.0 0.0 0.0 H
15 2 0.0 1.0 0.2 0.2 0.0 H 65 7 0.2 1.0 1.0 0.0 1.0 H
16 2 1.0 0.2 0.2 0.0 0.0 H 66 7 1.0 0.2 0.0 0.0 1.0 H
17 2 1.0 1.0 1.0 1.0 0.2 H 67 7 1.0 1.0 0.0 1.0 1.0 H
18 2 0.2 0.2 0.2 0.2 0.2 L 68 7 0.0 0.2 0.0 0.2 1.0 L
19 2 1.0 0.2 0.0 0.0 1.0 L 69 7 1.0 1.0 1.0 1.0 0.2 L
20 2 0.2 1.0 0.2 0.0 0.2 L 70 7 1.0 1.0 0.0 1.0 0.0 L
21 3 0.0 0.0 1.0 0.0 0.0 H 71 8 0.0 0.0 1.0 0.0 0.0 H
22 3 0.0 0.0 0.0 1.0 0.0 L 72 8 0.0 0.0 0.0 1.0 0.0 L
23 3 0.0 0.0 0.0 0.0 0.0 L 73 8 0.0 0.0 0.0 0.0 0.0 L
24 3 0.0 0.0 0.0 0.0 0.0 H 74 8 0.0 0.0 0.0 0.0 0.0 H
25 3 0.2 0.2 0.2 0.0 0.0 H 75 8 0.0 0.2 0.0 0.2 1.0 H
26 3 0.2 1.0 0.0 0.0 1.0 H 76 8 0.2 0.2 0.2 0.2 0.2 H
27 3 1.0 0.0 0.0 1.0 1.0 H 77 8 0.2 1.0 0.2 0.0 0.2 H
28 3 0.2 1.0 0.2 1.0 0.0 L 78 8 0.0 1.0 1.0 1.0 1.0 L
29 3 0.0 0.0 0.0 0.2 1.0 L 79 8 0.2 0.2 0.0 1.0 1.0 L
30 3 0.2 1.0 0.2 0.2 0.2 L 80 8 0.2 0.2 0.2 1.0 1.0 L
31 4 0.0 0.0 0.0 1.0 0.0 H 81 9 0.0 0.0 0.0 1.0 0.0 H
32 4 0.0 0.0 0.0 0.0 1.0 L 82 9 0.0 0.0 0.0 0.0 1.0 L
33 4 0.0 0.0 0.0 0.0 0.0 L 83 9 0.0 0.0 0.0 0.0 0.0 L
34 4 0.0 0.0 0.0 0.0 0.0 H 84 9 0.0 0.0 0.0 0.0 0.0 H
35 4 0.2 1.0 0.2 0.2 0.2 H 85 9 0.2 1.0 1.0 0.2 0.0 H
36 4 1.0 1.0 0.2 0.2 0.0 H 86 9 0.2 0.2 1.0 0.0 0.2 H
37 4 0.2 0.0 1.0 0.2 0.0 H 87 9 1.0 0.0 1.0 1.0 0.2 H
38 4 1.0 1.0 0.2 0.2 0.0 L 88 9 0.0 1.0 0.2 0.2 0.0 L
39 4 0.2 1.0 1.0 0.2 0.0 L 89 9 0.2 0.2 1.0 0.0 0.2 L
40 4 1.0 0.0 1.0 1.0 0.2 L 90 9 1.0 0.0 1.0 0.2 0.0 L
41 5 0.0 0.0 0.0 0.0 1.0 H 91 10 0.0 0.0 0.0 0.0 1.0 H
42 5 1.0 0.0 0.0 0.0 0.0 L 92 10 1.0 0.0 0.0 0.0 0.0 L
43 5 0.0 0.0 0.0 0.0 0.0 L 93 10 0.0 0.0 0.0 0.0 0.0 L
44 5 0.0 0.0 0.0 0.0 0.0 H 94 10 0.0 0.0 0.0 0.0 0.0 H
45 5 0.0 0.0 0.0 1.0 1.0 H 95 10 1.0 0.0 1.0 0.2 0.0 H
46 5 0.2 0.2 0.0 1.0 1.0 H 96 10 0.2 1.0 0.2 1.0 0.0 H
47 5 0.2 0.0 0.2 1.0 0.0 H 97 10 0.2 0.0 1.0 0.2 1.0 H
48 5 0.2 0.2 0.2 0.0 0.0 L 98 10 0.2 1.0 1.0 0.0 0.0 L
49 5 0.2 1.0 0.0 0.0 1.0 L 99 10 0.2 0.0 1.0 0.2 0.0 L
50 5 0.2 0.0 0.2 1.0 0.0 L 100 10 1.0 0.2 0.2 0.0 0.0 L

Table 5.1: Experimental design of the 100 samples of P493-6 cells. The P493-6 cells
were treated with combinations of 5 different stimuli and 2 dosage levels. 1 refers to full
dosage, 0 refers to no treatment and 0.2 refers to reduced dosage. H refers to ”‘MYC -
high”’ cells and L refers to ”‘MYC -low”’ cells. For details on data generation see Section
A and B.

role in B-cell maturation, germinal center reactions and lymphomagenesis. Anti human

IgM F(ab)2 fragment (α-IgM) activates the BCR signaling pathway. sCD40L (CD40)
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treatment results in TNF (tumor necrosis factor) activation. rhIGF-1 (IGF) activates

insulin growth factor 1 and rhIL-10 (IL10) activates interleukin 10. ODN2006 (CpG)

positively stimulates the toll like receptor via the dinucleotide CpG. The dosage levels

are treatment dependent (see Table A.1 for details).

For each of the 100 samples we measured both, the transcriptome and the metabolome

of the cells. The transcriptome of the P493-6 cells is measured by RNA-Seq analysis.

For data normalization we added both the synthetical ERCC spike-in kit and Drosophila

melanogaster spike-in cells (see Section 2 for details). The raw sequence data is avail-

able at NCBI, Bioproject PRJNA312050. Maren Feist (Department of Haematology and

Medical Oncology of the University Medical Center Göttingen) carried out all wet lab

experiments. RNA-seq was done by Dr. Gabriela Salinas-Riester (Head of Core Mi-

croarray and Deep-Sequencing Core Facility, University Medical Center Göttingen) (see

Section A for a detailed description of the experimental setup). The Mass spectrometry

analysis allows to measure the metabolic processes of the cells. Both, cell pellets and su-

pernatants of the 100 samples are measured to create a consistent view of the metabolic

processes. Philipp Schwarzfischer (Group NMR Spectroscopy, Institute of Functional Ge-

nomics, University of Regensburg) provided the Mass spectrometry analysis for both cell

pellets and supernatants of the 100 samples (see Section B for details).

5.2 Data normalization

5.2.1 Gene expression data

For the normalization of RNA seq data I constructed a genome of human and Drosophila

melanogaster reference genomes and the ERCC sequences. The human reference was

GRCh38 from ensembl, release 77 (Cunningham et al., 2015), the Drosophila melanogaster

reference was ensembl BDGP5, release 77 and the ERCC sequences were as provided by

https://tools.lifetechnologies.com/content/sfs/manuals/cms 095047.txt. I mapped all se-

quence libraries against this concatenated genome using TopHat version 2.0.13 (Trapnell

et al., 2009) indicating an unstranded sequencing protocol (–library -type fr-unstranded)

and default settings for the remaining parameters. I assigned read counts to ensembl

gene IDs using featureCounts version 1.4.5 (Liao et al., 2014). To prepare the data for

causal analysis I calculated transcripts per million (TPM) values for all ensembl gene

IDs (Wagner et al., 2012). TPMs are normalized by a loess regression on the Drosophila

melanogaster spike-in genes as suggested by Lovén et al. (2012) and Taruttis et al. (2017).

The subsequent log2-transformation avoids to blow up values by scaling due to very small

variances during data selection. After that I calculated the median for each ensembl ID
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over the 50 samples in ”MYC -high” and the 50 samples in ”MYC -low” state. For each

data set I selected the top 50% of genes according to the median, which resulted in 7900

ensembl IDs per dataset. Then I calculated the interquartile range on the remaining

ensembl IDs and selected the 5000 genes with the highest interquartile range for the 50

samples in ”MYC -high” and the 50 samples in ”MYC -low” state (Figures 5.1 and 5.2).

84 74 64 34 21 24 37 44 91 94 61 66 86 54 41 71 65 57 51 35 36 14 4 25 26 77 11 16 95 97 75 76 85 81 31 55 1 15 96 87 45 46 47 17 5 7 6 67 27 56

−1 0 1

Value

Color Key

Figure 5.1: Log2-transformed TPM values of the 50 samples and the 5000
selected genes in ”MYC -high” state On the top 50% genes according to the median
the 5000 genes with the highest interquartile range have been selected.

5.2.2 Metabolomics data

The metabolomics cell pellets data requires no further preparation or normalization.

The metabolomics supernatant data has been divided by growth factors and measured

medium as provided and suggested by Philipp Schwarzfischer (Group NMR Spectroscopy,

Institute of Functional Genomics, University of Regensburg). Neither the supernatant

data set nor the pellet data set show indications to batch effects (see Figures 5.3 and 5.4).

To ensure data comparability to the gene expression data set the metabolomics data was

log-transformed and scaled for causal inference analysis.
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Figure 5.2: Log2-transformed TPM values of the 50 samples and the 5000
selected genes in ”MYC -low” state On the top 50% genes according to the median
the 5000 genes with the highest interquartile range have been selected.
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Figure 5.3: Pellet data set received from P493-6 samples The samples in ”MYC -
low” and ”MYC -high” state are colored in blue and red, respectively. Batch effects are
not observed.
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Figure 5.4: Supernatant data set received from P493-6 samples The samples
in ”MYC -low” and ”MYC -high” state are colored in blue and red, respectively. Batch
effects are not observed.
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CHAPTER 6

Causal inference analysis

6.1 The Estimation of causal structures depends on

the correlation pattern of the samples

6.1.1 Gene expression data

The normalized gene expression data is a highly correlated data set (see Figure 6.1).

Following Chapter 4, I applied MMHC-aIDA with tuning parameter α = 0.5 instead of

plain aIDA to the data set. To underpin both the selection of the MMHC-aIDA algorithm

and the selection of the α-parameter I compared the density of the estimated networks

to the B cell interactome data provided by Lefebvre et al. (2007). For the comparison I

used the interactions from the data set, which have been reported in public databases.

In comparison to aIDA the mean number of parents estimated by MMHC-aIDA in the

estimated CPDAGs is more reliable (Figure 6.2 ).

6.1.2 Metabolomics data

I want to determine both the causal effects of the measured metabolites from supernatants

and cell pellets on MYC and the causal effects of MYC on the metabolites measured in

supernatants and cell pellets under the two different MYC levels. Since the metabolomics

dataset is not highly correlated (Figure 6.3), the aIDA-method (Chapter 3) is the method

of choice for the estimation of the causal effects. For the calibration of the α-parameter of

the PC algorithm I compared the distribution over the number of parents of the estimated
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Figure 6.1: Correlation between the 5000 most variable genes for the P493-
6 gene expression datasets after spike-in calibration Application of Drosophila
melanogaster spike-in calibration results in highly correlated genes for both levels of
MYC.
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Figure 6.2: The number of parents estimated by PC algorithm and the MMHC algo-
rithm for α=0.5 are compared to a the number of parents derived from the transcriptional
B cell interactome network. d denotes the Euclidean distance between the parental dis-
tribution of the particular estimated network and the B cell interactome network. The
MMHC algorithm results in CPDAGs which show a more similar distribution of parents
in comparison to the B cell interactome data set than the networks estimated by PC
algorithm.
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networks to the distribution of the metabolic pathway network of the KEGG database

(Kanehisa et al., 2002). Figure 6.4 shows the distribution of the number of parents

for both supernatants and cell pellets under the different MYC -levels. The Euclidean

distances between the distributions of the different α values and the distribution of the

KEGG metabolic pathway network indicate to α=0.1 (see Table 6.1).
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Figure 6.3: Correlation between the measured metabolites of the P493-6
metabolomics datasets after scaling and log-transformation The metabolomics
datasets are not highly correlated.
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6.2 Causal relationships between the transcriptome

and MYC

Following Section 6.1 I applied the MMHC algorithm with α=0.5 to the RNA-seqdata

set. For each gene in the data set I estimated 100 Markov patterns from 25 random
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Figure 6.4: Distribution of the number of parents for different values of and
the metabolic pathway network of the KEGG database for the pellet and
the supernatant datasets under different MYC conditions. The distribution of
parents estimated using higher values for the parameter α is more similar to the true
distribution of the number of parents.
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α Pellets data set Supernatants data set
Myc-high Myc-low Myc-high Myc-low

0.5 0.36 0.36 0.36 0.35
0.3 0.34 0.33 0.31 0.33
0.1 0.33 0.25 0.23 0.29
0.01 0.56 0.70 0.90 1.00

Table 6.1: Euclidean distances between the distribution over the number of parents of
the metabolic pathway data set from KEGG and CPDAGs estimated by the PC algorithm
for different values of α and the two MYC conditions. For the supernatants and pellets
data set and for both MYC states the distance between the parental distribution of the
KEGG pathway and the estimated CPDAG with α=0.1 is the smallest. Thus, for further
analysis I chose α=0.1 to estimate the causal metabolic networks.

subsamples for each of the two levels of MYC ”MYC -low” and ”MYC -high”. I estimated

the multisets of causal effects for all genes from the 5000 genes on all 5000 genes for

both the ”MYC -low” and ”MYC -high” data set. From these multisets I determined the

causal effect of one gene on another by MMHC-aIDA ( Section 4.4). For each gene I

calculated the mean of absolute causal effects of this gene on the 4999 remaining genes

over the multi sets estimated from the 100 subsamples. Figure 6.5 shows the top 100

causal regulators for ”MYC -low” and the ”MYC -high” according to the mean absolute

causal effect over the 100 subsamples. Figure 6.6 shows the causal effects of MYC on

−6 −2 2 4 6

Value

Color Key

(a) Myc-low

−6 −2 2 4 6

Value

Color Key

(b) Myc-high

Figure 6.5: Top 100 causal regulators for the ”MYC -low” and the ”MYC -
high” dataset The causal effects are estimated by the MMHC-aIDA algorithm.
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the remaining 4999 genes. MYC has positive causal effects on the majority of the genes.

This finding is consistent with the hypothesis that MYC is a transcriptional amplifier

which upregulates the majority genes. The 20 highest absolute causal effects of the 4999

Myc

−6 0 4

Value

Color Key

(a) Myc-low

Myc

−6 0 4

Value

Color Key

(b) Myc-high

Figure 6.6: Causal effects of MYC on the 4999 remaining genes for the
”MYC -low” and the ”MYC -high” dataset The causal effects are estimated by
the MMHC-aIDA algorithm.

genes on MYC for both data sets are summarized in Table 6.2. The causal inference

analysis shows that these 20 genes have the largest effects on MYC. The interpretation

of the results is the following: If the causal effect of gene X on MYC is positive the

upregulation of gene X in the virtual intervention experiment leads to an upregulation of

MYC, while a negative causal effect of gene X on MYC means that an upregulation of

gene X causes a repression of MYC.

Furthermore I summarize the 20 genes with the most negative causal effects on MYC

for the ”MYC -high” and the ”MYC -low” dataset in Table 6.3. These are the most

important MYC repressor genes in the virtual intervention experiment. Some of these

interactions are already known (Figure 6.7). For example TCF3 upregulates MYC in

the virtual intervention effects. Mutations of TCF3 increase the activity of the PI3K
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Ensembl gene id External Effect Ensembl gene id External Effect
gene name (”high”) gene name (”low”)

ENSG00000234975 FTH1P2 2.27 ENSG00000127589 TUBBP1 2.32
ENSG00000219507 FTH1P8 -1.60 ENSG00000113161 HMGCR 2.31
ENSG00000175886 RPL7AP66 1.59 ENSG00000051341 POLQ -2.18
ENSG00000080824 HSP90AA1 -1.46 ENSG00000228502 EEF1A1P11 2.00
ENSG00000168827 GFM1 -1.14 ENSG00000131747 TOP2A -1.80
ENSG00000107331 ABCA2 1.14 ENSG00000219507 FTH1P8 -1.62
ENSG00000188873 RPL10AP2 1.13 ENSG00000214110 LDHAP4 1.58
ENSG00000065183 WDR3 1.10 ENSG00000137310 TCF19 -1.51
ENSG00000160285 LSS 1.00 ENSG00000095139 ARCN1 1.45
ENSG00000214110 LDHAP4 1.00 ENSG00000143228 NUF2 -1.43
ENSG00000134061 CD180 -0.99 ENSG00000179967 PPP1R14BP3 1.36
ENSG00000145911 N4BP3 0.97 ENSG00000092199 HNRNPC 1.07
ENSG00000132153 DHX30 0.95 ENSG00000182774 RPS17 1.03
ENSG00000101938 CHRDL1 0.94 ENSG00000165071 TMEM71 -1.01
ENSG00000105409 ATP1A3 0.94 ENSG00000142937 RPS8 1.01
ENSG00000121057 AKAP1 0.94 ENSG00000132341 RAN 1.00
ENSG00000138617 PARP16 0.94 ENSG00000169251 NMD3 1.00
ENSG00000071564 TCF3 0.94 ENSG00000228205 RP11-778D9.4 1.00
ENSG00000004975 DVL2 0.94 ENSG00000127022 CANX 1.00
ENSG00000143674 MLK4 0.93 ENSG00000166441 RPL27A 0.99

Table 6.2: The 20 highest absolute causal effects on MYC for the MYC -”high” and the
MYC -”low” dataset. The causal effects were estimated by the MMPC-algorithm with α
=0.5.

pathway in Burkitt’s Lymphoma (Sewastianik et al., 2014), which also influences MYC -

induced proliferation (Walsh et al., 2009). Furthermore, a recent publication of Wei et al.

(2020) shows that TCF3 activates MYC in neuroblastoma.

DVL2 increases the expression of MYC in the virtual experiment. Smalley et al. (2005)

showed that DVL2 plays an important role in WNT signaling and MYC is a target

gene of this pathway (He et al., 1998). HSP90AA1 acts as a repressor of MYC in the

causal inference analysis. Chakravorty et al. (2017) listed HSP90AA1 as a high potential

candidate involved in MYC regulation. GFM1 and DHX30 are also listed as results of the

virtual intervention experiment and are known target genes of MYC, which are involved

in mitochondrial protein biosynthesis (Morrish and Hockenbery, 2014; Seitz et al., 2011;

Zeller et al., 2006; Li et al., 2005). Teater and Melnick (2017) assume a relationship

between MYC and KLHL14, which is identified as potential MYC repressor by the

causal inference analysis. Further KLHL14 mutations in ABC DLBCLs are associated

with a poor prognosis.

Besides the top 20 causal effects some of the mechanisms described in Section 1.1.2 are

observed in the causal inference results: For example the causal effect of MYC on AKT
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Ensembl gene id External Effect Ensembl gene id External Effect
gene name (”high”) gene name (”low”)

ENSG00000219507 FTH1P8 -1.60 ENSG00000051341 POLQ -2.18
ENSG00000080824 HSP90AA1 -1.46 ENSG00000131747 TOP2A -1.80
ENSG00000168827 GFM1 -1.14 ENSG00000219507 FTH1P8 -1.62
ENSG00000134061 CD180 -0.99 ENSG00000137310 TCF19 -1.51
ENSG00000020181 GPR124 -0.80 ENSG00000143228 NUF2 -1.43
ENSG00000228232 GAPDHP1 -0.73 ENSG00000165071 TMEM71 -1.01
ENSG00000116704 SLC35D1 -0.73 ENSG00000136573 BLK -0.93
ENSG00000132465 IGJ -0.62 ENSG00000275395 FCGBP -0.93
ENSG00000213763 ACTBP2 -0.59 ENSG00000263264 CTB-133G6.1 -0.89
ENSG00000135451 TROAP -0.58 ENSG00000234184 RP5-887A10.1 -0.89
ENSG00000234184 RP5-887A10.1 -0.57 ENSG00000227507 LTB -0.88
ENSG00000189057 FAM111B -0.56 ENSG00000134697 GNL2 -0.88
ENSG00000128218 VPREB3 -0.53 ENSG00000128218 VPREB3 -0.85
ENSG00000197629 MPEG1 -0.53 ENSG00000185862 EVI2B -0.85
ENSG00000149212 SESN3 -0.51 ENSG00000277448 RP11-538C21.2 -0.85
ENSG00000257221 RP11-689B22.2 -0.51 ENSG00000121807 CCR2 -0.84
ENSG00000133321 RARRES3 -0.50 ENSG00000104894 CD37 -0.84
ENSG00000125046 SSUH2 -0.50 ENSG00000144645 OSBPL10 -0.84
ENSG00000211978 IGHV5-78 -0.50 ENSG00000162892 IL24 -0.83
ENSG00000197705 KLHL14 -0.49 ENSG00000162894 FAIM3 -0.82

Table 6.3: The 20 most negative causal effects on MYC for the MYC -”high” and the
MYC -”low” dataset. The causal effects were estimated by the MMPC-algorithm with α
=0.5.

and MTOR is positive for both MYC -state datasets in the virtual experiment. Olive et al.

(2009) and Xiao et al. (2008) showed that MYC inhibits PTEN via the micro-RNA miR-

19. PTEN is an inhibitor of PI3K and PI3K activates AKT. In the ”MYC-high” state

the causal effect of MYC on RAPTOR is positive, too (Table 6.4). This positive causal

effect may be interpreted as an activation of the PI3K-AKT-mTOR pathway by MYC

which results in proliferation.

MYC also enables cells to have unlimited replicative potential. One mechanism is the

direct activation of TERT. Indeed, the causal effect of MYC on TERT is positive.

VEGF plays an important role in the induction of angiogenesis. From Section 1.1.2 we

know that MYC upregulates VEGF. In the virtual experiment I find that the causal

effect of MYC on VEGF is positive.

In summary the application of the presented methods for causal inference discovers some

well known causal connections. This demonstrates that causal inference with MMHC-

aIDA is able to recover true causal relationships from purely observational data. Further

genes with high causal effects on MYC are high priority candidates for experimental

validation.
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6.3 Causal relationships between the metabolome and

MYC

Following Section 6.1 I applied the PC algorithm with α=0.1 to the metabolomics dataset.

I estimated 100 CPDAGs from 25 random subsamples for each of the two levels of MYC

”MYC -low” and ”MYC -high”. I estimated the multisets of causal effects of the metabo-

lites on all 5000 genes for both the ”MYC -low” and ”MYC -high” datasets and I deter-

mined the causal effects of MYC on all metabolites using aIDA (Taruttis et al., 2015).

Figure 6.8 shows the causal effects of the metabolites on the 5000 genes for ”MYC -low”

and the ”MYC -high” for the pellet and the supernatant dataset. Figure 6.9 shows the

causal effects of the metabolites from the pellet and supernatant datasets on MYC and

Figure 6.10 shows the causal effects of MYC on the metabolites in the pellet and the su-

pernatant datasets. MYC has a positive causal effect on the majority of the metabolites

(a) Myc-high (b) Myc-low

(c) Legend

Figure 6.7: Protein-protein interactions of the 20 genes with the highest ab-
solute and the 20 most negative causal effects on MYC . The protein-protein
interactions are derived from STRING database (Szklarczyk et al., 2015) with low confi-
dence interaction score threshold.
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Gene Ensembl Effect Effect
gene name (”high”) (”low”)

AKT ENSG00000142208 0.83 0.91
MTOR ENSG00000198793 0.80 0.92
RAPTOR ENSG00000141564 0.83 -
TERT ENSG00000164362 0.83 -
VEGF ENSG00000112715 0.83 -
GLUT1 ENSG00000117394 0.89 -
HK2 ENSG00000159399 0.85 0.86
ENO1 ENSG00000074800 0.86 0.92
PKM2 ENSG00000067225 0.78 0.89
MCT1 ENSG00000155380 0.86 0.91
SHMT1 ENSG00000176974 0.90 -
SHMT2 ENSG00000182199 0.96 -
SLC7A5 ENSG00000103257 0.84 0.88

Table 6.4: Causal effects of MYC on selected genes. The causal effects were estimated
by the MMPC-algorithm with α =0.5. If there is no causal effect shown, the gene was
not selected into the dataset for the causal inference analysis.

in the pellets dataset. The supernatant ”MYC -high” dataset shows a higher consumption

of the metabolites than the supernatant ”MYC -low” dataset. This finding is consistent

with the hypothesis that MYC is a transcriptional amplifier which upregulates nearly all

genes (Nie et al., 2012; Lin et al., 2012) since MYC induces genes involved in the synthesis

of lipids, nucleotides and amino acids (Kress et al., 2015). For both, the ”MYC -high” and

the ”MYC -low” supernatant dataset the causal effect of MYC on lactic acid is positive,

while the causal effect of MYC on glucose is negative. Thus lactate accumulates in the

supernatant with increased MYC expression while glucose consumption increases with

increased MYC expression (Figure 6.10). MYC induces the glycolytic metabolism also

known as Warburg effect (Warburg, 1956; Vander Heiden et al., 2009; Le et al., 2012;

Murphy et al., 2013) in the virtual intervention experiment. From the transcriptomic

studies in Section 6.2 we further see positive causal effects of MYC on the glucose trans-

porter GLUT1 and the glycolytic enzymes HK2, ENO1 and PKM2 (Table 6.4), which

are known to play a role in cancer metabolism (Osthus et al., 2000; Kim et al., 2004;

Israelsen and Vander Heiden, 2015). Further MYC has a positive causal effect on MCT1

(Table 6.4), which is responsible for lactate secretion. Thus the causal effects observed

in Section 6.2 are consistent with the observation that MYC influences both lactate se-

cretion and glucose consumption.

Indeed and in contrast to the ”MYC -low” cells, we observe a negative causal effect of

MYC on serine in ”MYC -high” cells while the causal effect of MYC on glycine is pos-

itive (Figure 6.10). Serine is metabolized to glycine by serine hydroxymethyltransferase
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(SHMT). The genes SHMT1 and SHMT2 are MYC targets (Nikiforov et al., 2002), too.

Thus, upregulated MYC increases the glycine synthesis from serine (Sun et al., 2015;

Anderton et al., 2017). The transcriptomic results from Section 6.2 underpin this obser-

vation, since MYC in the ”MYC -high” cells has a positive causal effect on SHMT1 and

SHMT2 (Table 6.4). Furthermore, the serine synthesis pathway is often upregulated in

cancer (Dejure and Eilers, 2017).

Aspartate
Spermine
Adenosine
Serotonin
Melatonin
Glycine
Ornithine
Palmitic Acid
Stearic Acid
Histidine
Methionine
3−Hydroxykynurenine
Oleic Acid
Dihydroxyacetone Phosphate
Leucine
Threonine
Tyrosine
Arachidic Acid
Lysine
Behenic Acid
Indole−3−Acetic Acid
Anthranilate 
Adenine
Cysteine
Myristic Acid
Alanine
Linoleic Acid
Nervonic Acid
Kynurenine
Lignoceric Acid
Phenylalanine
Arachidonic Acid
Asparagine
Glucose 6−Phosphate
Malate
Tryptophane
Nicotinic Acid
Valine
Spermidine
Glutamate
S−Adenosyl−L−Homocysteine
Nicotinamide
Isoleucine
Methylthioadenosine 
Serine
S−Adenosylmethionine 
Glutamine
Fumaric Acid
Succinate
Proline
Putrescine
Citrate
Lactic Acid

−2 −1 0 1 2

Value

Color Key

(a) Myc-low, pellets

Serine
Aspartate
Methionine
Oleic Acid
Palmitic Acid
Alanine
Glycine
Tryptophane
S−Adenosylmethionine 
Linoleic Acid
Myristic Acid
Threonine
Melatonin
Spermidine
Indole−3−Acetic Acid
Spermine
Adenosine
Nicotinic Acid
Nervonic Acid
Serotonin
Glutamine
Anthranilate 
Lignoceric Acid
Arachidonic Acid
Stearic Acid
Isoleucine
Arachidic Acid
3−Hydroxykynurenine
Glucose 6−Phosphate
Lysine
Histidine
S−Adenosyl−L−Homocysteine
Glutamate
Citrate
Valine
Leucine
Methylthioadenosine 
Cysteine
Dihydroxyacetone Phosphate
Ornithine
Phenylalanine
Adenine
Behenic Acid
Tyrosine
Kynurenine
Asparagine
Nicotinamide
Fumaric Acid
Malate
Proline
Lactic Acid
Succinate
Putrescine

−2 −1 0 1 2

Value

Color Key

(b) Myc-high, pellets

Threonine
Kynurenine
Tryptophane
D−Glucose
Glycine
Alanine
Serine
Choline
Nicotinamide
Methionine
Cysteine
L−Pyroglutamicacid
Asparagine
Lysine
Valine
Cis−4−Hydroxy−D−Proline
Arginine
Ornithine
Aspartate
Indole−3−Acetic Acid
Succinate
Indole−3−Lactic Acid
Putrescine
Proline
Adenosine
Kynurenic Acid
Formic Acid
Serotonin
Phenyalanine
Anthranilic Acid
Tyrosine
Leucine
Isoleucine
Glutamine
Histidine
2−Oxoisocaproicacid
Lactic Acid
Hippuric Acid
Acetone
3−Hydroxyanthranilic Acid
Pyruvic Acid
Methylthioadenosine 
S−Adenosylmethionine 
Glutamate

−1 0 1

Value

Color Key

(c) Myc-low, supernatants

Lysine
Glycine
Valine
Phenyalanine
Serine
Pyruvic Acid
Alanine
D−Glucose
Methionine
Tryptophane
Tyrosine
Threonine
Asparagine
Cysteine
Glutamine
Formic Acid
Choline
Histidine
2−Oxoisocaproicacid
Succinate
Methylthioadenosine 
Indole−3−Lactic Acid
Indole−3−Acetic Acid
Ornithine
Aspartate
L−Pyroglutamicacid
Nicotinamide
Putrescine
Glutamate
S−Adenosylmethionine 
Cis−4−Hydroxy−D−Proline
Kynurenic Acid
Acetone
Adenosine
Arginine
Anthranilic Acid
Hippuric Acid
Proline
Serotonin
Leucine
Isoleucine
3−Hydroxyanthranilic Acid
Kynurenine
Lactic Acid

−1 0 1

Value

Color Key

(d) Myc-high, supernatants

Figure 6.8: Causal effects of the metabolites on the 5000 genes. The causal
effects of the metabolites on the 5000 genes are estimated by aIDA with α=0.1.
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Another mechanism triggered by MYC is the uptake of leucine by enhancing the expres-

sion of SLC7A5, a subunit of the transporter LAT1 (Gao et al., 2009; Hayashi et al., 2012;

Qing et al., 2012). The uptake of leucine further increases the expression of mTORC1,

which is responsible for proliferation and cancer progression (Nicklin et al., 2009). The

results from the causal inference analysis support this observation. MYC has a posi-

tive causal effect on SLC7A5 (LAT1, Table 6.4) and with that a positive causal effect on

leucine in the pellet dataset, while the causal effect of MYC on leucine in the supernatant

dataset is negative (Table 6.10). The causal effect of leucine on MTOR (causal effect of

leucine on MTOR: 0.84) and RAPTOR (causal effect of leucine on RAPTOR: 0.76), both

subunits of mTORC1, is positive in the ”MYC -high” dataset. The gene selection of the

”MYC -low” dataset did not include the gene RAPTOR, but the causal effect of leucine

on MTOR is positive, too (causal effect of leucine on MTOR: 0.73).

Thus, the virtual intervention experiments detect metabolic pathways well-known to be

influenced by MYC.

6.4 Discussion

I presented a causal inference analysis in the field of B cell lymphoma research. The

analysis focused on the gene MYC and its causal relations to the transcriptome and the

metabolome. The transcriptome was measured by RNA-seq analysis and the metabolomic

dataset has been provided by mass spectrometry analysis. To my knowledge there is no

database that includes all causal relations between MYC and the metabolome or tran-

scriptome. Hence, the causal DAG is unknown and must be estimated during my analysis.

Furthermore, the trancriptomic dataset consists of many more variables than samples.

Therefore, as described in the previous chapter, I applied a subsampling strategy to es-

timate the causal effects. Due to the correlation structure of the data I applied aIDA

(Taruttis et al., 2015) to the metabolomics dataset and MMHC-aIDA to the transcrip-

tomic data (Section 4.4). I could show some examples where the results of the causal

inference analysis confirm our current knowledge. Especially the list of the most negative

causal effects on MYC may help to take a look at some promising new candidates for

MYC repression. However, the results should not be treated as results of real world

experiments, since the methods developed and presented in Taruttis et al. (2015) and

Section 4.4 cannot replace wet lab experiments. Furthermore, I could not take the whole

transcriptome into account for my analysis due to run time restrictions and thus reduced

the dataset to the 5000 most promising genes. The metabolomic dataset is not exhaustive

as well. Here we were faced with the expensive and time consuming quantification of the

metabolites by mass spectrometry analysis and decided for a most useful and feasible
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selection of metabolites. NMR-spectrometry would have provided more measurements,

but an explicit quantification of each metabolite was not feasible. However, even if these

decisions are well justified they violate the assumption that we use all possible causal

players in our analysis.

Nevertheless, this was the first causal inference analysis in the context of B cell lym-

phoma that included a huge part of the transcriptome. I created the causal link to

metabolome. I could show that some of the causal connections are already known and

explain the carcinogenic effect of MYC. The results may also include new causal regu-

lators of MYC, but they have to be taken with care and are merely a starting point for

new wet lab experiments.
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(b) Supernatant dataset

Figure 6.9: Causal effects of the metabolites on MYC. The causal effects of the
metabolites on MYC estimated by aIDA with α=0.1.
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(b) Supernatant dataset

Figure 6.10: Causal effects of MYC on the metabolites. The causal effects of
MYC on the metabolites are estimated by MMHC-aIDA with α=0.5.
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MYC is a hallmark of B cell lymphoma pathogenesis. 30% to 40% of DLBCLs and

70% to 100% of Burkitt lymphomas (Sesques and Johnson, 2017; Johnson et al., 2012;

Chisholm et al., 2015; Agarwal et al., 2015; Perry et al., 2013) show increased MYC

expression. Furthermore, Hanahan and Weinberg (2011) described eight hallmarks of

cancer and MYC is involved in every single hallmark in the context of lymphomagenesis.

In many cases a translocation of MYC with an Ig-gene brings the MYC oncogene under

the control of an Ig-gene promoter. These translocations may occur as a primary or

secondary event. While the emergence of translocations involoving MYC during B cell

developement are well described, MYC still conceals some secrets about its function and

regulation of gene expression in lymphoma even after more than 30 years of research.

Especially the computational analysis of MYC positive lymphomas is challenging, since

MYC is a transcriptional amplifier (Lin et al., 2012; Nie et al., 2012) and common nor-

malization methods cannot deal with a global gene expression change. Thus, the data

needs to be adjusted for the transcriptional amplification effect (Lovén et al., 2012). I

present a cost-effective and feasible calibration method, which, in contrast to the method

of Lovén et al. (2012), also accounts for lysis effects.

However, even if the protocols are conducted with high precision, technical effects dur-

ing sample preparation and RNA-seqprotocols may differ between human and spike-in

cells (Risso et al., 2014). McGee et al. (2019) claim that RNA-seq data is composi-

tional data and that we have to account for that during spike-in normalization methods.

They showed that using the ERCC spike-ins together with a compositional approach

improves the normalization substantially even if they observe strong variation between

ERCC counts in the samples (McGee et al., 2019). Similar effects are expected for the

Drosophila melanogaster spike-in normalization. The Drosophila melanogaster spike-in

normalization results in highly correlated data (see Chapter 6.1). It is possible that these

correlations to some extend occur due to technical artifacts. Therefore compositional

approaches should be considered in future work on Drosophila melanogaster and other

whole cell spike-in normalization. To sum up, spike-in normalization is the method of

choice in RNA-seq normalization when a global gene expression shift between conditions

could occur (Evans et al., 2018).

Counting cells before RNA extraction is essential for these methods and counting cells

is impossible for some tissue types, for example for solid undissected tissues (Coate and

Doyle, 2015). However, whenever possible spike-in normalization offers an additional view

of the data, which is important to generate an overall picture of the underlying biological

process and spike-ins are mandatory to observe global gene expression changes.

But, even if the spike-in normalization provides improved input data, finding good MYC

targets by knock down experiments is like searching for a needle in a haystack. There-
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fore there is a high need to support the wet lab researchers by computational methods.

The causal inference analysis can become a key technology here, but also for many other

research questions and in many other fields. Pearl (2009) provides a logical framework

for causal inference analysis, while Maathuis et al. (2009) extends the concept of causal

inference to causal inference from observational data. Hitherto, a subsampling strategy is

recommended for the estimation of causal effects from observational data (Meinshausen

and Bühlmann, 2010; Stekhoven et al., 2012). But, neither IDA (Maathuis et al. (2009))

nor CStaR (Stekhoven et al., 2012) make use of the distribution of the causal effects over

the multisets and subsampling runs, but estimate a lower bound of the effect size. I devel-

oped aIDA which uses the mode of this distribution to estimate the causal effects. And

in fact, aIDA outperforms IDA and CStaR on simulated datasets and yeast datasets.

However, there are some assumptions which may not be fulfilled and which affect the

causal inference analysis: Andersen (2013) points out that the faithfulness assumption

can be violated in biological systems, since these systems tend to maintain an equilibrium

state. The faithfulness assumption is not testable in general (Zhang and Spirtes, 2008),

and thus it remains unknown whether it is violated or not. Furthermore the underlying

biological progress may include feedback mechanisms and a DAG cannot represent cyclic

relations. Thus unfaithful subgraphs and feedback mechanisms impede the causal struc-

ture learning. Other relevant issues have been tackled theoretically. For example Frot

et al. (2019) deal with the problem of having hidden variables in the causal graph. In their

study, they develop several methods for dealing with that issue and compare their results

to some state-of-the-art algorithms on both simulated and small (less than 1000 genes)

real world data sets. Further Perković et al. (2017) showed how background knowledge

is used to improve the estimation of causal effects from observational data and Hauser

and Bühlmann (2015) presented how to use additional interventional data to estimate a

DAG. Nandy et al. (2017) show which assumptions have to be made to estimate the effect

of joint interventions. The three studies apply their methods to simulated data sets or

small (less than 100 variables) real word data sets. Now we have to apply these methods

to huge real world data sets. Using prior knowledge either within the graph estimation

step or when deriving the causal effects from the multi sets could further improve the

estimation of causal effects from observational data.

The application of our calibration method leads to highly correlated datasets. This is

a violation of the assumption, that the underlying causal graph needs to be sparse. I

show that using the MMHC algorithm instead of the PC algorithm together with my

accumulation method outperforms aIDA for highly correlated datasets. However, if the

density of the graph becomes too high, both graph learning algorithms break down. Score

and search methods show a better performance when the underlying causal network is
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dense (Daly et al., 2011). The greedy equivalence search (GES) (Chickering, 2002b) is

an important score and search method. Nandy et al. (2018) showed that both, GES

and adaptively restricted GES (ARGES) generally outperform the PC algorithm. Fur-

thermore, Scutari et al. (2019) show that another score and search algorithm, the tabu

search, outperforms constraint-based methods in terms of accuracy and run time. Future

research on causal inference in highly correlated settings should consider these score and

search methods.

After deriving these methods to improve causal inference from observational data I present

an exemplary study on a B cell lymphoma cell line which includes both, measurements

of the transcriptome and metabolome. However, neither the gene expression data nor

the metabolomics data are complete observations of the transcriptome and metabolome.

The gene expression data needed to be restricted to 5000 genes due to run time and only

a part of the metabolome could be quantified. This is a violation of the assumption of

causal inference analysis, where all variables must be observed. Furthermore, biologically

there is no direct link between metabolome and transcriptome and vice versa. For future

research adding proteome data adds the intermediate layer and will improve the analysis.

However, I showed that some examples of well known pathways and biological mecha-

nisms are underpinned by the causal inference analysis. This inspires trust and confidence

for future experiments.

In the future, we need to construct real world experiments to show the benefits and the

limits of these tools. This includes the preparation of data sets with many samples (> 100

samples) for the prediction of causal effects from this observational data and large scale

knock down experiments of theses top estimated causal effects for validation. We have

to convince our lab partners, that it is worthwhile expense, since clean data from well

suited observational experiments with many samples offer the advantage to derive p2− p
causal effects from p genes. There is a need for methods that visualize and process this

huge amount of causal effects. This thesis can serve as a blueprint for similar approaches

to infer causal information from observational data in the field of cancer research. Es-

pecially in the context of next generation sequencing the extremely fast decreasing costs

of sample preparation (Wetterstrand (2020), Figure 6.11) enables the generation of large

datasets suitable for causal inference. However the application of these tools in the wet

labs is still in an early stage and this must change.
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Figure 6.11: Cost per raw megabase of DNA sequence versus time Cost per
raw megabase of DNA sequence includes the costs for lab, administration, management,
utilities, reagents, consumables sequencing instruments computational activities during
sequence production and submission to a public database. The data was provided by
Wetterstrand (2020).
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APPENDIX A

Experimental setup of RNA-seq experiment

Maren Feist (Department of Haematology and Medical Oncology of the University Med-

ical Center Göttingen) carried out all wet lab experiments. RNA-seq was done by Dr.

Gabriela Salinas-Riester (Head of Core Microarray and Deep-Sequencing Core Facility,

University Medical Center Göttingen).

A.1 Cell culture and cell spike-in

Schneider S2 cells from Drosophila melanogaster were cultured in Schneider’s Drosophila

medium (Gibco) supplemented with 10% FCS (Gibco) and penicillin/streptomycin. Cells

were grown at room temperature (normal air pressure) and splitted once to twice a week.

For spike-in preparation, S2 cells were counted with a haemacytometer and aliquots of

5 · 106 cells were frozen in 1 ml freezing media (45% conditioned S2-media+ 45% FCS

+10% DMSO) using a freezing container. Spike-in stocks were stored at -150◦C. All

experimental samples were spiked with cells from one freezing stock. The human B cell

line P493-6, which carries a conditional tetracycline/doxycycline-regulated MYC gene, a

kind gift from Georg Bornkamm (Munich), were cultured in RPMI medium (Lonza) sup-

plemented with 10% tetracycline-free FCS (Lonza) and penicillin/streptomycin at 37◦C

and 5% CO2. For suppression of MYC, cells were treated with 1ng/ml doxycycline for

16h. For the Myc high condition, cells were kept in RPMI medium without doxycycline.

For the comparison of Myc high and Myc low levels, 10 biological replicates are avail-

able for each group. In the dilution experiment, each group consists of three biological

replicates. Further the P493-6 cells were treated with α-IgM F(ab)2 fragments (α-IgM),
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sCD40L (CD40), rhIGF-1 (IGF), rhIL-10 (IL10) and ODN2006 (CpG) in two different

dosages. In total there are 100 samples of P493-6 cells which are treated with that stimuli

as described in Table 5.1, where 1 refers to full dosage, 0 refers to no treatment and 0.2

refers to reduced dosage. The concentrations which refer to full or reduced dosage are

stimuli depended (Table A.1). For the stimulation experiments, P493-6 cells were treated

Stimulant Full dosage reduced dosage

α-IgM 1.3 µg/ml 26 ng/ml
CD40 100 ng/ml 20 ng/ml

IGF 100 ng/ml 20 ng/ml
IL10 25 ng/ml 5 ng/ml
CpG 0.5 µM 0.1 µM

Table A.1: Dosages for the treatment of the P493-6 cells with different stimuli.

with α-IgM F(ab)2 fragments (130ng/ml, Jackson Immunity) , sCD40L (100ng/ml, Au-

togenBioclear), , CpG (0.5µM, OD2006, Invivogen) for 24h with full dosage. For all

experiments, cells were seeded in fresh media at a density of 1 · 106/ml 24h before har-

vesting of cells. For harvest of RNA, P493-6 cells were counted with a haemacytometer

and a sample with indicated cell number was transferred into a centrifugation tube. For

each experiment a fresh aliquot of S2 cells was thawed for 2min in a 37◦C water bath.

Keeping the spike-in cells in suspension, 20µl (=100.000 cells) were added directly to each

transferred P493-6 cell suspension. Together, cells were centrifuged for 5min at 900g and

washed once with cold PBS. Dry pellets were stored at -80◦C.

A.2 RNA Isolation and ERCC spike-in

Cell pellets were lysed and total RNA extracted using the NucleoSpin RNA Isolation Kit

(Machery-Nagel) according to the manufacturer’s protocol. Total RNA was extracted

from columns using 50µl of RNase free water and spiked with 2µl of a 1:100 dilution of

ERCC spike-in Mix 1 (Life Technologies). Quantity and quality of the RNA were assessed

using a Nanodrop 1000 and Agilent Bioanalyser 2100, respectively.

A.3 RT-qPCR

For real time PCR, RNA was transcribed to cDNA using SuperScript II Reverse Tran-

scriptase (Invitrogen) and random hexamer primers (IBA BioTAGnology). cDNA sam-

ples were analyzed by SYBR Green-based real-time PCR using the 7900HT Fast Real-

Time PCR System (Applied Biosystems). All δCt values were normalized to Act42A
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expression of the Drosophila spike-in or the internal housekeeper gene GAPDH for com-

parison.

A.4 RNA sequencing

RNA sequencing libraries were prepared from 1µg total RNA containing the ERCC spike-

in Mix 1 using the TruSeq RNA Sample Preparation Kit v2 (Illumina). Libraries were

sequenced in single end mode for 100 cycles on an Illumina HiSeq 2000 with a mean

sequencing depth of 39.9 mio. reads per sample in the dilution experiment and 27.8 mio

reads per sample in the MYC high versus MYC low experiment.
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APPENDIX B

Experimental setup of metabolomics experiment

B.1 Cell culture and extraction of cell pellets and

supernatants

The P493-6 cells have been treated with doxycycline and combinations of α-IgM F(ab)2

fragments (α-IgM), sCD40L (CD40), rhIGF-1 (IGF), rhIL-10 (IL10) and ODN2006 (CpG)

in two different dosages as described in section A.1. 5 × 106 cells were centrifuged (300

x g, 5 min, 4◦C) after 24 hours and supernatants were transferred into a new tube. The

cell pellets were washed in phosphate-buffered saline two times and resuspended in cold

80 % methanol. 10 kD ultra centrifugal filters were activated by adding 3 ml of H2O

and centrifuged for 30 min at 4 000 g and the supernatants were loaded onto filters and

centrifuged (4000 x g, 30 min, 4◦C). The resulting filtrate was transferred into a new

tube. Finally, supernatant and pellet were stored at −80◦C.

B.2 Mass spectrometry

The metabolites were extracted using the methanol method described by Dettmer et al.

(2011). The measurement of amino acid, tryptophan derivates, organic acids and MTA

metabolites was performed as previously described by Van Der Goot et al. (2012); Zhu

et al. (2011); Stevens et al. (2010) by using an internal isotope labeled standard.
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APPENDIX C

Data generation and preprocessing

C.1 Simulation of artificial datasets

The artificial datasets were generated using the R package pcalg (Kalisch et al., 2012).

The generation of random DAGs with n nodes starts with the first node x. The number

of neighboring nodes is drawn from a Binomial distribution Bin(k,p), where k defines

the number of nodes with a higher order than the node x and p is the probability of

connecting this node to a node with a higher topological order. After that the nodes

connected to x are randomly drawn from all nodes with a higher topological order.

Table C.1 summarizes the parameters for the generation of the several artificial

datasets with 1000 nodes.

The edge weights are sampled from an uniform distribution from 0.1 to 1 for each

edge.

In a second step we used the R package pcalg (Kalisch et al. (2012)) to simulate a

dataset from that graph.

The data of a certain node Xi is calculated by the following equation:

Xi = w1 ∗ pa1i + ...+ wk ∗ paki + Ei, (C.1)

, where pa1i , ..., pa
k
i are the parents of Xi, w1, ..., wk denote the weights of the incoming

edges to Xi and Ei defines the error distribution.

The Ei are sampled from a normal distribution N(0, 0.001).
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Sparse Dense Very dense Extreme dense

p 0.0025 0.005 0.04 0.1

Table C.1: Parameter for the generation of the artificial datasets

C.2 Hughes et al. (2000) dataset

The Hughes et al. (2000) dataset consists of 234 single gene knock out samples (inter-

ventional dataset for validation) and 63 wild type gene expression profiles of 5261 genes

(observational data). Maathuis et al. (2010)) and Stekhoven et al. (2012) already used

this dataset for causal inference from observational data. Thus, the data was preprocessed

as described in Maathuis et al. (2010).

C.3 Lenstra et al. (2011) dataset

The Lenstra et al. (2011) dataset is available from ArrayExpress. Both, the interventional

and the observational part of the dataset, were measured on A-UMCU-10 - UMC Utrecht

S. cerevisiae 16K two channel arrays (version 1.3). The interventional data consists of

165 single gene knock outs (E-TABM-984-processed-data-2481698487.txt). All knockouts

that did not map to two hybridization names in E-TABM-984.sdrf.txt were removed.

After that all knock out genes, which could not be mapped to ensembl IDs (via SGD IDs

from A-UMCU-10.adf.txt and biomart (Smedley et al., 2015)) were removed. Finally,

we receive 138 gene knock outs. The observational part of the data consists of 67 gene

expression profiles from S.cerevisae wild type stains. In both datasets only genes which

could be mapped to ensembl gene IDs were considered which led to a set of 4890 genes.

No further gene selection was performed. The log fold changes between the two channels

were computed using the R package limma (Smyth (2004)).

Both datasets were standardized to obtain N(0,1) centered and scaled gene expression

data for each measured gene.
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APPENDIX D

Definition of the target set of causal effects

D.1 Hughes and Holstege data

The target set of causal effects for the Hughes et al. (2000) and the Lenstra et al. (2011)

dataset of gene i on gene j are calculated as described in Maathuis et al. (2010) using the

following formula

βij =
|ai,j −mean(a−i,j)|
|ai,c(i) −mean(a−i,c(i))|

, (D.1)

where ai,j are the entries of the interventional data matrix with the 234 or 136 knock

outs in the rows and the 5361 and 4890 genes in the columns and mean(a−i,j) is a short

cut for the mean of the j-th column of the interventional data matrix without considering

the ith row.

The highest absolute 5% of causal effects define our target set, which is the set of causal

effects we want to predict. Nevertheless, since biochemical experiments that characterize

direct interactions are missing, this target set is not the set of the top true causal effects,

but we expect an enrichment of causal interactions within that set.

D.2 Artificial datasets

Since the true underlying DAG is known in that case, we apply the second part of the

IDA method, the estimation of causal effects given the data and the DAG, to our sampled

data and DAG. These causal effects represent our ground truth. The highest absolute

5% of true causal effects define our target set, which is the set of causal effects we want
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to predict.
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APPENDIX E

CStaR parameters

For the small simulated datasets with 100 nodes we chose q ∈ {1%, 1.2%, 1.4%, ..., 10%}
of all possible causal effects. For the large simulated datasets with 1000 nodes and the

two gene expression datasets from S.cerevisae (Hughes et al., 2000; Lenstra et al., 2011)

we used q ∈ {0.01%, 0.03%, 0.05%, ..., 1%} of all possible causal effects. Stekhoven et al.

(2012) showed that the results were insensitive to the choice of the range of qs.
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Larrañaga, P., Poza, M., Yurramendi, Y., Murga, R. H., and Kuijpers, C. M. H. (1996b).

Structure learning of bayesian networks by genetic algorithms: A performance analysis

of control parameters. IEEE transactions on pattern analysis and machine intelligence,

18(9):912–926.

Le, A., Lane, A. N., Hamaker, M., Bose, S., Gouw, A., Barbi, J., Tsukamoto, T., Ro-

jas, C. J., Slusher, B. S., Zhang, H., et al. (2012). Glucose-independent glutamine

metabolism via tca cycling for proliferation and survival in b cells. Cell metabolism,

15(1):110–121.

Leber, M. F. and Efferth, T. (2009). Molecular principles of cancer invasion and metastasis

(review). International journal of oncology, 34(4):881.

Lefebvre, C., Lim, W. K., Basso, K., Dalla Favera, R., and Califano, A. (2007). A

context-specific network of protein-dna and protein-protein interactions reveals new

regulatory motifs in human b cells. In Systems Biology and Computational Proteomics,

pages 42–56. Springer.

Leinonen, R., Sugawara, H., and Shumway, M. (2010). The sequence read archive. Nucleic

acids research, page gkq1019.

Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1998). Genetic instabilities in human

cancers. Nature, 396(6712):643–649.

Lenstra, T. L., Benschop, J. J., Kim, T., Schulze, J. M., Brabers, N. A., Margaritis, T.,

van de Pasch, L. A., van Heesch, S. A., Brok, M. O., Koerkamp, M. J. G., et al. (2011).

The specificity and topology of chromatin interaction pathways in yeast. Molecular

cell, 42(4):536–549.

Li, F., Wang, Y., Zeller, K. I., Potter, J. J., Wonsey, D. R., O’Donnell, K. A., Kim,

J.-w., Yustein, J. T., Lee, L. A., and Dang, C. V. (2005). Myc stimulates nuclearly

encoded mitochondrial genes and mitochondrial biogenesis. Molecular and cellular

biology, 25(14):6225–6234.

120



Li, S. and Li, Q. (2014). Cancer stem cells and tumor metastasis (review). International

journal of oncology, 44(6):1806–1812.

Li, X., Brock, G. N., Rouchka, E. C., Cooper, N. G., Wu, D., O’Toole, T. E., Gill,

R. S., Eteleeb, A. M., O’Brien, L., and Rai, S. N. (2017). A comparison of per sample

global scaling and per gene normalization methods for differential expression analysis

of rna-seq data. PloS one, 12(5):e0176185.

Liao, Y., Smyth, G. K., and Shi, W. (2014). featureCounts: an efficient general purpose

program for assigning sequence reads to genomic features. Bioinformatics, 30(7):923–

930.

Liberti, M. V. and Locasale, J. W. (2016). The warburg effect: how does it benefit cancer

cells? Trends in biochemical sciences, 41(3):211–218.

Lin, C. Y., Lovén, J., Rahl, P. B., Paranal, R. M., Burge, C. B., Bradner, J. E., Lee, T. I.,

and Young, R. A. (2012). Transcriptional amplification in tumor cells with elevated

c-Myc. Cell, 151(1):56–67.

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and

dispersion for RNA-seq data with DESeq2. Genome biology, 15(12):1.

Lovén, J., Orlando, D. A., Sigova, A. A., Lin, C. Y., Rahl, P. B., Burge, C. B., Levens,

D. L., Lee, T. I., and Young, R. A. (2012). Revisiting global gene expression analysis.

Cell, 151(3):476–482.

Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., Teruya-Feldstein,

J., Reinhardt, F., Onder, T. T., Valastyan, S., et al. (2010). mir-9, a myc/mycn-

activated microrna, regulates e-cadherin and cancer metastasis. Nature cell biology,

12(3):247–256.

Ma, X. M. M. and Blenis, J. (2009). Molecular mechanisms of mTOR-mediated transla-

tional control. Nature reviews. Molecular cell biology, 10(5):307–318.

Maathuis, M. H., Colombo, D., Kalisch, M., and Bühlmann, P. (2010). Predicting causal
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Sander, S., Calado, D. P., Srinivasan, L., Köchert, K., Zhang, B., Rosolowski, M., Rodig,

S. J., Holzmann, K., Stilgenbauer, S., Siebert, R., Bullinger, L., and Rajewsky, K.

(2012). Synergy between pi3k signaling and myc in burkitt lymphomagenesis. Cancer

cell, 22(2):167–179.

Schmitt, C. A., Fridman, J. S., Yang, M., Lee, S., Baranov, E., Hoffman, R. M., and Lowe,

S. W. (2002). A senescence program controlled by p53 and p16 ink4a contributes to

the outcome of cancer therapy. Cell, 109(3):335–346.

Schmitt, C. A. and Lowe, S. W. (2001). Bcl-2 mediates chemoresistance in matched

pairs of primary eµ-myc lymphomas in vivo. Blood Cells, Molecules, and Diseases,

27(1):206–216.

Schmitt, C. A., McCurrach, M. E., de Stanchina, E., Wallace-Brodeur, R. R., and Lowe,

S. W. (1999). Ink4a/arf mutations accelerate lymphomagenesis and promote chemore-

sistance by disabling p53. Genes & development, 13(20):2670–2677.

Schmitz, R., Young, R. M., Ceribelli, M., Jhavar, S., Xiao, W., Zhang, M., Wright, G.,

Shaffer, A. L., Hodson, D. J., Buras, E., et al. (2012). Burkitt lymphoma patho-

genesis and therapeutic targets from structural and functional genomics. Nature,

490(7418):116–120.

Schwarz, G. et al. (1978). Estimating the dimension of a model. The annals of statistics,

6(2):461–464.

Scutari, M., Graafland, C. E., and Gutiérrez, J. M. (2019). Who learns better bayesian

network structures: Accuracy and speed of structure learning algorithms. International

Journal of Approximate Reasoning, 115:235–253.

Sedivy, J. M. (1998). Can ends justify the means?: telomeres and the mechanisms of

replicative senescence and immortalization in mammalian cells. Proceedings of the

National Academy of Sciences, 95(16):9078–9081.
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