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Heterogeneous Olefin Hydrogenation Enabled by a
Highly-Reduced Nickel(@@II) Catalyst Precursor
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Abstract: The hydrogenation of olefins, styrenes, enoates,
imines, and sterically hindered tri-substituted olefins was

accomplished using the pre-catalyst dilithiumbis(cyclooc-
ta-1,5-diene)nickelate(@II) (1). The mild conditions tolerate

hydroxyl, halide, ester, and lactone functionalities. Mecha-
nistic studies, including reaction progress analyses, poi-

soning experiments, and multinuclear NMR monitoring, in-

dicate that a heterotopic (nickel nanoparticle) catalyst is in
operation.

Olefin hydrogenation is of much industrial and academic im-

portance as a key step in the synthesis of fine chemicals, agro-
chemicals, fragrances, and food additives.[1] Precious metal cat-
alysts (Rh, Ir, Pt, Pd, Ru) are most widely applied due to their
high activity, selectivity, robustness, and ease of operation.[2]

Nevertheless, economic and environmental concern (in particu-
lar the poor crustal abundance and high cost of precious

metals) have recently stimulated considerable interest in re-
placing noble metal catalysts by more abundant 3d metal spe-

cies[3] (e.g. with Mn,[4] Fe,[5] Co,[6] and Ni[7–17]). Over the past

decade, major effort has been devoted to the development of
iron and cobalt compounds as catalysts for olefin hydroge-

nation.[5, 6] Especially noteworthy are metal complexes with tri-
dentate pincer ligands.[5]

Although these developments have been fairly recent, nickel
compounds have been applied in technical scale hydroge-
nations for many decades. Raney nickel was first reported in

1927[7] and is still industrially used in the hardening of vegeta-
ble fats, the manufacture of vitamins, fragrances, and food ad-

ditives as well as various arene functionalizations.[8] Nickel
boride (obtained from NiX2 (X = OAc, Cl) and NaBH4) is an ef-

fective catalyst for olefin hydrogenation.[9] The development of

more potent heterogeneous nickel catalysts continues to at-
tract significant interest as shown by the groups of Gjmez and

Philippot, who reported to use of commercial [Ni(h4-cod)2]
(cod = cycloocta-1,5-diene) as a catalyst precursor (see

Figure 1, A).[10, 11] Zhao and co-workers demonstrated that Ni0

nanoparticles (NPs) in ionic liquids hydrogenate a,b-unsaturat-

ed carbonyl compounds at 30 bar H2.[12] In addition, well-de-

fined molecular nickel catalysts have been reported recently.
The groups of Bouwman and Hanson described the hydroge-

nation of simple olefins with homogeneous nickel catalysts.[13]

Hazari and Driess prepared heteroleptic carbene/silylene com-

plexes B and C, which are very active hydrogenation cata-
lysts.[14, 15] Catalyst D reported by Chirik and co-workers consti-

tutes the current state of the art in catalytic hydrogenations of

sterically hindered tri- and tetra-substituted olefins.[16] The
active catalyst is assembled from the combination of nickel(II)

bis(octanoate), pinacol borane, and an a-diimine ligand. More-
over, recent reports on asymmetric hydrogenations of dehy-

Figure 1. Selected examples of nickel pre-catalysts for the C=C hydroge-
nation (top). Low-valent anionic transition metal complexes as hydrogena-
tion catalysts by our group (bottom). Dipp = 2,6-diisopropylphenyl.
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droamino acids catalyzed by Ni(OAc)2 and the chiral ligand (S)-
binapine are noteworthy.[17]

We previously investigated low-valent ferrate and cobaltate
anions [K([18]crown-6)(thf)2][M(h4-anthracene)2] (M = Fe, Co),

and [K(thf)x][Co(h4-cod)2] , first synthesized by the groups of
Ellis and Jonas,[18–20] as catalysts in the hydrogenation of ole-

fins, ketones, and imines.[6] These “quasi-naked” anionic metal
species exhibited high hydrogenation activities for mono/di-
substituted C=C bonds but fared poorly for sterically hindered

tri/tetra-substituted olefins. Due to the lability of the arene and
olefin ligands, both heterogeneous and homogeneous mecha-

nistic pathways are accessible, depending on the nature of the
substrate.

Following our recent development of effective olefin hydro-
genations with anionic iron and cobalt catalysts,[6] we were in-

terested to complement these studies with the corresponding

nickelate complex [Li2(thf)4{Ni(h2-cod)(h4-cod)}] (1).[21] This com-
pound was first synthesized by Jonas and co-workers by reduc-

tion of [Ni(h4-cod)2] with Li metal. Nickelate 1 was only very re-
cently structurally characterized by Cornella and co-workers,

who also reported that 1 effectively catalyzes Kumada-Corriu
cross-coupling reactions.[22] Herein, we show that 1 is a pre-cat-

alyst for the hydrogenation of hindered olefins. We provide

solid mechanistic evidence that suggests the in situ formation
of highly active Ni particles.

Initial optimization experiments were performed using tri-
phenylethylene as model substrate. Most importantly, the ate-

complex 1 showed significantly higher activity in comparison
with its oxidized counterpart [Ni(h4-cod)2] .[23] With [Ni(h4-cod)2]

only a yield of 36 % was achieved within 15 h, whereas full

conversion to triphenylethane was observed when using
anionic 1 (Scheme 1). The same applies for 1-phenyl-1-cyclo-

hexene.

No conversion was observed using [Ni(h4-cod)2] , whereas
74 % conversion was observed with 1. The optimized condi-
tions for triphenylethylene use 1 mol % pre-catalyst 1, a reac-

tion time of 15 h, and 5 bar H2 at ambient temperature in 1,2-
dimethoxyethane (DME) (Table 1, entries 1–3). The reaction was

incomplete after 15 h, when the pressure was decreased to
1.9 bar (entry 4).

Under these optimized conditions, linear a-olefins (trans-4-

octene, allylbenzene) and even sterically hindered olefins such
as diphenylethylenes, 1-phenyl-1-cyclohexene, and cycloocta-

1,5-diene were successfully hydrogenated (Figure 2). Myrcene
was converted to 2,6-dimethyloctane after 20 h; a-pinene and

(R)-limonene were hydrogenated under relatively mild condi-
tions (>80 % conversion at 50–60 8C). Cinnamic acid (C=C,

C@O) and benzonitrile (C/N) remained untouched under the
standard conditions. Note that catalytic amounts of benzoni-

trile (5 equiv per [Ni]) also prevented triphenylethylene

hydrogenation (see below and see the Supporting Information,
Table S9). Pre-catalyst 1 is not competent for the hydrogena-

tion of polyaromatic substrates, for example, anthracene, naph-
thalene, and quinolines.

Previous reports on nickel-catalyzed hydrogenation of ole-
fins have barely addressed functional group compatibility.[7–16]

We extended this protocol to olefinic alcohols, which are often

found in bioactive molecules (Figure 3). Gratifyingly, olefins
with phenolic as well as primary and secondary aliphatic hy-

droxyl functions were cleanly hydrogenated. Halogen atoms
were partially tolerated. The C=C-hydrogenation of a,b-unsatu-

rated lactones (coumarine) and esters (ethyl cinnamate) exhib-
ited high chemoselectivities.

Scheme 1. Comparison of lithium nickelate 1 and [Ni(h4-cod)2] as pre-cata-
lysts in the hydrogenation of triphenylethylene in DME. Yields were deter-
mined by quantitative GC-FID versus internal n-pentadecane.

Table 1. Optimization experiments.[a]

Entry Catalyst[b] Solvent [mL] p (H2) [bar] Yield (conversion) [%]

1 1 THF (0.5) 5 81 (82)
2 1 DME (0.5) 5 97 (98)
3 1 DME (0.25) 5 99 (>99)
4 1 DME (0.25) 1.9 72 (74)
5 1++exc. Hg[c] DME (0.25) 5 2 (5)
6 1++dct[d] DME (0.25) 5 92 (>99)

[a] Standard conditions: substrate (0.2 mmol), 25 8C, 15 h. Yields and con-
versions were determined by quantitative GC-FID versus internal n-penta-
decane. [b] 1 mol % catalyst. [c] Large excess of Hg (one drop, 50 mg,
0.25 mmol, 125 equiv). [d] dct (dibenzo[a,e]cyclooctatetraene; 0.8 mg
0.004 mmol, 2.0 equiv per [Ni]), 21 h.

Figure 2. Hydrogenation of olefins with 1 (1 mol %). Standard conditions:
5 bar H2, 25 8C, 18 h, substrate (0.2 mmol), DME (0.25 mL). Yields and conver-
sions (conv.) were determined by quantitative GC-FID versus internal n-pen-
tadecane. Isolated products (isol.) were obtained from reactions performed
on a 1.0 mmol scale in 1.25 mL DME. [a] 16 h, 50 8C, 50 bar H2, DME (0.5 mL).
[b] 20 h. [c] 60 8C, 25 bar H2.
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A brief comparison of the catalytic properties of 1 with relat-

ed anionic metalate pre-catalysts revealed that bis(h4-anthra-
cene)ferrate(@I) and bis(h4-anthracene)cobaltate(@I) (E,

Figure 1) required harsher conditions (60 8C, 2–10 bar H2, 24 h)
than 1 for the hydrogenation of a-methylstyrene and 2-

octene.[6] Bis(h4-cycloocta-1,5-diene)cobaltate(@I) (F) exhibited

low functional group tolerance. However, it should be noted
that the anions E and F were effective catalysts in the hydroge-

nation of ketones and imines.[6]

Pre-catalyst 1 is also comparable to related Ni complexes C
and D developed by Driess and Chirik, respectively (see
Figure 1 and additionally Tables S2 and S3 of the Supporting

Information).[14, 16] It was reported that catalyst C enables the

complete hydrogenation of 1-octene using 1 bar H2 and
1.5 mol % catalyst. In comparison, 1 only gives a slightly poorer

yield (86 %) under the same conditions. Moreover, a similar
turnover number and reaction time was observed for D and 1
for the hydrogenation of 1-phenyl-1-cyclohexene with H2

(4 bar) and 0.4 mol % Ni catalyst at 50 8C (see the Supporting
Information for details). Nonetheless, catalyst D inarguably is

superior in the hydrogenation of highly challenging substrates
such as tetra-substituted alkenes.[16]

To study the nature of the catalytic process, simple reaction-
progress analyses of 1-octene, 2-(E)-octene, and a-methylsty-

rene were performed at 1.9 bar H2 and ambient temperature
using catalyst 1 (1 mol %, see the Supporting Information for

details). The monitoring experiments revealed significant in-
duction periods and sigmoidal behaviors, which are indicative
of slow catalyst formation and nucleation to heterogeneous
species (Figure 4).[6] From these experiments, an approximate
turnover frequency (TOF) of 601 h@1 can be estimated for 1-

octene hydrogenation at low conversion (see the Supporting
Information for details), whereas estimated TOFs are expected-

ly lower for secondary olefins 2-octene (103 h@1) and a-methyl-

styrene (287 h@1). Note that the reported values are inevitably
approximate due to the presence of an induction period.

Poisoning experiments were performed to corroborate the
proposed heterotopic nature of the active catalyst.[24] Addition

of excess amounts of mercury led to complete catalyst inhibi-
tion in hydrogenations with 1 (Table 1, entry 5). By contrast,

product yield was hardly affected by the presence of two
equivalents of dibenzo[a,e]cyclooctatetraene (dct) per nickel

atom (see Table 1, entry 6).[25] In addition, benzonitrile (5 equiv
per Ni atom) is an efficient catalyst poison, whereas naphtha-

lene only has a very minor inhibiting effect (see the Supporting
Information for details). In sum, these results strongly suggest

that a heterotopic catalyst is at operation.

The formation of heterogeneous species from the reaction
of 1 and 1-phenyl-1-cyclohexene under an H2 atmosphere was

investigated by transmission electron microscopy (TEM,
Figure 5). Particles of 10–15 nm diameter were observed along-

side a few larger particles.
Further mechanistic experiments were performed with the

pre-catalyst 1 under reaction conditions: The rapid color

change (orange to black) that was observed when treating a
solution of 1-octene in DME with catalytic amounts of 1 under
H2 may indicate nanoparticle formation (Scheme 2 a). Isomer-
ization of allylbenzene to 1-propenylbenzene (55 %) using 1
(1 mol %) proceeded in the absence of dihydrogen (see the

Figure 3. Hydrogenation of functional olefins using 1 (1 mol %). Standard
conditions: 5 bar H2, 25 8C, 18 h, substrate 0.2 mmol, DME (0.25 mL). Yields
were determined by quantitative GC-FID versus internal n-pentadecane if
not stated otherwise. Conversions are given in parentheses. Isolated prod-
ucts (isol.) were obtained from reactions performed on a 1.0 mmol scale in
1.25 mL DME. [a] 5 mol % 1.

Figure 5. TEM images of particles formed in the hydrogenation of 1-phenyl-
1-cyclohexene with 1 (particles highlighted with red circles versus carbon
film support).

Figure 4. Reaction profiles of the olefin hydrogenations using 1. Conditions:
substrate (0.2 mmol), DME (0.25 mL), 1.9 bar H2, 25 8C. Conversion was deter-
mined by monitoring H2 consumption as described in the Supporting Infor-
mation.
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Supporting Information for details). Minor amounts of the ring-
opening product (18 %) were detected in the hydrogenation of

a-cyclopropylstyrene (Scheme 2 b).[26] 1H NMR spectra of 1 and
triphenylethylene in the absence of dihydrogen indicated the

operation of rapid two-electron transfer from 1. The resultant

deep-purple solution (lmax = 511 nm, see the Supporting Infor-
mation, Figure S40) showed the characteristic 1H NMR signals

of [Ni(h4-cod)2] (Scheme 2 c). Aqueous work-up afforded signifi-
cant amounts of triphenylethane (see the Supporting Informa-

tion). The cyclic voltammogram of the postulated triphenyl-
ethylene-dianion exhibited one irreversible reduction peak at

@2.9 V vs. Fc/Fc+ in THF and DME (see the Supporting Infor-

mation, Figures S36, S37). This species was already detected in
literature.[27] Surprisingly, the rate of hydrogenation of triphe-

nylethylene by [Ni(h4-cod)2] is significantly slower than with 1.
Deuteration experiments were performed to distinguish be-

tween H atom transfer (HAT) and possible ionic reaction path-
ways (Scheme 2 c, 2 d). Reaction of 1 and triphenylethylene in

[D8]THF led to no incorporation of D atoms after aqueous

work-up. The same reaction in THF and subsequent work-up
with D2O furnished [D2]triphenylethane (GC-MS, 1H NMR and
2H NMR). These data strongly support an ionic mechanism. No
electron transfer appeared to operate in reactions between 1
and 1-dodecene as no [Ni(h4-cod)2] was observed but rather
olefin isomerization products (Scheme 2 e). In summary, the

preliminary mechanistic data may suggest an electron-transfer

initiation of the catalytic mechanism with reduction-sensitive
substrates. Nonetheless, further mechanistic investigations are

required to conclusively clarify the catalyst activation mecha-
nism.

In conclusion, we have shown that dilithiumbis(cyclo-1,5-oc-
tadiene)nickelate (1) is a promising pre-catalyst for the hydro-

genation of sterically hindered olefins. The catalytic hydroge-
nation operates under very mild conditions (5 bar H2, 25 8C,

DME as solvent). This work complements earlier studies of cat-
alytic applications of “quasi-naked” base metal anions to olefin

hydrogenations. In comparison with related arene metalates (E
and F), the active nickel catalyst generated from 1 operates at

lower H2 pressures and lower temperature, yet it is compatible
with several functional groups (OH, esters, halides). Key mecha-
nistic studies including reaction progress analyses, stoichiomet-

ric reactions, poisoning experiments, and transmission electron
microscopy were conducted. These investigations support the
notion of catalytically active nickel nanoparticles being opera-
tive under the reaction conditions. The catalyst formation from
1 is substrate-dependent and involves electron-transfer reac-
tions with reducible olefins (e.g. triphenylethylene). This first

catalytic application of a stabilized nickelate anion to olefin hy-
drogenations provides a firm basis for further investigations
into the role of highly reduced, anionic metal catalysts in re-

ductive transformations.
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