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Abstract: The reaction of the organometallic diarsene complex 

[Cp2Mo2(CO)4(
2-As2)] (1) (Cp = C5H5) with Ag[Al{OC(CF3)3}4] 

(Ag[TEF]) yielded the Ag(I) monomer [Ag(2-1)3][TEF] (2). This 

compound exhibits a dynamic behaviour in solution, a feature that 

allows to direct a selective synthesis of unprecedented 

organometallic-organic hybrid assemblies upon its reaction with N-

donor organic molecules possessing a stepwise pathway, which is 

supported by DFT calculations. Accordingly, the reaction of 2 with 

2,2´-bipyrimidine (L1) yielded the dicationic molecular compound 

[{(2-1)2Ag}2(µ,L1)][TEF]2 (3) or the 1D polymer [{(2-

1)Ag}(µ,L1)]n[TEF]n (4) depending on the ratio of the used reactants. 

However, its reaction with the pyridine-based linkers 4,4´-bipyridine 

(L2), 1,2-di(4-pyridyl)ethylene (L3) and 1,2-di(4-pyridyl)ethyne (L4) 

allowed the formation of the 2D polymers [{(2-1)Ag}2(µ,Lx)3]n[TEF]2n 

(Lx = L2 (5), L3 (6), L4 (7)), respectively. Additionally, this concept 

was extended to step-by-step one-pot reactions of 1, 

[Ag(CH3CN)3][Al{OC(CF3)2(CCl3)}4] ([Ag(CH3CN)3][TEFCl]) and the 

linkers L2-L4, producing the 2D polymers [{(2-

1)Ag}2(µ,Lx)3]n[TEFCl]2n (Lx = L2 (8), L3 (9), L4 (10)), respectively. 

Introduction 

The interest in using metal-directed self-assembly for the 

design of well-defined solid-state structures has remarkably 

increased in the past decades.[1] The majority of these 

compounds are obtained from the association of multitopic 

organic linkers featuring N-, O- or S-donor atoms with Lewis-

acidic metal cations.[2] In this field, considerable attention has 

been devoted to Ag(I)-based supramolecular assemblies owing to 

their rich structural diversity and wide range of applications.[3] 

However, due to the flexible coordination sphere of the Ag(I) ion 

(it has no strong geometric preferences) and the labile Ag(I)-

ligand bond, many studies showed that the coordination of 

organic molecules to Ag(I) is hardly predictable and often leads to 

the unselective formation of diverse products.[3,4] Compared to 

organic molecules, the potential of organometallic compounds as 

connectors in supramolecular chemistry was only very limitedly 

investigated.[5] To close this gap, our group developed the 

concept of using organometallic complexes bearing “naked” 

polyphosphorus (Pn) donor atoms to link metal ions.[6] This unique 

approach allowed for the synthesis of a large variety of 

supramolecular aggregates including 1D, 2D and 3D coordination 

polymers (CPs),[7] fullerene-like inorganic nanospheres[8] and 

nanosized capsules.[9] Furthermore, this concept was expanded 

by introducing N-donor multitopic organic molecules to the 

reactions between metal ions and Pn ligand complexes allowing 

the synthesis of unique organometallic-organic hybrid CPs.[10] 

Besides polyphosphorus complexes, arsenic-based 

organometallic complexes have been known for decades.[11] 

However, their coordination chemistry has been studied much 

less compared to that of their P analogues.[12a-d] In fact, 

coordination compounds of any polyarsenic ligand and Ag(I) ions 

are very rare.[12a,c-e] One of the simplest of such compounds is the 

tetrahedrane complex [Cp2Mo2(CO)4(2-As2)] (1) (Cp = C5H5). 

This compound was first reported by Rheingold et al. almost four 

decades ago,[11a] however, with its coordination chemistry having 

been very limitedly studied[11b,13] until a short time ago. Very 

recently,[14] we started to investigate the coordination chemistry of 

1 towards group 11 metal cations. Interestingly, this compound 

showed a different coordination behavior towards Ag(I) ions 

compared to its P-analogue and allowed for the synthesis of 

unique discrete polymetallic solid-state aggregates in which four 

or five units of 1 stabilize Ag(I) dimers and trimers as cycles or 

catena compounds displaying short Ag···Ag interactions.[14a] 

Based on these results, we became interested in pushing this 

research area a decisive step further by studying the possibility of 

designing unprecedented mixed supramolecular aggregates in 

which the organometallic complex 1 together with organic N-

donor molecules are involved in the coordination to metal centers. 

Here, the question arises whether the flexible coordination modes 

of Ag(I) complexes can be combined with the flexibility of a σ/π-
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coordination of the organometallic complex [Cp2Mo2(CO)4(2-

As2)] (1), and, in view of both challenges, can the reaction 

outcome be controlled and directed if linkers are added? The main 

challenge is to understand the possible pathway of the 

assembling processes in solution which allows a control of the 

final isolated solid-state products.  

Herein, we report, experimentally and by DFT calculations, 

the stepwise assembling reaction of complex 1 with the Ag(I) salt 

of the weakly coordinating anion [Al{OC(CF3)3}4]‾ ([TEF]‾) and the 

N-donor organic linkers: 2,2′-bipyrimidine (L1), 4,4′-bipyridine 

(L2), 1,2-di(4-pyridyl)ethylene (L3) and 1,2-di(4-pyridyl)ethyne 

(L4). The first step leads to the formation of a novel coordination 

compound of 1 and silver: [Ag(2-1)3][TEF] (2) which is found in 

equilibrium in solution with the less saturated Ag(I) monomer 

[Ag(2-1)2][TEF] and a free As2 complex 1. When this solution 

mixture is reacted with L1, a dicationic molecular organometallic-

organic hybrid compound or an unprecedented helix-like one-

dimensional (1D) hybrid polymer are accessible depending on the 

used ratio of educts. However, its reaction with the pyridine-based 

linkers L2, L3 or L4 allowed the selective formation of the 2D 

organometallic-organic hybrid polymers Furthermore, this 

concept was extended to a one-pot reaction of 1 with 

[Ag(CH3CN)3][Al{OC(CF3)2(CCl3)}4] ([Ag(CH3CN)3][TEFCl]) and 

the linkers L2-L4, yielding solely 2D polymers. Although limited 

simple heteroleptic Ag(I) coordination compounds possessing As- 

and N-donor ligands were previously reported,[12f] the obtained 

products are, to the best of our knowledge, the only 

supramolecular assemblies unifying organometallic compounds 

with As-donor atoms and organic N-donor linkers to coordinate at 

Lewis acidic metal centers. 

Results and Discussion 

In a first approach, complex 1 was treated with Ag[TEF] due 

to the very high solubility of the [TEF]‾ salts. This reaction was 

conducted using a 3:1 ratio of 1:Ag[TEF] in CH2Cl2 at room 

temperature (Figure 1a).[15] Upon layering the crude reaction 

mixture with n-pentane, red single crystals of compound 2 were  

 

Figure 1. a) Reaction of 1 with Ag[TEF] leading to the complex 2; b) Molecular 

structure of 2 in the solid state. 

obtained in good yields (63%). The single-crystal X-ray structure 

analysis of 2 revealed an Ag(I) monomer with the general formula 

[Ag{Cp2Mo2(CO)4(µ3,2:2:2-As2)}3][TEF]. Compound 2 crystallizes 

in the monoclinic space group P21/c. Its Ag(I) core is surrounded 

by three Mo2As2 ligand complexes of 1 each possessing an ƞ2-

coordination mode, thus the Ag(I) center is hexacoordinated to six 

As atoms. According to the CSD database,[16] only one other 

coordination compound in which an Ag(I) center is coordinated by 

six arsenic atoms has been previously reported, 

[Ag2(Cp⃰2Mo2(CO)4(µ2,3:2-As3)2(Cp⃰2Mo2(CO)4(µ2,3:2:2-

As3)2][TEF]2 (Cp⃰ = C5(CH3)5),[12d] and no Ag(I) monomer stabilized 

by six As atoms is known to date. The As2AgAs2 plane-to-plane 

normal angles range from 71.77(3) to 108.77(3)°. As a 

consequence, the Ag(I) center adopts a distorted trigonal 

prismatic coordination sphere. The As-As bond lengths in 2 

(2.3572(4)-2.3734(3) Å) are slightly elongated compared to those 

in the non-coordinated ligand complex 1 (2.312(3) Å).[11a] The Ag-

As bond lengths in 2 range between 2.7337(3) and 2.9186(3) Å. 

In an attempt to gain further insight into the species present in 

solutions of 2, variable temperature 1H NMR spectra were 

recorded. The spectrum of 2 in THF-d8 at room temperature 

displays one sharp signal centered at 5.39 ppm, which is 

attributable to the protons of the Cp ligands on molybdenum. This 

signal is slightly downfield shifted compared to that observed in 

the 1H NMR spectrum of the diarsene complex 1 (5.25 ppm; THF-

d8, room temperature), indicating that there is no full dissociation 

of compound 2 into the free complex 1 and Ag[TEF], otherwise 

both 1H NMR spectra of 1 and 2 would show identical signals. By 

recording the 1H NMR spectra of 2 at lower temperatures, the 

signal shifts to lower fields as the temperature is reduced, 

nevertheless no splitting or broadening is detected even at 180 K. 

This observation indicates that the signal corresponds either to an 

individual compound in solution (non-dissociated complex 2) or to 

several species that are in a fast equilibrium even at 180 K, which 

could, however, not be detected within the NMR timescale. 

Molecular volumes of 1 (ca. 435 Å3) and 2 (ca. 909 Å3) in THF-d8, 

estimated from diffusion-ordered spectroscopy (DOSY), differ 

significantly, thus confirming the incomplete dissociation of 2. 

Moreover, the volume estimated from solutions of 2 is smaller 

than that obtained from DFT calculations for the cation of 2 

[Ag{Cp2Mo2(CO)4(η2-As2)}3]+ (A, 1199 Å3) and larger than that 

calculated for [Ag{Cp2Mo2(CO)4(η2-As2)}2]+ (B, 806 Å3), which 

suggests that there exists a dynamic equilibrium in solutions of 2, 

arising from a partial dissociation of the cations of 2 (A) into the 

cationic species B and 1 (Scheme 1). Furthermore, compound 2 

was dissolved in THF-d8 to which five more equivalents of 1 were 

added. The recorded room temperature 1H NMR spectrum of this 

mixture showed one single signal at 5.28 ppm. This observation 

is in agreement with our suggested equilibrium in solution and 

implies that the excess of the As2 complex 1 used did exchange 

 

Scheme 1. Proposed equilibrium for the cations of 2 in solution. 
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with coordinated As2 units in B. The recorded IR spectrum of 1 in 

THF shows two strong absorptions and one medium one at 1900, 

1953 and 1973 cm-1 respectively, attributable to the stretching 

vibrations of the CO ligands. However, the IR spectrum of 2 in 

THF shows, in addition to the two strong absorptions at 1900 and 

1953 cm-1, an enlargement of the band at 1973 cm-1 and an 

additional strong band at 1927 cm-1. In the ESI-mass spectrum of 

2 in CH3CN, a major peak in the cation mode for the monocation 

[Ag{Cp2Mo2(CO)4(η2-As2)}2]+ (B) as well as peaks for smaller 

fragments were detected (for further details see ESI). 
In order to check if such a proposed dissociation of A is 

thermodynamically feasible in dichloromethane solution (COSMO 

model)[22], DFT calculations for this process were performed on 

the RI[17]-/B3LYP[18]/def2-TZVP[19a-b] level of theory (ECP basis set 

on Ag atoms)[19c] using Turbomole[20] software (Figure 2, for 

further information see ESI). The calculated energy of 

dissociation of A into B and 1 is exothermic (-15.8 kJ·mol-1). This, 

partially in contrast to our experimental studies, suggests nearly 

complete dissociation of A into B and 1 in solution of 2. Moreover, 

further dissociation of B into smaller fragments such as 

[Ag{Cp2Mo2(CO)4(η2-As2)}(CH2Cl2)2]+ (C) is not expected 

because it is an endothermic process (47.1 kJ·mol-1, Scheme 2). 

Thus, taking into account these DFT calculations in addition to all 

the above described experimental observations, we suggest that 

A and B are the only cationic species present in solutions of 2 

(Scheme 1). 

With the intention of studying 2 as a suitable precursor for the 

synthesis of organometallic-organic hybrid CPs, we focused, in a 

first attempt, its reaction with 2,2´-bipyrimidine (L1). This ligand 

was chosen from bis-chelating ligands due to its small size and 

rigidity. Considering that the ƞ2-coordinated units of 1 in 2 can be 

viewed as bis-chelating ligands (because they coordinate to one 

metal ion with two points of attachments), the question arises 

whether it is possible to control a mono-substitution of L1 

molecules in A or B by such chelating donors. DFT calculations 

performed at the B3LYP/def2-TZVP level of theory show that the 

substitution of one As2 ligand 1 in the preformed cationic complex 

A by one 2,2’-bipyrimidine molecule (L1) or the incorporation of 

one molecule L1 in B leading to D are both exothermic (-46.5 

kJ.mol-1 and -30.7 kJ.mol-1, respectively) in solution (Figure 2). 

However, the substitution of a second ligand 1 by L1 leading to E 

and the full substitution of all three ligands 1 by three molecules 

of L1 leading to F are only slightly exothermic (-10.0 and -6.2 

kJ.mol-1 relative to D and E, respectively). Therefore, all three 

processes from A or B leading to D, E and F might be accessible, 

however by a very careful choice of the used stoichiometry of the 

organic ligand L1. 

 

 

Figure 2. Energy diagram of the dissociation of complex 2 in CH2Cl2 and its reaction with 2,2´-bipyrimidine and pyridine calculated at the B3LYP/def2-TZVP level 

of theory. For the reaction energies COSMO-corrected total electronic energies were used. The positive charges are not depicted. [Mo] = CpMo(CO)2. 

 

Trusting the predictions of the DFT calculations, compound 2 

was initially prepared by the reaction of the As2 ligand complex 1 

and Ag[TEF] and was further treated with 2,2’ bipyrimidine (L1) 

using two different ratios of 2:L1, 2:1 and 1:1. These reactions 

were performed under similar conditions (CH2Cl2, room 

temperature; Figure 3). The first reaction resulted in the formation 

of the coordination compound [{Cp2Mo2(CO)4(µ3,2:2:2-

As2)}4(µ,1:1:1:1-L1)Ag2][TEF]2 (3), while the second reaction 

afforded the 1D organometallic-organic CP 

[{Cp2Mo2(CO)4(µ3,2:2:2-As2)}(µ2,1:1:1:1-L1)Ag]n[TEF]n (4) in 

moderate to good yields (68% (3) and 42% (4)). Orange crystals 

of 3 and 4 were obtained at room temperature from diffusion of n-

pentane into a CH2Cl2 solution of 3 and 4, respectively, and were 

examined by single-crystal X-ray structure analysis. The crystal 

structure of 3 shows a bimetallic supramolecular complex 

consisting of two Ag(1)2 organometallic nodes connected to each 

other by one molecule of L1 (Figure 3b). Taking into account that 

solutions of 2 contain both cationic species A and B. The 

construction of 3 corresponds to a species of D, with one molecule 

of L1 as a bridging unit, as a result that two species of B have 
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Figure 3. a) Reaction of complex 2 with 2,2’-bipyrimidine (L1). Synthesis of the supramolecular compounds 3 and 4. Yields are shown in parentheses; b) X-ray 

structure of the dicationic molecular complex 3; c) Section of the 1D CP 4 in the solid state. Cp and CO ligands are shown as a wireframe; Counteranions are 

omitted for clarity, d) view perpendicular to the b axis of the 1D polymer 4 with Ag(I) ions and 2,2´-bipyrimidine molecules being shown in CPK style, counteranions 

have been omitted for clarity. 

been formed initially in solution. The X-ray structure analysis of 4 

revealed a 1D CP with organometallic Ag(1) nodes of E-type 

linked to the polycationic chain via the organic connectors L1 

(Figure 3c). Similarly to compounds 2 and 3, each Ag atom in 4 

has a distorted trigonal prismatic environment. Interestingly, 

chains of 4 are rolled into a helix, however, the unit cell contains 

both types of helicity (P and M helices, Figure 3d). This helical 

topology observed for 4 is unique in the family of organometallic-

organic hybrid CPs. The As-As bond lengths in 3 (2.369(1)-

2.381(1) Å) and 4 (2.381(1)-2.390(1) Å) are slightly elongated 

compared to those in the non-coordinated complex 1 (As-As = 

2.312(3) Å)[11a] and comparable to those in the parent complex 2 

(2.3572(4)-2.3734(3) Å). The Ag-As bond lengths in 3 (2.649(1)-

2.857(1) Å) and 4 (2.669(1)-2.751(1) Å) are shortened compared 

to those in 2 (2.7337(3)-2.9186(3) Å). 

These first results prompted us to further investigate what can 

be modified in the reactions of 2 and N-donor ligands in order to 

design hybrid CPs of higher dimensionalities. The exchange of 

two 2,2’-bipyrimidine molecules (L1) by four pyridyl functions from 

four N-donor organic molecules on Ag(1) units in the 1D hybrid 

 

Figure 4. a) Reaction of 2 with the pyridyl-based organic linkers (L2-L4). Synthesis of the 2D organometallic-organic hybrid CPs 5-7; b) Sections of the 2D cationic 

polymeric networks of 5-7.[21] Counterions, Cp and CO ligands as well as H atoms are omitted for clarity.
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CP 4 would open prospects of the formation of 2D and 3D hybrid 

CPs. Thus, reactions of 2 with 1.5 or 2.0 equivalents of the ditopic 

pyridyl-based linkers L2-L4 were carried out using reaction 

conditions similar to the previously mentioned ones (Figure 4a). 

These reactions allowed the selective formation of the complexes 

5-7 of the general formula [{Сp2Mo2(CO)4(µ3,2:2:2-As2)}2(µ,1:1-

Lx)3Ag2]n[TEF]2n (Lx = L2-L4). Single-crystal X-ray diffraction 

studies revealed that compounds 5-7 are 2D organometallic-

organic hybrid CPs with Ag(1) organometallic nodes linked to one 

another via three pyridyl functions from three different pyridyl-

based linkers (Figure 4b). Interestingly, each Ag cation in 5-7 is 

coordinated to only three N atoms instead of four. The most 

probable rationalization of this fact is the steric clash between the 

backbones of the linkers preventing a fourth linker molecule from 

coordinating. Similar as in compounds 3 and 4, the As-As bond 

lengths in 5 (2.377(1)-2.378(1) Å), 6 (2.377(1)-2.382(1) Å) and 7 

(2.393(1)-2.418(1) Å) are slightly elongated compared to those of 

the free ligand 1 and complex 2, whereas Ag-As bond lengths in 

5-7 (2.614(1)-2.660(1) Å) are shortened compared to those in 

complex 2 (2.7337(3)-2.9186(3) Å). In each of the CPs 5-7, 

organometallic Ag(1) units form the vertices of the 2D honey-

comb network. In the crystal packing, the interstitial space 

between the layers of networks is occupied by anions and solvent 

molecules with the dimensions of the meshes of maximum 

diameters being approx. 1.80 nm (5), 2.62 nm (6) and 2.71 nm 

(7).[21] 

To check whether a selective formation of the 2D CPs 5-7 is 

attainable without a pre-isolation of compound 2 as a solid 

intermediate, and to investigate if the presence of species B alone 

is enough to direct such synthesis, we performed one pot step-

by-step self-assembly reactions using the initial building blocks 

(complex 1, Ag[TEF] and linkers L2-L4). These reactions are 

performed by first reacting complex 1 with Ag[TEF] upon stirring 

for ten minutes and then adding to this mixture the corresponding 

ligand Lx (for further details see SI). Indeed, all these reactions 

lead to the selective formation of the CPs 5-7. Moreover, a similar 

reaction of complex 1 with the more soluble salt 

[Ag(CH3CN)3][Al{OC(CF3)2(CCl3)}4] ([Ag(CH3CN)3][TEFCl]) in the 

presence of the organic linkers L2-L4 yielded related polymers. 

Thus, the 2D organometallic-organic hybrid CPs 8-10 of the 

general formula [{Сp2Mo2(CO)4(µ3,2:2:2-As2)}2(1:1-

Lx)3Ag2]n[TEFCl]2n (Lx = L2-L4) are obtained as orange crystalline 

products suitable for X-ray diffraction experiments (Figure 5a). 

Their crystal structures show that compounds 8-10 are 2D CPs 

with node-to-linkers ratios similar to those in CPs 5-7 (Scheme 

5b).

 

Figure 5. a) Reaction of 1 with Ag[TEFCl] and the pyridyl-based organic linkers (L2-L4). Synthesis of the 2D organometallic-organic hybrid CPs 8-10; b) Sections of 

the 2D cationic polymeric networks of 8-10.[21] Counterions, Cp and CO ligands as well as H atoms are omitted for clarity.

The As-As bond lengths in 8 (2.388(1)-2.403(1) Å), 9 (2.378(1) Å) 

and 10 (2.390(6)-2.427(6) Å) are elongated compared to the free 

complex 1 (As-As = 2.312(3) Å).[11a] The Ag-As bond lengths in 8 

(2.590(6)-2.748(4) Å), 9 (2.659(1)-2.6783(4) Å) and 10 (2.490(4)-

2.820(4) Å) are comparable to those in 5-7 (2.614(1)-2.660(1) Å). 

Similarly to CPs 5-7, the organometallic nodes of CPs 8-10 form 

2D honey-comb networks with meshes of a maximum dimension 

of 2.55 nm (9) and 2.67 nm (10).[21] Interestingly, the CPs 5-10 are 

obtained from the one-pot synthetic procedure regardless of 

whether 3:1 or 2:1 ratio of 1: Ag[TEF] is used. The ESI mass 

spectra of the crude mixtures containing 1 and the Ag(I) salts as 

well as those of all polymers 5-10 in CH2Cl2 show in each case a 

peak in the positive ion mode for the monocation [Ag12]+. This 

indicates the presence of the species B not only in solutions of 2, 

but also in the crude solutions containing 1 and the Ag(I) salts. 

This reveals that the formation of the polymers 5-10 is 

independent of the applied reaction procedure (whether via 

isolation of 2 or via one-pot synthesis) as long as B is present as 

a starting material in solution. These observations may suggest 

that in all reactions leading to assemblies 3-10, species B is the 
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active precursor to react with ligands L1-L4. Finally, DFT 

calculations performed on a model complex G mimicking the 

silver nodes of the 2D CPs 5-10 indicate that its formation from 

the precursors A or B are slightly more exothermic (-74.0 kJ/mol 

and -58.2 kJ/mol, respectively) than that of the complexes D-F 

(Figure 2). 

Compounds 3-10 are well soluble in common organic solvents 

such as CH2Cl2 and CH3CN, little soluble in THF and insoluble in 

n-pentane. Their 1H and 13C{1H} NMR spectra in CD3CN at room 

temperature show signals typical for Cp and CO ligands as well 

as for the organic molecules L1-L4. The solid-state IR spectra of 

3-10 show two to four strong broad absorptions between approx. 

1920 and ca. 2000 cm-1, attributable to the stretching vibrations of 

the CO ligands in the coordinated units 1. These vibrations appear 

at higher energies as compared to those reported for the free 

complex 1 (1900 and 1949 cm-1). 

Conclusion 

In conclusion, we have shown that the reaction of the diarsene 

complex [Cp2Mo2(CO)4(η2-As2)] (1) with Ag[TEF] afforded the 

Ag(I) monomeric complex [Ag(2-1)3][TEF] (2), which is the first 

Ag(I) monomer stabilized by six arsenic atoms. Variable 

temperature 1H NMR studies, DOSY experiments, solution IR 

spectroscopy and ESI-MS spectrometry all suggest that 2 exhibits 

a dynamic behaviour in solution in which both cationic species 

[Ag(1)3]+ (A) and [Ag(1)2]+ (B) are present. Intermediate B play a 

decisive role in directing a selective synthesis of organometallic-

organic hybrid aggregates (3-7) upon the reaction of 2 with 

multitopic N-donor organic molecules via a stepwise pathway, 

which is supported by DFT calculations. Additionally, this concept 

was extended to the one-pot reactions of 1, Ag[TEF] (without 

isolating 2) or [Ag(CH3CN)3][Al{OC(CF3)2(CCl3)}4] 

([Ag(CH3CN)3][TEFCl]) with ditopic pyridine-based organic 

molecules producing 2D hybrid polymers  Compounds 3-10 

present an unprecedented family of supramolecular aggregates 

in which mixed organometallic As- and organic N-donor 

molecules are used as building blocks in combination with metal 

ions to build complex supramolecular structures. Current 

investigations in this field focus on the synthesis of neutral 2D and 

3D hybrid polymers with the As2 ligand complex 1 as a building 

block. The aim of these studies is to investigate if potential 

unusual properties of these compounds arise due to the presence 

of organometallic fragments in the formed networks. Extensive 

studies also involve extending this new supramolecular approach 

to complexes [Cp2Mo2(CO)4(η2:2-E2)] featuring the heavier 

homologs Sb and Bi.  
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Organometallic-organic aggregates 

 

 

 

The Ag(I) monomer [Ag{[Cp2Mo2(CO)4(2-As2)]}3][TEF] ([TEF] = [Al{OC(CF3)3}4]) is obtained from the reaction of the organometallic 

diarsene complex {[Cp2Mo2(CO)4(2-As2)]} with Ag[TEF]. In solution, this compound is found to be in an equilibrium with another 

monomeric species [Ag{[Cp2Mo2(CO)4(2-As2)]}2][TEF] exhibiting a less saturated Ag(I) center. This solution mixture reacts with a 

variety of ditopic pyridine-based organic linkers to afford selectively unprecedented 2D organometallic-organic hybrid assemblies, 

among them a helix-like 1D structure. 
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