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Visible-Light Photocatalysis: Background and Recent 

Developments 

Abstract: 

Aspects of sustainability are very crucial for the development of new synthetic methods. In this 

context, visible-light has been used as an abundant source of energy to induce or activate 

chemical reactions. Photoredox catalysis provides the opportunity to generate highly reactive 

radical ion intermediates often with unusual or unconventional reactivities under mild reaction 

conditions. In this chapter, different types of photocatalytic transformations have been 

discussed with the selection of a few noteworthy examples in the respective topics. 

 

Figure 1: Photocatalysis in organic synthesis. 

Introduction: 

In the field of catalysis, organic chemists primarily aim to find a simple method for the 

activation of small molecules. By sequential functionalization of small molecules, one can 

produce the desired valuable complex structures. In this context, visible-light photocatalysis[1] 

has received significant attention for the catalytic activation of such molecules. This method 

has allowed chemists to activate small molecules by efficiently converting photonic energy 

into chemical energy, to contrive unconventional modes of bond-formation. In principle, this 

approach relies on the ability of metal complexes and organic dyes to engage in single-electron 

transfer (SET), or energy transfer (ET) processes with organic substrates upon photoexcitation 

with visible light.[2] Thus, a photocatalyst can harness the energy of light (solar energy) and 

can convert this to chemical energy. Giacomo Ciamician, widely regarded as pioneering figure 

in the field of organic photochemistry, speculated that high-energy synthetic processes could 

be replaced with clean, cost-efficient photochemical transformations. He had this visionary 

idea in 1912, which has been documented in Science entitled ‘The Photochemistry of the 
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Future’[3]. Almost after a century, chemists have made his visionary idea into a reality through 

the development of synthetic methods utilizing visible-light as one of the green and abundant 

reagents.[4] 

A general schematic representation (mechanism) of majority of photocatalytic transformations 

is shown in Figure 2. In general, excited state of a photocatalyst can interact with an organic 

substance in two pathways: i) single electron transfer (SET) (Figure 2A) or energy transfer 

(ET) (Figure 2B). 

Single electron transfer (SET)-mediated processes: 

A photocatalyst (PC) typically has higher oxidation and reduction potentials in excited state 

(PC*) compared to its ground state.[5] As a consequence, upon visible-light excitation, PC* can 

either accept one electron from a donor (ED) generating corresponding radical-cation (ED·+) 

of the quencher; this cycle is called ‘reductive quenching cycle’. On the other hand, in the 

presence of an electron acceptor (EA) substrate, corresponding radical anion (EA·−) can be 

obtained which has been named as ‘oxidative quenching cycle’ (Figure 2A). In photocatalysis, 

ED is often called ‘reductive quencher’, likewise, EA is called ‘oxidative quencher’. Organic 

chemists typically design photocatalytic cycles by choosing different EA and ED for the 

 

Figure 2: General representation of typical photoinduced processes. A) PC = Photocatalyst, 

EA = single electron acceptor, EA = single electron donor (EA and ED are mostly organic 

materials); B) S = Substrate, P = product. 
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development of new transformations. Very often simple amines (e.g. triethylamine) act as a 

‘reductive quencher’ and molecular oxygen acts as ‘oxidative quencher’ which overall result 

very mild reaction conditions.[2] 

Energy transfer (ET) process: 

Another mode of action for an excited photocatalyst (PC*) is energy transfer (ET)[6,7] pathway 

(Figure 2B) where a substrate (S) is sensitized through triplet energy transfer from PC* forming 

S*. S*, reacts further either in an inter- or an intramolecular fashion to give desired products. 

Traditionally, this mode of activation is well-known with high energy UV-light without any 

external PC, but such activation has lower selectivity and often leads to undesired product 

formation in major amounts. To circumvent these issues, an alternative strategy employing 

milder conditions to access excited (triplet) states has been developed – visible-light-mediated 

energy transfer (ET). The combination of visible-light and a sensitizer (PC), can selectively 

activate a particular functionality present in organic molecules and hence, this is a more 

promising approach for the new reaction development. This activation principle typically 

provides a broader scope compared to the direct UV-light-mediated activation of organic 

molecules. 

Commonly used photocatalysts: 

A series of different metal[2,5]-based and organic dye-based[8] photocatalysts are shown in 

Figure 3 and 4. An ideal photocatalyst should have strong absorption in the visible region and 

the lifetime of the excited state should be enough for bimolecular electron-transfer (with the 

quencher) in competition with other deactivation pathways. Another important aspect is 

photostability, which is often a major drawback for the organic photocatalysts although they 

have high excited state lifetimes. Most frequently used transition-metal photocatalysts are 

mainly composed of ruthenium(II) or iridium(III) and polypyridyl ligands. Specifically, 

[Ru(bpy)3]
2+ has been introduced as a photocatalyst by Kellogg and co-workers[9] in 1978. This 

complex has strong absorption maxima (λmax) at 452 nm (Figure 3). After absorption of a 

photon, the corresponding metal to ligand charge transfer (MLCT) state is long-lived enough 

(~1100 ns) to undergo single electron oxidation (oxidative quenching; Ered = −0.81 V vs. SCE) 

or reduction (reductive quenching; Eox = +0.77 V vs. SCE). 
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Figure 3: Structures of commonly used photocatalysts and their photochemical properties. All 

potential values are against saturated calomel electrode (SCE) in acetonitrile at room 

temperature. 
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Bifunctional photocatalysts are those which not only do photoinduced electron-transfer upon 

visible-light absorption, but can also interact with substrates or intermediate radicals within 

their coordination sphere. Copper-based photocatalysts are emerging in this area of research[10] 

including some engineered chiral iridium[11] or rhodium[12] octahedral complexes (Figure 4).  

 

Figure 4: Bifunctional photocatalysts. 

Copper photocatalysis is discussed in more detail in chapter 3. In this chapter, chiral iridium 

complex as bifunctional photocatalyst has been discussed. 

Early examples of visible-light photocatalyzed reactions: 

The first set of reactions reported in this area of research were mostly reductive (not redox 

neutral), thus a stoichiometric ‘reductive quencher’ has always been used. In one of the earliest 

disclosure by Kellogg and co-workers[9] in 1978, [Ru(bpy)3]Cl2 (1 mol%) was identified as an 

efficient photocatalyst to mediate the reduction of phenacyl sulfonium salt  by Hantzsch ester 

(Figure 5, i). It was proposed that Hantzsch ester played the role of a ‘reductive quencher’. In 

1981, Pac and co-workers[13] demonstrated that electron poor olefins can be reduced by using 

the same photocatalyst in presence of biological reductant 1,4-dihydronicotinamide adenine 

dinucleotide (NADH) as a stoichiometric ‘reductive quencher’ (Figure 5, ii). The first redox 

neutral photocatalyzed protocol was developed by Deronzier and co-workers[14] in 1984 

(Figure 5, iii). Substituted phenanthrene has been synthesized in quantitative yield in presence 

of [Ru(bpy)3]Cl2 (5 mol%) without using external oxidants or reductants. Two years later, 

Kutal and co-workers[15] found out for the first time that the same catalyst is also able to 

promote a [2+2]-cycloaddition reaction norboradiene system (Figure 5, iv). Then Sauvage et. 

al. introduced [Cu(dap)2]Cl photocatalyst which could mediate reductive coupling of 4- 
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Figure 5: Pioneering examples of visible-light photocatalysis. quant. = quantitative; py = 

pyridine; THF = tetrahydrofuran. 

nitrobenzyl bromide in presence of triethylamine[16] (Figure 5, v). In this case, triethylamine 

has been used to regenerate the Cu(I) catalyst. This is the first examplefor the utilization of an 

earth-abundant metal i.e. copper in visible-light photoredox catalysis. Fukuzumi et al. showed 

that phenacyl bromides can be converted to corresponding actophenone derivatives under 

photocatalytic conditions using the ruthenium-based photocatalyst in presence of an aromatic 
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amine as ‘reductive quencher’[17] (Figure 5, vi). One year later, Okada et al. disclosed the first 

ever visible-light photocatalyzed decarboxylative coupling between activated acid derivatives 

(N-(acyloxy)phthalimides) and michael acceptors[18] (Figure 5, vii). In this reaction NADH has 

been used as the ‘reductive quencher’. 

Revolution of visible-light photoredox catalysis in organic synthesis: 

Pioneering studies by MacMillan, Yoon and Stephenson: 

Although photoinduced electron-transfer reactions attracted considerable attention, but 

surprisingly, application of this method to organic synthesis has been limited to fewer examples 

(discussed in the above section). In 2008, two parallel studies by the research groups of 

MacMillan[19] and Yoon[20] have disclosed the use of [Ru(bpy)3]Cl2 as a photocatalyst to 

perform enantioselective α-alkylation of aldehydes and [2+2]-cycloaddition, respectively.  

 

Figure 6: Revolution of photocatalysis in organic synthesis. 

(Figure 6, i and ii) A year later, Stephenson and co-workers[21] reported a reductive 

dehalogenation protocol of alkyl halides using the same photocatalyst (Figure 6, iii). These 

three independent pioneering studies set the platform for further utilization of visible-light 

photocatalysis as a conceptually novel approach for the development of new organic reactions. 
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Subsequent SET-mediated unique reaction developments: 

Immediately after these three pioneering studies, many scientific groups around the world have 

contributed to this field and developed a series of unprecedented reactions. In a noteworthy 

disclosure by Sanford and co-workers, palladium catalysis has been merged with  

 

Figure 7: Further advancement of the field. 
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photocatalysis to achieve a room temperature C-H arylation reaction[22] (Figure 7, i). 

[Ru(bpy)3]Cl2 photocatalyst after SET, generated aryl radicals from aryl diazonium salts via an 

‘oxidative quenching cycle’, and while closing the photocatalytic cycle it also participated in 

the Pd-catalytic cycle for cross-coupling. A year later, Rovis and co-workers[23] have 

successfully merged photoredox catalysis with N-heterocyclic carbene (NHC) catalysis. By 

doing so, they could achieve α-acylation of tertiary-amines in very good yield with high 

enantioselectivity (Figure 7, ii). At the same time, Pandey and Reiser[24] reported the generation 

of α-amino radicals[25] from tertiary-amines which have been successfully trapped with 

michael acceptors (Figure 7, iii) which ultimately produced Csp3-Csp3 coupled products. The 

yield of the transformation can be increased in the presence of a Brønsted acid which has been 

nicely demonstrated by Yoon and co-workers[26]. Koenig and co-workers[27] utilized eosin Y 

for the development of a metal-free C-H arylation reaction in a short reaction time (Figure 7, 

iv). It was proposed that upon ‘oxidative quenching’ of eosin Y* with aryl diazonium salt, 

corresponding aryl radicals were generated which subsequently reacted with heterocylces in a 

regioselective manner to give the arylated products. Xiao and co-workers[28] also found out the 

optimal reaction conditions for a [3+2]-cycloaddition between tertiary amines and activated 

olefins (Figure 7, v). In this case oxygen has been used as a terminal oxidant. Akita and co-

workers have developed several methods for trifluoromethylation of olefinic compounds.[29] In 

one of their early studies in 2012, they could achieve oxy-trifluoromethylation[30] of 

vinylarenes using Umemoto’s reagent as a trifluoromethyl radical source (Figure 7, vi). 

Recent advancements in visible light photocatalysis: 

In 2018, Suero and co-workers reported a photocatalytic strategy for the generation of 

diazomethyl radicals[31] from their corresponding hypervalent iodine precursors which have 

been successfully trapped by various functionalized arenes (Figure 8, i). Conceptually, this 

approach defines the smart generation of carbyne equivalents because the obtained diazo 

compounds can be subjected to a number of insertion reactions (C-H, N-H, C-S etc.). Quite 

recently, some scientific groups have disclosed interesting organic transformations[32] which 

do not utilize Ir or Ru-based photocatalysts, rather manganese[33], cobalt[34], nickel[35], iron[36] 

or cerium[37] metal complexes have been used as photocatalysts. Nagib et al. found out that 

Mn2(CO)10 can catalyze a carbo- iodination[38] reaction of alkynes under blue light irradiation 

(Figure 8, ii). Zuo and co-workers have published a number of synthetically useful 

transformations using cerium photocatalysis. Recently, they showed that gaseous ethane can  



Chapter 1: Visible-Light Photocatalysis 

12 
 

 

Figure 8: Selected recent examples in this field. 

be used as an alkylating reagent[39] using catalytic cerium salt in the presence of an alcohol co-

catalyst (Figure 8, iii). In the key step, CeIV-O bond undergoes a homolytic cleavage, generating 

an alkoxy radical which participates in a hydrogen atom transfer (HAT) from ethane to generate 

ethyl radical. Quite recently, in a noteworthy disclosure by Jin and co-workers[40] demonstrated 

that iron-complexes can also be used as a photocatalyst for selective alkylation of quinolines 

where free carboxylic acids have been employed as alkylating reagent (Figure 8, iv). C-F bond 

is considered to be a very strong bond and as a result, selective C-F 

defluorination/functionalization of a multi-fluorinated compound is a challenging task[41]. 

However, Weaver et al. showed that selective defluorination[42] (Scheme 8, v) or 

functionalization of C-F bonds are possible under photocatalytic conditions. 
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ET-mediated reactions: 

As discussed in Figure 2A, visible-light-mediated sensitization of organic compounds in the 

presence of a sensitizer has offered a number of distinct reactions[43] and significant 

advancements have been made in this field.[6,7] In 2012, Xiao and co-workers[44] developed a 

visible-light-mediated intermolecular [2+2]-cycloaddition of 3-ylid-eneoxindoles via an  

 

Figure 9: Selected examples for energy transfer mediated organic transformations. 
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energy transfer (ET) pathway (Figure 9, i). Almost at the same time, Yoon and co-workers[45] 

found out that styrenes can undergo [2+2]-cycloaddition in the presence of an Ir-based triplet 

sensitizer. Later, Reiser and Wu also contributed to this field through the independent 

development of [2+2]-cycloaddition protocol of cinnamates and related alkenes.[46] Another 

noteworthy disclosure by MacMillan and co-workers revealed that the reductive elimination 

step from an organo-nickel intermediate can be accelerated[47] in the presence of an Ir-sensitizer 

(Figure 9, ii). This study has huge impact in the field of transition-metal catalyzed cross-

coupling reactions. In the same year, Koenig and co-workers[48] have developed a method 

mimicking the biological model, where energy has been transferred to a polyaromatic 

compound from *[Ru(bpy)3]Cl2. The resulting excited polyaromatic compound then participate 

in electron transfer process with DIPEA (Figure 9, iv). Glorius and co-workers[49] have 

advanced this field by the development of a novel approach for the dearomative [2+2]-

cycloaddition though the action of an Ir-based sensitizer (Figure 9, iv). Very recently, Bach 

and co-workers[50] disclosed an unprecedented approach for the deracemization of chiral 

allenes (Figure 9, v). Both the enantiomers of the chiral allenes are obtainable in high 

enantiomeric excess depending upon the configuration of the chiral organo-sensitizer. This 

protocol operates at room temperature and showcases a conceptually new approach for making 

chiral compounds from their racemic mixtures. 

Bifunctional photocatalyst in organic synthesis: 

Meggers et. al. has recently introduced a chiral iridium complex[11] can serve as a sensitizer for 

photocatalysis as well as can also control the stereochemistry of the product during the course 

of the reaction (Figure 10, i). This was a groundbreaking achievement in this field as because 

this study has opened up new avenues for asymmetric synthesis of organic molecules. When 

they changed the coupling partner i.e. instead of electron deficient benzyl bromide, electron 

rich N,N-dimethylaniline did not yield (<3%) significant amount of product formation using 

the chiral-iridium complex (Figure 10, ii). When they used corresponding rhodium complex, 

the desired coupled product was obtained in good yield with excellent enantioselectivity.[51] 

Although the major drawback for this study was to have engineered substrates which can 

coordinate with the metal center. 
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Figure 10: Chiral iridium complex as a bifunctional photocatalyst. 

 

Formation of electron donor-acceptor (EDA) complexes: Photocatalyst-free 

visible-light-induced reactions: 

The methods which have been discussed so far always utilize a sensitizer in order to activate 

organic substrates via SET or ET. There are a few known visible-light-induced transformations 

which do not require any photocatalyst and the desired products still can be obtained in efficient 

manners. Such reactions are proposed to occur via the formation of  electron donor-acceptor 

(EDA) complexes[52] (Figure 11A) between two colourless substrates, wherein one is electron-

rich (donor) and another one is electron-deficient (acceptor). This coloured EDA complex can 

then undergo intermolecular electron transfer upon visible-light irradiation which results in the 

formation of the corresponding product without the need of an external photocatalyst. 

In 2013, Melchiorre and co-workers[53] utilized this beautiful chemistry where an asymmetric 

α-alkylation of aldehydes have been achieved (Figure 11B, i). The enantioselectivity in the 

product formation was controlled by a chiral secondary-amine catalyst which could form a 

chiral enamine intermediate after reacting with the aldehyde. In the next step, the enamine 

intermediate could form a coloured EDA complex with the electrophile (in this case, electron  
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Figure 11: A) Photoreaction without external photocatalyst. S = substrate. EDA = electron 

donor-acceptor. B) Selected examples for photocatalyst free visible-light-induced reactions. 

MTBE = methyl tert-butyl ether; DMAc = N,N-Dimethylacetamide; DBU = 1,8-

Diazabicyclo[5.4.0]undec-7-ene. 

deficient benzyl bromide). This disclosure was the starting point for the development of several 

other photochemical methods which can be triggered without using a photocatalyst.[54] Quite 

recently, Aggarwal and co-workers[55] have established a decarboxylative borylation reaction 

which can be carried out only by using visible-light without a photocatalyst present (Figure 

11B, ii). Intramolecular reaction is also feasible when both donor and acceptor moieties present 

in the same molecule (Figure 11B, iii). Very recently, Fu et al. were successful for the 

development of a method through visible-light excitation of an intramolecular charge-transfer 

complex, leading to spiropyrrolidines[56] in very good yields. 
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Photocascade process: Two photons for one product formation: 

Visible-light driven photocatalysis using a single catalyst to promote two or more catalytic 

cycles has also recently enjoyed impressive advances which is known as photocascade 

catalysis.[57] This idea is generalized in Figure 12. If the product P1 is still active towards 

quenching with PC*, it may get converted to another product P2, under the same reaction 

conditions. This unique sequential approach for the activation of small molecules often lead to 

complex structures through the action of a single photocatalyst and chemists have discovered 

many unprecedented reactions following the concept.[58] 

 

Figure 12: Photocascade Catalysis. The cycles define a visible-light induced sequential 

energy and electron transfer process. 

An excellent example in this field was reported by Rueping et al. in 2013.[59] The authors 

reported the unexpected formation of synthetically useful indol-3-carbaldehydes starting from 

N,N-dibenzyl-2-iodoaniline-derived α,β-unsaturated ketones (Figure 13, i). It was suggested 

that two sequential Ir-photocatalytic cycles (SET followed by another SET) were responsible 

for the unexpected product formation. Later, Pandey and co-workers[60] developed a double 

michael addition protocol of benzylic compounds to obtain fused-ring system using 

[Ru(bpy)3]Cl2 photocatalyst (Figure 13, ii). In the aforementioned two reactions, two 

photocatalytic cycles were involved and both of them were in SET mode. Xiao and co-workers 

could utilize ET followed by SET sequence[61] in a reaction between vinyl azides and alkynes 

which resulted in the formation of substituted pyrroles (Figure 13, iii). It was proposed that 

upon sensitization (ET), azirine-intermediates were formed which underwent a ring-opening 

step upon SET with the photoexcited Fukuzumi catalyst. A year later, Gilmour et al. could 

follow up this sequence of activation (ET followed by SET) for the synthesis of 2H-chromen-

2-one derivatives from corresponding trans cinnamic acids (Figure 13, iv).[62] Recently, Reiser 

et al. further extended the concept by developing an excellent method for the synthesis of 

dihydroindeno[1,2‐c]chromenes from easily accessible vinyl bromide precursors (Figure 13, 

v).[63] The authors could incorporate three oxygen atoms in the final compound which come 
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from molecular oxygen. Quite recently, Glorius et al. have developed a dual energy transfer 

sequence (ET followed by ET) to synthesize benzo-fused cyclobutanes through the action of a 

single Ir-photocatalyst (Figure 13, vi).[49] 

 

Figure 13: Selected examples of reactions. 
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Conclusions and outlook: 

Since 2008, photocatalysis has gained a mature growth and a wide array of new activation 

platforms and synthetic transformations have been developed through the conversion of visible 

light into chemical energy. In addition, the redox properties of the metal-based photocatalysts 

can be easily tuned (highly oxidizing or reducing) to suit almost any specific application. 

Recent advances in photocatalysis have shown that a broad array of radical intermediates can 

be accessed from readily available starting materials such as carboxylic acids and organo-

halides and, in some cases even alkanes through hydrogen atom transfer (HAT), thereby 

expanding the range of methods for native functionalization. 
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Chapter 2: Synthesis of Pyrazines 
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Synthesis of Substituted Pyrazines from Vinyl Azides via a 

Photocascade Process 

Abstract: 

A visible-light mediated photocatalyzed method for the synthesis of substituted pyrazines from 

vinyl azides has been developed. This method utilizes a dual energy and electron transfer 

strategy from the photoexcited catalyst. Initially, vinyl azides are activated by a triplet 

sensitization process from an excited ruthenium-photocatalyst in the presence of water to form 

dihydropyrazines, followed by a single electron transfer (SET) process under oxygen (air) 

atmosphere that ultimately leads to the tetrasubstituted pyrazines in good to excellent yields. 

This method has broad substrate scope and does not require any additives, moreover, it operates 

at room temperature which is also advantageous in terms of handling azides. 

 

Figure 1: Synthesis of pyrazines from vinyl azides.

Introduction: 

Now-a-days, visible-light photocatalysis has gained significant attention for achieving 

challenging organic transformations.[1,2] It has also become an alternative tool to generate 

radicals in an environmentally benign way. Generally, the photoexcited catalysts activate the 

colourless organic substrate either by direct energy transfer (ET)[3,4] or by single-electron-

transfer (SET)[5] processes and the respective reactive intermediates participate in non-
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traditional reaction pathways. By the independent use of these two activation modes, a number 

of synthetic transformations have been developed by various research groups.[6,7] However, the 

utilization of energy transfer followed by electron transfer modes or vice versa aiming at a 

photocascade processes is not well established.[8] The first example of such dual activation was 

reported by Xiao and co-workers[9] in the reaction between vinyl azides and alkynes to obtain 

poly-substituted pyrroles. Similarly, Reiser and co-workers[10] have also combined ET and 

SET-based pathways for the activation of vinyl bromides in the presence of oxygen. In the 

present study, we report the visible-light photocatalyzed transformation of vinyl-azides into 

1,4-pyrazines by employing a single photocatalyst which works in different reaction modes in 

a cascade manner.[11] Pyrazines are an important nitrogen containing heterocycles which have 

interesting biological activities and great utility as precursors in organic synthesis.[12,13,14]  For 

an example, the synthesis of Dragmacidin A[14] and 2,5-bis(6'-bromo-3'-indolyl)piperazine[13] 

(Figure 2) are achieved from the corresponding symmetrical pyrazines as key intermediates.[15] 

These are a class of compounds that occur almost ubiquitously in nature. The worldwide 

distribution of pyrazines in plants, insects, terrestrial vertebrates, marine organisms, fungi and 

bacteria and their specific properties including their using as drugs, fungicides and herbicides 

invite reasonable attention for their efficient synthesis. 

 

 

Figure 2: Selected biologically active pyrazine derivatives. 

Various methods have been developed for the synthesis of pyrazines,[16] however, their 

synthesis from vinyl azides by thermal[17–20] or photochemical[21–24] approaches is not well-

explored although these are well-known precursors for the synthesis of N-containing 
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heterocycles such as phenanthridines,[25] indoles,[17–20] pyridines,[26] pyrroles,[21–24] and 

isoquinolines[27] for decades.[28] Recently, Yoon and co-workers[3] reported the photocatalytic, 

visible-light sensitization of dienylazides to azirines as key intermediates, which further 

rearrange to substituted pyrroles. We questioned if we could fill the gap, by developing a 

method for the synthesis of pyrazines and in this chapter the results have been discussed. 

Results and discussions: 

We began our studies by exposing vinyl azide 2a, being readily available from the 

corresponding ethyl cinnamate to blue light (λmax = 455 nm) employing 1 mol% of commonly 

used[1] iridium, ruthenium, copper[29] and organic dye-based[30] photocatalysts. Using 

[Ir(dF(CF3)ppy)2(dtbbpy)]PF6 (EIr(IV)/Ir(III)* = –0.89 V vs. SCE;   = 2300 ns; dF = difluoro, ppy 

= 2-phenylpyridine, dtbbpy = 4,4'-di-tert-butyl-2,2'-dipyridyl) in a degassed acetonitrile-water 

(4:1) mixture at room temperature, we were pleased to observe the formation of a mixture of 

dihydro-pyrazine 3a' and the desired pyrazine 3a (3a':3a = 6:1) in an overall isolated yield of 

85% after 24 h (Table 1, entry 1). Similarly, other known photocatalysts such as fac-[Ir(ppy)3] 

(EIr(IV)/Ir(III)* = – 1.73 V vs. SCE; = 1900 ns; ppy = 2-phenylpyridine), 

[Ir(dtbbpy)(ppy)2]PF6(EIr(IV)/Ir(III)* = –0.96 V vs. SCE;  = 557 ns; ppy = 2-phenylpyridine, 

Table 1: Reaction Optimization 

 

  Under inert atmosphere    

Entry Photocatalyst Solvent(s) Yielda 

3a 

Yielda 

3a' 

Yieldb 

1a 

1 [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 CH3CN:H2O (4:1) 12 73 - 

2 fac-[Ir(ppy)3] CH3CN:H2O (4:1) 10 67 - 

3 [Ir(dtbbpy)(ppy)2]PF6 CH3CN:H2O (4:1) 11 69 - 

4 [Ru(bpy)3]Cl2 CH3CN:H2O (4:1) 9 70 - 

5c [Cu(dap)2]Cl CH3CN:H2O (4:1) NR - - 

6c Na2-Eosin Y CH3CN:H2O (4:1)   - 
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7 None CH3CN:H2O (4:1) trace 13 - 

8d [Ru(bpy)3]Cl2 CH3CN:H2O (4:1) NR - - 

9 [Ru(bpy)3]Cl2 Dry CH3CN ND - - 

  Under aerobic 

atmosphere 

   

10 [Ru(bpy)3]Cl2 CH3CN:H2O (4:1) 61 - 15 

11 fac-[Ir(ppy)3] CH3CN:H2O (4:1) 53 - 23 

12 [Ir(dtbbpy)(ppy)2]PF6 CH3CN:H2O (4:1) 40 - 35 

13 [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 CH3CN:H2O (4:1) 5 - 65 

14c Na2-Eosin Y CH3CN:H2O (4:1) 42 - 36 

15 [Ru(bpy)3]Cl2 CH3CN:CH3OH (4:1) ND - - 

16e [Ru(bpy)3]Cl2 CH3CN:H2O (4:1) 34 - 45 

17 [Ru(bpy)3]Cl2 CH3CN:H2O (1:1) 57 - 30 

18 [Ru(bpy)3]Cl2 CH3CN:H2O (1:4) trace - - 

19 [Ru(bpy)3]Cl2 CH3CN:H2O (6:1) 48 - 27 

20 [Ru(bpy)3]Cl2 DMF:H2O (4:1) 39 - 17 

21 [Ru(bpy)3]Cl2 DMSO:H2O (4:1) trace - - 

22 [Ru(bpy)3]Cl2 CHCl3:H2O (4:1) ND - - 

23f [Ru(bpy)3]Cl2 CH3CN:H2O (4:1) 51 - 18 

24g [Ru(bpy)3]Cl2 CH3CN:H2O (4:1) 60 - 18 

25h [Ru(bpy)3]Cl2 CH3CN:H2O (4:1) ND - - 

Reaction conditions: All reactions were performed in 0.5 mmol scale. 2a (0.50 mmol, 1 

equiv), photocatalyst (1 mol%) in 2 mL solvent mixture for 24 h under visible-light irradiation 

(λmax = 455 nm; unless otherwise noted) at room temperature. aIsolated yields. b1H NMR yields 

of the crude reaction mixture using internal standard. c530 nm LED has been used for 

irradiation. dDark reaction. eOxygen balloon has been used. f In presence 0.5 mol% catalyst 

instead of 1 mol%. gIn presence of 2 mol% catalyst. hIn presence of additives (1 equiv) such as 

trifluoroacetic acid, K2S2O8 and Na2CO3 respectively. 

dtbbpy = 4,4'-di-tert-butyl-2,2'-dipyridyl), [Ru(bpy)3]Cl2 (ERu(III)/Ru(II)* = –0.81 V vs. SCE;   

=1100 ns; bpy = 2,2'-bipyridine), Na2-Eosin Y (EEY
+∙

/EY* = –1.11 V vs. SCE, T = 24000 ns), 

also provide comparable yields of 3a' and 3a (Table 1, entries 2-4, 6). Not surprisingly, 

[Cu(dap)2]Cl (ECu(II)/Cu(I)* = –1.43 V vs. SCE;  = 270 ns; dap = 2,9-bis(p-anisyl)-1,10-

phenanthroline, Table 1, entry 5) did not promote the transformation. This might be due to the 
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very low excited state lifetime (  = 270 ns) of [Cu(dap)2]Cl which does not allow the efficient 

energy transfer from photoexcited state Cu(I)* to the substrate and makes at the same time the 

photocatalytic activation of the vinyl azides by electron transfer unlikely, given the high 

efficiency of SET triggered Atom Transfer Radical Addition (ATRA) reactions by 

[Cu(dap)2]Cl.[7,31] Finally, a series of control experiments (Table 1, entries 7-9), indicated the 

necessity of light, photocatalyst, and water in order to achieve complete conversion of 2a. 

Aiming at an operationally simple procedure towards pyrazines 3, we started looking for a 

suitable oxidant for the dehydrogenation of dihydropyrazines 3'. At first, we thought oxygen 

would be sufficient to oxidize 3a' to form 3a. Indeed, carrying out the photoreaction of 2a 

under oxygen atmosphere (open to air), thus utilizing oxygen as the terminal oxidant,[32] and 

employing 1 mol% [Ru(bpy)3]Cl2 gave rise to the desired product 3a in 61% yield (Table 1, 

entry 10) along with 15% benzaldehyde 1a as a byproduct. In contrast, Ir-photocatalysts 

(entries 11-13) or Na2-Eosin Y (1 mol%, entry 14) provided 3a in lower amounts. However, 

the undesired benzaldehyde was obtained in larger quantities. In line with our mechanistic 

proposal (Figure 3a), the addition of MeOH instead of water does not provide the desired 

product (Table 1, entry 15). Moreover, the use of an oxygen balloon (excess of oxygen) 

decreases the yield to 34% and the undesired benzaldehyde is obtained in a major amount 

(Table 1, entry 16). Reducing or increasing the amount of water resulted in inferior yields 

(Table 1, entries 17-19). Even varying the organic solvents such as DMF, DMSO or chloroform 

did not increase the yield of the desired product (Table 1, entries 20-22). Further optimization 

studies revealed that the addition of other oxidant such as K2S2O8 does not provide any product 

(entry 25), indicating the importance of oxygen. Other additives such as Na2CO3 or 

trifluoroacetic acid, which were assumed to promote the opening of the azirine intermediate 

(Figure 3a), also have negative effect on the reaction (entry 25) and gave complex mixtures. 

Employing the optimized reaction conditions (Table 1, entry 10) we started exploring the scope 

of this reaction. Before that, we slightly modified the protocol by simply degassing the reaction 

mixture via nitrogen bubbling, but then running the reaction open to air. In many cases e.g. 2e, 

we have observed significant increase in the desired product yield of 3e (from 52% to 79% 

(Scheme 1)). Many different functional groups on the aryl moiety of the vinyl azides 2 are 

tolerated well, including weak and strong electron donating and withdrawing groups, ortho- 

and extended π-substituents, providing good yields of the homodimerized products 3 (Scheme 

1). Structure of 3a was also confirmed by x-ray analysis. Most of the synthesized products are 

crystalline solids and no chromatographic separation were required. Only in a few cases the 
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Scheme 1: Scope of the reaction. Reaction conditions: Vinyl azide 2 (0.50 mmol), 

[Ru(bpy)3]Cl2 (1 mol%) in 2 mL CH3CN:H2O (4:1) at room temperature in presence of visible-

light (455 nm LED) for 24 h. Isolated yields are given. 

aldehyde byproducts (1a (15%) and 1d (18%) were obtained in significant amounts. It should 

be noted that all our attempts to separate the two reaction steps, i.e. running the transformation 
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of 2a/d to 3a/d' under nitrogen atmosphere, followed by irradiation of 3a/d' under aerobic 

atmosphere did not suppress the formation of 1a or 1d. Switching the aryl group to heterocycle 

such as thiophene (3m) was met with only limited success, and surprisingly, the replacement 

of the ester moiety by -COCH3, -COPh groups did not result in any product formation (3n and 

3o). 

Crossover experiments: Access to unsymmetrical pyrazines: 

 

Scheme 2: Reaction conditions: each substrate 2 0.25 mmol. Isolated yields are provided. 

Moreover, the union of two different vinyl azides in equimolar amounts (Scheme 2) is possible. 

Statistical distribution of product yields was expected. However, the self-coupled- and 

crossover products are all formed with a slight preference for the sterically less encumbered 

pyrazines. Hence, this method allows to accessing unsymmetrical pyrazines from vinyl azides 

only in moderate yields. 

Proposed reaction mechanism: 

Following the mechanistic rationale put forward by Yoon and co-workers[3] for the 

photochemical activation of dienylazides to form substituted pyrroles, the reaction sequence to 

1,4-pyrazines developed here starts with an energy transfer from the photoexcited Ru(II)* to 

substrate 2a (Figure 3a). As a result, 2a is converted to the triplet energy state I, which 

immediately loses nitrogen to form a highly reactive nitrene intermediate II that further 
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undergoes rearrangement to the reactive azirine III. This azirine III may undergo ring-opening 

by water, leading to the formation of α-amino ketone IV. IV is very prone to undergo 

dimerization because this intermediate has an activated carbonyl functionality with an 

intramolecular nucleophile (amino) present. The condensation of IV to form 

dihydropyrazine[33] species 3a' concludes the first transformation of the process. 

The sensitization process i.e. the formation of 3' from 2 is considerably faster (approximately, 

3 h) under the reaction conditions employed then the subsequent oxidation of 3' to 3 takes a bit 

longer (21 h). In line with control (light-on/off) experiments (Figure 3b), nevertheless, the  

 

Figure 3: a) Proposed photocascade mechanism; b) mechanistic experiment 
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second step should also be a photocatalytic one, i.e. being initiated by excited state Ru(II)* that 

may reductively quench 3a' acting as an electron donor. This results in the generation of Ru(I) 

and the N-centered radical cation V, which can be oxidized by superoxide anion radical O2
•–, 

being in turn generated from Ru(I) and molecular oxygen. 

Conclusions: 

To summarize, we have developed a visible-light photocatalyzed cascade to 1,4-pyrazines from 

the corresponding vinyl azides by combining energy and electron transfer initiated reaction 

steps operated by the same photocatalyst. 
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General information: 

The irradiation was done using blue light emitting diodes CREE XP or Oslon SSL (2.5 W 

electric power @700 mA, λmax = 455 nm). All the reactions were monitored by TLC and 

visualized by a dual short/long wave UV lamp. Analytical thin layer chromatography was 

performed on Merck TLC aluminium sheets silica gel 60 F 254. Purifications by column 

chromatography were performed on silica gel (0.063 - 0.200 mm). All products were 

characterized by appropriate techniques such as 1H-NMR, 19F-NMR, 13C-NMR, FT-IR and 

HRMS analysis. NMR spectra were recorded on Bruker Avance 300 and 400 MHz 

spectrometers. Chemical shifts for 1H-NMR were reported as δ, parts per million (ppm), 

relative to the signal of CHCl3 at 7.26 ppm. Chemical shifts for 13C-NMR were reported as δ, 

parts per million, relative to the signal of CHCl3 at 77.2 ppm and TMS as an internal standard. 

Coupling constants (J) are given in Hertz (Hz). The following notations indicate the 

multiplicity of the signals: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of 

doublets, and m = multiplet. FT-IR (Cary 630) spectroscopy was carried out on a spectrometer, 

equipped with a Diamond Single Reflection ATR-System. Mass spectra were recorded at the 

Central Analytical Laboratory at the Department of Chemistry of the University of Regensburg 

on Agilent Technologies 6540 UHD Accurate-Mass Q-TOF LC/MS. 

 

General Procedure for the synthesis of Vinyl azides: 

General Procedure 1 (GP-1): 

The required vinyl azides (except 2a, 2n and 2o) were synthesized in one step from the 

condensation of ethyl azidoacetate and aromatic or heteroaromatic aldehydes following a 

literature known procedure1. The obtained yields are not optimized. 

 

To a cooled (–15°C) solution of aldehyde 1 (1 equiv) and ethyl azidoacetate (2.5–4 equiv) in 

EtOH, freshly prepared NaOEt (2.5 equiv) was added dropwise via a cannula. The resulting 

reaction mixture was stirred at the same temperature. After 3-5 hours (judged by TLC analysis), 

the heterogeneous mixture was transferred to a separatory funnel containing saturated NH4Cl 
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(15 mL), 10 mL of water, and 20 mL of Et2O. The phases were separated and the resulting 

aqueous phase was extracted with an additional 2 × 20 mL of Et2O. The combined organic 

phases were washed with 2 × 20 mL of distilled water and 1 × 20 mL of brine solution. The 

resulting organic phase was dried over MgSO4 and the heterogeneous mixture was filtered. The 

filtrate was concentrated in vacuo. Purification by column chromatography (EtOAc: hexanes) 

afforded the desired vinyl azide 2. 

General Procedure 2 (GP-2): 

2a, 2n and 2o were synthesized following another known protocol.2 

 

To a deoxygenated solution of cinnamic ester 4 (1 equiv) and NaN3 (1.50 equiv.) in dry 

acetonitrile, a deoxygenated solution ceric ammonium nitrate (CAN) (2.50 equiv.) in the same 

solvent was added dropwise at 0°C and stirred well. On completion of the reaction, it was 

worked up using CH2Cl2–water, dried and concentrated. The crude residue, on treatment with 

anhydrous sodium acetate (1.50 equiv.) in dry acetone followed by usual work up and 

purification by silica gel column chromatography using hexane: ethyl acetate mixture as eluent, 

afforded 2. 

 

Ethyl (Z)-2-azido-3-phenylacrylate (2a): 

 

GP-2 was followed using ethyl cinnamate 4a (1.76 g, 10.00 mmol, 1.00 equiv.) and NaN3 (975 

mg, 15.00 mmol, 1.50 equiv) in 50 mL dry acetonitrile was added CAN (13.7 g, 25.00 mmol, 

2.50 equiv.) in 100 mL dry Acetonitrile. After 3 h, the reaction mixture was quenched and the 

crude residue was treated with sodium acetate (1.23 g, 15.00 mmol, 1.50 equiv.) in 50 mL dry 

acetone for overnight at room temperature. After usual work up and purification by column 

chromatography (silica gel, hexanes:EtOAc-98:2, Rf = 0.44) afforded 2a as a pale yellow solid 

(1.34 g, 62%). 
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1H-NMR (300 MHz, CDCl3): δ 7.83 – 7.80 (m, 2H), 7.42 – 7.32 (m, 3H), 6.91 (s, 1H), 4.37 

(q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 163.7, 133.3, 

130.7, 129.5, 128.6, 125.7, 125.4, 62.4, 14.3. 

 

Ethyl (Z)-2-azido-3-(p-tolyl)acrylate (2b): 

 

GP-1 was followed using p-tolualdehyde (3.40 mmol, 1.00 equiv.), ethyl azidoacetate (1.40 g, 

10.88 mmol, 3.20 equiv.) in 6 mL dry EtOH followed by addition of freshly prepared NaOEt 

(10.88 mmol, 3.20 equiv.) in 6 mL dry EtOH. After 3h, the reaction mixture was quenched and 

purification by column chromatography (silica gel, hexanes:EtOAc-9:1, Rf = 0.53) afforded 2b 

as a white solid (414 mg, 53%). 

1H-NMR (300 MHz, CDCl3): δ 7.72 (d, J = 8.1 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 6.90 (s, 

1H), 4.36 (q, J = 7.1 Hz, 2H), 2.37 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H); 13C-NMR (75 MHz, 

CDCl3):δ 163.8, 139.9, 130.7, 130.6, 129.4, 125.7, 124.8, 62.3, 21.6, 14.4. 

 

Ethyl (Z)-2-azido-3-(naphthalen-2-yl)acrylate (2c): 

 

GP-1 was followed using 2-naphthaldehyde (796.80 mg, 5.00 mmol, 1.00 equiv.), ethyl 

azidoacetate (1.93 g, 15.00 mmol, 3.00 equiv.) in 7 mL dry EtOH followed by addition of 

freshly prepared NaOEt (15.00 mmol, 3.00 equiv.) in 7 mL dry EtOH. After 4h, the reaction 

mixture was quenched and purification by column chromatography (silica gel, hexanes:EtOAc-

9:1, Rf = 0.44) afforded 2c as a white solid (813 mg, 60%). 

1H-NMR (300 MHz, CDCl3): δ 8.29 (s, 1H), 7.97 – 7.94 (m, 1H), 7.89 – 7.81 (m, 3H), 7.52 – 

7.49 (m, 2H), 7.07 (s, 1H), 4.40 (q, J = 7.1 Hz, 2H), 1.43 (t, J = 7.1 Hz, 3H); 13C-NMR (75 
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MHz, CDCl3):δ 163.7, 133.6, 133.2, 131.1, 130.9, 128.8, 128.1, 127.7, 127.5, 127.2, 126.5, 

125.8, 125.4, 62.5, 14.4. 

 

Ethyl (Z)-2-azido-3-(4-methoxyphenyl)acrylate (2d): 

 

GP-1 was followed using p-anisaldehyde (680.75 mg, 5.00 mmol, 1.00 equiv.), ethyl 

azidoacetate (1.61 g, 12.50 mmol, 2.50 equiv.) in 7 mL dry EtOH followed by addition of 

freshly prepared NaOEt (12.50 mmol, 2.50 equiv.) in 7 mL dry EtOH. After 4h, the reaction 

mixture was quenched and purification by column chromatography (silica gel, hexanes:EtOAc-

9:1, Rf = 0.34) afforded 2d as a pale yellow solid (692 mg, 56%). 

1H-NMR (300 MHz, CDCl3): δ 7.79 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.9 Hz, 2H), 6.88 (s, 

1H), 4.35 (q, J = 7.1 Hz, 2H), 3.84 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H); 13C-NMR (75 MHz, 

CDCl3): δ 163.9, 160.6, 132.5, 126.2, 125.5, 123.4, 114.0, 62.2, 55.5, 14.4. 

 

Ethyl (Z)-2-azido-3-(2-methoxyphenyl)acrylate (2e): 

 

GP-1 was followed using 2-methoxybenzaldehyde (680.75 mg, 5.00 mmol, 1.00 equiv.), ethyl 

azidoacetate (1.61 g, 12.50 mmol, 2.50 equiv.) in 7 mL dry EtOH followed by addition of 

freshly prepared NaOEt (12.50 mmol, 2.50 equiv.) in 7 mL dry EtOH. After 4h, the reaction 

mixture was quenched and purification by column chromatography (silica gel, hexanes:EtOAc-

95:5, Rf = 0.25) afforded 2e as a pale yellow solid (766 mg, 62%). 

1H-NMR (300 MHz, CDCl3): δ 8.18 (dd, J1 = 7.8 Hz, J2 = 1.5 Hz, 1H), 7.39 (s, 1H), 7.34 – 

7.29 (m, 1H), 6.99 (t, J = 7.5 Hz, 1H), 6.88 (d, J = 8.2 Hz, 1H), 4.37 (q, J = 7.1 Hz, 2H), 3.86 

(s, 3H), 1.40 (t, J = 7.1 Hz, 3H); 13C-NMR (75 MHz, CDCl3):δ 163.9, 157.6, 130.9, 130.6, 

125.4, 122.2, 120.4, 119.5, 110.5, 62.2, 55.7, 14.3. 
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Ethyl (Z)-2-azido-3-(2-chloro-3,4-dimethoxyphenyl)acrylate (2f): 

 

GP-1 was followed using 2-chloro-3,4-dimethoxybenzaldehyde (1.00 g, 5.00 mmol, 1.00 

equiv.), ethyl azidoacetate (1.61 g, 12.50 mmol, 2.50 equiv.) in 7 mL dry EtOH followed by 

addition of freshly prepared NaOEt (12.50 mmol, 2.50 equiv.) in 7 mL dry EtOH. After 4h, the 

reaction mixture was quenched and purification by column chromatography (silica gel, 

hexanes:EtOAc-95:5, Rf = 0.20) afforded 2f as a white solid (778 mg, 51%). 

1H-NMR (300 MHz, CDCl3): δ 8.01 (d, J = 8.9 Hz, 1H), 7.28 (s, 1H), 6.86 (d, J = 8.9 Hz, 

1H), 4.37 (q, J = 7.1 Hz, 2H), 3.91 (s, 3H), 3.85 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H); 13C-NMR 

(75 MHz, CDCl3): δ 163.6, 154.3, 145.6, 129.7, 126.8, 125.8, 124.6, 120.8, 110.0, 62.5, 60.7, 

56.2, 14.3. 

 

Ethyl (Z)-2-azido-3-(4-fluorophenyl)acrylate (2g):  

 

GP-1 was followed using 4-fluorobenzaldehyde (620.50 mg, 5.00 mmol, 1.00 equiv.), ethyl 

azidoacetate (1.61 g, 12.50 mmol, 2.50 equiv.) in 7 mL dry EtOH followed by addition of 

freshly prepared NaOEt (12.50 mmol, 2.50 equiv.) in 7 mL dry EtOH. After 4h, the reaction 

mixture was quenched and purification by column chromatography (silica gel, hexanes:EtOAc-

95:5, Rf = 0.33) afforded 2g as yellow solid (771 mg, 64%). 

1H-NMR (300 MHz, CDCl3): δ 7.84 – 7.80 (m, 2H), 7.09 – 7.40 (m, 2H), 6.88 (s, 1H), 4.37 

(q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz); 13C-NMR (75 MHz, CDCl3): δ 163.6, 163.0 (d, 1JC-F 

= 252.1 Hz), 132.7 (d, 3JC-F = 8.1 Hz), 129.6 (d, 4JC-F = 3.7 Hz), 125.3, 124.1, 115.7 (d, 2JC-F = 

21.4 Hz), 62.5, 14.3; 19F-NMR (282 MHz, CDCl3): δ -110.4. 
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Ethyl (Z)-2-azido-3-(2-fluorophenyl)acrylate (2h): 

 

GP-1 was followed using 2-fluorobenzaldehyde (620.50 mg, 5.00 mmol, 1.00 equiv.), ethyl 

azidoacetate (1.61 g, 12.50 mmol, 2.50 equiv.) in 7 mL dry EtOH followed by addition of 

freshly prepared NaOEt (12.50 mmol, 2.50 equiv.) in 7 mL dry EtOH. After 4h, the reaction 

mixture was quenched and purification by column chromatography (silica gel, hexanes:EtOAc-

9:1, Rf = 0.42) afforded 2h as yellow solid (733 mg, 62%). 

1H-NMR (300 MHz, CDCl3): δ 8.27 (dt, J1 = 7.7 Hz, J2 = 1.6 Hz, 1H), 7.35 – 7.03 (m, 4H), 

4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 163.4, 160.8 

(d, 1JC-F = 252.7 Hz), 131.0 (d, 3JC-F = 8.8 Hz), 130.8, 127.2, 124.1 (d, 4JC-F = 3.6 Hz), 121.4 

(d, 2JC-F = 11.0 Hz), 116.0 (d, 3JC-F = 8.0 Hz), 115.4 (d, 2JC-F = 22.1 Hz), 62.6, 14.3; 19F-NMR 

(282 MHz, CDCl3): δ -115.5. 

 

Ethyl (Z)-2-azido-3-(4-chlorophenyl)acrylate (2i):  

 

GP-1 was followed using 4-chlorobenzaldehyde (724.58 mg, 5.00 mmol, 1.00 equiv.), ethyl 

azidoacetate (1.90 g, 15.00 mmol, 3.00 equiv.) in 7 mL dry EtOH followed by addition of 

freshly prepared NaOEt (15.00 mmol, 3.00 equiv.) in 7 mL dry EtOH. After 4h, the reaction 

mixture was quenched and purification by column chromatography (silica gel, hexanes:EtOAc-

95:5, Rf = 0.30) afforded 2i as white solid (895 mg, 69%). 

1H-NMR (300 MHz, CDCl3): δ 7.78 – 7.73 (m, 2H), 7.36 – 7.32 (m, 2H), 6.84 (s, 1H), 4.37 

(q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 163.5, 135.2, 

131.9, 131.8, 128.8, 126.1, 123.8, 62.5, 14.3. 
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Ethyl (Z)-2-azido-3-(4-bromophenyl)acrylate (2j): 

 

GP-1 was followed using 4-bromobenzaldehyde (925.10 mg, 5.00 mmol, 1.00 equiv.), ethyl 

azidoacetate (1.90 g, 15.00 mmol, 3.00 equiv.) in 7 mL dry EtOH followed by addition of 

freshly prepared NaOEt (15.00 mmol, 3.00 equiv.) in 7 mL dry EtOH. After 4h, the reaction 

mixture was quenched and purification by column chromatography (silica gel, hexanes:EtOAc-

95:5, Rf = 0.30) afforded 2j as white solid (596 mg, 40%). 

1H-NMR (300 MHz, CDCl3): δ 7.70 – 7.66 (m, 2H), 7.52 – 7.47 (m, 2H), 6.82 (s, 1H), 4.36 

(q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 163.5, 132.2, 

132.1, 131.8, 126.3, 123.8, 123.6, 62.6, 14.3. 

 

Ethyl (Z)-2-azido-3-(thiophen-2-yl)acrylate (2m): 

 

GP-1 was followed using 2-thiophenecarboxaldehyde(560.75 mg, 5.00 mmol, 1.00 equiv.), 

ethyl azidoacetate (1.90 g, 15.00 mmol, 3.00 equiv.) in 7 mL dry EtOH followed by addition 

of freshly prepared NaOEt (15.00 mmol, 3.00 equiv.) in 7 mL dry EtOH. After 3h, the reaction 

mixture was quenched and purification by column chromatography (silica gel, hexanes:EtOAc- 

4:1, Rf = 0.52) afforded 2m as yellow solid (723 mg, 65%). 

1H-NMR (300 MHz, CDCl3): δ 7.49 (d, J = 5.1 Hz, 1H), 7.32 (d, J = 3.6 Hz, 1H), 7.06 (dd, 

J1 = 5.0 Hz, J2 = 3.7 Hz, 2H), 4.35 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H); 13C-NMR (75 

MHz, CDCl3): δ 163.3, 136.7, 132.1, 130.5, 127.1, 122.7, 119.3, 62.2, 14.3. 
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(Z)-2-azido-1,3-diphenylprop-2-en-1-one (2n): 

 

GP-2 was followed using (E)-chalcone 4b (624.70 g, 3.00 mmol, 1.00 equiv.) and NaN3 (293 

mg, 4.50 mmol, 1.50 equiv) in 8 mL dry acetonitrile was added CAN (4.11 g, 7.50 mmol, 2.50 

equiv.) in 30 mL dry Acetonitrile. After 3 h, the reaction mixture was quenched and the crude 

residue was treated with sodium acetate (369.13 mg, 4.5 mmol, 1.50 equiv.) in 20 mL dry 

acetone for overnight at room temperature. After usual work up and purification by column 

chromatography (silica gel, hexanes:EtOAc-9:1, Rf = 0.42) afforded 2n as a pale yellow solid 

(530 mg, 71%). 

1H-NMR (300 MHz, CDCl3): δ 7.83 – 7.78 (m, 4H), 7.65 – 7.59 (m, 1H), 7.53 – 7.47 (m, 2H), 

7.43 – 7.36 (m, 3H), 6.46 (s, 1H); 13C-NMR (75 MHz, CDCl3): δ 192.4, 136.9, 133.8, 133.3, 

132.8, 130.8, 129.98, 129.93, 129.8, 128.7, 128.6. 

 

(Z)-3-azido-4-phenylbut-3-en-2-one (2o): 

 

GP-2 was followed using (E)-4-phenylbut-3-en-2-one4c (730.95 mg, 5.00 mmol, 1.00 equiv.) 

and NaN3 (487.5 mg, 7.50 mmol, 1.50 equiv) in 15 mL dry acetonitrile was added CAN (6.85 

g, 12.50 mmol, 2.50 equiv.) in 50 mL dry acetonitrile. After 3 h, the reaction mixture was 

quenched and the crude residue was treated with sodium acetate (615.22 mg, 7.5 mmol, 1.50 

equiv.) in 25 mL dry acetone for overnight at room temperature. After usual work up and 

purification by column chromatography (silica gel, hexanes:EtOAc-9:1, Rf = 0.34) afforded 2o 

as a pale yellow solid (514 mg, 55%). 

1H-NMR (300 MHz, CDCl3): δ 7.87 – 7.84 (m, 2H), 7.44 – 7.36 (m, 3H), 6.71 (s, 1H), 2.51 

(s, 3H); 13C-NMR (75 MHz, CDCl3): δ 194.5, 134.0, 133.2, 130.8, 129.9, 128.7, 126.8, 26.0. 
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General procedure 3 (GP-3) for the photochemical synthesis of pyrazines: 

 

To an oven-dried Schlenk tube (10 mL size) equipped with a stirring bar was charged with 

[Ru(bpy)3]Cl2·6H2O (3.74 mg, 0.01 equiv, 1mol%) followed by 1.60 mL Acetonitrile and 0.40 

mL distilled water. The resulting solution was degassed via nitrogen bubbling for 5 minutes 

using a syringe niddle. Then vinyl azide 2 (0.50 mmol, 1 equiv) was added to the solution under 

nitrogen. Finally, irradiation with a Blue LED (λmax = 455 nm) was started and the solution was 

kept open to air for 24 hours at room temperature. Then the reaction mixture was transferred 

to separatory funnel containing distilled water, extracted three times ethyl acetate. After drying 

the combined organic layers on Na2SO4, the resulting solution was concentrated in vacuo. The 

pure product 3 was obtained either by recrystallization from dichloromethane/pentane or by 

silica-gel column chromatography using hexanes and ethyl acetate as eluents. 

 

Fig. S1: Experimental set-up for photochemical reaction 
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Diethyl 3,6-diphenylpyrazine-2,5-dicarboxylate (3a):  

 

Following GP-3, 3a was prepared from ethyl (Z)-2-azido-3-phenylacrylate 2a (108.60 mg, 

0.50 mmol, 1.00 equiv) and [Ru(bpy)3]Cl2·6H2O (3.74 mg, 0.01 equiv, 1mol%). The crude 

product was purified by column chromatography (silica gel, hexanes–EtOAc, 9:1, Rf = 0.20) 

to afford 3a as a white solid (57 mg, 61% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.74 – 7.71 (m, 4H), 7.49 – 7.47 (m, 6H), 4.31 (q, J = 7.14 

Hz, 4H), 1.16 (t, J = 7.14 Hz, 6H); 13C-NMR (75 MHz, CDCl3): δ 166.2, 149.9, 144.8, 136.2, 

130.0, 128.9, 128.7, 62.5, 13.8; HRMS (ESI): exact m/z calculated for C22H20N2O4 (M+H)+: 

377.1423; Found: 377.1502; IR (neat, cm-1): 3059, 2986, 2925, 2854, 1731, 1449, 1405, 1380, 

1293, 1173, 1137, 1094, 1057, 1021, 856, 766, 705. 

 

 

Diethyl 3,6-di-p-tolylpyrazine-2,5-dicarboxylate (3b):  

 

Following GP-3, 3b was prepared from ethyl (Z)-2-azido-3-(p-tolyl)acrylate 2b (115.50 mg, 

0.50 mmol, 1.00 equiv) and [Ru(bpy)3]Cl2·6H2O (3.74 mg, 0.01 equiv, 1mol%). The crude 

product was dissolved in minimum amount of dichloromethane, then the solution was saturated 

with n-pentane. After 30 minutes, the solvent mixture was decanted, and the solid was again 

washed two times with n-pentane. The residual solvents were removed in vacuo which afforded 

3b as white solid (83 mg, 82%). 

1H-NMR (300 MHz, CDCl3): δ 7.62 (d, J = 8.16 Hz, 4H), 7.27 (d, J = 7.98 Hz, 4H), 4.32 (q, 

J = 7.14 Hz, 4H), 2.41 (s, 6H), 1.19 (t, J = 7.11 Hz, 6H); 13C-NMR (75 MHz, CDCl3): δ 166.4, 

149.4, 144.6, 140.2, 133.3, 129.5, 128.7, 62.4, 21.5, 13.9; HRMS (ESI): exact m/z calculated 
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for C24H24N2O4 (M+H)+: 405.1736; Found: 405.1814; IR (neat, cm-1): 2986, 2871, 1723, 

1609, 1462, 1442, 1408, 1292, 1247, 1174, 1137, 1095, 1057, 1012, 853, 828, 775, 700. 

 

Diethyl 3,6-di(naphthalen-2-yl)pyrazine-2,5-dicarboxylate (3c): 

 

Following GP-3, 3c was prepared from ethyl (Z)-2-azido-3-(naphthalen-2-yl)acrylate 2c 

(133.64 mg, 0.50 mmol, 1equiv) and [Ru(bpy)3]Cl2·6H2O (3.74 mg, 0.01 equiv, 1mol%). The 

crude product was purified by column chromatography (silica gel, hexanes–EtOAc, 4:1, Rf = 

0.30) to afford 3c as a white solid (81 mg, 70% yield). 

1H-NMR (400 MHz, CDCl3): δ 8.28 (s, 2H), 7.97 – 7.85 (m, 8H), 7.59 – 7.53 (m, 4H), 4.33 

(d, J = 7.12 Hz, 4H), 1.13 (t, J = 7.12 Hz, 6H); 13C-NMR (100 MHz, CDCl3): δ 166.4, 149.6, 

145.1, 134.0, 133.5, 133.2, 129.0, 128.8, 128.6, 127.9, 127.4, 126.8, 125.9, 62.6, 13.9; HRMS 

(ESI): exact m/z calculated for C30H24N2O4 (M+H)+: 477.1736; Found : 477.1821; IR (neat, 

cm-1): 3056, 2974, 2927, 2854, 1729, 1686, 1462, 1405, 1381, 1304, 1236, 1169, 1140, 1004, 

906, 871, 852, 830, 750. 

 

Diethyl 3,6-bis(4-methoxyphenyl)pyrazine-2,5-dicarboxylate (3d): 

 

Following GP-3, 3d was prepared from ethyl (Z)-2-azido-3-(4-methoxyphenyl)acrylate 2d 

(123.60 mg, 0.50 mmol, 1equiv) and [Ru(bpy)3]Cl2·6H2O (3.74 mg, 0.01 equiv, 1mol%). The 

crude product was purified by column chromatography (silica gel, hexanes–EtOAc, 3:1, Rf  = 

0.28) to afford 3d as a white solid (53 mg, 49% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.70 – 7.67 (m, 4H), 6.99 – 6.96 (m, 4H), 4.33 (q, J = 7.11 

Hz, 4H), 3.85 (s, 6H), 1.21 (t, J = 7.11 Hz, 6H); 13C-NMR (75 MHz, CDCl3): δ 166.5, 161.2, 

148.5, 144.1, 130.3, 128.5, 114.2, 62.4, 55.5, 13.9; HRMS (ESI): exact m/z calculated for 
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C24H24N2O6 (M+H)+: 437.1634; Found: 437.1740; IR (neat, cm-1): 2980, 2955, 2926, 2851, 

1732, 1607, 1580, 1518, 1414, 1295, 1253, 1177, 1148, 1060, 1017, 841, 811, 786, 752. 

 

Diethyl 3,6-bis(2-methoxyphenyl)pyrazine-2,5-dicarboxylate (3e): 

 

Following GP-3, 3e was prepared from ethyl (Z)-2-azido-3-(2-methoxyphenyl)acrylate 2e 

(123.60 mg, 0.50 mmol, 1.00 equiv) and [Ru(bpy)3]Cl2·6H2O (3.74 mg, 0.01 equiv, 1mol%). 

The crude product was dissolved in minimum amount of dichloromethane, then the solution 

was saturated with n-pentane. After 30 minutes, the solvent mixture was decanted, and the solid 

was again washed two times with n-pentane. The residual solvents were removed in vacuo 

which afforded 3e as white solid (86 mg, 79%). 

1H-NMR (300 MHz, CDCl3): δ 7.78 (dd, J1 = 7.53 Hz, J2 = 1.65 Hz, 2H), 7.44 – 7.38 (m, 2H), 

7.14 – 7.09 (m, 2H), 6.89 (d, J = 8.22 Hz, 2H), 4.25 (q, J = 7.14 Hz, 4H), 3.73 (s, 6H), 1.14 (t, 

J = 7.14 Hz, 6H); 13C-NMR (75 MHz, CDCl3): δ 165.5, 156.5, 147.6, 145.9, 131.4, 131.2, 

126.5, 121.4, 110.1, 61.8, 55.1, 13.9; HRMS (ESI): exact m/z calculated for C24H24N2O6 

(M+H)+: 437.1634; Found: 437.1739; IR (neat, cm-1): 2968, 2924, 2843, 1733, 1601, 1495, 

1465, 1439, 1411, 1390, 1280, 1248, 1226, 1182, 1149, 1111, 1061, 1014, 854, 759, 697. 

 

Diethyl 3,6-bis(2-chloro-3,4-dimethoxyphenyl)pyrazine-2,5-dicarboxylate (3f): 

 

Following GP-3, 3f was prepared from ethyl (Z)-2-azido-3-(2-chloro-3,4-

dimethoxyphenyl)acrylate 2f (155.86 mg, 0.50 mmol, 1.00 equiv) and [Ru(bpy)3]Cl2·6H2O 

(3.74 mg, 0.01 equiv, 1mol%). The crude product was dissolved in minimum amount of 
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dichloromethane, then the solution was saturated with n-pentane. After 30 minutes, the solvent 

mixture was decanted, and the solid was again washed two times with n-pentane. The residual 

solvents were removed in vacuo which afforded 3f as white solid (122 mg, 87%). 

1H-NMR (400 MHz, CDCl3): δ 7.36 (d, J = 8.56 Hz, 2H), 6.98 (d, J = 8.64 Hz, 2H), 4.28 (q, 

J = 7.12 Hz, 4H), 3.94 (s, 6H), 3.87 (s, 6H), 1.17 (t, J = 7.12 Hz, 6H); 13C-NMR (100 MHz, 

CDCl3): δ 164.6, 154.8, 149.8, 145.5, 145.1, 129.5, 127.8, 126.4, 110.9, 62.5, 60.8, 56.3, 13.9; 

HRMS (ESI): exact m/z calculated for C26H26Cl2N2O8 (M+H)+: 565.1066; Found: 565.1143; 

IR (neat, cm-1): 3090, 2980, 2938, 2841, 1735, 1590, 1490, 1447, 1412, 1392, 1293, 1269, 

1220, 1202, 1099, 1038, 1003, 819, 790, 778. 

 

Diethyl 3,6-bis(4-fluorophenyl)pyrazine-2,5-dicarboxylate (3g): 

 

Following GP-3, 3g was prepared from ethyl (Z)-2-azido-3-(4-fluorophenyl)acrylate 2g 

(117.60 mg, 0.50 mmol, 1.00 equiv) and [Ru(bpy)3]Cl2·6H2O (3.74 mg, 0.01 equiv, 1mol%). 

The crude product was dissolved in minimum amount of dichloromethane, then the solution 

was saturated with n-pentane. After 30 minutes, the solvent mixture was decanted, and the solid 

was again washed two times with n-pentane. The residual solvents were removed in vacuo 

which afforded 3g as white solid (87 mg, 85%). 

1H-NMR (300 MHz, CDCl3): δ 7.74 – 7.70 (m, 4H), 7.20 – 7.15 (m, 4H), 4.33 (q, J = 7.17 

Hz, 4H), 1.20 (t, J = 7.15 Hz, 6H); 13C-NMR (75 MHz, CDCl3): δ 165.9, 164.1 (d, 1JC-F = 

250.6 Hz), 148.8, 144.5, 132.1 (d, 4JC-F = 3.1 Hz), 130.9 (d, 3JC-F = 8.65 Hz), 116.0 (d, 2JC-F = 

21.8 Hz), 62.7, 13.9; 19F-NMR (282 MHz, CDCl3): δ -110.9; HRMS (ESI): exact m/z 

calculated for C22H18F2N2O4 (M+H)+: 413.1235; Found: 413.1320; IR (neat, cm-1): 3084, 

2985, 2925, 2854, 1733, 1599, 1512, 1409, 1383, 1289, 1227, 1179, 1155, 1096, 1053, 1012, 

845, 815, 766. 
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Diethyl 3,6-bis(2-fluorophenyl)pyrazine-2,5-dicarboxylate (3h): 

 

Following GP-3, 3h was prepared from ethyl (Z)-2-azido-3-(2-fluorophenyl)acrylate 2g 

(117.60 mg, 0.50 mmol, 1.00 equiv) and [Ru(bpy)3]Cl2·6H2O (3.74 mg, 0.01 equiv, 1mol%). 

The crude product was dissolved in minimum amount of dichloromethane, then the solution 

was saturated with n-pentane. After 30 minutes, the solvent mixture was decanted, and the solid 

was again washed two times with n-pentane. The residual solvents were removed in vacuo 

which afforded 3g as white solid (83 mg, 81%). 

1H-NMR (300 MHz, CDCl3): δ 7.86 – 7.80 (m, 2H), 7.51 – 7.44 (m, 2H), 7.35 – 7.30 (m, 2H), 

7.16 – 7.09 (m, 2H), 4.35 (q, J = 7.14 Hz, 4H), 1.21 (t, J = 7.13 Hz, 6H); 13C-NMR (75 MHz, 

CDCl3): δ 164.7, 160.1 (d, 1JC-F = 248.7 Hz), 146.5, 145.4 (d, J = 1.95 Hz), 132.0 (d, 3JC-F = 

8.5 Hz), 131.7 (d, 4JC-F = 2.37 Hz), 124.9 (d, 3JC-F = 3.3 Hz), 124.7, 115.4 (d, 2JC-F = 21.7 Hz), 

62.5, 13.9; 19F-NMR (282 MHz, CDCl3): δ -116.6; HRMS (ESI): exact m/z calculated for 

C22H18F2N2O4 (M+H)+: 413.1235; Found: 413.1320; IR (neat, cm-1): 3071, 2985, 2939, 2906, 

1730, 1613, 1581, 1490, 1454, 1399, 1384, 1245, 1172, 1140, 1093, 1059, 1014, 859, 757. 

 

Diethyl 3,6-bis(4-chlorophenyl)pyrazine-2,5-dicarboxylate (3i):  

 

Following GP-3, 3i was prepared from ethyl (Z)-2-azido-3-(4-chlorophenyl)acrylate 2i (125.83 

mg, 0.50 mmol, 1.00 equiv) and [Ru(bpy)3]Cl2·6H2O (3.74 mg, 0.01 equiv, 1mol%). The crude 

product was dissolved in minimum amount of dichloromethane, then the solution was saturated 

with n-pentane. After 30 minutes, the solvent mixture was decanted, and the solid was again 

washed two times with n-pentane. The residual solvents were removed in vacuo which afforded 

3i as white solid (63 mg, 57%). 



Chapter 2: Synthesis of Pyrazines 

52 
 

1H-NMR (300 MHz, CDCl3): δ 7.68 – 7.66 (m, 4H), 7.47 – 7.45 (m, 4H), 4.34 (q, J = 7.14 

Hz, 4H), 1.22 (t, J = 7.14 Hz, 6H); 13C-NMR (75 MHz, CDCl3): δ 165.8, 148.9, 144.5, 136.7, 

134.4, 130.2, 129.1, 62.8, 13.9; HRMS (ESI): exact m/z calculated for C22H18Cl2N2O4 (M+H-

)+: 445.0644; Found: 445.0713; IR (neat, cm-1): 2985, 2937, 1728, 1595, 1494, 1426, 1401, 

1378, 1277, 1234, 1187, 1158, 1109, 1090, 1053, 1010, 854, 830, 778, 745. 

 

Diethyl 3,6-bis(4-bromophenyl)pyrazine-2,5-dicarboxylate (3j): 

 

Following GP-3, 3j was prepared from ethyl (Z)-2-azido-3-(4-bromophenyl)acrylate 2j 

(148.06 mg, 0.50 mmol, 1equiv) and [Ru(bpy)3]Cl2·6H2O (3.74 mg, 0.01 equiv, 1mol%). The 

crude product was purified by column chromatography (silica gel, hexanes–EtOAc, 3:1, Rf  = 

0.22) to afford 3j as a white solid (73 mg, 55% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.64 – 7.58 (m, 8H), 4.34 (q, J = 7.20 Hz, 4H), 1.22 (t, J = 

7.20 Hz, 6H); 13C-NMR (75 MHz, CDCl3): δ 165.8, 149.0, 144.5, 134.9, 132.0, 130.4, 125.0, 

62.8, 13.9; HRMS (ESI): exact m/z calculated for C22H18Br2N2O4 (M+H)+: 532.9633; Found: 

532.9708; IR (neat, cm-1): 2983, 2925, 2854, 1728, 1588, 1474, 1423, 1399, 1376, 1279, 1234, 

1186, 1159, 1051, 1006, 854, 826, 776, 734. 

 

Diethyl 3,6-bis(4-(trifluoromethyl)phenyl)pyrazine-2,5-dicarboxylate (3k): 

 

Following GP-3, 3k was prepared from ethyl (Z)-2-azido-3-(4-

(trifluoromethyl)phenyl)acrylate 2k (142.61 mg, 0.50 mmol, 1equiv) and [Ru(bpy)3]Cl2·6H2O 

(3.74 mg, 0.01 equiv, 1mol%). The crude product was purified by column chromatography 

(silica gel, hexanes–EtOAc, 3:1, Rf  = 0.30) to afford 3j as a white solid (48 mg, 38% yield). 
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1H-NMR (300 MHz, CDCl3): δ 7.86 (d, J = 8.19 Hz, 4H), 7.76 (d, J = 8.31 Hz, 4H), 4.34 (q, 

J = 7.14 Hz, 4H), 1.20 (t, J = 7.14 Hz, 6H); 13C-NMR (75 MHz, CDCl3): δ 165.4, 149.4, 

144.9, 139.4, 132.1 (q, J = 33.1 Hz), 129.4, 125.7 (q, J = 3.67 Hz), 122.1, 62.9, 13.8; 19F-NMR 

(282 MHz, CDCl3): δ – 63.2; HRMS (ESI): exact m/z calculated for C24H18F6N2O4 (M+H)+: 

513.1171; Found: 513.1254; IR (neat, cm-1): 2982, 2965, 2927, 2856, 1721, 1414, 1324, 1254, 

1138, 1105, 1072, 1053, 1016, 858, 832, 790, 717. 

 

Diethyl 3,6-bis(4-nitrophenyl)pyrazine-2,5-dicarboxylate (3l): 

 

Following GP-3, 3l was prepared from Ethyl (Z)-2-azido-3-(4-nitrophenyl)acrylate 2l (131.11 

mg, 0.50 mmol, 1.00 equiv) and [Ru(bpy)3]Cl2·6H2O (3.74 mg, 0.01 equiv, 1mol%). The crude 

product was dissolved in minimum amount of dichloromethane, then the solution was saturated 

with n-pentane. After 30 minutes, the solvent mixture was decanted, and the solid was again 

washed two times with n-pentane. The residual solvents were removed in vacuo which afforded 

3l as yellow solid (99 mg, 86%). 

1H-NMR (300 MHz, CDCl3): δ 8.38 – 8.35 (m, 4H), 7.93 – 7.90 (m, 4H), 4.37 (q, J = 7.14 

Hz, 4H), 1.24 (t, J = 7.11 Hz, 6H); 13C-NMR (75 MHz, CDCl3): δ 164.9, 149.08, 149.00, 

144.8, 141.8, 130.1, 124.0, 63.2, 14.0; HRMS (ESI): exact m/z calculated for C22H18N4O8 

(M+H)+: 467.1125; Found: 467.1198; IR (neat, cm-1): 3110, 2985, 2958, 2919, 2851, 1721, 

1601, 1516, 1466, 1408, 1344, 1296, 1259, 1144, 1100, 1009, 850, 800, 749, 689. 

 

Diethyl 3,6-di(thiophen-2-yl)pyrazine-2,5-dicarboxylate (3m): 

 

Following GP-3, 3m was prepared from Ethyl (Z)-2-azido-3-(thiophen-2-yl)acrylate 2m 

(111.60 mg, 0.50 mmol, 1equiv) and [Ru(bpy)3]Cl2·6H2O (3.74 mg, 0.01 equiv, 1mol%). The 
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crude product was purified by column chromatography (silica gel, hexanes–EtOAc, 5:1, Rf  = 

0.52) to afford 3j as a pale yellow solid (25 mg, 26%). 

1H-NMR (300 MHz, CDCl3): δ 7.54 – 7.50 (m, 4H), 7.12 – 7.09 (m, 2H), 4.48 (q, J = 7.16 

Hz, 4H), 1.37 (t, J = 7.17 Hz, 6H); 13C-NMR (75 MHz, CDCl3): δ 165.9, 142.5, 141.9, 139.1, 

130.4, 128.6, 128.4, 62.8, 14.0; HRMS (ESI): exact m/z calculated for C18H16N2O4S2 (M+H)+: 

389.0551; Found: 389.0644; IR (neat, cm-1): 3097, 2991, 2963, 2924, 2853, 1719, 1531, 1435, 

1418, 1381, 1330, 1270, 1145, 1109, 852, 830, 706. 

 

Diethyl 3-(2-chloro-3,4-dimethoxyphenyl)-6-(p-tolyl)pyrazine-2,5-dicarboxylate (3bf):  

 

Following GP-3, 3bf was prepared from ethyl (Z)-2-azido-3-(2-chloro-3,4-

dimethoxyphenyl)acrylate 2f  (77.93 mg, 0.25 mmol, 1equiv), ethyl (Z)-2-azido-3-(p-

tolyl)acrylate 2b (57.77 mg, 0.25 mmol, 1.00 equiv)  and [Ru(bpy)3]Cl2·6H2O (3.74 mg, 0.01 

equiv, 1mol%). The crude product was purified by column chromatography (silica gel, 

hexanes–EtOAc, 3:1, Rf  = 0.25) to afford 3bf as a white solid (37 mg, 31% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.66 (d, J = 8.13 Hz, 2H), 7.33 – 7.27 (m, 3H), 6.97 (d, J = 

8.64 Hz, 1H), 4.36 – 4.25 (m, 4H), 3.93 (s, 3H), 3.87 (s, 3H), 2.42 (s, 3H), 1.22 – 1.16 (m, 6H); 

13C-NMR (75 MHz, CDCl3): δ 166.2, 164.7, 154.7, 150.5, 148.7, 145.5, 144.9, 144.8, 140.5, 

133.2, 129.6, 129.5, 128.9, 127.8, 126.3, 110.8, 62.6, 62.4, 60.8, 56.3, 21.6, 13.97, 13.94; 

HRMS (ESI): exact m/z calculated for C25H25ClN2O6 (M+H)+: 485.1401; Found: 485.1494; 

IR (neat, cm-1): 2982, 2927, 2854, 1739, 1591, 1487, 1450, 1397, 1291, 1277, 1236, 1224, 

1198, 1153, 1120, 1077, 1030, 1013, 964, 809, 755. 
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Diethyl 3-(2-chloro-3,4-dimethoxyphenyl)-6-(2-fluorophenyl)pyrazine-2,5-dicarboxylate 

(3fh): 

 

Following GP-3, 3fh was prepared from ethyl (Z)-2-azido-3-(2-chloro-3,4-

dimethoxyphenyl)acrylate 2f  (77.93 mg, 0.25 mmol, 1equiv), ethyl (Z)-2-azido-3-(2-

fluorophenyl)acrylate 2h (58.86 mg, 0.25 mmol, 1.00 equiv)  and [Ru(bpy)3]Cl2·6H2O (3.74 

mg, 0.01 equiv, 1mol%). The crude product was purified by column chromatography (silica 

gel, hexanes–EtOAc, 3:1, Rf  = 0.34) to afford 3fh as a white solid (45 mg, 37% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.87 – 7.82 (m, 1H), 7.59 – 7.30 (m, 3H), 7.16 – 7.09 (m, 1H), 

6.99 – 6.97 (m, 1H), 4.38 – 4.26 (m, 4H), 3.93 (s, 3H), 3.87 (s, 3H), 1.23 – 1.16 (m, 6H); 13C-

NMR (75 MHz, CDCl3): δ 164.8, 164.5, 160.1 (d, 1JC-F = 248.3 Hz), 154.8, 149.7, 146.5, 

145.5, 145.1, 132.0 (d, 3JC-F = 8.5 Hz), 131.7 (d, 4JC-F = 2.2 Hz), 129.4, 127.7, 126.4, 125.0, 

124.9 (d, 3JC-F = 3.3 Hz), 124.9, 115.4 (d, 2JC-F = 21.6 Hz), 110.9, 62.5 (x2), 60.8, 56.3, 13.95, 

13.92; 19F-NMR (282 MHz, CDCl3): δ -116.6; HRMS (ESI): exact m/z calculated for 

C24H22ClFN2O6 (M+H)+: 489.1150; Found: 489.1257; IR (neat, cm-1): 2981, 2934, 2843, 

1723, 1616, 1558, 1490, 1450, 1408, 1296, 1269, 1248, 1224, 1173, 1142, 1099, 1075, 1040, 

1016, 812, 758. 
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1H and 13C NMR of 2a 
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1H and 13C NMR of 2b 
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1H and 13C NMR of 2c 
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1H and 13C NMR of 2d 
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1H and 13C NMR of 2e 
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1H and 13C NMR of 2f 
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1H, 13C and 19F NMR of 2g 
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1H, 13C and 19F NMR of 2h 
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1H and 13C NMR of 2i 

 

 

 



Chapter 2: Synthesis of Pyrazines 

67 
 

1H and 13C NMR of 2m 
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1H and 13C NMR of 2n 
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1H and 13C NMR of 2o 
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1H and 13C NMR of 3a 
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1H and 13C NMR of 3b 

 

 

 



Chapter 2: Synthesis of Pyrazines 

72 
 

1H and 13C NMR of 3c 
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1H and 13C NMR of 3d 
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1H and 13C NMR of 3e 
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1H and 13C NMR of 3f 
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1H, 13C and 19F NMR of 3g 
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1H, 13C and 19F NMR of 3h 
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1H and 13C NMR of 3i 
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1H and 13C NMR of 3j 
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1H, 13C and 19F NMR of 3k 
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1H and 13C NMR of 3l 
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1H and 13C NMR of 3m 

 

 

 



Chapter 2: Synthesis of Pyrazines 

86 
 

1H and 13C NMR of 3bf 
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1H, 13C and 19F NMR of 3fh 
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Crystal Data: 

 

Crystal structure of 3a 

Experimental. Single clear colourless block-shaped crystals of (3a) were obtained by 

recrystallisation from DCM/pentane. A suitable crystal (0.52×0.20×0.11) mm3 was selected 

and mounted on a MITIGEN holder with inert oil on a SuperNova, Single source at offset, 

Atlas diffractometer. The crystal was kept at T = 123.01(10) K during data collection. Using 

Olex2 (Dolomanov et al., 2009), the structure was solved with the ShelXT (Sheldrick, 2015) 

structure solution program, using the Intrinsic Phasing solution method. The model was refined 

with version 2014/7 of ShelXL (Sheldrick, 2015) using Least Squares minimisation. 

Crystal Data. C22H20N2O4, Mr = 376.40, monoclinic, P21/c (No. 14), a = 5.9445(2) Å, b = 

37.8883(11) Å, c = 9.1124(3) Å,  = 106.639(3)°,  =  = 90°, V = 1966.42(11) Å3, T = 

123.01(10) K, Z = 4, Z' = 1, (CuK) = 0.723, 8532 reflections measured, 3783 unique (Rint = 

0.0216) which were used in all calculations. The final wR2 was 0.1001 (all data) and R1 was 

0.0380 (I > 2(I)). 



Chapter 2: Synthesis of Pyrazines 

90 
 

Compound 3a 

  

Formula  C22H20N2O4 

Dcalc./ g cm-3 1.271  

µ/mm-1 0.723  

Formula Weight  376.40  

Colour  clear colourless  

Shape  block  

Size/mm3 0.52×0.20×0.11  

T/K  123.01(10)  

Crystal System  monoclinic  

Space Group  P21/c  

a/Å  5.9445(2)  

b/Å  37.8883(11)  

c/Å  9.1124(3)  

α/° 90  

β/° 106.639(3)  

γ/° 90  

V/Å3 1966.42(11)  

Z 4  

Z' 1  

Wavelength/Å  1.54184  

Radiation type  CuK  

θmin/
° 4.668  

θmax/
° 73.948  

Measured Refl.  8532  

Independent Refl.  3783  

Reflections Used  3304  

Rint 0.0216  

Parameters  332  

Restraints  180  

Largest Peak  0.222  
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Deepest Hole  -0.174  

GooF  1.040  

wR2 (all data)  0.1001  

wR2 0.0951  

R1 (all data)  0.0460  

R1 0.0380  

 

Table 1: Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 

Parameters (Å2×103) for 3a. Ueq is defined as 1/3 of the trace of the orthogonalised Uij. 

Atom x y z Ueq 

O(3) 4207(10) 6921.7(18) 2631(7) 36.8(10) 

O(2) 1943(10) 5358.9(11) 6358(5) 35.5(7) 

O(1) -1461(3) 5663.3(5) 5782(3) 28.5(4) 

O(4) 3688(15) 7148(2) 4819(8) 34.7(10) 

N(1) 3726.8(18) 6071.3(3) 6154.6(12) 26.6(2) 

N(2) 1354.1(18) 6390.7(3) 3400.8(12) 24.8(2) 

C(14) 3259(2) 6535.2(3) 4353.7(14) 23.7(3) 

C(15) 4563(2) 6369.2(3) 5711.2(14) 24.4(3) 

C(5) 597(2) 6082.6(3) 3811.5(15) 25.4(3) 

C(22) 3766(2) 6906.9(3) 3962.7(14) 26.8(3) 

C(6) -1457(2) 5912.9(3) 2724.9(15) 27.9(3) 

C(4) 1743(2) 5938.1(3) 5250.2(15) 26.2(3) 

C(16) 6793(2) 6507.0(3) 6727.4(14) 25.8(3) 

C(17) 8436(2) 6679.4(3) 6157.7(15) 27.6(3) 

C(7) -3420(2) 6111.9(3) 1985.9(16) 30.6(3) 

C(18) 10513(2) 6803.1(4) 7138.1(16) 32.8(3) 

C(3) 803(2) 5623.3(3) 5902.1(16) 31.4(3) 

C(21) 7287(2) 6459.1(4) 8308.7(15) 32.1(3) 

C(11) -1476(3) 5549.9(4) 2470.9(18) 37.0(3) 

C(19) 10976(3) 6755.1(4) 8704.6(17) 37.6(3) 

C(20) 9368(3) 6583.3(4) 9285.2(16) 38.0(3) 

C(8) -5383(3) 5949.4(4) 1040.2(18) 39.1(3) 
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Atom x y z Ueq 

C(10) -3443(3) 5389.6(4) 1522(2) 44.8(4) 

C(9) -5397(3) 5588.3(4) 808(2) 45.8(4) 

C(2) -2624(4) 5362.9(6) 6239(3) 34.1(5) 

C(13) 4684(8) 7277.6(13) 2161(5) 41.9(9) 

C(1) -2195(4) 5350.6(6) 7940(3) 48.7(6) 

C(12) 7227(7) 7364.5(9) 2774(5) 76.5(13) 

O(3A) 4770(20) 6938(4) 2821(16) 31.0(16) 

C(13A) 5539(17) 7290(3) 2422(12) 40.8(17) 

O(4A) 3260(30) 7169(6) 4520(20) 37(2) 

C(12A) 7294(10) 7232.8(15) 1616(8) 51.5(17) 

O(1A) -1086(16) 5742(2) 6371(12) 29.3(17) 

C(2A) -2180(16) 5460(3) 7111(15) 32(2) 

O(2A) 2050(50) 5421(6) 6720(20) 36(3) 

C(0AA) -3300(20) 5202(4) 5942(15) 48(3) 

 

Table 2: Anisotropic Displacement Parameters (×104) 3a. The anisotropic displacement factor 

exponent takes the form: -2π2[h2a*2 × U11+ ... +2hka* × b* × U12] 

Atom U11 U22 U33 U23 U13 U12 

O(3) 63(3) 21.1(11) 25.2(15) 3.4(9) 10.3(15) -13.7(15) 

O(2) 24.4(10) 28.3(14) 55.1(19) 16.1(10) 13.5(13) 5.7(9) 

O(1) 22.0(7) 24.3(8) 40.4(10) 6.9(7) 10.7(7) 1.0(5) 

O(4) 53(3) 21.1(13) 29(3) -5.5(16) 10.4(18) -4.0(15) 

N(1) 24.6(5) 28.3(5) 27.8(5) 6.8(4) 9.1(4) 2.7(4) 

N(2) 27.9(5) 21.9(5) 24.0(5) 1.0(4) 6.3(4) 0.0(4) 

C(14) 28.0(6) 22.7(6) 21.0(6) 0.4(4) 8.1(5) 0.2(5) 

C(15) 26.3(6) 24.8(6) 23.3(6) 2.1(5) 9.0(5) 2.0(5) 

C(5) 24.6(6) 22.0(6) 30.2(6) 2.6(5) 8.9(5) 2.2(4) 

C(22) 31.1(7) 23.0(6) 22.7(6) 0.6(5) 2.0(5) -0.9(5) 

C(6) 26.1(6) 25.1(6) 31.9(7) 4.1(5) 7.4(5) -0.7(5) 

C(4) 22.2(6) 24.5(6) 33.1(7) 6.0(5) 10.1(5) 3.6(5) 

C(16) 26.2(6) 25.6(6) 24.6(6) 1.1(5) 6.0(5) 3.8(5) 
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Atom U11 U22 U33 U23 U13 U12 

C(17) 31.4(7) 27.0(6) 24.9(6) -0.7(5) 8.8(5) 1.0(5) 

C(7) 30.2(7) 25.4(6) 35.0(7) 4.7(5) 7.6(6) 1.8(5) 

C(18) 29.1(7) 31.1(7) 38.9(8) -4.6(5) 10.8(6) -1.5(5) 

C(3) 23.3(6) 30.5(7) 40.5(8) 11.9(6) 9.5(5) 3.0(5) 

C(21) 30.3(7) 39.3(7) 26.0(7) 5.4(5) 6.9(5) 2.8(5) 

C(11) 32.6(7) 25.1(7) 47.1(9) 2.4(6) 1.6(6) 2.9(5) 

C(19) 29.6(7) 42.1(8) 35.5(8) -6.6(6) 0.4(6) -0.3(6) 

C(20) 36.7(8) 49.6(8) 23.4(7) 1.7(6) 1.6(6) 4.6(6) 

C(8) 28.2(7) 38.9(8) 44.6(8) 6.8(6) 1.3(6) 2.4(6) 

C(10) 44.1(9) 25.6(7) 57(1) -2.2(6) 2.3(7) -4.9(6) 

C(9) 35.0(8) 38.8(8) 53.5(10) -0.1(7) -3.5(7) -11.0(6) 

C(2) 23.6(10) 28.4(11) 52.0(14) 8.8(10) 13.7(9) -1.8(8) 

C(13) 64(2) 24.8(12) 32.5(15) 7.9(11) 7.0(16) -18.4(17) 

C(1) 41.2(11) 55.7(12) 53.8(14) 23.4(10) 20.8(9) -1.4(9) 

C(12) 74(2) 60.5(19) 89(3) 34.0(18) 13.3(19) -29.5(16) 

O(3A) 55(4) 17(2) 26(3) -3(2) 20(3) -4(3) 

C(13A) 61(4) 23(3) 41(4) 5(2) 20(3) -12(4) 

O(4A) 51(5) 33(3) 27(5) -1(3) 9(4) -1(3) 

C(12A) 50(3) 42(3) 57(3) 21(2) 5(3) -8(2) 

O(1A) 28(3) 23(3) 37(4) 8(3) 10(3) -1(2) 

C(2A) 24(3) 37(4) 37(4) 4(4) 14(3) 3(3) 

O(2A) 25(4) 31(6) 52(7) 15(5) 11(5) 4(4) 

C(0AA) 43(6) 50(6) 58(6) 8(5) 24(5) 4(5) 

 

Table 3: Bond Lengths in Å for 3a. 

Atom Atom Length/Å 

O(3) C(22) 1.314(7) 

O(3) C(13) 1.467(8) 

O(2) C(3) 1.214(5) 

O(1) C(3) 1.327(2) 

O(1) C(2) 1.453(3) 
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Atom Atom Length/Å 

O(4) C(22) 1.212(9) 

N(1) C(15) 1.3413(16) 

N(1) C(4) 1.3295(17) 

N(2) C(14) 1.3315(16) 

N(2) C(5) 1.3422(16) 

C(14) C(15) 1.4063(17) 

C(14) C(22) 1.5042(16) 

C(15) C(16) 1.4781(18) 

C(5) C(6) 1.4806(18) 

C(5) C(4) 1.4039(18) 

C(22) O(3A) 1.347(15) 

C(22) O(4A) 1.19(2) 

C(6) C(7) 1.3902(18) 

C(6) C(11) 1.3944(18) 

C(4) C(3) 1.5095(17) 

C(16) C(17) 1.3931(18) 

C(16) C(21) 1.3976(18) 

C(17) C(18) 1.3819(19) 

C(7) C(8) 1.382(2) 

C(18) C(19) 1.386(2) 

C(3) O(1A) 1.386(9) 

C(3) O(2A) 1.18(3) 

C(21) C(20) 1.383(2) 

C(11) C(10) 1.380(2) 

C(19) C(20) 1.381(2) 

C(8) C(9) 1.384(2) 

C(10) C(9) 1.380(2) 

C(2) C(1) 1.497(3) 

C(13) C(12) 1.491(5) 

O(3A) C(13A) 1.487(17) 

C(13A) C(12A) 1.454(12) 

O(1A) C(2A) 1.507(13) 
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Atom Atom Length/Å 

C(2A) C(0AA) 1.460(17) 

 

Table 4: Bond Angles in ° for 3a. 

Atom Atom Atom Angle/° 

C(22) O(3) C(13) 114.5(5) 

C(3) O(1) C(2) 116.19(14) 

C(4) N(1) C(15) 118.16(10) 

C(14) N(2) C(5) 117.79(10) 

N(2) C(14) C(15) 122.77(11) 

N(2) C(14) C(22) 114.92(10) 

C(15) C(14) C(22) 121.99(11) 

N(1) C(15) C(14) 118.87(11) 

N(1) C(15) C(16) 116.86(11) 

C(14) C(15) C(16) 124.24(11) 

N(2) C(5) C(6) 117.99(11) 

N(2) C(5) C(4) 119.18(11) 

C(4) C(5) C(6) 122.83(11) 

O(3) C(22) C(14) 111.4(3) 

O(4) C(22) O(3) 128.1(5) 

O(4) C(22) C(14) 120.4(4) 

O(3A) C(22) C(14) 115.4(6) 

O(4A) C(22) C(14) 126.0(11) 

O(4A) C(22) O(3A) 118.5(12) 

C(7) C(6) C(5) 120.36(11) 

C(7) C(6) C(11) 119.27(12) 

C(11) C(6) C(5) 120.33(11) 

N(1) C(4) C(5) 122.56(11) 

N(1) C(4) C(3) 114.74(11) 

C(5) C(4) C(3) 122.69(11) 

C(17) C(16) C(15) 122.08(11) 

C(17) C(16) C(21) 118.84(12) 
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Atom Atom Atom Angle/° 

C(21) C(16) C(15) 119.07(12) 

C(18) C(17) C(16) 120.65(12) 

C(8) C(7) C(6) 120.16(12) 

C(17) C(18) C(19) 119.90(13) 

O(2) C(3) O(1) 125.2(3) 

O(2) C(3) C(4) 123.6(3) 

O(1) C(3) C(4) 111.00(12) 

O(1A) C(3) C(4) 106.8(4) 

O(2A) C(3) C(4) 122.0(14) 

O(2A) C(3) O(1A) 115.8(14) 

C(20) C(21) C(16) 120.28(13) 

C(10) C(11) C(6) 120.19(13) 

C(20) C(19) C(18) 120.09(13) 

C(19) C(20) C(21) 120.23(13) 

C(7) C(8) C(9) 120.18(13) 

C(11) C(10) C(9) 120.20(13) 

C(10) C(9) C(8) 119.98(13) 

O(1) C(2) C(1) 111.5(3) 

O(3) C(13) C(12) 110.7(3) 

C(22) O(3A) C(13A) 120.2(9) 

C(12A) C(13A) O(3A) 107.7(8) 

C(3) O(1A) C(2A) 113.5(7) 

C(0AA) C(2A) O(1A) 108.3(12) 

 

Table 5: Torsion Angles in ° for 3a. 

Atom Atom Atom Atom Angle/° 

N(1) C(15) C(16) C(17) 146.00(12) 

N(1) C(15) C(16) C(21) -33.11(17) 

N(1) C(4) C(3) O(2) -54.5(3) 

N(1) C(4) C(3) O(1) 131.00(16) 

N(1) C(4) C(3) O(1A) 104.5(5) 
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Atom Atom Atom Atom Angle/° 

N(1) C(4) C(3) O(2A) -31.9(11) 

N(2) C(14) C(15) N(1) -7.35(19) 

N(2) C(14) C(15) C(16) 174.58(11) 

N(2) C(14) C(22) O(3) -63.2(3) 

N(2) C(14) C(22) O(4) 115.4(4) 

N(2) C(14) C(22) O(3A) -78.4(6) 

N(2) C(14) C(22) O(4A) 97.8(9) 

N(2) C(5) C(6) C(7) -44.67(18) 

N(2) C(5) C(6) C(11) 137.50(14) 

N(2) C(5) C(4) N(1) -8.3(2) 

N(2) C(5) C(4) C(3) 170.72(12) 

C(14) N(2) C(5) C(6) -177.34(11) 

C(14) N(2) C(5) C(4) 3.77(18) 

C(14) C(15) C(16) C(17) -35.89(19) 

C(14) C(15) C(16) C(21) 144.99(13) 

C(14) C(22) O(3A) C(13A) -174.9(7) 

C(15) N(1) C(4) C(5) 4.67(19) 

C(15) N(1) C(4) C(3) -174.42(11) 

C(15) C(14) C(22) O(3) 123.2(3) 

C(15) C(14) C(22) O(4) -58.3(4) 

C(15) C(14) C(22) O(3A) 108.0(6) 

C(15) C(14) C(22) O(4A) -75.9(9) 

C(15) C(16) C(17) C(18) -179.53(12) 

C(15) C(16) C(21) C(20) 179.56(12) 

C(5) N(2) C(14) C(15) 3.75(18) 

C(5) N(2) C(14) C(22) -169.84(11) 

C(5) C(6) C(7) C(8) -176.31(13) 

C(5) C(6) C(11) C(10) 176.44(15) 

C(5) C(4) C(3) O(2) 126.5(2) 

C(5) C(4) C(3) O(1) -48.1(2) 

C(5) C(4) C(3) O(1A) -74.6(5) 

C(5) C(4) C(3) O(2A) 149.0(11) 
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Atom Atom Atom Atom Angle/° 

C(22) O(3) C(13) C(12) 87.7(5) 

C(22) C(14) C(15) N(1) 165.80(12) 

C(22) C(14) C(15) C(16) -12.3(2) 

C(22) O(3A) C(13A) C(12A) 158.7(9) 

C(6) C(5) C(4) N(1) 172.87(12) 

C(6) C(5) C(4) C(3) -8.1(2) 

C(6) C(7) C(8) C(9) -0.8(2) 

C(6) C(11) C(10) C(9) 0.6(3) 

C(4) N(1) C(15) C(14) 2.86(18) 

C(4) N(1) C(15) C(16) -178.93(11) 

C(4) C(5) C(6) C(7) 134.18(14) 

C(4) C(5) C(6) C(11) -43.7(2) 

C(4) C(3) O(1A) C(2A) -177.8(7) 

C(16) C(17) C(18) C(19) 0.1(2) 

C(16) C(21) C(20) C(19) -0.1(2) 

C(17) C(16) C(21) C(20) 0.4(2) 

C(17) C(18) C(19) C(20) 0.2(2) 

C(7) C(6) C(11) C(10) -1.4(2) 

C(7) C(8) C(9) C(10) -0.1(3) 

C(18) C(19) C(20) C(21) -0.2(2) 

C(3) O(1) C(2) C(1) 81.8(3) 

C(3) O(1A) C(2A) C(0AA) -68.0(11) 

C(21) C(16) C(17) C(18) -0.41(19) 

C(11) C(6) C(7) C(8) 1.5(2) 

C(11) C(10) C(9) C(8) 0.2(3) 

C(2) O(1) C(3) O(2) 0.0(4) 

C(2) O(1) C(3) C(4) 174.4(2) 

C(13) O(3) C(22) O(4) 0.8(7) 

C(13) O(3) C(22) C(14) 179.1(3) 

O(4A) C(22) O(3A) C(13A) 8.6(14) 

O(2A) C(3) O(1A) C(2A) -38.3(16) 
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Table 6: Hydrogen Fractional Atomic Coordinates (×104) and Equivalent Isotropic 

Displacement Parameters (Å2×103) for 3a. Ueq is defined as 1/3 of the trace of the 

orthogonalised Uij. 

Atom x y z Ueq 

H(17) 8133 6712 5107 33 

H(7) -3410 6355 2129 37 

H(18) 11598 6918 6748 39 

H(21) 6212 6343 8706 39 

H(11) -158 5415 2942 44 

H(19) 12371 6839 9365 45 

H(20) 9685 6551 10337 46 

H(8) -6700 6083 558 47 

H(10) -3453 5147 1363 54 

H(9) -6722 5479 172 55 

H(2A) -2051 5147 5902 41 

H(2B) -4299 5378 5744 41 

H(13A) 3765 7448 2537 50 

H(13B) 4219 7292 1052 50 

H(1A) -3092 5162 8196 73 

H(1B) -2663 5571 8286 73 

H(1C) -555 5311 8428 73 

H(12A) 7526 7590 2387 115 

H(12B) 8142 7187 2458 115 

H(12C) 7651 7373 3873 115 

H(13C) 4210 7418 1775 49 

H(13D) 6201 7427 3344 49 

H(12D) 6602 7106 684 77 

H(12E) 8574 7098 2252 77 

H(12F) 7866 7456 1379 77 

H(2AA) -985 5346 7926 38 

H(2AB) -3334 5564 7549 38 

H(0AA) -4538 5314 5167 72 

H(0AB) -3949 5014 6403 72 
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Atom x y z Ueq 

H(0AC) -2163 5107 5486 72 

 

Table 7: Atomic Occupancies for all atoms that are not fully occupied in 3a. 

Atom Occupancy 

O(3) 0.690(6) 

O(2) 0.833(5) 

O(1) 0.833(5) 

O(4) 0.690(6) 

C(2) 0.833(5) 

H(2A) 0.833(5) 

H(2B) 0.833(5) 

C(13) 0.690(6) 

H(13A) 0.690(6) 

H(13B) 0.690(6) 

C(1) 0.833(5) 

H(1A) 0.833(5) 

H(1B) 0.833(5) 

H(1C) 0.833(5) 

C(12) 0.690(6) 

H(12A) 0.690(6) 

H(12B) 0.690(6) 

H(12C) 0.690(6) 

O(3A) 0.310(6) 

C(13A) 0.310(6) 

H(13C) 0.310(6) 

H(13D) 0.310(6) 

O(4A) 0.310(6) 

C(12A) 0.310(6) 

H(12D) 0.310(6) 

H(12E) 0.310(6) 

H(12F) 0.310(6) 
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Atom Occupancy 

O(1A) 0.167(5) 

C(2A) 0.167(5) 

H(2AA) 0.167(5) 

H(2AB) 0.167(5) 

O(2A) 0.167(5) 

C(0AA) 0.167(5) 

H(0AA) 0.167(5) 

H(0AB) 0.167(5) 

H(0AC) 0.167(5) 
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Copper and Visible-Light: Highlighting the Special Features 

beyond Photoinduced Electron Transfer 

Abstract: 

Visible-light photoredox catalysis has led to a paradigm shift in organic synthesis by offering 

elusive reaction pathways. Ru(II) or Ir(III)-polypyridyl complexes and organic dye sensitizers 

have been the widely used chromophores owing to strong absorption in the visible region, long 

excited-state lifetimes, and high redox potentials. However, the cost and adverse environmental 

impact of these heavy transition-metal complexes, as well as their restrictive conformational 

stability (both with respect to inner-sphere substrate interactions and as consequence 

asymmetric transformations), limit their applications. Given the crucial need to develop 

 

Figure 1: Various reactivities of copper in visible-light induced chemical transformations.
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environmentally benign, cheap, multi-purpose, and flexible catalytic systems, copper has 

emerged as an appealing alternative. Copper-based photocatalysts display highly tunable redox 

properties in their excited states. Moreover, the combination of conventional photocatalysts 

with copper(I) or copper(II) salts has emerged as an efficient dual catalytic system for many 

cross-coupling reactions. 

Introduction: 

Visible-light photoredox catalysis[1,2] now a days has become a widely used method in organic 

synthesis. As because the small organic molecules do not absorb in the visible-light region of 

the electromagnetic spectrum, various photocatalysts have been employed to undergo single-

electron transfer (SET) or energy transfer processes from their photoexcited states. This results 

in the formation of radical species which participate in various cross-coupling and 

cycloaddition reactions, respectively in non-traditional reaction pathways complementary to 

common, thermal two-electron processes.[3] Most commonly used photocatalysts are heavy 

transition metal catalysts such as Ru(II) or Ir(III)-polypyridyl complexes or metal-free organic 

dye sensitizers, owing to their favorable characteristics such as long excited-state lifetimes, 

strong absorption in the visible region, and high reduction or oxidation potentials of the 

corresponding excited states.[2] However, the major drawback with organic dyes is lower 

photostability. On the other hand, heavy transition metal-based complexes are expensive as 

well as environmentally unfriendly. Moreover, the high oxidation states of conventional Ir- or 

Ru-based photocatalysts make them very stable in terms of coordination which hinder their 

ability to undergo oxidative addition with organic electrophiles. In addition, although a few 

stereoselective reactions have been reported by employing Ir- or Ru-based photocatalysts (in 

presence of labile ligands) with prefunctionalized substrates[4], but the synthesis of appropriate 

chiral octahedral complexes remains a substantial challenge. Catalysts that can undergo 

electron transfer processes in their inner coordination-sphere and thereby can also control 

reactions through their ligand environment are highly desirable. First row transition metal 

complexes are promising metal of choice in this context.[5] As a result, significant 

advancements have been made by various scientific groups by merging conventional Ir- or Ru-

based photocatalysts with various nickel(II) salts or complexes that are capable of effecting 

oxidative addition to organic electrophiles leading to cross-coupled products.[6] However, with 

very recent discoveries copper has now come to the fore in the arena of photocatalysis[7], owing 

to its versatile redox properties, capable both of initiating a reaction by SET as well as directly 

interacting with substrates in its coordination sphere. Moreover, copper complexes are highly 
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Figure 2: Representative ligands used in copper photocatalysis 

dynamic which allows the synthesis of various heteroleptic complexes with N- and P-based 

multidentate ligands (Figure 2) to tune redox properties and enhance excited-state lifetime.[8] 

1) Cu(I) complexes as stand-alone photocatalysts: 

In 1977, McMillin et. al. described the first ever visible-light-induced electron transfer process 

from a copper complex.[9] They synthesized [Cu(dmp)2]BF4 (dmp = 2,9-dimethyl-1,10-

phenanthroline) which could be photoexcited at 454 nm; the resulting metal-to-ligand charge 

transfer (MLCT) state could reduce Co(III) in K[cis-Co(IDA)2]·1.5H2O to the corresponding 
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Co(II) complex. A decade later, Sauvage et. al. introduced[10] an engineered Cu(I) complex of 

two crescent-shaped phenanthroline ligands, which also resulted increase in the lifetime of its 

MLCT excited state (≤270 ns). The complex, [Cu(dap)2]Cl (dap = 2,9-bis(p-anisyl)-1,10 

phenanthroline; Ered = –1.43 V vs. Saturated Calomel Electrode (SCE) in CH3CN), was 

employed to induce a reductive coupling of nitrobenzyl bromide to the corresponding 

bibenzylic compound in presence of triethylamine. Surprisingly, this catalyst went into 

hibernation until it was resuscitated in 2012 by Reiser and co-workers[11] for a C–C bond-

forming atom transfer radical addition (ATRA) reaction. This particular study, along with  

 

Figure 3: Mechanistic paradigms for Cu(I) photocatalysis. L = ligand; R-X = electron-

accepting substrate (X = leaving group); Nu = nucleophile. 

heteroleptic Cu(I)-phenanthroline- bisphosphine complex catalyzed 6π-electrocyclization[12] 

by Collins et al. and palladium-free Sonogashira couplings via light-activated copper(I)-alkyne 

complexes[13] (Hwang and co-workers), set in motion the recent proliferation of studies 

involving Cu(I)- and Cu(II)-complexes as effective visible light photocatalysts. 

The general mechanistic paradigm of Cu(I)Ln-complexes as photocatalysts is shown in Figure 

3. Upon photoexcitation with visible-light, Cu(I)Ln* transfers a single electron to an 

electrophile producing a radical species (R•) [which can further react with an alkene or alkyne 

resulting in a more nucleophilic radical species (R′•)] and a transient Cu(II)Ln intermediate. At 
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this stage, two possibilities emerge: (i) Cu(II)Ln intermediate can exchange a ligand (L) with 

an incoming nucleophilic cross-coupling partner (Nu) to generate a Nu-Cu(II)L(n−1) 

intermediate which transfers the nucleophilic moiety to R• to furnish the cross-coupled product 

(R–Nu) and reverts to the initial Cu(I)Ln complex upon coordinating with the previously 

departed ligand (L); (ii) the incipient radical (R•) can bind to the Cu(II)Ln intermediate which 

results in the formation of a high-valent R-Cu(III)-Ln intermediate.[14] This intermediate 

exchanges a ligand with Nu to form R-Cu(III)L(n−1)-Nu, which undergoes facile reductive 

elimination to produce the desired cross-coupled product (R–Nu) and regenerate the initial 

Cu(I)Ln complex with L. 

Olefin bifunctionalization 

 

Figure 4: This represents mechanistically distinct copper-photocatalzed olefin-

bifunctionalization processes. OTf = Triflate.; LED = light-emitting diode. 
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A wide range of functionalities can bind to the Cu(II)-intermediate generated via SET from the 

photoexcited Cu(I)*. As a result, the process of ligand-transfer to the intermediate radicals gets 

promoted in various atom-transfer radical addition (ATRA) reactions. The first such example 

was demonstrated in 2015 by Reiser and co-workers through the development of vicinal 

trifluoromethylation/chlorosulfonylation of unactivated olefins (Figure 4, i). When these 

olefins were exposed to triflyl chloride (CF3SO2Cl) in the presence of 1 mol% [Cu(dap)2]Cl, 

the corresponding trifluoromethyl-chlorosulfonylated products were obtained in high yields.[15] 

On the other hand, when [Ru(bpy)3]Cl2 was employed as a photocatalyst, corresponding 

trifluoromethyl-chlorinated products were obtained.[16] The formation of the unexpected 

sulfonylchloride was explained in terms of coordination between the chlorosulfonyl anion, 

generated upon mesolysis of triflyl chloride after SET by excited-state [Cu(dap)2]Cl*, and the 

concurrently formed Cu(II)-center. The same group also found out that the 

iodoperfluoroalkylation of styrenes fails with common ruthenium or iridium-based 

photocatalysts but proceeds efficiently with [Cu(dap)2]Cl, suggesting the intermediacy of an 

iodine-transferring  [CuII(dap)ClI] species (Figure 4, ii).[17] Yu, Li, and co-workers have 

recently shown a fluorine atom-transfer (FAT) capability of an innovative Cu(II)-F complex to 

efficiently promote carbofluorination of unactivated olefins (Figure 4, iii).[18] The reaction 

proceeds in the presence of Cu(OTf)2, as the catalyst with the assistance of two ligands viz. 

bathocuproine (BC) to reduce Cu(II) to Cu(I) and electron-deficient 4,4′-di(methoxycarbonyl)-

2,2′-bipyridine (bpydc) to accelerate FAT from the LCu(II)-F complex. CsF and Umemoto’s 

reagent have been used as the sources of F and CF3 respectively. In the same year, a similar 

dicopper complex has been synthesized by Fu, Peters and co-workers to facilitate transfer of a 

thiotrifluoromethyl (SCF3) group (Figure 4, iv).[19] The ligand transferring process is initiated 

with the photoexcitation of a CuI(BINAP)(SCF3) complex that reduces a electrophile to 

generate a radical, which is intercepted by an olefin to generate a more nucleophilic alkyl 

radical. At the same time, the newly-formed [CuII(BINAP)(SCF3)]2 complex effectively 

transfers the SCF3 group to this radical species to furnish the targeted trifluoromethyl thioether 

with the concurrent regeneration of the initial CuI-complex with the SCF3-source. 

All the discussed examples so far can be explained either by ligand transfer or 

rebound/reductive elimination of Cu(II)-species with a SET-generated radical. But the three-

component cross-coupling protocol reported by Xiao and co-workers[20] involving redox-active 

cycloketone oxime esters, styrenes, and aryl boronic acids provides a strong case for the 

intermediacy of Cu(III)-species via a rebound pathway (Figure 4, v). The proposed mechanism 
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involves photoexcited Cu(I)(dtbbpy)*-catalyzed SET-assisted formation of a cyanoalkyl 

radical that reacts with an olefin to generate another intermediate radical. Simultaneously, the 

newly-formed Cu(II) species undergoes transmetalation with aryl boronic acid to form an aryl-

Cu(II) intermediate; which subsequently captures the intermediate radical to form a new aryl-

Cu(III)(alkyl)-species. This intermediate undergoes reductive elimination to yield the cross-

coupled product with the regeneration of the Cu(I) catalyst. 

C(sp3/sp2)-Heteroatom cross coupling 

Shifting the classical pathway of nucleophilic substitution to a radical regime under visible-

light irradiation conditions provides remarkable solutions to long-standing challenges for the 

(asymmetric) synthesis of amines as progressively addressed by the pioneering contributions 

from the groups of Peters and Fu. In 2016, they have disclosed an enantioconvergent cross-

coupling reaction between racemic tertiary α-chloroamides and carbazoles/indoles catalyzed 

by a novel Cu(I)/Nu/(S)-SITCP -complex (Nu = carbazole or indole) that acts both as a 

photocatalyst and as the source of enantioinduction (Figure 5, i).[21] The commercially available 

chiral phosphine ligand, (S)-SITCP, controls the absolute configuration of the products 

regardless of the initial stereochemistry of the electrophiles. It was proposed that in situ formed 

[Cu(I)-((S)-SITCP)2-carbazolide] complex acts as a photocatalyst. Later, the same groups have 

reported a generalized protocol for C-N cross-coupling by synthesizing a novel tridentate 

bisphosphine/carbazolide ligand-containing [Cu((CbzdiphosiPr)] photocatalyst. This 

photocatalyst was employed in combination with CuBr to accomplish C–N cross coupling 

between unactivated secondary alkyl halides and carbamates in an ‘out-of-cage’ process 

(Figure 5, ii).[22] They also found out that the use of Ru- or Ir-based photocatalysts instead of 

the aforementioned Cu(I)-photocatalyst led to <1% formation of the desired product. The scope 

of nitrogen-containing cross-coupling counterpart could be further extended to primary 

aliphatic amines by overcoming usual synthetic problems such as polyalkylation or steric 

hindrance. The same groups have employed a photoactive Cu(I)-binaphtholate complex to 

mediate the desired cross-coupling between the primary amines with unactivated secondary 

alkyl iodides under mild reaction conditions.  The corresponding mono-alkylated amine 

products were obtained in very good yields (Figure 5, iii).[23] The rac-BINOL ligand was found 

to be essential in this reaction. According to the proposed reaction mechanism, the photoexcited 

Cu(I)/BINOL-complex undergoes SET to generate an alkyl radical and a Cu(II)/BINOL 

species. This Cu(II)/BINOL species upon ligand exchange with an amine forms the key Cu(II)-

amine species which combines with the alkyl radical and subsequent cross-coupling furnishes  
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Figure 5: Cu(I)-complexes as stand-alone photocatalysts: Synthetic applications in carbon–

nitrogen cross-coupling reactions. BTTP = Phosphazene base P1-tert-Bu-tris(tetramethylene). 

the desired product. 

Carboxylic acids are a more abundant, stable, and less toxic chemical feedstock in comparison 

to alkyl halides. N-(hydroxy)phthalimide (NHPI) esters are being widely exploited as superior 

sources of alkyl radicals through a SET-reduction-decarboxylation process, leading to the 

development of a wide variety of decarboxylative cross-coupling methodologies.[24] This 

principle was exploited by Peters, Fu and co-workers for the development of a decarboxylative 

C–N coupling protocol (Figure 5, iv). This is an azide-free alternative to the Curtius 

rearrangement.[25] As per their proposal, initial SET from a photoexcited *Cu(I)/dmp/xantphos-

complex resulted in the formation of a Cu(II)-species and the radical anion of the NHPI-ester. 

Fragmentation of this radical anion species produced an alkyl radical, CO2 and the phthalimide 

anion, which binds to Cu(II). The recombination of the alkyl radical with this Cu(II)-

phthalimide species and subsequent cross-coupling afforded the desired product with 

regeneration of the Cu(I) catalytic species. 
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2) Photoexcitation of in situ generated Cu(I)-substrate complexes 

A mechanistically distinct class of reaction manifolds unique to copper has emerged wherein 

suitable substrates can form visible light-absorbing complexes by coordinating to copper salts 

(without using any external ligands). The excited *Cu(I)-substrate complex reduces an 

electrophile by a SET process and the resulting Cu(II)-substrate species which then participates 

in a diverse range of synthetic transformations including cross-coupling reactions and 

functional group modifications (Figure 6). Based on this concept, Hwang and co-workers 

developed a visible-light-mediated, high-yielding palladium free Sonogashira cross-coupling 

reaction between aryl halides and alkyl- or aryl-substituted terminal alkynes in the presence of 

catalytic amounts of CuCl.[13] 

This group has also applied this concept for the development of a three-component coupling 

reaction between anilines, terminal alkynes, and benzoquinones for making functionalized 

indoles (Figure 7, i).[26] The transformation operates via the formation of a photoactive Cu(I)-

phenylacetylide species which, upon visible-light irradiation, reduces benzoquinone via SET 

(−2.048 V vs. SCE in CH3CN) to enable further reactions with aniline. This principle has also  

 

Figure 6: Cross-coupling reaction via photoexcitation of in situ generated Cu(I)-substrate 

complexes. In situ generated Cu(I)-substrate complexes reduce an electrophilic coupling 

partner upon irradiation with visible-light as a starting point for cross coupling. FG = 

Functional Group; X = counter anion; EA = electron acceptor. 
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been applied to denitrogenative oxidative C(sp2)–C(sp) cross-coupling between 

hydrazinylpyridines and terminal alkynes[27], oxidative C–N coupling of anilines with terminal 

alkynes to synthesize α-ketoamides[28], oxidative C–N coupling of 2-aminopyridine with 

terminal alkynes via C–C triple bond cleavage[29], and oxidative C(sp)–C(sp) homo and cross-

coupling of terminal alkynes.[30] 

An interesting example of this strategy entailed the coupling of phenols and terminal alkynes 

in the presence of molecular oxygen to produce aryl and alkyl ketones. According to proposed 

mechanism, the excited state of the in situ generated Cu(I)-acetylide species reduces molecular 

oxygen by SET to generate a Cu(II)-acetylide species and a superoxide radical anion. Then, 

phenol is also converted to benzoquinone by the Cu(II)-superoxo intermediate. Sequential 

Paterno-Buchi-type [2+2] cycloaddition of Cu(II)-phenylacetylide and benzoquinone, oxetane 

ring-opening, fragmentation, formation of a peracid species, CO2 extrusion, and keto-enol 

tautomerism furnish the desired aryl ketone product (Figure 7, ii).[31] On the other hand, the 

coupling between phenylacetelyne and aliphatic alcohols in the presence of oxygen, 

stoichiometric 2-picolinic acid, and catalytic copper(I) iodide furnished α-keto esters.[32] Quite 

recently, the same group has reported a CuCl catalyzed three-component reaction between N-

alkylanilines, terminal alkynes and primary alcohols in the presence of stoichiometric 

benzoquinone as an oxidant to furnish propargylamines (Figure 7, iii).[33] The authors proposed 

that the photoexcited Cu(I)-phenylacetylide reduces benzoquinone and then the corresponding 

radical anion species triggers a hydrogen atom-transfer (HAT) process with a primary alcohol 

to generate a α-oxy radical. This radical undergoes a radical-radical cross-coupling with aminyl 

radical cation previously generated upon LMCT excitation of a Cu(II)-amine species. 

Subsequent intramolecular proton-transfer followed by elimination of water molecule results 

in the formation of an iminium species which gets trapped by Cu(I)-phenylacetylide to produce 

the desired products. Recently, Lalic and co-workers established the right conditions for a 

C(sp)-C(sp3) cross-coupling reaction. They showed that catalytic amounts of CuCl in 

combination with a substituted terpyridine ligand can modulate the reactivity of the 

photoexcited Cu(I)-acetylide complex to achieve the coupling of unactivated alkyl iodides and 

terminal alkynes (Figure 7, iv).[34] Wu and co-workers have reported a C–H functionalization 

protocol wherein Cu(II) salts can bind 2-arylaminoacetates for the in situ formation of 

photoactive Cu(I) intermediates which can  promote the alkylation of enolates (Figure 7, v).[35] 

Quite recently Liu and co-workers have discovered that in situ generated Cu(NCS)2¯ can play 

the dual roles, as a photocatalyst and as a Lewis acid (Figure 7, vi).[36] Energy transfer from 
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photoexcited Cu(NCS)2¯* to a vinyl azide causes a rearrangement to corresponding azirine 

intermediate which upon coordination by ground state Cu(NCS)2¯ is activated and undergoes 

a ring-opening for the subsequent coupling with thiocyanide to give rise to 2-aminothiazole 

derivatives. 

 

Figure 7: A few representative examples of the synthetic methodologies developed on the 

basis of this concept are shown, though (e) differs in that the in situ formed [Cu(NCS)2]¯ 

complex acts as a sensitizer in the excited state and as a Lewis acid in the ground state. OAc = 

acetate. 
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3) Cooperative photoredox-copper dual catalysis 

Cu(I) and Cu(II) salts have also recently been used as a co-catalyst in conjunction with 

traditional Ir- or Ru-based photocatalysts. Owing to the persistent radical effect (PRE) by 

copper, organic radical intermediates generated upon visible-light-induced photocatalytic 

cycles can be efficiently trapped by the metal center. The resulting organocopper intermediates 

display a variety of follow-up chemistry. The general representation of photo-copper dual 

catalytic cycle is shown in Figure 8 (irrespective of order): (i) the photocatalyst upon visible-

light absorption, generates a radical species (R1•) via single-electron reduction of the 

electrophile; (ii) simultaneous single-electron oxidation of the initial Cu(I) species to the 

ligated Cu(II)Ln species by the oxidized-state of the photocatalyst; (iii) anionic ligand (Z) 

exchange from one of the reaction counterparts and formation of Cu(II)L(n−1)Z (or in some 

cases transmetallation); (iv) capture of the previously generated radical (R1•) by Cu(II)L(n−1)Z 

and formation of the high-valent transient Cu(III)R1L(n−1)Z species; and finally (v) collapse of 

Cu(III)R1L(n−1)Z by reductive elimination to generate the desired cross-coupled product and to 

regenerate the initial Cu(I) species to close the copper-catalytic cycle (Figure 8). The 

carbophilic nature of copper allows access to various organo-copper species such as Cu-aryl  

 

Figure 8: The general mechanistic pathways for cooperative photoredox/copper dual catalytic 

cycles. 
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and Cu-alkyl that in turn translate to several cross-coupling strategies with the formation of a 

wide variety of vital bonds such as C(sp2)–C(sp3), C(sp2)–C(sp2), C(sp3)–N(sp2), C(sp3)–

N(sp3), C(sp3)–O, C(sp3)–C(sp), and C(sp3)–C(sp3). 

In an excellent study published in 2012, Sanford and co-workers have developed a mild 

synthetic method for the synthesis of perfluoroalkylated (hetero)aromatic compounds by the 

cross-coupling between (hetero)aryl boronic acids and perfluoroalkyl iodides in the presence 

of [Ru(bpy)3]Cl2·6H2O as the photocatalyst and CuOAc as the C(sp2)–C(sp3) bond-forming 

co-catalyst (Figure 9, i).[37] 

Although high-valent Cu(III)-intermediate undergoes facile reductive elimination, oxidative 

addition of carbon-halogen bonds to low-valent Cu(I) species was a longstanding problem in 

the field of cross-coupling reactions that had barred the widespread use of copper as an efficient 

catalyst. In a noteworthy disclosure by MacMillan and co-workers have shown that an efficient 

cross-coupling reaction can achieved between unactivated aryl bromides and a 

trifluoromethylating agent in the presence of an Ir-based photocatalyst and copper co-

catalyst.[38] The transformation proceeds through the initial formation of a reactive silyl radical 

from tris(trimethylsilyl) silanol that abstracts bromine from the aryl bromide substrate to 

generate an aryl radical. At the same time, the Cu(I) complex combines with the trifluoromethyl 

radical generated during the closure of the Ir-photocatalytic cycle and forms a Cu(II)CF3 

complex. This complex then captures the previously generated aryl radical forming a Cu(III)-

intermediate which upon reductive elimination produce  the trifluoromethylated arenes in 

excellent yields (Figure 9, ii). 

Quite recently, Glorius and co-workers showed that a dual catalytic cycle involving a 

photocatalyst and a copper catalyst facilitate a decarboxylative olefination of redox-active 

esters.[39] Upon SET from excited state of the photocatalyst to the redox-active primary esters, 

alkyl radicals were obtained after CO2 extrusion, which were subsequently captured by the 

Cu(II) complex. The newly-formed Cu(III)alkyl species underwent β-hydride elimination to 

generate the desired terminal olefin in high yields concurrent with regeneration of the Cu(I) 

complex. Then the Cu(I)-complex was subsequently oxidized to the initial Cu(II) species to 

close the photocatalytic cycle (Figure 9, iii). 

Hu and co-workers have recently established an efficient cross-coupling reaction between 

activated carboxylic acids and nitrogen nucleophiles for the synthesis of a wide range of alkyl 

amines.[40] In the initial step, benzophenone imine coordinates Cu(I), and subsequent  
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Figure 9: A series of non-stereoselective cross-coupling reactions. 

deprotonation generates a Cu(I)-amido complex which then captures the alkyl radical generated 

from the alkyl NHPI ester and forms the alkyl-Cu(II) species. This species then gets converted 

to the corresponding Cu(III) complex by the oxidized photocatalyst, which then undergoes 



Chapter 3: Copper and Visible-Light 

119 
 

reductive elimination to give the cross-coupled product with concurrent regeneration of the 

initial Cu(I) complex. The benzophenone imine group can be subsequently hydrolyzed or 

transaminated to give the corresponding primary amines (Figure 9, iv). Hu’s group has further 

expanded the scope of the C-N bond-formation to anilines (Figure 9, v)[41] as well as to C-O 

bond forming reactions with phenols (Figure 9, vii)[42]. 

Almost at the same time, MacMillan and co-workers[43] further extended the scope of this 

principle by employing a wide range of free (unactivated) primary, secondary, and tertiary 

alkyl carboxylic acids through in situ iodonium activation with a broad range of nitrogen 

nucleophiles such as heteroaromatics, amides, sulfonamides, and anilines (Figure 9, iv). The 

synthetic transformation proceeds via the initial formation of the Cu(I)-amido species which 

then gets oxidized by the photocatalyst to corresponding Cu(II)-amido species. Then the 

reduced photocatalyst generates alkyl radicals by SET to the iodomesitylene dicarboxylate, 

which then binds with previously generated Cu(II)-amido species to form the Cu(III)-

intermediate which leads to the desired product formation. 

Lin, Liu and co-workers[44] have developed a decarboxylative, enantioselective cyanation 

protocol of secondary benzylic NHPI esters using TMSCN (as a cyanide source) in the 

presence of [Ir(ppy)3], CuBr and the chiral pyBOX ligand (Figure 10, i). The key step is the 

capture of the radical obtained by photoreduction of the NHPI ester by the chiral L*Cu(II)CN 

complex to generate the corresponding Cu(III)-intermediate. Reductive elimination from this 

intermediate provided the nitrile products in good yields with excellent enantioselectivities. 

Later, Mei, Han and co-workers extended this concept to achieve an enantioselective 

bifunctionalization i.e. cyanoalkylation of olefins (Figure 10, ii).[45] 

The aforementioned studies invariably required activation of the carboxylic acids either as their 

NHPI esters or through in situ iodonium formation. This potential drawback has recently been 

addressed in photocatalysis by using copper salts as the co-catalyst. Copper has the potential 

to enable the direct decarboxylation of the free carboxylic acids via formation of Cu(II)-

carboxylate complexes, which can again capture the photochemically-generated radical to form 

Cu(III)(alkyl)-carboxylates. These Cu(III)-intermediate can then undergo decarboxylation, 

radical recombination, and reductive elimination to furnish the cross-coupled product (Figure 

8). Liu and co-workers[46] showed that a decarboxylative cross-coupling reaction between α,β-

unsaturated carboxylic acids and ethyl iododifluoroacetate (Figure 10, iii) is possible following 

the idea. It was proposed that Cu(I) was first oxidized to Cu(II) by Ru(II)*, which then forms 
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Cu(II)-carboxylate complex. Then while re-oxidation of Ru(I) to Ru(II), difluoroacetyl radical 

was obtained. This radical then adds to the α-position of the olefinic double bonds of the Cu(II)-

carboxylate complex, which subsequently undergoes CO2 extrusion and elimination of Cu(I) 

to produce the desired products. 

In line with this concept, MacMillan et al. have recently developed a decarboxylative 

trifluoromethylation of aliphatic carboxylic acids (Figure 10, iv).[47] The photoexcited Ir(III)*  

initially oxidizes Cu(II)-carboxylate to corresponding Cu(III)-species. Then, subsequent 

extrusion of CO2 and recombination of the newly generated alkyl radical produces the alkyl-

Cu(III) intermediate which oxidizes Ir(II) to ground-state Ir(III) to close the photocatalytic 

cycle and generate an alkyl- Cu(II) intermediate. This intermediate further engages with  

 

Figure 10: Few more selected examples including some enantioselective transformations. 

BTMG = 2-tert-butyl-1,1,3,3-tetramethylguanidine 
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Togni’s reagent to furnish the targeted alkyl-CF3 products and regenerates the Cu(II) co-

catalyst. 

4) Miscellaneous examples 

 

Figure 11: Miscellaneous roles of copper in photoredox catalysis. DEBM = diethyl 

bromomalonate; QUINAP = 1-(2-Diphenylphosphino-1-naphthyl)isoquinoline. 
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Apart from the aforementioned studies, copper has played some special roles in photocatalytic 

transformations which will be discussed in this section. Nicewicz and co-workers[48] have 

combined photocatalysis with copper catalysis in order to achieve a regioselective 

halofunctionalization of unsaturated carboxylic acids (Figure 11A, i). The reaction proceeds 

via the initial oxidation of the alkene by the Fukuzumi’s catalyst followed by the nucleophilic 

addition of the internal carboxylate to the radical cation intermediate. Then, Cu(II) co-catalyst 

assists in the halide transfer step from an external halide source to  newly-generated C-centered 

radical which lead to the desired product formation. Zhu and co-workers have shown that a 

remote C(sp3)-H functionalization of N-alkoxypyridinium salts is possible in presence of 

copper salt under photocatalytic conditions (Figure 11A, ii). In this case also copper assisted 

pseudo-halogen transfer to the intermediate radical was responsible for the formation of various 

δ-functionalized alcohols.[49] 

In 2012, Rueping et. al. has shown that a photocatalytic oxidative alkynylation reaction of 

tetrahydroisoquinolines can be achieved using [Cu(MeCN)4]PF6 as a co-catalyst.[50] The role 

of copper salt was explained in terms of formation of copper acetylide as the active nucleophile 

from terminal alkynes. Later, Li and co-workers have extended concept through the 

development of its asymmetric variant by using a chiral Cu-QUINAP complex (Figure 11B).[51] 

The strategy has also been successfully used to functionalize isochromans with β-keto esters 

wherein catalytic amount of Cu(OTf)2 has been used to activate the nucleophiles for their 

addition to the cationic intermediates.[52] Fu and co-workers[53] also contributed by the 

development of a photocatalyzed decarboxylative alkynylation of NHPI esters of α-amino 

acids. Presence of catalytic amounts of CuI was necessary to generate the active nucleophile in 

the form of copper acetylide. 

Kobayashi and co-workers[54] established an improved Chan-Lam coupling reaction between 

electron-deficient aryl boronic acids and anilines (Figure 11C) by a combined 

copper/photocatalyst system. In the key step, a organo-Cu(III)-amide species was formed 

which underwent reductive elimination to give the desired cross-coupled product. 

Aromatic nitriles can be obtained from primary amines through aerobic oxidation (Figure 11D, 

i) which was accomplished by Tao’s group by employing [Ru(bpy)3]Cl2/CuBr dual catalytic 

system. The proposed mechanism involves the initial formation of a copper-amide intermediate 

which undergoes SET by photoexcited Ru(II)* and subsequent hydrogen abstraction and 

neutralization by superoxide radical anion and hydrogen peroxide anion, respectively, to form 
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a copper-amido intermediate. Then, another similar catalytic cycle furnishes the desired nitrile 

derivative.[55] 

Guo and co-workers have utilized copper’s Lewis acidity for the activation of C(sp)≡C(sp) 

triple bonds through the formation of a π-complex (3c-2e) (Figure 11D, ii). This complex upon 

single-electron oxidation by a photocatalyst can form a new 3c-1e system which then 

undergoes an arene-yne cyclization reaction to produce phenanthrene derivatives.[56] 

5) Cu(II)-complexes as stand-alone photocatalysts: 

Very recently, the successful applications of Cu(II)-complexes as visible light photoredox 

catalysts have been reported by Rehbein, Reiser and co-workers. Following the seminal work 

of Kochi and co-workers, who demonstrated that CuCl2 undergoes homolysis to Cu(I)Cl and 

Cl• upon UV-irradiation,[57] the activation of Cu(II)X2 complexes endowed with suitable 

ligands to redshift absorption into the visible region can produce radicals X• that initiate 

 

Figure 12: Z = Nucleophile; Y = Heteroatom; VLIH = visible-light induced homolysis. 
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productive organic transformations  (Figure 12). Thus, rather than metal-to-ligand charge 

transfer (MLCT) states fundamental to photoexcitation of Cu(I) complexes,  Cu(II) complexes 

react from ligand-to-metal charge transfer (LMCT) states [58], which oxidize the nucleophile. 

Following this concept, the synthesis of azido ketones from vinyl arenes, TMSN3 and oxygen 

was developed using the copper(II) complex [Cu(dap)Cl2] as photoredox catalyst [59] (Chapter 

4). The Cu(II) complex undergoes ligand exchange with azide to give rise to a new 

LCu(II)azide-bridged dimer. Upon visible light-induced homolysis (VLIH) LCu(I) and an 

azido radical are formed, and the latter can be intercepted by an alkene followed by molecular 

oxygen. Rebound of the O-centered radical with LCu(I) regenerates the LCu(II)-species, which 

upon elimination releases the product and closes the catalytic cycle. 

A second, notable example was reported shortly after by Gong and coworkers [60] (Figure 13). 

In this case, a chiral Cu(II)-bisoxazoline complex is alkylated via transmetallation from 

trifluoroborate, and once again VLIH generates an alkyl radical and a Cu(I) intermediate. In a 

second catalytic cycle, this alkyl radical adds to the substrate, here an protected imine that is  

 

Figure 13: Example of a Cu(II)-photocatalyzed reaction. 
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activated by the same chiral Cu(II)-bisoxazoline complex. The newly generated N-centered 

radical is reduced by the previously-formed Cu(I) species in the first cycle to release the 

alkylated imine with high enantioselectivity. 

Very recently, [Cu(dap)Cl2] has been successfully employed in a photochemical ATRA 

reaction between sulfonyl chloride and olefins [61] (Chapter 6).. In line with Kochi’s proposal, 

VLIH of LCu(II)-Cl bond generates LCu(I)-species for reduction of sulfonyl chlorides. 

Interestingly, the presence of stoichiometric amount Na2CO3 is necessary when unactivated 

olefins (e.g. allylbenzene) are subjected to the aforementioned reaction, in contrast to activated 

olefins (e.g. styrene) for which no additive is required. The role of Na2CO3 is proven to prevent 

the catalyst poisoning during the reaction. 

Another excellent report by Yuan and coworkers [62] disclosed the ability of CuCl2 salt to form 

photoactive species with solvent (viz., acetonitrile or acetone), which could efficiently convert 

benzyl alcohol to benzaldehyde in the presence of molecular oxygen. Detailed mechanistic 

studies suggested that molecular oxygen helped only in the regeneration of the catalyst but not 

acted as a source of oxygen in benzaldehyde. 

Conclusion and outlook: 

Although copper-based photocatalysts have mostly been used for SET from photoexcited states 

involving transition from Cu(I)* to Cu(II), there have been a few reports which exploit the 

photo-oxidizing potential of transitions from Cu(I)* to Cu(0)[63] or from Cu(II)* to Cu(I).[64] 

More sophisticated catalytic systems can be designed because of the high degree of tunability 

in the coordination sphere and ligand-coordination mode which allows further optimization of 

redox properties and excited-state lifetimes (10). Likewise, a structurally pre-distorted 

bis(chelated) Cu(I)-complex with a guanidine-quinoline ligand system has been synthesized 

which retains its constrained geometry in both the +1 and +2 oxidation states to instigate 

photochemical reactions by facilitating faster MLCT transition.[65] In the coming years, copper 

complexes with such augmented potential will almost certainly have extensive impact in 

organic synthesis, materials science, and pharmaceutical chemistry. 
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Copper and Visible-Light: Oxo-azidation of Vinylarenes 

Abstract: 

A visible-light-accelerated, copper(II)-catalyzed method for oxo-azidation of vinylarenes has 

been developed. This method operates at room temperature and utilizes molecular oxygen as 

the stoichiometric oxidant. In contrast to commonly used iridium, ruthenium or organic dye 

based photocatalysts, copper-based photocatalysts were found to be unique for this 

transformation, which is attributed to the inner-sphere mechanism. With spectroscopic 

evidences, Cu(II) has been proposed as the catalytically active species. In the key-step, a 

copper-azide species undergoes a light-accelerated homolysis to form Cu(I) and azido radicals. 

To the best of our knowledge, this represents the first visible-light photocatalyzed process 

triggered by copper in the oxidation state +2. This study also represents the first catalytic 

synthesis of azidoketones directly from olefins. 

 

Figure 1: Copper-catalyzed oxo-azidation of vinylarenes.

Introduction: 

Visible-light photocatalysis has advanced organic synthesis during the last decade by offering 

unique opportunities to generate radical-intermediates in an environmentally benign and 

economic manner.[1] In this context, utilization of earth-abundant metals instead of heavy 

metals (ruthenium or iridium are always high on demand.[2] Particularly, photoactive Cu(I)-

complexes has emerged as excellent catalysts[3] for the difunctionalization of carbon–carbon  
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Figure 2: Selected bioactive compounds. 

multiple bonds,[4,5] or in cross-coupling reactions[6] providing an attractive alternative to 

thermal activation by transition-metal or organic oxidants.[7] 

Organic azides,[8] especially azidoketones,[9,10] are important class of compunds (Figure 2), and 

consequently, various methods have been developed for their synthesis. The most commonly 

used method is a nucleophilic substitution (Scheme 1)[11] reaction using sodium-azide as the 

azide source and pre-functionalized starting materials with a labile leaving group.[12] In 2000, 

Nair and co-workers[13]  developed a method for their direct synthesis from olefins using 

molecular oxygen in the presence of stoichiometric amounts of a strong oxidant, ceric 

ammonium nitrate. However, there was no catalytic method available for the synthesis of 

azidoketones from olefins without using superstoichiometric amounts of strong oxidants.[13,14]. 

Quite recently, Greaney and co-workers[15] disclosed the generation of azido radicals from an 

azidoiodinane (Zhdankin reagent) in the presence of a Cu(I)-complex which produced alkoxy- 

and diazido functionalized products under photochemical and thermal conditions, respectively. 

On the other hand, we have recently reported  oxygen-mediated photocatalytic transformations 

of carbon–carbon multiple bond systems.[16] On the basis of these precedents, we envisioned 

that a three-component reaction between an azide radical source, an olefin, and molecular 

oxygen might lead to the formation of the desired α-azidoketones.[17] 

Our approach complements Lu’s report in which peroxy-azidation of alkenes with 9-mesityl-

10-methylacridiniumperchlorate (Fukuzumi’s catalyst) has been achieved under 

photochemical conditions which actually utilizes the same precursors (Scheme 1)[18]. In fact, 

peroxy-azidation of olefins was also known under thermal conditions by catalysis with 

manganese(II), followed by reduction of the stoichiometrically generated hydroperoxides with  
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Scheme 1: LG = Leaving Group; PC = 9-mesityl-10-methylacridiniumperchlorate; PCC = 

pyridiumchlorochromate. 

equimolar amounts of triphenylphosphine. It should be noted that, in the latter approach, copper 

catalysts failed to achieve this transformation. Alternatively, iodine or Sn(IV) catalysis using 

organic peroxides have been employed towards azido alcohols,[19,20] which, in turn, can then 

be oxidized to azidoketones with pyridiniumchlorochromate (PCC). 

Reaction optimization: 

We began our investigation by testing different photocatalysts under visible-light irradiation, 

(λmax = 455 nm) using trimethylsilyl azide as an inexpensive azido radical source and oxygen 

(reaction was run open to air) to achieve a coupling with styrene 1a. Assuming that oxidation 

of the azide anion to its radical is required (E = +1.32 V vs. SCE), it was not unexpected that 

neither ruthenium (ERu(II)*/Ru(I) = +0.77 V vs. SCE for [Ru(bpy)3]Cl2; bpy = 2,2'-bipyridine), nor 

iridium (EIr(III)*/Ir(II) = +0.31 V vs. SCE for [Ir(ppy)3]; ppy = 2-phenylpyridine) nor eosin Y 

(EEY*/EY
∙− = +0.83 V vs. SCE)[21] would promote a reaction, given their low oxidation potential 

(Table 1, entries1-3). However, azido radicals can be obtained from TMSN3 (EN3
•/N3

– = +1.32 

V) using highly oxidizing Fukuzumi’s catalyst (Edye*/dye
∙−

 = +2.06 V vs. SCE; dye = 9-mesityl-

10-methylacridiniumperchlorate). But in that case, azidoperoxides were obtained as major 

products in its presence. Nevertheless, when we performed the reaction in the presence of 1 

mol%  [Cu(dap)2]Cl (ECu(II)/Cu(I)* = –1.43 V vs. SCE; dap = 2,9-bis(p-anisyl)-1,10-

phenanthroline),[22] we were pleased to observe a full conversion of the starting material 1a 
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Table 1: Optimization for reaction conditions: 

 

Entry catalyst (mol%) λvis (nm) solvent (0.25 

M) 

time (h) yielda 

2a 

yielda 

3a 

1 [Ir(ppy)3] (1) 455 CH3CN 20 2 - 

2 [Ru(bpy)3]Cl2 (1) 455 CH3CN 20 3 - 

3 Na2-Eosin Y (1) 530 CH3CN 20 NR - 

4b [Cu(dap)2]Cl (1) 530 CH3CN 12 79 (76) 18 

5 [Cu(dap)2]Cl (1) No CH3CN 12 11 3 

6 [Cu(dap)Cl2] (1) 530 CH3CN 12 72 21 

7 CuCl2 (1) + dap (2) 530 CH3CN 12 62 22 

8 CuCl2 (1) + dap (2) No CH3CN 12 12 4 

9 CuCl2 (1) + dap (2) No CH3CN 48 42 16 

10 CuCl2 (1) + dap (4) No CH3CN 48 45 19 

11 No 530 CH3CN 12 NR - 

12 CuCl (5) 530 CH3CN 12 8 - 

13 CuCl2 (5) No CH3CN 48 18 4 

14 CuBr2 (5) No CH3CN 48 16 4 

15 dap (5) 530 CH3CN 12 3 - 

16 [Cu(dap)2]Cl (0.5) 530 CH3CN 12 69 15 

17c [Cu(dap)2]Cl (1) 530 CH3CN 12 77 20 

18d [Cu(dap)2]Cl (1) 530 CH3CN 12 62 19 

19e [Cu(dap)2]Cl (1) 530 CH3CN 12 61 18 

20 [Cu(dap)2]Cl (1) 530 DMF 12 60 20 

21 [Cu(dap)2]Cl (1) 530 DCM 12 66 21 

22 [Cu(dap)2]Cl (1) 530 CH3OH 12 50 12 

23 [Cu(dap)2]Cl (1) 530 DMSO 12 39 16 

24 [Cu(dap)2]Cl (1) 530 DCE 12 26 6 

25 [Cu(dap)2]Cl (1) 530 CHCl3 12 13 4 

26 [Cu(dap)2]Cl (1) 455 CH3CN 12 65 12 
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27f [Cu(dap)2]Cl (1) 530 CH3CN 12 NR - 

28g [Cu(dap)2]Cl (1) 530 CH3CN 12 63 28 

29h [Cu(dap)2]Cl (1) 530 CH3CN 12 NR - 

30i [Cu(dap)2]Cl (1) 530 CH3CN 12 58 32 

Reaction conditions: Styrene 1a (0.50 mmol, 1 equiv), TMSN3 (1.00 mmol, 2 equiv), catalyst 

(1-5 mol%) in 0.25 M solvent under air at 25 ºC (maintained by a temperature-controlled water 

bath). a1H NMR yields using diphenylmethane as internal standard. bIsolated yield in 

parenthesis. cWith oxygen balloon. d5 equiv TMSN3 was used. e1 equiv TMSN3 was used. fIn 

the presence of 1 equiv Na2CO3. 
gIn presence of 1 equiv acetic acid. hat 0 ºC. iat 50 ºC. NR = 

no reaction. 

after 12 h visible-light-irradiation (λmax = 530 nm) and our desired product 2a was isolated in 

76% yield along with 18% (1H NMR yield) of benzaldehyde 3a (Table 1, entry 4). Not 

surprisingly, when we employed the reaction in the presence of [Cu(dap)Cl2] or CuCl2/dap 

catalyst (Entries 6, 7), the reaction worked well upon visible-light irradiation. This indicates 

that an oxidation of azide anion takes place, which is triggered by Cu(II) (vide infra). Light 

proved to be very important for the transformation as because significantly lower yields of 2a 

(entries 5 and 8 respectively) were obtained irrespective of Cu(I) or Cu(II) catalyst have been 

used in the dark. Increasing the reaction time to even 48 h under dark, did not resulted into full 

conversion of 1a (entries 9 and 10). Without copper-catalysts, the reaction shut down 

completely (entry 11). When we lowered the catalyst loading to 0.5 mol%, the yield of the 

desired compounds 2a dropped slightly to 69% (entry 16). Varying the amounts of oxygen (by 

using oxygen balloon) or TMSN3, did not increase the product yield (entries 17-19). Aiming 

to reduce the byproduct 3a, several more parameters were screened (solvents, temperature, and 

effects of additives). We also found out that the under basic conditions (use of 1 equiv Na2CO3) 

the reaction did not work but under acidic conditions (use of 1 equiv acetic acid), 2a was 

produced in 63% yield (entries 27 and 28). Interestingly, no conversion of 1a was observed 

when the reaction was performed at 0 ºC (entry 29). It should also be noted that when the 

reaction was performed with blue LED (λmax = 455 nm), the obtained yield of 2a was lower 

compared to a green LED (λmax = 530 nm) (vide infra) (entry 26). Nevertheless, the conditions 

established in Table 1, entry 4, were found to be the best and were subsequently applied to 

explore the scope of the reaction. In the later experiments, the bench stable copper(I) complex 

[Cu(dap)2]Cl was used as the precatalyst since it can be prepared on gram scale and 

conveniently handled to set up the reactions. 
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Table 2: Scope of the reaction: 

Reaction conditions: olefin 1 (0.50 mmol, 1 equiv), TMSN3 (1.00 mmol, 2 equiv), 

[Cu(dap)2]Cl (1 mol%) in 2 mL CH3CN under visible light irradiation (530 nm) in the presence 

of air at room temperature. a1H NMR yield is provided. Ac = -COCH3, Bn = benzyl. 

Different vinylarenes with a wide range of functionalities could be converted to the ketoazides 

(Table 2) following this protocol. Specifically, Alkyl-, halo-, amino-, alkoxy- and acetoxy, 
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nitro- and cyano- substituents in meta or para position of the arene ring were well tolerated 

under the reaction conditions. The structure of 2g was confirmed by single crystal X-ray 

analysis. It was also observed that the presence of electron-donating groups (e.g. methoxy, 2j-

2p) minimizes the formation of the corresponding aldehyde as byproduct. On the other hand, 

considerable amount of aldehyde formation was observed when electron-withdrawing 

substituents (e.g. nitro, 2u and 2v) were present in the arene moiety. Protected amino 

functionality in the arene moiety produced higher yield of the desired product compared to the 

free amino substituted styrenes (2q and 2r). A decrease in yield was observed for mono-ortho-

substituted styrenes, which is attributed to the disordered conjugation between the arene and 

the alkene moiety, being further accentuated in case of the di-ortho-substituted styrene 1w, 

which gave poor conversion even after 72 h of irradiation. Heterocycles such as thiophene and 

benzofuran substitution were also possible (2z, 2aa, 2ab). Internal aryl substituted alkenes can 

be also converted to the corresponding ketoazides, as demonstrated with 2y and 2ab. 

Regio- and chemoselectivity of the developed method: 

In the case of the unactivated olefin 1ac (Table 1), no conversion was observed, which allows 

in turn the chemoselective oxo-azidation of 1ad (Scheme 2a) and the desired product 2ad was 

isolated in 71% yield. The unreacted olefinic part in 2ad can be subjected to further important 

transformations.  Moreover, trimethylsilylazide is known to readily react with organic halides 

such as benzyl chloride to the corresponding azides.[23] Nevertheless, under the photochemical 

protocol developed here, 1-(chloromethyl)-4-vinylbenzene (1ae) cleanly underwent oxo- 

azidation to give rise to 2ae in 62% yield (Scheme 2b). 

 

Scheme 2: Reactions were performed in 0.5 mmol scale following standard conditions. 
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Further transformations of the obtained products: 

The great synthetic utility of α-azido ketones is amply documented in the literature. 

Representative transformations of α-azido ketones 2a,[24] 2l, 2u and 2y synthesized in this study 

are shown in Scheme 3. Especially, 2l has been used as a key intermediate in the synthesis of 

the antihyperlipidemic and antihyperglycemic Aegiline[25] and the antiviral natural product (+)-

Tembamide.[26] 2u is an intermediate for the synthesis of BMS-337197, being a potent 

uncompetitive inhibitor of IMPDH II enzyme,[10] while 2y has been used for the synthesis of 

Cathinone,[27] which has similar biological activity like amphetamines, especially on the 

cardiovascular system[28] and metabolism of dopamine.[29] 

 

Scheme 3: Further transformations. 
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Proposed reaction mechanism: 

A plausible mechanism (Scheme 4) for the aforementioned reaction features a Cu(II)-complex 

like II as the catalytically active species. II can be obtained easily from [Cu(dap)2]Cl I by 

oxidation with dioxygen (ECu(II)/Cu(I)* = –1.43 V vs. SCE; Eox = +0.33 V for molecular oxygen). 

When we investigated this step through EPR, indeed, the formation of an EPR-active copper 

species was observed during the reaction sequence starting with I (Figure 3b; yellow signal 

belongs to I under nitrogen atmosphere whereas under aerobic conditions blue signal indicates 

the formation of a Cu(II)-species). Interestingly, when we studied this step by NMR 

spectroscopy, we found out that one equivalent of dap ligand was released from the 

coordination-sphere upon change in the oxidation state at the metal center. The unbound ‘dap’ 

ligand was confirmed by NMR spectroscopy.[5]  The stoichiometry of the Cu(II) dap complex 

was also confirmed by an independent synthesis of the [Cu(dap)Cl2] 5 and X-ray analysis. 

 

Scheme 4: a) Formation of active Cu(II) catalyst and b) the proposed catalytic cycle for this 

transformation. 
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Interestingly, even with 2 equivalents of ‘dap’ ligand [Cu(dap)Cl2] is formed selectively 

(Figure 4c). The formation of an azide-bridged dimer[30] III was confirmed by ATR-IR 

spectroscopy and rapidly occurs upon mixing of [Cu(dap)Cl2] already without irradiation 

(experimental section). The formation and photophysical properties of III also explain the 

wavelength dependence of the overall reaction. III has a λmax of 525 nm (Figure 3a) contrary 

to the [Cu(dap2)]Cl or [Cu(dap)Cl2] complexes, and consequently, irradiation of III with green 

LEDs (530 nm) leads to a faster onward reaction than with blue LEDs (455 nm). 
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Figure 3: a) formation of Cu(II)-N3 species. b) EPR-active Cu(II) formation from Cu(I) 

complex, this experiment was performed by J. Phan. 

Elemental steps from III onwards are proposed to consist of a visible-light-induced homolysis 

(VLIH) of III to a Cu(I) species IV and azide radical. In this step the importance of visible-

light was monitored with comparing the reaction times between light and dark reaction (Figure 

4d). The change of the Cu(II) concentration during the reaction sequence was followed by 

quantitative EPR experiments and are in line with this mechanistic postulate. In the next step, 

the azido radical can add to the olefin 1 in a regioselective way to form a stabilized radical V. 

The formation of the benzylic radical V (confirmed by TEMPO trapping (Figure 4a)), further 

reacts with oxygen to form VI. Because of copper’s persistent radical effect, the newly formed 
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O-centered radical can now bind to IV forming a Cu(II) species VII. Formation of product 2 

with concurrent elimination of II from VII closes the catalytic cycle. In agreement with this 

proposal, no conversion is observed if the reaction is carried out under a nitrogen atmosphere, 

neither starting with Cu(I) nor with Cu(II) (Figure 4b). Moreover, no azidoperoxides, being the 

products in related processes[18,20] (cf. Scheme 1) were detected. The overall mechanistic 

proposal is in line with recent reports[31] where Ni(II) intermediates were excited by using an 

external Ir-based photocatalyst to facilitate a reductive elimination. 

 

Figure 4: Mechanistic experiments. ‘c’ was performed by Dr. C. Lankes. 

Conclusion and outlook: 

In conclusion, we have developed a highly versatile visible-light photocatalytic strategy for the 

step-economical synthesis of α-azido ketones from vinylarenes and commercially available 

TMSN3 under aerobic condition without the need of an additional stoichiometric strong 

oxidant. To best of our knowledge, the developed method is the first example of a visible light 

accelerated Cu(II)-catalyzed process where the radical was generated oxidatively. This might 
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open up new opportunities to develop radical based redox transformations based on a light 

induced homolysis of Cu(II)-X species to give rise to Cu(I) and X•. 
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General information: 

All commercial chemical materials were used as received without further purification and 

weight was calculated based on purity mentioned in the container. All photochemical reactions 

were performed under aerobic atmosphere. All the reactions were monitored by TLC and 

visualized by a dual short (254 nm) / long (366 nm) wavelength UV lamp. Analytical thin layer 

chromatography was performed on Merck TLC aluminum sheets silica gel 60 F 254. 

Purifications by column chromatography were performed on silica gel (0.063-0.200 mm). All 

products were characterized by appropriate techniques such as 1H-NMR, 19F-NMR, 13C-NMR, 

FT-IR and HRMS analysis. FT-IR (Cary 630) spectroscopy was carried out on a spectrometer, 

equipped with a Diamond Single Reflection ATR-System. NMR spectra were recorded on 

Bruker Advance 300 MHz, 400 MHz and 600 MHz spectrometers. Chemical shifts for 1H-

NMR were reported as δ, parts per million, relative to the signal of CHCl3 at 7.26 ppm and for 

DMSO at 2.50 ppm. Chemical shifts for 13C-NMR were reported as δ, parts per million, relative 

to the signal of CHCl3 at 77.2 ppm and for DMSO at 39.52 ppm and TMS as an internal 

standard. Coupling constants (J) are given in Hertz (Hz). The following notations indicate the 

multiplicity of the signals: s = singlet, br-s = broad singlet, d = doublet, t = triplet, q = quartet, 

dd = doublet of doublets, dt = doublet of triplets, and m = multiplet. Mass spectra were recorded 

at the Central Analytical Laboratory at the Department of Chemistry of the University of 

Regensburg on Agilent Technologies 6540 UHD Accurate-Mass Q-TOF LC/MS. UV–Vis 

measurements were performed with Varian Cary 50 UV/Vis spectrophotometer. The 

photochemical reactions were performed with 530 nm LEDs (Cree XPEGRN G4 Q4 (green, 

λmax = 530 nm, Imax = 1000 mA, 1.12 W)). 

 

Safety Statements: 

Organic azides are considered as potentially explosive substances whenever the azido content 

is high. Although we have never observed any safety problem one has to be extra careful while 

dealing with organic azides. All the compounds synthesized in this study can be considered to 

be safe according to the equation below. 

[N(C) + N(O)]/N(N) ≥ 3 

Reference: H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004. 
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Reaction set up: 

 

Figure S1: Photochemical set up for oxo-azidation of vinylarenes 
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Reaction Optimization: 

All the reactions for optimization were performed on 0.50 mmol scale and 1H-NMR yield is 

given. The light reactions were performed with the set up shown above. After mentioned time, 

the reaction mixture was diluted with Dichloromethane, transferred to a round bottom flask 

and concentrated in vacuo. The residue was dissolved in CDCl3 and 83µL (0.50 mmol, 1 equiv) 

diphenylmethane (internal standard) was added. The yield was determined by integrating the 

characteristic peaks of the internal standard and the product. 

Colour change during the reaction: 

 

Figure S2: Photographs of reaction mixtures before (A) and after (B1 (no irradiation); B2 

(with irradiation)) the reaction 

Each of the vial (A) contains 0.5 mmol styrene 1a, 1.0 mmol TMSN3, 1 mol% [Cu(dap)2]Cl 

and 2mL CH3CN. Note that after 12 h reaction time in presence of air, the solution looks same 

when left in the dark (left, B1) and different (right, B2) when it was irradiated with visible-

light (λmax = 530 nm). 

Radical trap experiment: 
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Figure S3: HRMS of TEMPO trap experiment (crude reaction mixture was submitted for 

analysis). 

Detection of TMSOH with GC-MS: 

 

Figure S4: TMSOH detection from crude reaction mixture (top), TMS-OH is detected  

as M+-CH3 (75) in comparison to TMSOH standard (bottom). 
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IR Experiment: 

Note: IR experiments were performed in DCM instead of CH3CN in order to characterize the 

azide stretching frequency properly. The title reaction also works well in DCM (66% yield) 

instead of acetonitrile (79% yield). 

 

Figure S5: azide stretching frequency of TMSN3 in DCM 

 

Figure S6(a): 1:1 mixture of [Cu(dap)Cl2] and TMSN3 in DCM with irradiation  
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Figure S6(b): 1:1 mixture of [Cu(dap)Cl2] and TMSN3 in DCM without irradiation  

Note that the strong band at 2067 cm-1 in S7(a) (2068 cm-1 in S7(b)) corresponds to a Cu(II)-

N3 species (possibly the binuclear complex of Cu(II), where N3 acts as a bridged ligand). 

Literature[ref] value: 2064 cm-1. 

References: a) Kar et al. Polyhedron 2012, 38, 258; b) Kou et al. ChemPlusChem 2014, 79, 

310. 



Chapter 4: Copper(II)-catalyzed Oxo-azidation of Vinylarenes 

153 
 

 

Figure S7: IR Spectra after irradiation of a mixture of all three components under air in 

DCM 

After 3 h irradiation, product formation was observed. Strong bands at 2101 cm-1 and 1694 cm-

1 belong to N3 and C=O respectively of the product 2a. 

General Procedure for the oxo-azidation of vinyl arenes (GP): 

 

To a glass vial (5 mL size) equipped with a stirring bar was charged with styrene derivative 1 

(0.50 mmol, 1.00 equiv) and [Cu(dap)2]Cl (4.5 mg, 0.01 equiv, 1.00 mol%). Then 2 mL CH3CN 

was added followed by TMSN3 (0.140 mL, 1.00 mmol, 2.00 equiv). Then the vial was 

irradiated with Green LED (λmax = 530 nm) under air and the solution was stirred at room 

temperature (25 oC ± 3) (maintained by continuous cold-water flow through the LED “Box”). 

Upon completion (judged by TLC analysis) the reaction mixture was diluted with 

Dichloromethane (20 mL), transferred to a round bottom flask and then concentrated in vacuo. 

The pure product 2 was obtained by silica-gel column chromatography using hexanes and ethyl 

acetate as eluent. 
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2-azido-1-phenylethan-1-one (2a)[1]: 

 

Following the general procedure, 2a was prepared from styrene 1a (52 mg, 0.50 mmol). 

Reaction time was 12 hours. The crude product was purified by column chromatography 

(silica-gel, hexanes-EtOAc = 9:1, Rf = 0.30) to afford 2a as a colourless liquid (60mg, 76% 

yield). 

1H-NMR (300 MHz, CDCl3): δ 7.92 – 7.88 (m, 2H), 7.65 – 7.59 (m, 1H), 7.51 – 7.46 (m, 2H), 

4.56 (s, 2H); 13C-NMR (75 MHz, CDCl3): δ 193.3, 134.4, 134.2, 129.1, 128.0, 55.0; IR (neat, 

cm-1): 3064, 2896, 2099, 1692, 1595, 1450, 1282, 1215, 1182, 910, 753, 686; HRMS (ESI): 

exact m/z calculated for C8H7N3O (M+H)+: 162.0667; Found: 162.0663 (M+H)+. 

 

2-azido-1-(p-tolyl)ethan-1-one (2b)[2]: 

 

Following the general procedure, 2b was prepared from 1-methyl-4-vinylbenzene 1b (61.5 mg, 

0.50 mmol). Reaction time was 12 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 9:1, Rf = 0.25) to afford 2b as a white solid (67 

mg, 77% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.80 (d, J = 8.1 Hz, 2H), 7.28 (d, J = 8.1 Hz, 2H), 4.53 (s, 

2H), 2.42 (s, 3H); 13C-NMR (75 MHz, CDCl3): δ 192.9, 145.3, 132.0, 129.8, 128.1, 54.9, 21.9; 

IR (neat, cm-1): 2963, 2907, 2095, 1685, 1603, 1446, 1409, 1342, 1290, 1223, 1185, 1122, 

1006, 910, 805; HRMS (ESI): exact m/z calculated for C9H9N3O (M+H)+: 176.0824; Found: 

176.0814 (M+H)+. 
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2-azido-1-(4-(tert-butyl)phenyl)ethan-1-one (2c): 

 

Following the general procedure, 2c was prepared from 1-(tert-butyl)-4-vinylbenzene 1c (86.1 

mg, 0.50 mmol). Reaction time was 12 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 9:1, Rf = 0.35) to afford 2c as a colourless liquid 

(77 mg, 73% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.84 (d, J = 8.6 Hz, 2H), 7.50 (d, J = 8.7 Hz, 2H), 4.54 (s, 

2H), 1.34 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 192.9, 158.2, 131.9, 128.0, 126.1, 54.9, 35.4, 

31.1; IR (neat, cm-1): 3340, 2963, 2870, 2102, 1692, 1602, 1461, 1408, 1364, 1267, 1226, 

1193, 1107; HRMS (ESI): exact m/z calculated for C12H15N3O (M+H)+: 218.1293; Found: 

218.1284 (M+H)+. 

 

2-azido-1-(o-tolyl)ethan-1-one (2d): 

 

Following the general procedure, 2d was prepared from 1-methyl-2-vinylbenzene 1d (60.2 mg, 

0.50 mmol). Reaction time was 12 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 9:1, Rf = 0.30) to afford 2d as a colourless liquid 

(49 mg,56% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.57 (d, J = 7.9 Hz, 1H), 7.47 – 7.41 (m, 1H), 7.31 – 7.29 (m, 

2H), 4.45 (s, 2H), 2.55 (s, 3H); 13C-NMR (75 MHz, CDCl3): δ 196.4, 139.6, 134.4, 132.7, 

132.6, 128.5, 126.1, 56.5, 21.6; IR (neat, cm-1): 3064, 2971, 2930, 2099, 1692, 1603, 1569, 

1487, 1457, 1338, 1279, 1211, 1133, 992, 910, 753; HRMS (ESI): exact m/z calculated for 

C9H9N3O (M+H)+: 176.0824; Found: 176.0815 (M+H)+. 
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2-azido-1-(naphthalen-2-yl)ethan-1-one (2e)[5]: 

 

Following the general procedure, 2e was prepared from 2-vinylnaphthalene 1e (81.0 mg, 0.50 

mmol). Reaction time was 20 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 9:1, Rf = 0.20) to afford 2e as a white solid (79 

mg, 75% yield). 

1H-NMR (300 MHz, CDCl3): δ 8.38 (s, 1H), 7.98 – 7.87 (m, 4H), 7.66 – 7.55 (m, 2H), 4.69 

(s, 2H); 13C-NMR (75 MHz, CDCl3): δ 193.2, 136.0, 132.4, 131.7, 129.9, 129.7, 129.2, 129.1, 

128.0, 127.3, 123.4, 55.1; IR (neat, cm-1): 3310, 3063, 2982, 2907, 2099, 1677, 1625, 1468, 

1357, 1275, 1215, 1003, 898, 850, 816, 772; HRMS (ESI): exact m/z calculated for C12H9N3O 

(M+H)+: 212.0824; Found: 212.0817 (M+H)+. 

 

2-azido-1-(4-fluorophenyl)ethan-1-one (2f)[3]: 

 

Following the general procedure, 2f was prepared from 1-fluoro-4-vinylbenzene 1f (62.0 mg, 

0.50 mmol). Reaction time was 24 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 9:1, Rf = 0.20) to afford 2f as a colourless oil 

(61 mg, 68% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.96 – 7.91 (m, 2H), 7.20 – 7.14 (s, 2H), 4.53 (s, 2H); 13C-

NMR (75 MHz, CDCl3): δ 191.8, 166.3 (d, 1JC-F = 256.8 Hz), 130.9 (d, 4JC-F = 4.6 Hz), 130.8 

(d, 3JC-F = 9.5 Hz), 116.3 (d, 2JC-F = 22.2 Hz), 54.9; 19F-NMR (282 MHz, CDCl3): δ -103.3; 

IR (neat, cm-1): 3362, 3109, 3079, 2989, 2903, 2184, 2095, 1689, 1592, 1505, 1416, 1349, 

1279, 1211, 1155, 1100, 999, 906, 831, 805; HRMS (ESI): exact m/z calculated for C8H6FN3O 

(M+H)+: 180.0573; Found: 180.0570 (M+H)+. 
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2-azido-1-(4-chlorophenyl)ethan-1-one (2g)[3]: 

 

Following the general procedure, 2g was prepared from 1-chloro-4-vinylbenzene 1g (71.4 mg, 

0.50 mmol). Reaction time was 12 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 9:1, Rf = 0.22) to afford 2g as a pale yellow solid 

(61 mg, 61% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.84 (d, J = 8.6 Hz, 2H), 7.47 (d, J = 8.6 Hz, 2H), 4.53 (s, 

2H); 13C-NMR (75 MHz, CDCl3): δ 192.2, 140.8, 132.7, 129.5, 129.4, 54.9; IR (neat, cm-1): 

3360, 3094, 2960, 2926, 2087, 1916, 1681, 1588, 1487, 1402, 1334, 1257, 1211, 1174, 1088, 

976, 910, 808, 734; HRMS (ESI): exact m/z calculated for C8H6ClN3O (M+H)+: 196.0277; 

Found: 196.0268 (M+H)+. 

 

2-azido-1-(4-bromophenyl)ethan-1-one (2h): 

 

Following the general procedure, 2h was prepared from 1-bromo-4-vinylbenzene 1h (95.0 mg, 

0.50 mmol). Reaction time was 24 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 9:1, Rf = 0.20) to afford 2h as a white solid (83 

mg, 69% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.76 (d, J = 8.1 Hz, 2H), 7.64 (d, J = 8.3 Hz, 2H), 4.52 (s, 

2H); 13C-NMR (75 MHz, CDCl3): δ 192.4, 133.1, 132.5, 129.6, 129.5, 54.9; IR (neat, cm-1): 

3370, 3094, 2968, 2907, 2095, 1916, 1685, 1584, 1484, 1398, 1338, 1282, 1211, 1170, 1070, 

995, 910, 805; HRMS (ESI): exact m/z calculated for C8H6BrN3O (M+H)+: 239.9722; Found: 

239.9761 (M+H)+. 
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2-azido-1-(3-chlorophenyl)ethan-1-one (2i): 

 

Following the general procedure, 2i was prepared from 1-chloro-3-vinylbenzene 1i (70.7 mg, 

0.50 mmol). Reaction time was 12 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 9:1, Rf = 0.25) to afford 2i as a white solid (65 

mg, 67% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.88 (t, J = 1.8 Hz, 1H), 7.77 (dt, J1 = 7.7 Hz, J2 = 1.2 Hz, 

1H), 7.61 – 7.57 (m, 1H), 7.47 – 7.42 (m, 1H), 4.54 (s, 2H); 13C-NMR (75 MHz, CDCl3): δ 

192.1, 135.8, 135.4, 134.1, 130.3, 128.0, 125.9, 54.9; IR (neat, cm-1): 3071, 2919, 2855, 2106, 

1685, 1569, 1472, 1416, 1289, 1211, 905, 1029, 980, 906, 787; HRMS (ESI): exact m/z 

calculated for C8H6ClN3O (M+H)+: 196.0277; Found: 196.0264 (M+H)+. 

 

2-azido-1-(3-methoxyphenyl)ethan-1-one (2j): 

 

Following the general procedure, 2j was prepared from 1-methoxy-3-vinylbenzene 1j (69.1 

mg, 0.50 mmol). Reaction time was 18 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 4:1, Rf = 0.22) to afford 2j as a colourless oil 

(77 mg, 81% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.45 – 7.36 (m, 3H), 7.18 – 7.14 (m, 1H), 4.54 (s, 2H), 3.86 

(s, 3H); 13C-NMR (75 MHz, CDCl3): δ 193.2, 160.2, 135.8, 130.1, 120.7, 120.4, 112.3, 55.6, 

55.1; IR (neat, cm-1): 3078, 3008, 2945, 2840, 2102, 1692, 1584, 1487, 1454, 1420, 1252, 

1197, 1150, 1040, 872, 775, 686; HRMS (ESI): exact m/z calculated for C9H9N3O2 (M+H)+: 

192.0773; Found: 192.0765 (M+H)+. 
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2-azido-1-(3,4,5-trimethoxyphenyl)ethan-1-one (2k): 

 

Following the general procedure, 2k was prepared from 1,2,3-trimethoxy-5-vinylbenzene 1k 

(97.1 mg, 0.50 mmol). Reaction time was 14 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 7:3, Rf = 0.22) to afford 2k as a white solid (102 

mg, 83% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.11 (s, 2H), 4.51 (s, 2H), 3.90 (s, 3H), 3.89 (s, 6H); 13C-

NMR (75 MHz, CDCl3): δ 192.2, 153.3, 143.5, 129.5, 105.5, 61.1, 56.4, 54.8; IR (neat, cm-

1): 3000, 2944, 2833, 2106, 1692, 1584, 1502, 1413, 1346, 1332, 1252, 1159, 1126, 995, 861; 

HRMS (ESI): exact m/z calculated for C11H13N3O4 (M+H)+: 252.0984; Found: 252.0977 

(M+H)+. 

 

2-azido-1-(4-methoxyphenyl)ethan-1-one (2l)[3]: 

 

Following the general procedure, 2l was prepared from 1-methoxy-4-vinylbenzene 1l (68.4 

mg, 0.50 mmol). Reaction time was 15 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 4:1, Rf = 0.20) to afford 2l as a white solid (74 

mg, 78% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.88 (d, J = 8.9 Hz, 2H), 6.95 (d, J = 8.9 Hz, 2H), 4.50 (s, 

2H), 3.88 (s, 3H); 13C-NMR (75 MHz, CDCl3): δ 191.8, 164.3, 130.4, 127.5, 114.3, 55.7, 54.6; 

IR (neat, cm-1): 3330, 2933, 2844, 2106, 1681, 1599, 1513, 1454, 1423, 1356, 1305, 1260, 

1238, 1174, 1021, 943, 824, 772; HRMS (ESI): exact m/z calculated for C9H9N3O2 (M+H)+: 

192.0773; Found: 192.0762 (M+H)+. 
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2-azido-1-(3,5-dimethoxyphenyl)ethan-1-one (2m): 

 

Following the general procedure, 2m was prepared from 1,3-dimethoxy-5-vinylbenzene 1m 

(82.1 mg, 0.50 mmol). Reaction time was 20 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 4:1, Rf = 0.25) to afford 2m as a colourless oil 

(88 mg, 80% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.01 (d, J = 2.2 Hz, 2H), 6.68 (t, J = 2.2 Hz, 1H), 4.51 (s, 2H), 

3.83 (s, 6H); 13C-NMR (75 MHz, CDCl3): δ 193.1, 161.2, 136.2, 106.2, 105.8, 55.8, 55.1; IR 

(neat, cm-1): 3093, 3011, 2952, 2896, 2844, 2214, 2102, 1699, 1591, 1454, 1428, 1349, 1297, 

1267, 1208, 1156, 1059, 1021, 842; HRMS (ESI): exact m/z calculated for C10H11N3O3 

(M+H)+: 222.0878; Found: 222.0874 (M+H)+. 

 

4-(2-azidoacetyl)phenyl acetate (2n)[4]: 

 

Following the general procedure, 2n was prepared from 4-vinylphenyl acetate 1n (85.3 mg, 

0.50 mmol). Reaction time was 18 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 5:1, Rf = 0.20) to afford 2n as a colourless oil 

(85 mg, 78% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.93 (d, J = 8.7 Hz, 2H), 7.22 (d, J = 8.6 Hz, 2H), 4.53 (s, 

2H), 2.32 (s, 3H); 13C-NMR (75 MHz, CDCl3): δ 192.2, 168.8, 155.2, 131.9, 129.7, 122.3, 

54.9, 21.2; IR (neat, cm-1): 3310, 3071, 2911, 2363, 2102, 1744, 1692, 1599, 1505, 1416, 

1372, 1286, 1193, 1160, 1003, 910, 846; HRMS (ESI): exact m/z calculated for C10H9N3O3 

(M+H)+: 220.0722; Found: 220.0712 (M+H)+. 
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2-azido-1-(2-methoxyphenyl)ethan-1-one (2o): 

 

Following the general procedure, 2o was prepared from 1-methoxy-2-vinylbenzene 1o (68.4 

mg, 0.50 mmol). Reaction time was 12 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 4:1, Rf = 0.22) to afford 2o as a colourless oil 

(60 mg, 63% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.91 (dd, J1 = 7.8 Hz, J2 = 1.8 Hz, 1H), 7.56 – 7.50 (m, 1H), 

7.07 – 6.97 (m, 2H), 4.51 (s, 2H), 3.93 (s, 3H); 13C-NMR (75 MHz, CDCl3): δ 194.5, 159.4, 

135.2, 131.2, 124.6, 121.2, 111.7, 59.5, 55.7; IR (neat, cm-1): 3291, 2948, 2844, 2099, 1730, 

1677, 1595, 1484, 1345, 1282, 1241, 1200, 1160, 1114, 1018, 910, 820, 753; HRMS (ESI): 

exact m/z calculated for C9H9N3O2 (M+H)+: 192.0773; Found: 192.0762 (M+H)+. 

 

2-azido-1-(3,4-bis(benzyloxy)phenyl)ethan-1-one (2p): 

 

Following the general procedure, 2p was prepared from (((4-vinyl-1,2-

phenylene)bis(oxy))bis(methylene))dibenzene 1p (158.2 mg, 0.50 mmol). Reaction time was 

12 hours. The crude product was purified by column chromatography (silica-gel, hexanes-

EtOAc = 4:1, Rf = 0.30) to afford 2p as a white solid (154 mg, 83% yield). 

1H-NMR (600 MHz, CDCl3): δ 7.56 (d, J = 1.9 Hz, 1H), 7.46 – 7.41 (m, 5H), 7.39 – 7.36 (m, 

4H), 7.34 – 7.30 (m, 2H), 6.93 (d, J = 8.4 Hz, 1H), 5.24 (s, 2H), 5.21 (s, 2H), 4.44 (s, 2H); 13C-

NMR (150 MHz, CDCl3): δ 191.8, 154.1, 149.0, 136.7, 136.3, 128.8, 128.7, 128.3, 128.2, 

127.9, 127.5, 127.2, 122.9, 113.7, 113.1, 71.3, 71.0, 54.6; IR (neat, cm-1): 3064, 3034, 2907, 

2855, 2102, 1674, 1580, 1513, 1435, 1379, 1338, 1271, 1182, 1148, 1021, 809, 731, 693; 

HRMS (ESI): exact m/z calculated for C22H19N3O3 (M+H)+: 374.1504; Found: 374.1499 

(M+H)+. 
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1-(4-aminophenyl)-2-azidoethan-1-one (2q): 

 

Following the general procedure, 2q was prepared from 4-vinylaniline 1q (61.4 mg, 0.50 

mmol). Reaction time was 36 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 2:1, Rf = 0.20) to afford 2q as a yellow solid (49 

mg, 56% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.74 (d, J = 8.6 Hz, 2H), 6.65 (d, J = 8.7 Hz, 2H), 4.45 (s, 

2H), 4.23 (br-s, 2H); 13C-NMR (75 MHz, CDCl3): δ 191.2, 152.0, 130.6, 124.8, 114.0, 54.4; 

IR (neat, cm-1): 3377, 3332, 3228, 2918, 2098, 1670, 1588, 1517, 1442, 1346, 1234, 1182, 

910, 828, 675; HRMS (ESI): exact m/z calculated for C8H8N4O (M+H)+: 177.0776; Found: 

177.0770 (M+H)+. 

 

N-(4-(2-azidoacetyl)phenyl)acetamide (2r): 

 

Following the general procedure, 2r was prepared from N-(4-vinylphenyl)acetamide 1r (80.6 

mg, 0.50 mmol). Reaction time was 36 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 2:3, Rf = 0.22) to afford 2r as a pale yellow solid 

(93 mg, 85% yield). 

1H-NMR (400 MHz, DMSO-d6): δ 10.32 (s, 1H), 7.90 (d, J = 8.7 Hz, 2H), 7.72 (d, J = 8.7 

Hz, 2H), 4.81 (s, 2H), 2.09 (s, 3H); 13C-NMR (100 MHz, DMSO-d6): δ 192.8, 169.0, 144.2, 

129.2, 128.8, 118.2, 54.3, 24.1; IR (neat, cm-1): 3325, 3284, 3194, 2915, 2110, 1677, 1599, 

1536, 1409, 1372, 1327, 1260, 1180, 945, 831, 716; HRMS (ESI): exact m/z calculated for 

C10H10N4O2 (M+H)+: 219.0882; Found: 219.0873 (M+H)+. 
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2-azido-1-(2-chloro-3,4-dimethoxyphenyl)ethan-1-one (2s): 

 

Following the general procedure, 2s was prepared from 2-chloro-3,4-dimethoxy-1-

vinylbenzene 1s (99.3 mg, 0.50 mmol). Reaction time was 12 hours. The crude product was 

purified by column chromatography (silica-gel, hexanes-EtOAc = 5:2, Rf = 0.30) to afford 2s 

as a white solid (77 mg, 61% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.48 (d, J = 8.7 Hz, 1H), 6.90 (d, J = 8.7 Hz, 1H), 4.52 (s, 

2H), 3.93 (s, 3H), 3.86 (s, 3H); 13C-NMR (75 MHz, CDCl3): δ 194.4, 157.2, 145.9, 128.8, 

127.5, 126.6, 110.5, 60.8, 58.0, 56.4; IR (neat, cm-1): 3090, 2978, 2940, 2848, 2113, 1670, 

1580, 1490, 1442, 1401, 1338, 1282, 1241, 1062, 1029, 992, 820, 779; HRMS (ESI): exact 

m/z calculated for C10H10ClN3O3 (M+H)+: 256.0489; Found: 256.0484 (M+H)+. 

 

2-azido-1-(2-(trifluoromethyl)phenyl)ethan-1-one (2t): 

 

Following the general procedure, 2t was prepared from 1-(trifluoromethyl)-2-vinylbenzene 1t 

(87.0 mg, 0.50 mmol). Reaction time was 72 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 9:1, Rf = 0.20) to afford 2t as a colourless oil 

(69 mg, 60% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.77 – 7.74 (m, 1H), 7.66 – 7.63 (m, 2H), 7.45 – 7.42 (m, 1H), 

4.33 (s, 2H); 13C-NMR (75 MHz, CDCl3): δ 197.9, 136.9, 132.2, 131.2, 127.29, 127.18( q, 

J1= 5.0 Hz, J2 = 9.5 Hz), 127.18 (q, J =14.1 Hz, J = 18.6 Hz), 126.5 (q, J1 = 273.8, J2 = 460.8 

Hz), 57.8 (d, J = 1.9 Hz) ; 19F-NMR (282 MHz, CDCl3): δ -58.5; IR (neat, cm-1): 3083, 2654, 

2162, 2110, 1703, 1584, 1312, 1274, 1167, 1111, 1036, 767; HRMS (ESI): exact m/z 

calculated for C9H6F3N3O (M+Na)+: 252.0361; Found: 252.0354 (M+Na)+. 
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2-azido-1-(2-nitrophenyl)ethan-1-one (2u)[6]:  

 

Following the general procedure, 2u was prepared from 1-nitro-2-vinylbenzene 1u (74.6 mg, 

0.50 mmol). Reaction time was 72 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 4:1, Rf = 0.20) to afford 2u as a pale-yellow oil 

(30 mg, 29% (42% based on conversion) yield). 

1H-NMR (300 MHz, CDCl3): δ 8.21 (dd, J1 = 8.2 Hz, J2 = 1.0 Hz, 1H), 7.82 – 7.77 (m, 1H), 

7.71 – 7.66 (m, 1H), 7.42 (dd, J1 = 7.4 Hz, J2 = 1.4 Hz, 1H), 4.31 (s, 2H); 13C-NMR (75 MHz, 

CDCl3): δ 197.2, 145.8, 135.1, 135.0, 131.5, 127.8, 124.6, 57.8; IR (neat, cm-1): 3034, 2922, 

2855, 2106, 1689, 1584, 1521, 1342, 1282, 1219, 992, 854, 746, 701; HRMS (ESI): exact m/z 

calculated for C8H6N4O3 (M+Na)+: 229.0338; Found: 229.0329 (M+Na)+. 

 

2-azido-1-(4-nitrophenyl)ethan-1-one (2v)[3]:  

 

Following the general procedure, 2v was prepared from 1-nitro-4-vinylbenzene 1v (78.5 mg, 

0.50 mmol). Reaction time was 48 hours (Note: more than 48 hours leads to decomposition of 

the product!). The crude product was purified by column chromatography (silica-gel, hexanes-

EtOAc = 9:1, Rf = 0.15) to afford 2v as a yellow solid (52 mg, 51% yield). 

1H-NMR (400 MHz, CDCl3): δ 8.36 (d, J = 8.9 Hz, 2H), 8.09 (d, J = 8.6 Hz, 2H), 4.60 (s, 

2H);13C-NMR (125 MHz, CDCl3): δ 192.1, 151.1, 138.9, 129.3, 124.4, 55.5; IR (neat, cm-1): 

3111, 2906, 2107, 1704, 1604, 1525, 1345, 1212, 854; HRMS (ESI): exact m/z calculated for 

C8H6N4O3 (M+H)+: 207.0517; Found: 207.0511 (M+H)+. 
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2-azido-1-(2,6-dichlorophenyl)ethan-1-one (2w): 

 

Following the general procedure, 2w was prepared from 1,3-dichloro-2-vinylbenzene 1w (86.5 

mg, 0.50 mmol). After 72 h, very little conversion of the starting material was observed.The 

yield of the product was determined by 1H NMR using diphenylmethane as internal standard. 

1H-NMR yield (10 %). 

 

4-(2-azidoacetyl)benzonitrile (2x): 

 

Following the general procedure, 2x was prepared from 4-vinylbenzonitrile 1x (66.5 mg, 0.50 

mmol). Reaction time was 22 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 5:1, Rf = 0.20) to afford 2x as a yellow solid (61 

mg, 66% yield). 

1H-NMR (300 MHz, CDCl3): δ 8.01 (d, J = 8.5 Hz, 2H), 7.81 (d, J = 8.5 Hz, 2H), 4.57 (s, 

2H); 13C-NMR (75 MHz, CDCl3): δ 192.3, 137.3, 132.9, 128.5, 117.7, 117.5, 55.2; IR (neat, 

cm-1): 3101, 2956, 2915, 2233, 2184, 2102, 1692, 1607, 1402, 1342, 1271, 1211, 1003, 913, 

831, 764; HRMS (ESI): exact m/z calculated for C9H6N4O (M+H)+: 187.0619; Found: 

187.0612 (M+H)+. 
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2-azido-1-phenylpropan-1-one (2y)[7]: 

 

Following the general procedure, 2y was prepared from (E)-prop-1-en-1-ylbenzene 1y (60.0 

mg, 0.50 mmol). Reaction time was 12 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 95:5, Rf = 0.20) to afford 2y as a colourless oil 

(58 mg, 67% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.96 – 7.93 (m, 2H), 7.64 – 7.59 (m, 1H), 7.53 – 7.48 (m, 2H), 

4.71 (q, J = 7.1 Hz, 1H), 1.57 (d, J = 7.0 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 196.8, 134.4, 

134.1, 129.1, 128.8, 58.5, 16.6; IR (neat, cm-1): 3064, 2989, 2937, 2091, 1689, 1595, 1450, 

1256, 1215, 1066, 962, 697; HRMS (ESI): exact m/z calculated for C9H9N3O (M+H)+: 

176.0824; Found: 176.0819 (M+H)+. 

 

2-azido-1-(benzofuran-2-yl)ethan-1-one (2z): 

 

Following the general procedure, 2z was prepared from 2-vinylbenzofuran 1z (72.1 mg, 0.50 

mmol). Reaction time was 12 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 9:1, Rf = 0.20) to afford 2z as a white solid (67 

mg, 67% yield). 

1H-NMR (400 MHz, CDCl3): δ 7.74 (d, J = 7.9 Hz, 1H), 7.62 (d, J = 0.7 Hz, 1H), 7.59 – 7.50 

(m, 2H), 4.56 (s, 2H); 13C-NMR (100 MHz, CDCl3): δ 184.8, 155.9, 150.6, 129.1, 126.9, 

124.5, 123.7, 113.9, 112.6, 55.0; IR (neat, cm-1): 3116, 2967, 2929, 2102, 1666, 1547, 1439, 

1364, 1271, 1163, 1029, 932, 734; HRMS (ESI): exact m/z calculated for C10H7N3O2 (M+H)+: 

202.0616; Found: 202.0616 (M+H)+. 
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2-azido-1-(thiophen-2-yl)ethan-1-one (2aa)[5]: 

 

Following the general procedure, 2aa was prepared from 2-vinylthiophene 1aa (55.0 mg, 0.50 

mmol). Reaction time was 12 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 9:1, Rf = 0.20) to afford 2y as a pale-yellow oil 

(49 mg, 59% yield). 

1H-NMR (400 MHz, CDCl3): δ 7.73 – 7.72 (m, 2H), 7.16 (m, 1H), 4.45 (s, 2H); 13C-NMR 

(100 MHz, CDCl3): δ 186.4, 140.8, 135.0, 132.6, 128.5, 55.0; IR (neat, cm-1): 3094, 2900, 

2099, 1666, 1513, 1409, 1357, 1282, 1223, 1059, 891, 854, 723; HRMS (ESI): exact m/z 

calculated for C6H5N3OS (M+H)+: 168.0231; Found: 168.0225 (M+H)+. 

 

2-azido-1-(thiophen-2-yl)propan-1-one (2ab): 

 

Following the general procedure, 2ab was prepared from (E)-2-(prop-1-en-1-yl)thiophene 1ab 

(62.1 mg, 0.50 mmol). Reaction time was 12 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 9:1, Rf = 0.22) to afford 2ab as a yellow solid 

(30 mg, 33% yield). 

1H-NMR (400 MHz, CDCl3): δ 7.79 (d, J = 3.6 Hz, 1H), 7.73 (d, J = 4.7 Hz, 1H), 7.18 – 7.16 

(m, 1H), 4.52 (q, J = 6.8 Hz, 1H), 1.60 (d, J = 7.0 Hz, 3H); 13C-NMR (100 MHz, CDCl3): δ 

189.9, 141.0, 135.4, 133.3, 128.6, 59.9, 17.1; IR (neat, cm-1): 3094, 2985, 2937, 2095, 1659, 

1517, 1450, 1409, 1357, 1215, 1054, 999, 913, 828, 723; HRMS (ESI): exact m/z calculated 

for C7H7N3OS (M+H)+: 182.0388; Found: 182.0382 (M+H)+. 
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1-(4-allylphenyl)-2-azidoethan-1-one (2ad): 

 

Following the general procedure, 2ad was prepared from 1-allyl-4-vinylbenzene 1ad (72.2 mg, 

0.50 mmol). Reaction time was 18 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 9:1, Rf = 0.30) to afford 2ad as a colourless oil 

(71 mg, 71% yield). 

1H-NMR (400 MHz, CDCl3): δ 7.83 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 5.99 – 5.89 

(m, 1H), 5.14 – 5.07 (m, 2H), 4.53 (s, 2H), 3.44 (d, J = 6.6 Hz, 2H); 13C-NMR (100 MHz, 

CDCl3): δ192.9, 147.1, 136.0, 132.6, 129.3, 128.3, 117.1, 54.9, 40.2; IR (neat, cm-1): 3310, 

3079, 2982, 2900, 2102, 1689, 1607, 1416, 1346, 1275, 1223, 1178, 1111, 995, 910, 757; 

HRMS (ESI): exact m/z calculated for C11H11N3O (M+H)+: 202.0980; Found: 202.0975 

(M+H)+. 

 

2-azido-1-(4-(chloromethyl)phenyl)ethan-1-one (2ae): 

 

Following the general procedure, 2ae was prepared from 1-(chloromethyl)-4-vinylbenzene 1ae 

(76.3 mg, 0.50 mmol). Reaction time was 24 hours. The crude product was purified by column 

chromatography (silica-gel, hexanes-EtOAc = 4:1, Rf = 0.25) to afford 2ae as a white solid (65 

mg, 62% yield). 

1H-NMR (300 MHz, CDCl3): δ 7.90 (d, J = 8.3 Hz, 2H), 7.52 (d, J = 8.3 Hz, 2H), 4.61 (s, 

2H), 4.55 (s, 2H); 13C-NMR (75 MHz, CDCl3): δ 192.8, 143.6, 134.2, 129.1, 128.5, 55.0, 

45.2; IR (neat, cm-1): 2907, 2191, 2099, 1692, 1606, 1416, 1346, 1267, 1219, 1182, 999, 906, 

835, 790, 746, 682; HRMS (ESI): exact m/z calculated for C9H8ClN3O (M+H)+: 210.0434; 

Found: 210.0430 (M+H)+. 
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1H and 13C NMR of 2a: 
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1H and 13C NMR of 2b: 
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1H and 13C NMR of 2c: 
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1H and 13C NMR of 2d: 
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1H and 13C NMR of 2e: 
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1H, 13C and 19F NMR of 2f: 
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1H and 13C NMR of 2g: 
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1H and 13C NMR of 2h: 
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1H and 13C NMR of 2i: 
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1H and 13C NMR of 2j: 

 

 

 



Chapter 4: Copper(II)-catalyzed Oxo-azidation of Vinylarenes 

180 
 

1H and 13C NMR of 2k: 
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1H and 13C NMR of 2l: 
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1H and 13C NMR of 2m: 
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1H and 13C NMR of 2n: 
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1H and 13C NMR of 2o: 
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1H and 13C NMR of 2p: 
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1H and 13C NMR of 2q: 
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1H and 13C NMR of 2r: 
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1H 13C and 19F NMR of 2s: 
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1H and 13C NMR of 2t: 
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1H and 13C NMR of 2u: 
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1H and 13C NMR of 2v: 
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1H and 13C NMR of 2x: 
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1H and 13C NMR of 2y: 
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1H and 13C NMR of 2z: 
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1H and 13C NMR of 2aa: 
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1H and 13C NMR of 2ab: 
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1H and 13C NMR of 2ad: 
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1H and 13C NMR of 2ae: 
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Crystal data: 

 

Experimental. Single clear colorless plate-shaped crystals of compound 2q were obtained by 

recrystallization from dichloromethane. A suitable crystal (0.16×0.10×0.02) was selected and 

mounted on a MITIGEN holder oil on a SuperNova, Single source at offset, Atlas 

diffractometer. The crystal was kept at T = 122.98(10) K during data collection. Using Olex2 

(Dolomanov et al., 2009), the structure was solved with the ShelXT (Sheldrick, 2015) structure 

solution program, using the Intrinsic Phasing solution method. The model was refined with 

ShelXL (Sheldrick, 2015) using Least Squares minimisation. 

Crystal Data. C8H6ClN3O, Mr = 195.61, triclinic, P-1 (No. 2), a = 3.8012(3) Å, b = 

13.0808(5) Å, c = 17.3898(9) Å,  = 80.022(4)°,  = 84.470(5)°,  = 86.690(5)°, V = 

846.89(9) Å3, T = 122.98(10) K, Z = 4, Z' = 2, µ(CuK) = 3.678, 17639 reflections measured, 

3528 unique (Rint = 0.0838) which were used in all calculations. The final wR2 was 0.1120 (all 

data) and R1 was 0.0433 (I > 2(I)). 
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Compound 2g 

  

Formula  C8H6ClN3O  

Dcalc./ g cm-3 1.534  

µ/mm-1 3.678  

Formula Weight  195.61  

Colour  clear colourless  

Shape  plate  

Max Size/mm  0.16  

Mid Size/mm  0.10  

Min Size/mm  0.02  

T/K  122.98(10)  

Crystal System  triclinic  

Space Group  P-1  

a/Å  3.8012(3)  

b/Å  13.0808(5)  

c/Å  17.3898(9)  

/° 80.022(4)  

/° 84.470(5)  

/° 86.690(5)  
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V/Å3 846.89(9)  

Z 4  

Z' 2  

min/
° 3.434  

max/
° 76.748  

Measured Refl.  17639  

Independent Refl.  3528  

Reflections Used  2811  

Rint 0.0838  

Parameters  235  

Restraints  0  

Largest Peak  0.366  

Deepest Hole  -0.359  

GooF  1.075  

wR2 (all data)  0.1120  

wR2 0.0998  

R1 (all data)  0.0594  

R1 0.0433  

 

Structure Quality Indicators 

Reflections:  

Refinement:  

A clear colourless plate-shaped crystal with dimensions 0.16×0.10×0.02 was mounted on a 

MITIGEN holder oil. Data were collected using a SuperNova, Single source at offset, Atlas 

diffractometer equipped with an Oxford Cryosystems CryoStream 700 low-temperature 

apparatus operating at T = 122.98(10) K. 

Data were measured using scans scans of 1.0° per frame for 2.5 s using CuK radiation (micro-

focus sealed X-ray tube). The total number of runs and images was based on the strategy 

calculation from the program CrysAlisPro (Agilent). The actually achieved resolution was  = 

76.748. 
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Cell parameters were retrieved using the CrysAlisPro (Agilent) software and refined using 

CrysAlisPro (Agilent) on 4438 reflections, 25 of the observed reflections. Data reduction was 

performed using the CrysAlisPro (Agilent) software which corrects for Lorentz polarisation. 

The final completeness is 100.00 out to 76.748 in . The absorption coefficient (µ) of this 

material is 3.678 and the minimum and maximum transmissions are 0.837 and 1.000. 

The structure was solved in the space group P-1 (# 2) by Intrinsic Phasing using the ShelXT 

(Sheldrick, 2015) structure solution program and refined by Least Squares using ShelXL 

(Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom 

positions were calculated geometrically and refined using the riding model. 

The value of Z' is 2. This means that there are two independent molecules in the asymmetric 

unit. 

Data Plots: Diffraction Data 
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Data Plots: Refinement and Data 

  

 

Reflection Statistics 

Total reflections (after 

filtering)  

17639  Unique reflections  3528  

Completeness  0.988  Mean I/  9.39  

hklsub>max</sub> 

collected  

(4, 16, 21)  hklsub>min</sub> 

collected  

(-4, -16, -21)  

hklmax used  (4, 16, 21)  hklmin used  (-4, -16, 0)  

Lim dmax collected  100.0  Lim dmin collected  0.77  

dmax used  12.87  dmin used  0.79  

Friedel pairs  2954  Friedel pairs merged  1  

Inconsistent equivalents  39  Rint 0.0838  

Rsigma 0.0612  Intensity transformed  0  

Omitted reflections  0  Omitted by user (OMIT 

hkl)  

0  

Multiplicity  (1284, 2142, 1407, 872, 

454, 209, 79, 30, 5)  

Maximum multiplicity  16  

Removed systematic 

absences  

0  Filtered off 

(Shel/OMIT)  

0  
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Images of the Crystal on the Diffractometer 

 

Table 1: Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 

Parameters (Å2×103) for 2g. Ueq is defined as 1/3 of the trace of the orthogonalised Uij. 

Atom x y z Ueq 

Cl2 8121.9(16) 3140.8(4) 502.2(3) 28.25(15) 

Cl1 4007.8(17) 11598.7(4) 9388.6(3) 32.83(16) 

O1 -197(5) 8469.8(13) 6988.7(10) 31.1(4) 

O2 585(6) 6567.9(13) 2654.2(11) 36.6(4) 

N2 3329(6) 8076.1(16) 5629.1(12) 30.2(4) 

N1 2069(6) 8974.2(15) 5451.6(12) 29.4(4) 

N5 -742(7) 6669.0(17) 4164.5(13) 35.5(5) 

N4 -2066(7) 5829.4(18) 4146.0(14) 39.5(5) 

N3 4351(8) 7236.0(17) 5717.7(14) 40.9(6) 

C7 1420(6) 9264.8(16) 6838.3(13) 23.7(4) 

C4 2114(6) 9864.6(16) 7454.0(13) 22.9(4) 

C10 6109(7) 4930.5(18) 1028.3(14) 27.6(5) 

C15 1142(6) 5640.4(17) 2852.7(14) 26.9(5) 

C13 3009(6) 3899.9(17) 2451.5(13) 25.1(5) 

C12 2930(6) 4985.5(16) 2292.4(14) 24.5(5) 

N6 123(8) 7460.6(19) 4237.1(15) 46.7(6) 

C9 6130(6) 3852.6(17) 1199.2(13) 24.1(4) 

C1 3259(6) 10932.8(17) 8641.6(14) 25.5(5) 
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Atom x y z Ueq 

C14 4611(6) 3328.8(16) 1902.5(13) 24.1(4) 

C2 1755(6) 9969.1(17) 8834.2(13) 26.4(5) 

C5 3655(6) 10832.6(16) 7277.7(14) 25.6(5) 

C6 4211(7) 11375.3(17) 7868.7(14) 27.1(5) 

C8 2773(7) 9667.8(17) 5994.6(13) 25.5(5) 

C3 1180(6) 9444.0(16) 8236.4(14) 24.8(5) 

C11 4485(7) 5492.3(17) 1579.4(15) 27.9(5) 

C16 62(7) 5132.7(18) 3686.9(15) 30.5(5) 

 

Table 2: Anisotropic Displacement Parameters (×104) 2g. The anisotropic displacement factor 

exponent takes the form: -2π2[h2a*2 × U11+ ... +2hka* × b* × U12] 

Atom U11 U22 U33 U23 U13 U12 

Cl2 30.6(3) 25.2(2) 28.8(3) -6.64(19) 0.5(2) 0.8(2) 

Cl1 35.5(3) 31.9(3) 34.5(3) -15.2(2) -2.9(2) -1.7(2) 

O1 37.4(10) 24.4(8) 31.9(8) -6.6(6) 2.3(7) -8.7(7) 

O2 47.6(12) 21.8(8) 40.4(10) -7.4(7) -2.4(8) 3.4(7) 

N2 36.6(12) 28.1(10) 25.7(9) -3.6(8) -3.4(8) -1.8(9) 

N1 37.9(12) 24.3(9) 25.6(9) -2.6(7) -4.4(8) -0.8(8) 

N5 38.9(13) 33.0(11) 36.2(11) -12.6(9) -2.8(9) 5.3(9) 

N4 39.2(13) 33.9(11) 45.2(13) -14.1(9) 10.7(10) -1.8(10) 

N3 54.4(16) 29.2(11) 39.1(12) -7.9(9) -5.1(11) 6(1) 

C7 22.5(11) 19.1(9) 28.0(11) -1.6(8) -0.1(8) 0.3(8) 

C4 21.3(11) 20.5(9) 26.2(10) -2.9(8) -1.3(8) 1.1(8) 

C10 29.8(12) 25.1(10) 26.7(11) 0.0(8) -2.1(9) -4.2(9) 

C15 23.0(12) 24.1(11) 34.1(12) -5.9(9) -4.3(9) -0.3(9) 

C13 24.2(11) 21.8(10) 28.3(11) -1.9(8) -1.5(9) -1.4(8) 

C12 23.8(11) 20.5(10) 30.3(11) -6.0(8) -4.6(9) -0.6(8) 

N6 64.4(18) 35.7(12) 45.2(14) -19.5(10) -11.2(12) 2.4(12) 

C9 21.7(11) 24.5(10) 27.1(11) -6.8(8) -3.8(9) 0.5(8) 

C1 24.3(12) 24.6(10) 29.5(11) -11.0(8) -3.1(9) 3.3(9) 

C14 23.9(11) 18.4(9) 30.0(11) -3.7(8) -2.8(9) -1.1(8) 
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Atom U11 U22 U33 U23 U13 U12 

C2 27.0(12) 25(1) 25.5(11) -2.6(8) 1.7(9) 2.3(9) 

C5 27.4(12) 20.1(10) 27.4(11) 0.7(8) -1.4(9) 0.2(9) 

C6 26.5(12) 18.9(10) 35.6(12) -3.6(8) -3.4(9) -1.2(8) 

C8 27.4(12) 23.6(10) 25.6(10) -2.9(8) -4.0(9) -2.6(9) 

C3 26.6(12) 18.1(9) 29.3(11) -4.0(8) -0.1(9) -0.3(8) 

C11 30.7(13) 17.5(9) 35.6(12) -2.8(8) -5.2(10) -2.3(9) 

C16 30.8(13) 23.7(10) 36.5(12) -7.3(9) 2.9(10) -0.3(9) 

 

Table 3: Bond Lengths in Å for 2g. 

Atom Atom Length/Å 

Cl2 C9 1.744(2) 

Cl1 C1 1.738(2) 

O1 C7 1.215(3) 

O2 C15 1.215(3) 

N2 N1 1.242(3) 

N2 N3 1.134(3) 

N1 C8 1.470(3) 

N5 N4 1.241(3) 

N5 N6 1.135(3) 

N4 C16 1.471(3) 

C7 C4 1.484(3) 

C7 C8 1.521(3) 

C4 C5 1.399(3) 

C4 C3 1.396(3) 

C10 C9 1.389(3) 

C10 C11 1.384(3) 

C15 C12 1.496(3) 

C15 C16 1.516(3) 

C13 C12 1.398(3) 

C13 C14 1.387(3) 

C12 C11 1.395(3) 
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Atom Atom Length/Å 

C9 C14 1.385(3) 

C1 C2 1.389(3) 

C1 C6 1.390(4) 

C2 C3 1.382(3) 

C5 C6 1.384(3) 

 

Table 4: Bond Angles in ° for 2g. 

Atom Atom Atom Angle/° 

N3 N2 N1 172.5(3) 

N2 N1 C8 113.6(2) 

N6 N5 N4 171.9(3) 

N5 N4 C16 115.6(2) 

O1 C7 C4 122.0(2) 

O1 C7 C8 119.5(2) 

C4 C7 C8 118.49(19) 

C5 C4 C7 122.4(2) 

C3 C4 C7 118.5(2) 

C3 C4 C5 119.1(2) 

C11 C10 C9 118.5(2) 

O2 C15 C12 121.3(2) 

O2 C15 C16 119.7(2) 

C12 C15 C16 118.99(19) 

C14 C13 C12 120.2(2) 

C13 C12 C15 122.5(2) 

C11 C12 C15 117.8(2) 

C11 C12 C13 119.7(2) 

C10 C9 Cl2 118.75(18) 

C14 C9 Cl2 119.17(17) 

C14 C9 C10 122.1(2) 

C2 C1 Cl1 119.03(19) 

C2 C1 C6 121.9(2) 
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Atom Atom Atom Angle/° 

C6 C1 Cl1 119.11(18) 

C9 C14 C13 118.9(2) 

C3 C2 C1 118.6(2) 

C6 C5 C4 120.6(2) 

C5 C6 C1 118.8(2) 

N1 C8 C7 112.90(19) 

C2 C3 C4 121.0(2) 

C10 C11 C12 120.6(2) 

N4 C16 C15 113.4(2) 

 

(d, TorsionAngles)Table 5: Hydrogen Fractional Atomic Coordinates (×104) and Equivalent 

Isotropic Displacement Parameters (Å2×103) for 2g. Ueq is defined as 1/3 of the trace of the 

orthogonalised Uij. 

Atom x y z Ueq 

H10 7162.18 5267.27 554.27 33 

H13 1982.38 3559.52 2927.15 30 

H14 4665.47 2606.57 2004.92 29 

H2 1146.57 9683.1 9354.71 32 

H5 4312.77 11114.23 6758.6 31 

H6 5201.6 12023.6 7750.97 32 

H8A 1659.65 10345.95 5828.72 31 

H8B 5302.99 9751.73 5968.93 31 

H3 155.9 8800.51 8356.93 30 

H11 4430.49 6214.41 1473.09 34 

H16A -1287.55 4529.37 3674.78 37 

H16B 2174.94 4893.15 3947.5 37 
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Sulfonyl chlorides in Photocatalytic Transformations 

Introduction: 

Alkyl/aryl-sulfonyl chlorides are biocompatible, relatively cheap and readily available radical 

precursors which can be employed in various organic transformations. Upon single-electron 

transfer (SET), one can easily get access to S- or C-centered radicals depending upon 

temperature or substituents present (Scheme 1). Perfluoroalkyl sulfonyl chlorides, e.g. 

CF3SO2Cl, upon SET, can easily undergo desulfonation at room temperature generating 

trifluoromethyl radical (Scheme 1a), whereas other alkyl sulfonyl chlorides cannot be 

desulfonated (Scheme 1b). On the other hand, in case the of aryl sulfonyl chlorides, the 

desulfonation step is temperature dependent (Scheme 1c). Many scientific groups have 

employed these versatile precursors in photocatalytic C-S and C-C bond-forming reactions, 

which are recently summarized by Natarajan et. al. in their outstanding review[1]. 

 

Scheme 1: Generation of S or C-centered radicals from sulfonyl chlorides. 

Selected examples: 

Trifyl chloride as a source of trifluoromethyl radical source: 

Introduction of trifluoromethyl (CF3) functionality into organic molecules can dramatically 

increase their biological activities and chemical stabilities[2]. As a consequence, the 

development of efficient methods for the direct incorporation of CF3-functionality into organic 

molecules are highly desirable. MacMillan et al. showed for the first time that CF3SO2Cl can 

be used as a trifluoromethyl radical source under photoredox conditions[3]. A wide variety of 
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arenes and heteroarenes can trifluomethylated following the protocol (Scheme 2, i). Later on, 

Zhang and Yu et al. have reported a general protocol for the synthesis of α-trifluoromethylated 

ketones[4] through the action of an iridium-based photocatalyst (Scheme 2, ii). A year later, Jun, 

Han and co-workers showed that CF3SO2Cl can be used as a source of both CF3 and Cl groups 

in the presence of a ruthenium-based photocatalyst[5] (Scheme 2, iii). 

 

Scheme 2: Photocatalytic synthesis of CF3-containing organic compounds. 

In a noteworthy disclosure, Reiser and co-workers[6] have shown that the reactivity of 

CF3SO2Cl towards an unactivated olefin 1 can give rise to two different products 2 and 3, by 

switching from ruthenium-based photocatalyst to a copper-based photocatalyst, respectively 

(Scheme 3). 

Specifically, trifluoromethyl-chlorosulfonation 2a-d of an unactivated olefin was facilitated by 

[Cu(dap)2]Cl. On the other hand, [Ru(bpy)3]Cl2 produced trifluoromethylchlorinated products 

3a- c. It was suggested that upon SET, the generated counter anion ¯SO2Cl was bound to the 
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Scheme 3: Inner-sphere reactivity of copper-based photocatalyst. 

 

Scheme 4: Photocatalytic synthesis of β-hydroxy sulfones. 

copper catalyst, stabilizing and delivering this molecule to the intermediate radical. In absence 

of a copper catalyst, this anion immediately decomposed to generate SO2 an chloride. This 

unique discovery by Reiser and co-workers was further extended to the synthesis of 
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trifluoromethylated sultone 2e (Scheme 3, ii)[7]. The intermediate alkyl sulfonyl chloride 2e’ 

could react with an internal O-nucleophile to form sultone 2e in 67% isolated yield. 

Aryl-sulfonyl chlorides in photocatalysis: 

The synthesis of β-hydroxysulfones 6 from sulfonyl chlorides 5 and activated olefin 4 in 

presence of water through the action of [Ir(ppy)3] photocatalyst was developed by the same 

group (Scheme 4)[8]. This method was further utilized in a photocatalytic sequence process 

shown in Scheme 4 which allowed the synthesis of highly substituted trifluoromethylated 

sulfone 6d in one pot. 

Temperature-controlled selectivity: 

Later, Reiser and co-workers have also found out that SO2 extrusion, in case of aryl sulfonyl 

chlorides can be controlled thermally (Scheme 5)[9]. Through this method, one can achieve C-

H sulfonation (8a-c) /arylation (9a-c) of heteroarenes at room temperature (20-23 °C), and at 

 

Scheme 5: Influence of temperature in photocatalytic reaction between aryl sulfonyl 

chlorides and various heterocycles. 
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elevated temperature (45-60 °C) respectively. In case of alkyl sulfonyl chloride, instead of C-

C (9d), C-S bond formation was observed even at elevated temperature. 
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Copper and Visible-Light: Introducing a Cu(II)-Catalyst 

[Cu(dap)Cl2]  to Photochemical ATRA Reaction 

Abstract: 

A visible-light-mediated chloro-sulfonation of unactivated olefins has been developed utilizing 

commercially available sulfonyl chlorides and copper-phenanthroline-based catalysts. Besides 

the Cu(I) complex [Cu(dap)2]Cl, the corresponding Cu(II) complex [Cu(dap)Cl2] proved to be 

an efficient catalyst in this reaction, being advantageous from an economic point of view but 

also opening up new avenues for photoredox catalysis. Moreover, these copper complexes 

outperformed commonly used ruthenium, iridium, or organic dye based photocatalysts, owing 

to their ability to stabilize or interact with transient radicals by inner-sphere mechanisms due 

to the persistent radical effect. The use of stoichiometric Na2CO3 in combination with the 

copper photocatalysts was found to be essential for this reaction. As suggested by appropriate 

control experiments, the role of Na2CO3 is attributed to prevention of poisoning of the catalyst. 

The obtained products could be subjected to elimination (mono or double) which produced 

vinyl-sulfones or alkynes in very good yields. 

 

 

Figure 1: Visible-light mediated copper catalyzed chloro-sulfonation of olefins.
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Introduction: 

The development of efficient methods for the construction of carbon-carbon and carbon-

heteroatom bonds is highly desirable in synthetic organic chemistry, and organic chemists are 

on a perpetual path of discovery to identify new protocols for making such bonds. As a 

consequence, new catalytic strategies by employing inexpensive catalysts at low loadings are 

high on demand in terms of sustainable chemistry. Recently, difunctionalization[1], a reaction 

which introduces two new chemical bonds across a functional group in a substrate has attracted 

considerable attention from organic chemists as it can increase the molecular complexity in a 

single step. In this context, visible-light photocatalysis[2] has become very useful for the 

difunctionalization of carbon-carbon multiple bonds[3,4]. 

 

Scheme 1: Different sulfonyl chlorides under Copper Photocatalysis. 

Sulfones are important motifs which can be found in many drugs and natural products[5,6]. 

Considerable efforts have been given by various scientific groups for the direct incorporation 

of sulfone moiety into organic molecules[7]. Reiser and co-workers[8,9] have recently revealed 

that CF3SO2Cl can be used as an ATRA reagent without extrusion of SO2, under photochemical 

conditions using an earth-abundant metal-based (copper) photocatalyst[10,11] (Scheme 1). 

Therefore, the olefin was difunctionalized by forming two new chemical bonds, namely, C-

CF3 and C-SO2Cl in a single-step. On the other hand, ruthenium, iridium or organic-dye-based 
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photocatalysts failed to achieve this transformation, and produced chlorinated products[9,12]. In 

this chapter, the reactivity of other (aryl/alkyl)-sulfonyl chlorides[13] with an unactivated 

olefin[14] in the presence of a copper photocatalyst[15] has been documented (Scheme 1). 

In 2012, Stephenson and co-workers[16] have disclosed visible-light-mediated ATRA reactions 

of a series of organo-halogen compounds including two examples where p-toluenesulfonyl 

chloride 3a has been used as ATRA reagent. Very recently, Niu et al.[17] have broadened the 

scope of Stephenson’s protocol using [Ru(bpy)3]Cl2 photocatalyst but they found out that 

certain number of olefins including unactivated olefins 5 were unsuccessful towards chloro-

sulfonation reaction. We questioned if we can develop a more efficient protocol using a copper 

photocatalyst for the chloro-sulfonation reaction. 

Results and discussion: 

Indeed, when we started our investigation with 3a (Ered = −0.94 V vs. SCE) and styrene 4a (1 

equiv), in the presence of 1 mol% of [Cu(dap)2]Cl 1 (ECu(II)/Cu(I)* = −1.43 V vs. SCE; dap = 2,9-

bis(p-anisyl)-1,10-phenanthroline) as a photocatalyst under visible-light irradiation (λmax = 530 

nm), we were pleased to observe the desired product 6a formation in 96% yield (Table 1, entry 

1) after 24 h. Instead, with [Ru(bpy)3]Cl2 (ERu(III)/Ru(II)* = –0.81 V vs. SCE; bpy = 2,2'-

bipyridine), highly reducing fac-[Ir(ppy)3] (EIr(IV)/Ir(III)* = –1.73 V vs. SCE; ppy = 2-

phenylpyridine) or [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 (EIr(IV)/Ir(III)* = –0.89 V vs. SCE; dF(CF3)ppy 

= 2-(2,4-difluorophenyl)-5-trifluoromethylpyridine, dtbbpy = 4,4'-di-tert-butyl-2,2'-dipyridyl) 

or Na2-Eosin Y (EEY
∙+

/EY* = –1.11 V vs. SCE) under irradiation the yield of the desired product 

6a was found to be significantly lower (Table 1, entries 3-6) which is consistent with the report 

by Stephenson and co-workers[16] but surprisingly not consistent with Niu’s report[17], 

according to which 3a does not result in any product formation in this reaction. It should be 

noted that the reduction potentials of all catalysts are sufficient to generate the toluylsulfonyl 

radical upon SET to TsCl (3a). Surprisingly, the analogous copper(II) complex [Cu(dap)Cl2] 2 

also produced the desired product 6a in 95% yield (Table 1, entry 2). Control experiments 

revealed that both light and catalyst were necessary to achieve this transformation (Table 1, 

entries 7-8). 

Under the best conditions established for styrene (4a, Table 1, entry 1), employing the 

unactivated olefin 5a gave poor yield of the desired ATRA product 7a, even after doubling the 

amount of olefin (Table 1, entry 9). Then, we started investigating effects of an additive on this 
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Catalyst screening and reaction optimizationa 

 

Entry photocatalyst 

(1 mol%) 

additive 

(equiv) 

olefin 

(equiv) 

yield (%)c 

1d [Cu(dap)2]Cl no 4a (1) 96 (96) 

2 [Cu(dap)Cl2] no 4a (1) 95 

3 [Ru(bpy)3]Cl2 no 4a (1) 80 

4 fac-[Ir(ppy)3] no 4a (1) 45 

5 [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 no 4a (1) 7 

6 Na2-Eosin Y no 4a (1) NR 

7 no no 4a (1) NR 

8 [Cu(dap)2]Cl (dark) no 4a (1) NR 

9 [Cu(dap)2]Cl no 5a (1 or 

2) 

5 or 9 

10 [Cu(dap)2]Cl K2HPO4 (1) 5a (2) 60 

11 [Cu(dap)2]Cl K2CO3 (1) 5a (2) 18 

12d [Cu(dap)2]Cl Na2CO3 (1) 5a (2) 97 (92) 

13 [Cu(dap)2]Cl NaCl (1) 5a (2) 8 

14 [Cu(dap)2]Cl Cs2CO3 (1) 5a (2) NR 

15 [Cu(dap)2]Cl NaOAc (1) 5a (2) 41 

16 [Cu(dap)2]Cl Na2CO3 (0.3) 5a (2) 55 

17d,e [Cu(dap)Cl2] Na2CO3 (1) 5a (2) 77 (72) 

18 [Cu(dap)2]Cl Na2CO3 (1) 5a (1.5) 76 

19 [Ru(bpy)3]Cl2 Na2CO3 (1) 5a (2) 26 

20 [Ru(bpy)3]Cl2 no 5a (2) 55 

21 fac-[Ir(ppy)3] Na2CO3 (1) 5a (2) 26 

22 fac-[Ir(ppy)3] no 5a (2) 30 

23 [Ir(dtbbpy)(ppy)2]PF6 Na2CO3 (1) 5a (2) 18 

24 [Ir(dtbbpy)(ppy)2]PF6 no 5a (2) 17 
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25 [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 Na2CO3 (1) 5a (2) 31 

26 [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 no 5a (2) 33 

27 Na2-Eosin Y Na2CO3 (1) 5a (2) 3 

28 Na2-Eosin Y no 5a (2) NR 

29 no Na2CO3 (1) 5a (2) NR 

30 [Cu(dap)2]Cl (dark) Na2CO3 (1) 5a (2) NR 

31f CuCl Na2CO3 (1) 5a (2) NR 

32f CuCl2 Na2CO3 (1) 5a (2) NR 

33f dap Na2CO3 (1) 5a (2) 6 

34g CuCl + phen Na2CO3 (1) 5a (2) 4 

36g CuCl2 + phen Na2CO3 (1) 5a (2) 4 

37h [Cu(dap)2]Cl Na2CO3 (1) 5a (2) 26 

38i [Cu(dap)2]Cl Na2CO3 (1) 5a (2) NR 

Table 1: Reaction Conditions: a3a (0.50 mmol, 1 equiv), photocatalyst (1 mol%), in CH3CN 

(0.25 M) under N2 at room temperature (25–30 °C). Reaction times were 24 h for 4a and 48 h 

for 5a. LEDs have been used for irradiation (see experimental section). For [Cu] and Na2-Eosin 

Y, Green LED (λmax = 530 nm) and for other photocatalysts Blue LED (λmax = 455 nm). 

bReactions with styrene 4a were performed by S. Engl. c1H NMR yields. dIsolated yields are in 

parenthesis. e72 h reaction time, performed by Dr. E. Lutsker. f5 mol% catalyst was employed. 

g5 mol% copper salt with 10 mol% phen was used. hDCM instead of CH3CN. iDMF or DMSO 

instead of CH3CN. NR = No Reaction. phen = 1,10-phenanthroline. 

reaction. Indeed, when this reaction was performed in the presence of 1 equivalent of K2HPO4, 

a drastic increase in product yield (60%) was observed (Table 1, entry 10). The use of 

stoichiometric amounts of K2CO3 lowers the product yield to 18% (Table 1, entry 11), while 

the use of 1 equivalent Na2CO3 instead of K2CO3 increases the isolated product yield to 92% 

(Table 1, entry 12). Having these two entries (11 and 12) we speculate there might be a special 

effect of Na+ cation itself. However, using 1 equivalent NaCl as an additive instead again 

drastically decreases the yield of 7a to 8% (Table 1, entry 13), making it unlikely that the 

process is dependent on Na+-cocatalysis. Given that the overall reaction is a net addition, 

substoichiometric amounts of base should be sufficient, i.e. to scavenge traces of HCl that could 

form in the process. Nevertheless, catalytic amount of Na2CO3 is also accompanied by a 

decrease in product formation (55%, Table 1, entry 16). The use of Cs2CO3 as a base, 

completely shut down the reaction (Table 1, Entry 14) whereas use of NaOAc produced only 
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Scope of the reaction: 

 

Scheme 2: Reaction conditions: Sulfonyl chloride 3 (0.50 mmol, 1 equiv), olefin 5 (1.00 

mmol, 2 equiv), Na2CO3 (0.50 mmol, 1 equiv), [Cu(dap)2]Cl 1 (1 mol %) or [Cu(dap)Cl2] 2 (1 

mol %) in CH3CN. All reactions were performed under N2 atmosphere at room temperature 

(25–30 °C) with green LED (λmax = 530 nm). Isolated yields are given. 

41% of the desired product 7a (Table 1, entry 15). Again, the use of the copper(II)-catalyst 2 

was also possible, producing 5a in 72% isolated yield (Table 1, entry 17) after 72 h irradiation. 

Moreover, when other photocatalysts were employed such as [Ru(bpy)3]Cl2,  fac-[Ir(ppy)3], 
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[Ir(dtbbpy)(ppy)2]PF6, [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 or Na2-Eosin Y, poor yields were 

observed and notably, irrespective of the use of Na2CO3 as an additive (Table 1, entries 19–

28). Control experiments proved the necessity of both catalyst and light since no reaction was 

observed in the absence of each of these components (Table 1, entries 29-30). Further 

optimization studies were performed (entries 31-36) which indicated the importance of the 

‘dap’ ligand in combination with copper salts for this transformation. Changing the solvent 

from CH3CN to DCM, DMF or DMSO either provided poor yields or no reaction was observed 

(Table 1, entries 37-38). Thus, the conditions established in entry 12 and 17 (for unactivated 

olefins 5) were found to be best and were subsequently applied to explore the scope of this 

reaction. It should be noted that the possibility of using [Cu(dap)Cl2] 2 offers a considerable 

cost advantage, given that only half the amount of ‘dap’ ligand has to be employed. 

For a wide variety of substrates 3, both Cu(I)- and Cu(II)-dap catalysts (1 and 2) could be 

successfully employed in the title reaction (Schemes 2a and 2b). We were pleased to observe 

that both electron rich and electron poor sulfonyl chlorides underwent the addition reaction 

with allylbenzene 5a in high yields. Structure of 7a was confirmed by single crystal X-Ray 

analysis. In case of ortho-substituted sulfonyl chloride, (e.g. 7b) the reaction time was 5 days 

and the yield was moderate. Considering thiophene derived substrates a potential poison for 

the copper-photocatalyst, they nevertheless also provided the ATRA products 7d in good yield 

(>80%). Fluoro, nitro, methoxy-containing sulfonyl chlorides provided the desired products 

7e-7g in good yields (up to 91%). Surprisingly, alkyl sulfonyl chlorides did not give yield for 

7h. On the other hand, when we examined the limitation for olefinic partner, we found out that 

disubstituted olefin, for example, cyclohexene did not give any yield for 7o after 48 h of 

irradiation. However, 7i-7m were isolated in very good yields. 

Sequential functionalization of two different olefins: 

Given the necessity of employing Na2CO3 as an additive for alkenes 5 for the 

chlorosulfonation, we seized the opportunity to perform the sequential functionalization of 8 

(Scheme 3). Indeed, 8a could be obtained in the first step in 80% yield using TsCl, followed 

by a second ATRA reaction with PhSO2Cl in the presence of Na2CO3 to give rise to 8b in 69% 

isolated yield. An even better overall yield (65%) was obtained when a single flask reaction 

was performed in which 1 mol% [Cu(dap)2]Cl 1 was found to be sufficient for the sequential 

functionalization of the two different double bonds. 
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Scheme 3: Reaction conditions: see experimental section. 

Alkyne difunctionalization: 

 

Scheme 4: Reaction conditions: 3a (0.50 mmol, 1 equiv), alkyne 9 (1.00 mmol, 2 equiv), 

Na2CO3 (0.50 mmol, 1 equiv), [Cu(dap)2]Cl 1 (1 mol %) or [Cu(dap)Cl2] 2 (1 mol %) in 

CH3CN. 

Next, we aimed for chlorosulfonation of unactivated alkynes. Phenylacetylene derived 

substrates gave excellent yields of the desired products with our developed method (cite). 

However, when we subjected 9 into our reaction conditions, none of the catalysts 1 and 2 could 

produce the desired product 10 (Scheme 4). This result is in fact consistent with a very recent 

report[18] where an iridium-based photocatalyst was also shown to be ineffective towards 

unactivated alkynes. 

Further transformations of ATRA products: 

Next, we explored the scope of the further transformations of the synthesized products. First, 

we tested some of the ATRA products in their reactivity with bases. Upon treatment of 7j with 

potassium tert-butoxide[19] a two-fold elimination occurred giving rise to E-11 (Scheme 5a), 

while weak bases (NEt3) resulted in the formation of vinylsulfones[6] 12 in high yield (Scheme 

5b). Vinyl sulfones have been proven to be valuable synthons in asymmetric reactions[20], 

cycloadditions[21], and metalations[22], but can also be transformed to alkynes[19] 13, thus  
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Scheme 5: Reaction conditions: a) 3a (0.50 mmol, 1 equiv), 5d (1.00 mmol, 2 equiv), Na2CO3 

(0.50 mmol, 1 equiv), [Cu(dap)2]Cl 1 (1 mol%) in CH3CN under N2 atmosphere at room 

temperature (25–30 °C) with green LED (λmax = 530 nm). b) 7a (0.30 mmol, 1 equiv), 

triethylamine (0.90 mmol, 3 equiv) in 2 mL chloroform. Isolated yields are given. 

offering overall a route for the dehydrogenation of alkenes. 

Mechanistic studies: 

In order to gain insight into the mechanism for this reaction, we first ruled out the possibility 

of formation of cationic intermediate through the reaction shown in Scheme 6a. Olefin 5b, 

when treated with tosyl chloride 3a under standard reaction condition (Table 1, Entry 12) the 

obtained product was 7m, exclusively, no cyclized product 14 formation was observed. Next, 

we investigated the role of the additive, specifically, Na2CO3 through a series of control 

experiments. We surmised that the distinct requirement for employing heterogeneous inorganic 

bases, in particular Na2CO3, which has also been shown to be beneficial in other photoredox 

reactions[9,12,23], might also prevent the poisoning of the copper catalysts. Indeed, when a 

mixture of 3a and 5a was irradiated in the absence of Na2CO3 for 24 h (Scheme 6b) followed 

by addition of styrene (4a) with continuing irradiation for another 24 h, the formation of only 

47% (1H NMR yield) of 6a was observed along with 7% 7a. When the experiment was repeated 

but Na2CO3 was added together with styrene, the respective yields were 82% and 13%, 
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Scheme 6: Reaction conditions: a) 3a (0.50 mmol, 1 equiv), 5b (1.00 mmol, 2 equiv), Na2CO3 

(0.50 mmol, 1 equiv), [Cu(dap)2]Cl 1 (1 mol%) in CH3CN under N2 atmosphere at room 

temperature (25–30 °C) with green LED (λmax = 530 nm), 48 h. b, c) reactions were performed 

on 0.50 mmol scale. 

clearly suggesting the protective nature of the heterogeneous base for the copper catalyst. The 

more reactive vinylarenes, being more efficient acceptors for radicals formed in the process, 

apparently prevent catalyst deactivation as well, since these alkenes do not require any base. 

Proposed Mechanism: 

A plausible mechanism considering the unique role of the copper catalysts in the title 

transformation is outlined in Scheme 7. When the reaction was performed with [Cu(dap)Cl2] 2 

as a catalyst, we assume that nevertheless a reduction to Cu(I) occurs being the catalytically 

active species, for example via a visible-light-induced homolytic cleavage of the Cu(II)-Cl 

bond[4,10,24] (Scheme 7a) forming a Cu(I) intermediate I. I might get coordinated either by 

another dap ligand with chloride as a counter anion (which results in the formation of 

[Cu(dap)2]Cl 1) or by the solvent[25]. I in its excited state I* can form sulfonyl radicals III upon 

one electron reduction of sulfonyl chloride 3 (Scheme 7b, c). In turn, a Cu(II) species of type 

II such as [Cu(dap)Cl2] is formed, which has been independently synthesized from CuCl2 and 

dap[4] being found to be a capable photocatalyst for the title reaction in this study as well. The 

radical III can add to the olefin forming a C-centered radical IV which takes back chlorine  
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Scheme 7: Proposed catalytic cycles. a) Visible-light induced homolysis (VLIH) of Cu(II)-Cl 

bond; b and c represent two possible ways for the product formation. 

from II concurrent with the regeneration of catalyst I (Scheme 7b). Intermediate IV could also 

bind to the Cu(II) species II (Scheme 7c), being a persistent radical, to give rise to a Cu(III) 

intermediate[26] V. Reductive elimination from V leads to the formation of the desired product 
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and the active catalyst I is regenerated by trapping the free ligand. We assume that for 

unactivated alkenes this pathway (Scheme 7c) is more feasible when Na2CO3 assists the 

reductive elimination from Cu(III) intermediate V. This would explain that for other 

photocatalysts either a negative or no effect of this additive was observed since in those cases 

a normal oxidative quenching pathway is followed. 

Conclusion:  

In conclusion, we have developed a highly efficient, first row transition-metal based 

photocatalytic protocol to convert a large variety of olefins to their corresponding vicinal 

chlorosulfonated adducts. Moreover, the obtained adducts can be subjected to mono 

elimination reaction which produced vinyl sulfones in high yields. On the other hand, double 

elimination can produce alkynes. In other words, sulfonyl chloride mimics traditionally used 

Br2 for the conversion of alkenes to corresponding alkynes. During this study it was also 

realized that a very specific additive can play a crucial role to achieve a particular 

transformation. 
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Experimental section: 

General information: 

All commercial chemical materials were used as received without further purification and 

weight was calculated based on purity mentioned in the container. All photochemical reactions 

were performed under nitrogen atmosphere. All the reactions were monitored by TLC and 

visualized by a dual short (254 nm) / long (366 nm) wavelength UV lamp. Analytical thin layer 

chromatography was performed on Merck TLC aluminum sheets silica gel 60 F 254. 

Purifications by column chromatography were performed on silica gel (0.063-0.200 mm). 

Melting points were recorded on Stanford Research Systems OptiMelt MPA 100 Automated 

melting point system. All products were characterized by appropriate techniques such as 1H-

NMR, 19F-NMR, 13C-NMR, FT-IR and HRMS analysis. FT-IR (Cary 630) spectroscopy was 

carried out on a spectrometer, equipped with a Diamond Single Reflection ATR-System. NMR 

spectra were recorded on Bruker Advance 300 MHz and 400 MHz spectrometers. Chemical 

shifts for 1H-NMR were reported as δ, parts per million, relative to the signal of CHCl3 at 7.26 

ppm. Chemical shifts for 13C-NMR were reported as δ, parts per million, relative to the signal 

of CHCl3 at 77.2 ppm and TMS as an internal standard. Coupling constants (J) are given in 

Hertz (Hz). The following notations indicate the multiplicity of the signals: s = singlet, br-s = 

broad singlet, d = doublet, t = triplet, q = quartet, p = pentet, hept = heptet, dd = doublet of 

doublets, dt = doublet of triplets, td = triplet of doublets, tt = triplet of triplets, qd = quartet of 

doublets, ddd = doublet of doublet of doublets, dtd = doublet of triplet of doublets, dqd = 

doublet of quartet of doublets, tdd = triplet of doublet of dublets, dddd = doublet of doublet of 

doublet of doublets and m = multiplet. Mass spectra were recorded at the Central Analytical 

Laboratory at the Department of Chemistry of the University of Regensburg on Agilent 

Technologies 6540 UHD Accurate-Mass Q-TOF LC/MS. The irradiation was done using blue 

light emitting diodes CREE XP or Oslon SSL (2.5 W electric power @700 mA, λmax = 530 

nm). In the case of no full conversion, the yields are also given based on recovered starting 

material (brsm). 
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Experimental set up: 

 

 

 

 

 

 

 

Figure 1: Experimental set up for chlorosulfonation of olefins 

General Procedure for chlorosulfonylation of unactivated olefins (GP-A): 

 

To an oven dried nitrogen tube (10 mL size) equipped with a stirring bar was charged with 

sulfonyl chloride derivative 3 (0.50 mmol, 1.00 equiv), Na2CO3 (53 mg, 0.50 mmol, 1.00 

equiv) and [Cu(dap)2]Cl (4.4 mg, 1.00 mol%, 0.01 equiv). Then 2 mL dry CH3CN was added 

under positive nitrogen atmosphere. The solution was degassed by three freeze-pump-thaw 

cycles. Then desired olefin 5 was added (1.00 mmol, 2.00 equiv) under nitrogen. The reaction 

mixture was exposed to the Green light emitting diode (LED, λmax = 530 nm) at room 

temperature for mentioned time. After complete conversion of sulfonyl chloride (judged by 

TLC), the reaction mixture was saturated by addition of brine solution (20 mL). The aqueous 

phase was washed with ethyl acetate (3 x 20 mL). The combined organic fractions were dried 

over Na2SO4, concentrated in vacuo, and the crude residue was purified by flash column 

chromatography on silica gel by using hexanes and ethyl acetate as eluents to afford the pure 

product 7. 
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1-((2-chloro-3-phenylpropyl)sulfonyl)-4-methylbenzene (7a): 

 

Following GP-A, 7a was prepared from 4-methylbenzenesulfonyl chloride 3a (95.3 mg, 0.50 

mmol, 1.00 equiv) and allyl benzene 4a (133 µL, 1.00 mmol, 2.00 equiv). The crude product 

was purified by flash column chromatography (hexanes-EtOAc = 4:1, Rf = 0.22) to afford 7a 

as a white solid (142 mg, 92% yield). 

1H NMR (400 MHz, CDCl3): δ 7.68 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.1 Hz, 2H), 7.20 – 7.14 

(m, 3H), 7.11 – 7.09 (m, 2H), 4.41 – 4.35 (m, 1H), 3.40 (d, J = 6.2 Hz, 2H), 3.20 – 2.96 (m, 

2H), 2.34 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 145.3, 136.5, 136.0, 130.1, 129.7, 128.7, 

128.3, 127.4, 62.5, 54.6, 44.0, 21.8; IR (neat, cm-1): 3061, 3030, 2924, 1596, 1495, 1453, 1400, 

1316, 1300, 1147, 1085, 815, 746; HRMS (ESI): exact m/z calculated for C16H17ClO2S 

(M+H)+: 309.0718; Found: 309.0719 (M+H)+. 

 

1-((2-chloro-3-phenylpropyl)sulfonyl)-2-methylbenzene (7b): 

 

Following GP-A, 7b was prepared from 2-methylbenzenesulfonyl chloride 3b (98 mg, 0.50 

mmol, 1.00 equiv) and allyl benzene 5a (133 µL, 1.00 mmol, 2.00 equiv). The crude product 

was purified by flash column chromatography (hexanes-EtOAc = 4:1, Rf = 0.20) to afford 7b 

as a white solid (100 mg, 67% yield). 

1H NMR (300 MHz, CDCl3): δ 8.03 (dd, J1 = 7.9 Hz, J2 = 1.3 Hz, 1H), 7.53 (dt, J1 = 7.5 Hz, 

J2 = 1.3 Hz, 1H), 7.41 – 7.27 (m, 5H), 7.20 – 7.17 (m, 2H), 4.54 – 4.56 (m, 1H), 3.55 (dd, J1 = 

6.2 Hz, J2 = 1.3 Hz, 2H), 3.28 – 3.09 (m, 2H), 2.57 (s, 3H); 13C NMR (75 MHz, CDCl3): δ 

138.1, 137.4, 136.0, 134.2, 133.0, 130.4, 129.7, 128.8, 127.5, 126.9, 61.3, 54.4, 44.1, 20.3; IR 



Chapter 6: Introducing Copper(II)-Catalyst to Photochemical ATRA 

Reactions 

240 
 

(neat, cm-1): 3062, 3029, 2928, 1596, 1495, 1471, 1453, 1390, 1306, 1150, 1125, 1059, 895; 

HRMS (ESI): exact m/z calculated for C16H17ClO2S (M+H)+: 309.0718; Found: 309.0719 

(M+H)+. 

 

(2-chloro-3-(phenylsulfonyl)propyl)benzene (7c): 

 

Following GP-A, 7c was prepared from benzenesulfonyl chloride 3c (88 mg, 0.50 mmol, 1.00 

equiv) and allyl benzene 5a (133 µL, 1.00 mmol, 2.00 equiv). The crude product was purified 

by flash column chromatography (hexanes-EtOAc = 4:1, Rf = 0.20) to afford 7c as a colorless 

oil (140 mg, 95% yield). 

1H NMR (300 MHz, CDCl3): δ 7.93 – 7.90 (m, 2H), 7.69 – 7.64 (m, 1H), 7.59 – 7.53 (m, 2H), 

7.34 – 7.27 (m, 3H), 7.22 – 7.19 (m, 2H), 4.56 – 4.48 (m, 1H), 3.54 (d, J = 6.2 Hz, 2H), 3.33 – 

3.07 (m, 2H); 13C NMR (75 MHz, CDCl3): δ 139.3, 135.9, 134.2, 129.6, 129.5, 128.7, 128.2, 

127.4, 62.2, 54.4, 43.9; IR (neat, cm-1): 3062, 3029, 2923, 1602, 1495, 1446, 1394, 1304, 

1136, 1083, 1025; HRMS (ESI): exact m/z calculated for C15H15ClO2S (M+H)+: 295.0561; 

Found: 295.0557 (M+H)+. 

 

2-((2-chloro-3-phenylpropyl)sulfonyl)thiophene (7d): 

 

Following GP-A, 7d was prepared from 2-thiophenesulfonyl chloride 3d (95.3 mg, 0.50 mmol, 

1.00 equiv) and allyl benzene 5a (133 µL, 1.00 mmol, 2.00 equiv). The crude product was 

purified by flash column chromatography (hexanes-EtOAc = 4:1, Rf = 0.20) to afford 7d as a 

colorless oil (125 mg, 83% yield). 
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1H NMR (300 MHz, CDCl3): δ 7.75 – 7.71 (m, 2H), 7.33 – 7.14 (m, 7H), 4.57 – 4.48 (m, 1H), 

3.64 (d, J = 6.2 Hz, 2H), 3.32 – 3.09 (m, 2H); 13C NMR (75 MHz, CDCl3): δ 140.1, 135.8, 

134.97, 134.90, 129.7, 128.7, 128.2, 127.5, 63.6, 54.5, 43.9. IR (neat, cm-1): 3062, 3031, 1642, 

1603, 1520, 1492, 1344, 1298, 1145, 1097, 988, 856; HRMS (ESI): exact m/z calculated for 

C13H13ClO2S2 (M+H)+: 301.0125; Found: 301.0123 (M+H)+. 

 

1-((2-chloro-3-phenylpropyl)sulfonyl)-4-fluorobenzene (7e): 

 

Following GP-A, 7e was prepared from 4-fluorobenzenesulfonyl chloride 3e (99.3 mg, 0.50 

mmol, 1.00 equiv) and allyl benzene 5a (133 µL, 1.00 mmol, 2.00 equiv). The crude product 

was purified by flash column chromatography (hexanes-EtOAc = 4:1, Rf = 0.38) to afford 7e 

as a yellow oil (159 mg, 91% yield). 

1H NMR (300 MHz, CDCl3): δ 7.95 – 7.90 (m, 2H), 7.34 – 7.27 (m, 3H), 7.25 – 7.19 (m, 4H), 

4.56 – 4.47 (m, 1H), 3.53 – 3.51 (m, 2H), 3.27 – 3.09 (m, 2H); 13C NMR (75 MHz, CDCl3): 

δ 166.0 (d, 1JC-F = 257.0 Hz), 135.7, 135.4 (d, 4JC-F = 3.0 Hz), 131.3 (d, 3JC-F = 9.6 Hz), 129.6, 

128.8, 127.5, 116.8 (d, 2JC-F = 22.7 Hz), 62.4, 54.4, 44.1; 19F NMR (282 MHz, CDCl3): δ -

103.0; IR (neat, cm-1): 3066, 3030, 2925, 1589, 1492, 1453, 1404, 1318, 1289, 1232, 1137, 

1083, 1010, 817; HRMS (ESI): exact m/z calculated for C15H14ClFO2S (M+H)+: 313.0467; 

Found: 313.0464 (M+H)+. 

 

1-((2-chloro-3-phenylpropyl)sulfonyl)-4-nitrobenzene (7f): 

 



Chapter 6: Introducing Copper(II)-Catalyst to Photochemical ATRA 

Reactions 

242 
 

Following GP-A, 7f was prepared from 4-nitrobenzenesulfonyl chloride 3f (114 mg, 0.50 

mmol, 1.00 equiv) and allyl benzene 5a (133 µL, 1.00 mmol, 2.00 equiv). The crude product 

was purified by flash column chromatography (hexanes-EtOAc = 4:1, Rf = 0.25) to afford 7f 

as a yellow solid (170 mg, 86% yield). 

1H NMR (300 MHz, CDCl3): δ 8.38 (d, J = 8.8 Hz, 2H), 8.10 (d, J = 8.9 Hz, 2H), 7.33 – 7.29 

(m, 3H), 7.20 – 7.17 (m, 2H), 4.58 – 4.49 (m, 1H), 3.58 – 3.56 (m, 2H), 3.16 (d, J = 6.8 Hz, 

2H); 13C NMR (75 MHz, CDCl3): δ 151.1, 145.1, 135.4, 130.0, 129.6, 129.0, 127.8, 124.6, 

62.3, 54.2, 44.3; IR (neat, cm-1): 3103, 2927, 1673, 1605, 1525, 1496, 1452, 1345, 1301, 1130, 

1081, 1009, 898; HRMS (ESI): exact m/z calculated for C15H14ClNO4S (M+H)+: 340.0412; 

Found: 340.0411 (M+H)+. 

 

1-((2-chloro-3-phenylpropyl)sulfonyl)-4-methoxybenzene (7g): 

 

Following GP-A, 7g was prepared from 4-methoxybenzenesulfonyl chloride 3g (103 mg, 0.50 

mmol, 1.00 equiv) and allyl benzene 5a (133 µL, 1.00 mmol, 2.00 equiv). The crude product 

was purified by flash column chromatography (hexanes-EtOAc = 4:1, Rf = 0.20) to afford 7g 

as a colorless oil (100 mg, 61% yield/70% brsm). 

1H NMR (300 MHz, CDCl3): δ 7.84 – 7.81 (m, 2H), 7.31 – 7.19 (m, 5H), 7.02 – 6.99 (m, 2H), 

4.53 – 4.45 (m, 1H), 3.87 (s, 3H), 3.51 (d, J = 6.2 Hz, 2H), 3.31 - 3.06 (m, 2H); 13C NMR 

(75 MHz, CDCl3): δ 164.1, 136.0, 130.7, 130.4, 129.6, 128.6, 127.4, 114.6, 62.5, 55.8, 54.6, 

43.9; IR (neat, cm-1): 3063, 3029, 2929, 2841, 1593, 1495, 1456, 1296, 1258, 1132, 1086, 

1021, 942; HRMS (ESI): exact m/z calculated for C16H17ClO3S (M+H)+: 325.0667; Found: 

325.0666 (M+H)+. 
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1-((2-chlorohexyl)sulfonyl)-4-methylbenzene (7i): 

 

Following GP-A, 7i was prepared from 4-methylbenzenesulfonyl chloride 3a (95.3 mg, 0.50 

mmol, 1.00 equiv) and 1-hexene 5c (127 µL, 1.00 mmol, 2.00 equiv). The crude product was 

purified by flash column chromatography (hexanes-EtOAc = 4:1, Rf = 0.35) to afford 7i as a 

colorless oil (129 mg, 92% yield). 

1H NMR (300 MHz, CDCl3): δ 7.79 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.3 Hz, 2H), 4.33 – 4.25 

(m, 1H), 3.59 – 3.41(m, 2H), 2.45 (s, 3H), 2.03 – 1.92 (m, 1H), 1.81 – 1.68 (m, 1H), 1.49 – 

1.26 (m, 4H), 0.89 (t, J = 7.1 Hz, 3H); 13C NMR (75 MHz, CDCl3): δ 145.3, 136.6, 130.1, 

128.3, 63.6, 54.7, 37.7, 28.0, 22.0, 21.8, 14.0; IR (neat, cm-1): 2957, 2930, 2864, 1596, 1493, 

1458, 1401, 1316, 1301, 1140, 1017, 938, 815; HRMS (ESI): exact m/z calculated for 

C13H19ClO2S (M+H)+: 275.0874; Found: 275.0874 (M+H)+. 

 

1-((2-chloro-4-phenylbutyl)sulfonyl)-4-methylbenzene (7j): 

 

Following GP-A, 7j was prepared from 4-methylbenzenesulfonyl chloride 3a (95.3 mg, 0.50 

mmol, 1.00 equiv) and homo allyl benzene 5d (132 mg, 1.00 mmol, 2.00 equiv). The crude 

product was purified by flash column chromatography (hexanes-EtOAc = 4:1, Rf = 0.25) to 

afford 7j as a colorless oil (119 mg, 74% yield). 

 1H NMR (300 MHz, CDCl3): δ 7.67 (d, J = 8.3 Hz, 2H), 7.33 – 7.17 (m, 7H), 4.21 – 4.13 (m, 

1H), 3.61 – 3.44 (m, 2H), 2.93 – 2.69 (m, 2H), 2.44 (s, 3H), 2.41 – 1.99 (m, 2H); 13C NMR 

(75 MHz, CDCl3): δ 145.2, 140.1, 136.1, 130.1, 128.7, 128.6, 128.2, 126.4, 63.4, 53.8, 39.3, 
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32.0, 21.7; IR (neat, cm-1): 3061, 3027, 2924, 1596, 1494, 1453, 1401, 1315, 1301, 1136, 

1085, 1031, 814; HRMS (ESI): exact m/z calculated for C17H19ClO2S (M+H)+: 323.0874; 

Found: 323.0874 (M+H)+. 

 

5-chloro-6-tosylhexan-2-one (7k): 

 

Following GP-A, 7k was prepared from 4-methylbenzenesulfonyl chloride 3a (95.3 mg, 0.50 

mmol, 1.00 equiv) and hex-5-en-2-one 5e (116 µL, 1.00 mmol, 2.00 equiv). The crude product 

was purified by flash column chromatography (hexanes-EtOAc = 4:1, Rf = 0.30) to afford 7k 

as a colorless oil (108 mg, 74% yield). 

1H NMR (300 MHz, CDCl3): δ 7.80 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.3 Hz, 2H), 4.35 – 4.27 

(m, 1H), 3.59 – 3.41 (m, 2H), 2.68 – 2.62 (m, 2H), 2.44 (s, 3H), 2.41 – 2.49 (m, 1H), 2.14 (s, 

3H), 1.98 – 1.88 (m, 1H); 13C NMR (75 MHz, CDCl3): δ 206.9, 145.4, 136.3, 130.1, 128.3, 

63.6, 53.9, 39.6, 31.7, 30.1, 21.8; IR (neat, cm-1): 2959, 2924, 1712, 1596, 1493, 1404, 1359, 

1301, 1289, 1137, 1085, 815; HRMS (ESI): exact m/z calculated for C13H17ClO3S (M+H)+: 

289.0667; Found: 289.0663 (M+H)+. 

 

1-((2-chlorohexyl)sulfonyl)-4-nitrobenzene (7l): 

 

Following GP-A, 7l was prepared from 4-nitrobenzenesulfonyl chloride 3f (114 mg, 0.50 

mmol, 1.00 equiv) and 1-hexene 5c (127 µL, 1.00 mmol, 2.00 equiv). The crude product was 
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purified by flash column chromatography (hexanes-EtOAc = 4:1, Rf = 0.30) to afford 7l as a 

yellow solid (140 mg, 89% yield). 

1H NMR (300 MHz, CDCl3): δ 8.42 (d, J = 8.7 Hz, 2H), 8.14 (d, J = 8.8 Hz, 2H), 4.39 – 4.30 

(m, 1H), 3.67 – 3.49 (m, 2H), 1.96 – 1.71 (m, 2H), 1.52 – 1.26 (m, 4H), 0.90 (t, J = 7.0 Hz, 

3H); 13C NMR (75 MHz, CDCl3): δ 151.1, 145.3, 130.0, 124.6, 63.7, 54.4, 37.9, 27.9, 22.0, 

13.9; IR (neat, cm-1): 3105, 2958, 2931, 2867, 1606, 1528, 1463, 1400, 1347, 1302, 1143, 

1084, 853; HRMS (ESI): exact m/z calculated for C12H16ClNO4S (M+H)+: 306.0569; Found: 

306.0567 (M+H)+. 

 

4-chloro-5-tosylpentan-1-ol (7m): 

 

Following GP-A, 7m was prepared from 4-methylbenzenesulfonyl chloride 3a (95.3 mg, 0.50 

mmol, 1.00 equiv) and 4-penten-1-ol 5b (103 µL, 1.00 mmol, 2.00 equiv). The crude product 

was purified by flash column chromatography (hexanes-EtOAc = 4:1, Rf = 0.20) to afford 7m 

as a yellow oil (91 mg, 65% yield). 

1H NMR (300 MHz, CDCl3): δ 7.79 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 4.39 – 4.30 

(m, 1H), 3.66 (t, J = 6.0 Hz, 2H), 3.60 – 3.43 (m, 2H), 2.45 (s, 3H), 2.19 – 2.08 (m, 1H), 1.91 

– 1.66 (m, 4H); 13C NMR (75 MHz, CDCl3): δ 145.4, 136.4, 130.2, 128.3, 63.5, 61.8, 54.4, 

34.5, 28.9, 21.8. IR (neat, cm-1): 3529, 2926, 2875, 1596, 1445, 1400, 1289, 1136, 1084, 1056, 

917; HRMS (ESI): exact m/z calculated for C12H17ClO3S (M+H)+: 277.0667; Found: 

277.0666 (M+H)+. 
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1-allyl-4-(1-chloro-2-tosylethyl)benzene (8a): 

 

To an oven dried nitrogen tube (10 mL size) equipped with a stirring bar was charged with 4-

methylbenzenesulfonyl chloride 3a (72.4 mg, 0.38 mmol, 1.00 equiv) and [Cu(dap)2]Cl (4.4 

mg, 1.00 mol%, 0.01 equiv) or [Cu(dap)Cl2] (2.6 mg, 1.00 mol%, 0.01 equiv). Then 2 mL dry 

CH3CN was added under positive nitrogen atmosphere. The solution was degassed by three 

freeze-pump-thaw cycles. Then olefin 8 was added (55 mg, 0.38 mmol, 1.00 equiv) under 

nitrogen. The reaction mixture was exposed to the green light emitting diode (LED, λmax = 

530 nm) at room temperature for 24 h. After complete conversion of sulfonyl chloride (judged 

by TLC), the reaction mixture was transferred to a round bottom flask, concentrated in vacuo, 

and the crude product was purified by flash column chromatography (hexanes-EtOAc = 4:1, 

Rf = 0.25) to afford 8a as a white solid (99 mg, 80% yield). 

1H NMR (300 MHz, CDCl3): δ 7.59 (d, J = 8.3 Hz, 2H), 7.23 – 7.16 (m, 4H), 7.07 (d, J = 8.2 

Hz, 2H), 5.97 – 5.83 (m, 1H), 5.31 (t, J = 6.8 Hz, 1H), 5.11 – 5.04 (m, 2H), 3.97 – 3.81 (m, 

2H), 3.33 (d, J = 6.7 Hz, 2H), 2.40 (s, 3H); 13C NMR (75 MHz, CDCl3): δ 144.9, 141.4, 136.9, 

136.4, 136.3, 129.8, 129.1, 128.3, 127.3, 116.4, 64.2, 55.2, 40.0, 21.8; IR (neat, cm-1): 2978, 

2924, 1638, 1596, 1424, 1402, 1318, 1301, 1264, 1153, 1136, 1085, 912, 812; HRMS (ESI): 

exact m/z calculated for C18H19ClO2S (M+Na)+: 357.0647; Found: 357.0693 (M+Na)+. 

 

1-((2-chloro-2-(4-(2-chloro-3-(phenylsulfonyl)propyl)phenyl)ethyl)sulfonyl)-4-

methylbenzene (8b): 

 

Following GP-A, 8b was prepared from benzenesulfonyl chloride 3c (17.6 mg, 0.10 mmol, 

1.00 equiv) and 1-allyl-4-(1-chloro-2-tosylethyl)benzene 8a (67 mg, 1.00 mmol, 2.00 equiv). 
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The crude product was purified by flash column chromatography (hexanes-EtOAc = 3:1, Rf = 

0.22) to afford 8b as a colorless oil (51 mg, 69% yield). 

1H NMR (300 MHz, CDCl3): δ 7.91 (d, J = 7.3 Hz, 2H), 7.68 – 7.55 (m, 5H), 7.27 – 7.13 (m, 

6H), 5.32 (t, J = 6.8 Hz, 1H), 4.51 – 4.44 (m, 1H), 3.96 – 3.78 (m, 2H), 3.53 – 3.49 (m, 2H), 

3.34 – 3.28 (m, 1H), 3.10 – 3.01 (m, 1H), 2.40 (s, 3H); 13C NMR (75 MHz, CDCl3): δ 145.1, 

139.3, 137.9, 137.1, 136.3, 134.4, 130.3, 129.9, 129.6, 128.3, 128.2, 127.5, (64.2, 64.1), 62.3, 

54.9, (54.24, 54.21), (43.43, 43.40), 21.8; IR (neat, cm-1): 3062, 2983, 2926, 1597, 1513, 1492, 

1446, 1426, 1401, 1318, 1303, 1267, 1153, 1138, 1085, 91; HRMS (ESI): exact m/z calculated 

for C24H24Cl2O4S2 (M+H)+: 511.0573; Found: 511.0573 (M+H)+. 

 

(E)-buta-1,3-dien-1-ylbenzene (11): 

 

This double elimination protocol was inspired from previously reported work.[1] A schlenk tube 

(10 mL size) with stirring bar was charged with 1-((2-chloro-4-phenylbutyl)sulfonyl)-4-

methylbenzene (7j) (65 mg, 0.2 mmol, 1.00 equiv) and dry THF (2 mL) was added. Then 

tBuOK (89.7 mg, 0.8 mmol, 4.00 equiv) was added to the solution under positive nitrogen 

atmosphere. The solution was then refluxed for 90 min. After work up, chromatographic 

purification afforded 11 (15 mg, 50% yield). The obtained NMR matched with previous 

report.[2]  

 

(E)-((3-phenylprop-1-en-1-yl)sulfonyl)benzene (12): 

 

A mixture of (2-chloro-3-(phenylsulfonyl)propyl)benzene 7c (85.0 mg, 0.30 mmol, 1.00 

equiv.) and triethylamine (125 μL, 0.90 mmol, 3.00 equiv.) in 2 mL CHCl3 was stirred at room 

temperature for 30 min and monitored by TLC. Afterwards, the reaction mixture was filtered 
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and the solvents as well as residues of triethylamine were removed under reduced pressure. 

Then the crude reaction mixture was purified by column chromatography (hexanes-EtOAc = 

5:1, Rf = 0.35) to afford 12 (63 mg, 86%) as white solid. 

1H NMR (300 MHz, CDCl3): δ 7.89 – 7.86 (m, 2H), 7.66 – 7.60 (m, 1H), 7.55 – 7.50 (m, 2H), 

7.31 – 7.27 (m, 5H), 6.39 – 6.34 (m, 1H), 6.15 – 6.04 (m, 1H), 3.95 (dd, J1 = 7.5 Hz, J2 = 0.9 

Hz, 2H); 13C NMR (75 MHz, CDCl3): δ 139.3, 138.4, 135.8, 133.9, 129.2, 128.7, 128.64, 

128.62, 126.7, 115.1, 60.5; IR (neat, cm-1): 3059, 3028, 2919, 1582, 1494, 1478, 1446, 1295, 

1235, 1133, 1083, 966, 901, 728; HRMS (ESI): exact m/z calculated for C15H14O2S 

(M+NH4
+): 276.1058; Found: 276.1064 (M+NH4

+). 
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1H and 13C NMR of 7a:  
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1H and 13C NMR of 7b:  
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1H and 13C NMR of 7c:  

 

 

 



Chapter 6: Introducing Copper(II)-Catalyst to Photochemical ATRA 

Reactions 

252 
 

1H and 13C NMR of 7d: 
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1H, 13C and 19F NMR of 7e: 
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1H and 13C NMR of 7f: 
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1H and 13C NMR of 7g: 
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1H and 13C NMR of 7i: 
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1H and 13C NMR of 7j: 
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1H and 13C NMR of 7k: 
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1H and 13C NMR of 7l: 
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1H and 13C NMR of 7m: 
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1H and 13C NMR of 8a: 

 

 

 



Chapter 6: Introducing Copper(II)-Catalyst to Photochemical ATRA 

Reactions 

263 
 

1H and 13C NMR of 8b: 
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1H and 13C NMR of 11: 
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1H and 13C NMR of 12: 
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Crystal Data of 7a: 

 

Experimental. Single clear white block-shaped crystals of 7a were obtained by 

recrystallisation from dichloromethane. A suitable crystal (0.30×0.22×0.19) mm3 was selected 

and mounted on a Lindemann tube oil on a SuperNova, Single source at offset/far, Atlas 

diffractometer. The crystal was kept at T = 123.01(10) K during data collection. Using Olex2 

(Dolomanov et al., 2009), the structure was solved with the ShelXT (Sheldrick, 2015) structure 

solution program, using the Intrinsic Phasing solution method. The model was refined with 

version 2016/6 of ShelXL (Sheldrick, 2015) using Least Squares minimisation. 

Crystal Data. C16H17ClO2S, Mr = 308.80, orthorhombic, Pca21 (No. 29), a = 20.3055(4) Å, 

b = 7.7348(2) Å, c = 9.6943(2) Å,  =  =  = 90°, V = 1522.58(6) Å3, T = 123.01(10) K, Z = 

4, Z' = 1, (CuK) = 3.486, 10815 reflections measured, 3038 unique (Rint = 0.0437) which 

were used in all calculations. The final wR2 was 0.1050 (all data) and R1 was 0.0400 (I > 2(I)). 

 

Compound  7a  

    

Formula  C16H17ClO2S  

Dcalc./ g cm-3  1.347  

/mm-1  3.486  

Formula Weight  308.80  

Colour  clear white  

Shape  block  

Size/mm3  0.30×0.22×0.19  
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T/K  123.01(10)  

Crystal System  orthorhombic  

Flack Parameter  -0.02(2)  

Hooft Parameter  -0.013(9)  

Space Group  Pca21  

a/Å  20.3055(4)  

b/Å  7.7348(2)  

c/Å  9.6943(2)  

/°  90  

/°  90  

/°  90  

V/Å3  1522.58(6)  

Z  4  

Z'  1  

Wavelength/Å  1.54184  

Radiation type  CuK  

min /
°  4.355  

max/
°  76.456  

Measured Refl.  10815  

Independent Refl.  3038  

Reflections Used  2958  

Rint  0.0437  

Parameters  225  

Restraints  181  

Largest Peak  0.490  

Deepest Hole  -0.274  

GooF  1.054  

wR2 (all data)  0.1050  

wR2  0.1034  

R1 (all data)  0.0412  

R1  0.0400  
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Structure Quality Indicators 

Reflections:  

Refinement:  

A clear white block-shaped crystal with dimensions 0.30×0.22×0.19 mm3 was mounted on a 

Lindemann tube oil. X-ray diffraction data were collected using a SuperNova, Single source at 

offset/far, Atlas diffractometer equipped with an Oxford Cryosystems low-temperature device, 

operating at T = 123.01(10) K. 

Data were measured using  scans of 1.0 ° per frame for 1.0/4.0 s using CuK radiation (micro-

focus sealed X-ray tube, n/a kV, n/a mA). The total number of runs and images was based on 

the strategy calculation from the program CrysAlisPro (Rigaku, V1.171.39.37b, 2017). The 

maximum resolution achieved was  = 76.456°. 

Cell parameters were retrieved using the CrysAlisPro (Rigaku, V1.171.39.37b, 2017) software 

and refined using CrysAlisPro (Rigaku, V1.171.39.37b, 2017) on 6937 reflections, 64 % of 

the observed reflections. Data reduction was performed using the CrysAlisPro (Rigaku, 

V1.171.39.37b, 2017) software which corrects for Lorentz polarisation. The final completeness 

is 99.90 % out to 76.456° in . 

A gaussian absorption correction was performed using CrysAlisPro 1.171.39.37b (Rigaku 

Oxford Diffraction, 2017). Numerical absorption correction based on gaussian integration over 

a multifaceted crystal model. Empirical absorption correction using spherical harmonics, 

implemented in SCALE3 ABSPACK scaling algorithm. The absorption coefficient  of this 

material is 3.486 mm-1 at this wavelength ( = 1.54184Å) and the minimum and maximum 

transmissions are 0.601 and 0.772. 

The structure was solved in the space group Pca21 (# 29) by Intrinsic Phasing using the ShelXT 

(Sheldrick, 2015) structure solution program and refined by Least Squares using version 2016/6 

of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen 

atom positions were calculated geometrically and refined using the riding model. 

There is a single molecule in the asymmetric unit, which is represented by the reported sum 

formula. In other words: Z is 4 and Z' is 1. 

The Flack parameter was refined to -0.02(2). Determination of absolute structure using 

Bayesian statistics on Bijvoet differences using the Olex2 results in -0.015(9). Note: The Flack 
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parameter is used to determine chirality of the crystal studied, the value should be near 0, a 

value of 1 means that the stereochemistry is wrong and the model should be inverted. A value 

of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers. 

_exptl_absorpt_process_details: CrysAlisPro 1.171.39.37b (Rigaku Oxford Diffraction, 2017) 

Numerical absorption correction based on gaussian integration over a multifaceted crystal 

model. Empirical absorption correction using spherical harmonics, implemented in SCALE3 

ABSPACK scaling algorithm. 

Data Plots: Diffraction Data 
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Data Plots: Refinement and Data 

    

Reflection Statistics 

Total reflections (after 

filtering)  

11592  Unique reflections  3038  

Completeness  0.949  Mean I/  20.0  

hklmax collected  (25, 9, 12)  hklmin collected  (-25, -8, -12)  

hklmax used  (25, 9, 12)  hklmin used  (0, 0, -12)  

Lim dmax collected  100.0  Lim dmin collected  0.77  

dmax used  10.15  dmin used  0.79  

Friedel pairs  3018  Friedel pairs merged  0  

Inconsistent equivalents  2  Rint  0.0437  

Rsigma  0.0355  Intensity transformed  0  

Omitted reflections  0  Omitted by user (OMIT 

hkl)  

0  

Multiplicity  (5945, 2078, 419, 51, 6)  Maximum multiplicity  15  

Removed systematic 

absences  

777  Filtered off 

(Shel/OMIT)  

0  
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Images of the Crystal on the Diffractometer 

 

Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters 

(Å2×103) for 7a. Ueq is defined as 1/3 of the trace of the orthogonalised Uij. 

Atom x y z Ueq 

S1 5155.6(3) 5468.9(9) 6009.1(9) 24.9(2) 

O1 4975.9(13) 6480(3) 7196(3) 33.5(6) 

O2 4854.8(13) 3800(3) 5832(3) 36.1(6) 

C4 6298.2(17) 4157(5) 5005(4) 29.2(7) 

C6 6395.4(18) 5946(4) 7045(4) 29.4(7) 

C3 6976.4(18) 3920(5) 5010(4) 33.0(7) 

C5 6014.5(14) 5171(4) 6025(4) 24.7(6) 

C7 7074.4(19) 5676(4) 7030(4) 33.1(7) 

C8 4964.1(16) 6686(4) 4508(4) 25.8(6) 

C10 4808.3(18) 9634(5) 3460(4) 35.9(8) 

C9 5177.8(15) 8562(4) 4527(4) 29.3(7) 

C2 7368.6(15) 4677(4) 6020(5) 33.1(7) 

C1 8107.3(17) 4391(5) 6010(6) 45.0(9) 

C13 3260(3) 10867(8) 5389(9) 31.4(6) 

C12A 3917(3) 10611(10) 5031(9) 30.9(6) 

C11 4077(3) 9807(11) 3797(10) 30.2(5) 

C16 3569(3) 9237(9) 2932(8) 30.9(6) 

C15 2914(3) 9524(9) 3286(10) 31.5(6) 

C14 2763(3) 10332(8) 4503(10) 31.7(6) 
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Atom x y z Ueq 

Cl1 6047.3(4) 8723.6(14) 4134.0(14) 51.5(3) 

C11A 4105(3) 9859(17) 3796(15) 30.5(6) 

C16A 3707(6) 9157(14) 2774(12) 30.9(6) 

C15A 3026(5) 9285(13) 2878(14) 31.4(6) 

C14A 2743(3) 10116(13) 4003(18) 31.6(6) 

C13A 3142(5) 10818(12) 5025(14) 31.4(6) 

C12B 3823(5) 10690(15) 4922(12) 30.9(6) 

 

Anisotropic Displacement Parameters (×104) 7a. The anisotropic displacement factor exponent 

takes the form: -22 [h2a*2 × U11+ ... +2hka* × b* × U12] 

Atom U11 U22 U33 U23 U13 U12 

S1 31.3(3) 20.7(3) 22.6(3) 2.1(3) 2.7(3) -1.1(2) 

O1 43.2(13) 31.8(13) 25.6(12) 1.9(11) 7.4(10) 5.0(11) 

O2 40.5(13) 24.9(11) 42.9(16) 4.6(12) 2.3(11) -7.6(9) 

C4 36.5(16) 27.4(15) 23.8(15) -2.5(14) -1.9(13) 0.2(13) 

C6 39.7(17) 23.8(15) 24.6(15) 0.2(13) -4.3(13) 3.8(13) 

C3 39.0(17) 29.5(16) 30.5(17) 1.6(15) 3.1(14) 7.5(14) 

C5 33.1(13) 19.7(12) 21.3(13) 3.0(15) 0.3(14) 1.7(10) 

C7 39.2(17) 27.1(16) 32.9(17) 1.9(15) -9.0(14) 1.3(13) 

C8 26.7(13) 26.2(16) 24.4(14) 2.1(13) -4.4(11) -2.2(12) 

C10 40.2(18) 36(2) 31.9(18) 12.5(15) 1.7(14) -0.4(14) 

C9 28.3(15) 26.5(16) 33.2(17) 8.2(15) -0.2(12) -4.7(11) 

C2 32.2(15) 29.3(15) 37.6(16) 10.3(16) -1.8(15) 2.6(12) 

C1 34.0(16) 46(2) 55(2) 14(2) -2(2) 3.6(15) 

C13 34.1(11) 26.1(10) 34.0(14) -0.2(10) -8(1) 1.2(9) 

C12A 33.8(11) 25.2(10) 33.8(13) 0.1(10) -7.6(10) 0.7(9) 

C11 33.7(11) 23.9(9) 33.2(13) 0.9(9) -7.4(9) 0.5(9) 

C16 34.1(11) 25.0(9) 33.5(13) 0.6(10) -7.6(10) 0.8(9) 

C15 34.3(11) 26.4(10) 33.8(14) 0(1) -7.9(10) 0.4(9) 

C14 34.2(11) 26.8(10) 34.0(14) 0(1) -7.8(10) 1.3(9) 

Cl1 28.4(4) 51.8(6) 74.3(7) 29.2(5) -1.1(4) -8.5(4) 
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Atom U11 U22 U33 U23 U13 U12 

C11A 33.8(11) 24.3(10) 33.3(13) 0.7(10) -7.5(10) 0.6(9) 

C16A 34.0(11) 25(1) 33.6(14) 0.4(10) -7.6(10) 0.9(9) 

C15A 34.3(11) 25.9(10) 33.9(14) -0.2(10) -7.7(10) 1.1(9) 

C14A 34.2(11) 26.3(10) 34.2(15) -0.4(11) -7.8(11) 1.0(9) 

C13A 34.2(11) 26(1) 34.0(14) -0.3(11) -7.6(10) 1.1(9) 

C12B 33.9(11) 25.1(10) 33.7(14) 0.1(10) -7.6(10) 0.8(9) 

 

Bond Lengths in Å for 7a. 

Atom Atom Length/Å 

S1 O1 1.439(3) 

S1 O2 1.438(2) 

S1 C5 1.759(3) 

S1 C8 1.777(3) 

C4 C3 1.389(5) 

C4 C5 1.387(5) 

C6 C5 1.391(5) 

C6 C7 1.395(5) 

C3 C2 1.391(6) 

C7 C2 1.383(6) 

C8 C9 1.515(5) 

C10 C9 1.523(5) 

C10 C11 1.525(7) 

C10 C11A 1.474(7) 

C9 Cl1 1.810(3) 

C2 C1 1.516(4) 

C13 C12A 1.393(8) 

C13 C14 1.389(7) 

C12A C11 1.387(8) 

C11 C16 1.402(7) 

C16 C15 1.391(8) 

C15 C14 1.369(9) 
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Atom Atom Length/Å 

C11A C16A 1.3900 

C11A C12B 1.3900 

C16A C15A 1.3900 

C15A C14A 1.3900 

C14A C13A 1.3900 

C13A C12B 1.3900 

 

Bond Angles in ° for 7a. 

Atom Atom Atom Angle/° 

O1 S1 C5 108.41(17) 

O1 S1 C8 108.16(15) 

O2 S1 O1 118.42(16) 

O2 S1 C5 107.72(15) 

O2 S1 C8 106.55(16) 

C5 S1 C8 107.06(16) 

C5 C4 C3 118.9(3) 

C5 C6 C7 118.5(3) 

C4 C3 C2 121.0(3) 

C4 C5 S1 118.7(3) 

C4 C5 C6 121.3(3) 

C6 C5 S1 120.0(3) 

C2 C7 C6 121.2(3) 

C9 C8 S1 115.8(2) 

C9 C10 C11 112.4(4) 

C11A C10 C9 113.0(7) 

C8 C9 C10 111.8(3) 

C8 C9 Cl1 110.0(2) 

C10 C9 Cl1 107.4(2) 

C3 C2 C1 120.0(4) 

C7 C2 C3 119.1(3) 

C7 C2 C1 120.9(4) 
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Atom Atom Atom Angle/° 

C14 C13 C12A 120.0(6) 

C11 C12A C13 120.2(5) 

C12A C11 C10 116.9(6) 

C12A C11 C16 119.0(5) 

C16 C11 C10 124.1(6) 

C15 C16 C11 120.4(5) 

C14 C15 C16 119.9(5) 

C15 C14 C13 120.4(5) 

C16A C11A C10 111.1(9) 

C16A C11A C12B 120.0 

C12B C11A C10 128.9(9) 

C11A C16A C15A 120.0 

C16A C15A C14A 120.0 

C13A C14A C15A 120.0 

C12B C13A C14A 120.0 

C13A C12B C11A 120.0 

 

Hydrogen Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 

Parameters (Å2×103) for 7a. Ueq is defined as 1/3 of the trace of the orthogonalised Uij. 

Atom x y z Ueq 

H4 6038.69 3644.54 4328.05 35 

H6 6201.43 6628.83 7721.82 35 

H3 7171.12 3245.28 4328.71 40 

H7 7334.11 6176.84 7711.71 40 

H8A 5168.22 6127.14 3720.67 31 

H8B 4491.33 6647.87 4368.15 31 

H10A 4856.1 9096.32 2561.69 43 

H10B 5003.39 10776.8 3412.07 43 

H10C 5013.73 10762.48 3390.5 43 

H10D 4845.45 9075.22 2567.69 43 

H9 5097.19 9044.37 5446.89 35 
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Atom x y z Ueq 

H1A 8199.36 3204.76 5792.38 68 

H1B 8284.69 4662.5 6901.58 68 

H1C 8305.6 5126.01 5327.94 68 

H13 3154.36 11395.58 6221.72 38 

H12A 4249.9 10979.7 5621.61 37 

H16 3669.46 8663.73 2116.05 37 

H15 2578.63 9167.41 2697.7 38 

H14 2325.03 10523.34 4736.58 38 

H16A 3895.72 8600.62 2021.39 37 

H15A 2759.07 8814.42 2194.14 38 

H14A 2287.76 10201.27 4072.48 38 

H13A 2953.08 11374.32 5778.09 38 

H12B 4089.74 11160.55 5605.36 37 

 

Atomic Occupancies for all atoms that are not fully occupied in 7a. 

Atom Occupancy 

H10A 0.648(16) 

H10B 0.648(16) 

H10C 0.352(16) 

H10D 0.352(16) 

C13 0.648(16) 

H13 0.648(16) 

C12A 0.648(16) 

H12A 0.648(16) 

C11 0.648(16) 

C16 0.648(16) 

H16 0.648(16) 

C15 0.648(16) 

H15 0.648(16) 

C14 0.648(16) 

H14 0.648(16) 
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Atom Occupancy 

C11A 0.352(16) 

C16A 0.352(16) 

H16A 0.352(16) 

C15A 0.352(16) 

H15A 0.352(16) 

C14A 0.352(16) 

H14A 0.352(16) 

C13A 0.352(16) 

H13A 0.352(16) 

C12B 0.352(16) 

H12B 0.352(16) 
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Summary 

     This thesis describes two different Cu(II)-catalyzed photochemical transformations, 

namely, oxo-azidation of vinylarenes and chloro-sulfonation of unactivated olefins. In 

addition, a photochemical route for the synthesis of pyrazines from corresponding vinyl azides 

has been delineated. 

     In Chapter 1, the historical background, revolution as well as recent developments in the 

field of visible-light photoredox catalysis have been outlined. In addition, the discovery of 

different modes of photochemical activation of small organic molecules and their application 

in organic synthesis have been shown by the selection of a few pioneering examples. 

     In Chapter 2, the synthesis of pyrazine cores from vinyl azides has been described via a 

photocascade process which involves the utilization of two photons by a single photocatalyst 

([Ru(bpy)3]Cl2) for producing one molecule of the pyrazine product. In the first catalytic cycle, 

photoexcited *[Ru(bpy)3]Cl2 transfers energy to the vinyl azide to form an azirine intermediate 

which further reacts with water to form an 1,4-dihydropyrazine intermediate. In the subsequent 

catalytic cycle, this intermediate underwent oxidation to the corresponding 1,4-pyrazine in the 

presence of oxygen (air, as terminal oxidant). 

     The Chapter 3 describes the use of copper in various visible-light-mediated 

transformations. Copper is not only an earth-abundant or cost-alternative metal for 

photocatalysis, but it has several special features beyond single-electron transfer. In the first 

part of this chapter, a few unique transformations have been discussed which could be achieved 

only in the presence of a copper(I)-photocatalyst (organic dyes, iridium or ruthenium-based 

photocatalyst failed in all these transformations). In the second part, the ability of copper to 

form a photoactive-species and their interaction with various organic compounds under 

photochemical conditions has been discussed. Recently, copper has also been employed as a 

co-catalyst in combination with the commonly used photocatalysts in order to achieve various 

cross-coupling reactions. This discussion, including the mechanistic paradigms are shown in 

the third part of this chapter. While in the last part, a conceptual description of copper(II)-

photocatalyzed processes have been demonstrated with a few examples. The concept of visible-

light-induced homolysis (VLIH) of photoactive Cu(II)-complexes has been introduced in this 

chapter. 
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     The Chapter 4 illustrates an unprecedented visible-light mediated copper(II)-

photocatalyzed process. A visible-light-accelerated, copper(II)-catalyzed method for oxo-

azidation of vinylarenes has been developed which proceeds at room temperature and utilizes 

molecular oxygen as the stoichiometric oxidant. In contrast to commonly used iridium, 

ruthenium or organic dye based photocatalysts, copper-based photocatalysts have been found 

to be unique for this transformation. With spectroscopic evidences, Cu(II) has been proposed 

as the catalytically active species. In the key-step, a copper(II)-azide intermediate species 

undergoes light-accelerated homolysis to form a Cu(I)-species and an azido radical. This study 

also represents the first catalytic synthesis of azidoketones directly from olefins. 

     In Chapter 5, the use of different sulfonyl chlorides in visible-light-mediated 

transformations have been discussed. Direct trifluoromethylation, sulfonation and arylation of 

organic compounds could be achieved in single photocatalytic steps as demonstrated by a few 

properly selected examples. 

     In Chapter 6, visible-light induced, copper catalyzed chloro-sulfonation of unactivated 

olefin has been delineated. This protocol utilizes commercially available precursors (sulfonyl 

chlorides and olefins) and proceeds at room temperature. Besides the Cu(I) complex 

[Cu(dap)2]Cl, the corresponding Cu(II) complex [Cu(dap)Cl2] has been proven to be an 

efficient catalyst in this reaction, being advantageous from an economic point of view but also 

opening up new avenues for photoredox catalysis. Moreover, these copper complexes have 

also outperformed commonly used ruthenium, iridium, or organic dye based photocatalysts. 

The use of stoichiometric Na2CO3 in combination with the copper photocatalysts was found to 

be essential for this reaction. As suggested by appropriate control experiments, the role of 

Na2CO3 is attributed to prevention of poisoning of the catalyst. 
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Zusammenfassung 

Diese Arbeit zeigt zwei verschiedene mit Cu(II)-katalysierte photochemische 

Transformationen. Zum einen die Oxo-Azidierung von Vinylarenen, zum Anderen die Chloro-

Sulfonierungen von nicht aktivierten Olefinen. Außerdem wurde eine photochemische Route 

zur Synthese von Pyrazinen aus den entsprechenden Vinylaziden beschrieben. 

In Kapitel 1 wird ein Überblick über den historischen Hintergrund, die Revolution sowie 

jüngste Entwicklungen im Feld der Photoredoxkatalyse mit sichtbarem Licht gegeben. Darüber 

hinaus wird anhand einer Auswahl wegweisender Beispiele die Entdeckung von verschiedenen 

photochemischen Aktivierungsmoden von kleinen organischen Molekülen und ihre 

Anwendung in der organischen Synthese aufgezeigt. 

In Kapitel 2 konnte die Synthese einer Pyrazingrundstruktur aus Vinylaziden über einen 

photokaskaden Prozess gezeigt werden. In anderen Worten wurden zur Herstellung eines 

Moleküls des Pyrazinproduktes zwei Photonen eines einzelnen Photokatalysators 

([Ru(bpy)3]Cl2) genutzt. Im ersten katalytischen Zyklus findet ein Energietransfer des durch 

Licht angeregten *[Ru(bpy)3]Cl2 zum Vinylazid statt um ein Azirinintermediat zu bilden. 

Dieses reagiert mit Wasser weiter zum 1,4-Dihydropyrazinintermediat, welches in einem 

weiteren katalytischen Zyklus in Anwesenheit von Sauerstoff (Luftsauerstoff, als 

abschließendes Oxidationsmittel) zum entsprechenden 1,4-Pyrazin oxidiert. 

Kapitel 3 beschreibt den Einsatz von Kupfer in verschiedenen durch sichtbares Licht 

vermittelten Transformationen. Kupfer ist nicht nur ein reichlich vorkommendes und 

kostengünstiges Metall zur Photokatalyse, sondern weist neben der Möglichkeit eines Einzel-

Elektronentransfers zahlreiche weitere Besonderheiten auf. Im ersten Teil dieses Kapitels 

wurden einige einzigartige Transformationen behandelt, die nur in Anwesenheit eines 

Kupfer(I)-Photokatalysators möglich sind (organische Farbstoffe und Iridium- oder 

Ruthenium-basierte Photokatalysatoren waren in allen Fällen erfolglos). Der zweite Teil 

befasst sich mit der Fähigkeit von Kupfer, unter photochemischen Bedingungen, photoaktive 

Spezien zu bilden und sie mit verschiedenen organischen Verbindungen zu koppeln. Erst 

kürzlich wurde Kupfer in Kombination mit herkömmlichen Photokatalysatoren sogar als Co-

Katalysator verwendet, um verschiedene Kreuzkopplungsreaktionen zu verwirklichen. Die 

Diskussion darüber, einschließlich mechanistischer Paradigmen werden im dritten Teil dieses 

Kapitels aufgezeigt. Im letzten Teil wurde anhand einiger Beispiele eine konzeptuelle 

Beschreibung von Kupfer(II)-photokatalysierten Prozessen aufgezeigt. 
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Kapitel 4 veranschaulicht einen noch nie gezeigten, durch sichtbares Licht vermittelten, 

Kupfer(II)-photokatalysierten Prozess. Eine durch sichtbares Licht beschleunigte, Kupfer(II) 

katalysierte Methode zur oxo-Azidierung von Vinylarenen wurde erschlossen. Diese läuft bei 

Raumtemperatur ab und nutzt molekularen Sauerstoff als stöchiometrisches Oxidationsmittel. 

Dabei erwiesen sich, im Gegensatz zu herkömmlich benutzten Iridium, Ruthenium oder auf 

organischen Farbstoffen basierende Photokatalysatoren, Kupfer-basierte Photokatalysatoren 

als einzigartig für diese Transformation. Spektroskopisch nachgewiesen, wurde Cu(II) als die 

katalytisch aktive Spezies vorgeschlagen. Im Schlüsselschritt durchläuft eine Kupfer-Azid 

Spezies eine durch Licht beschleunigte Homolyse, wobei sich Cu(I) und Azidoradikale bilden. 

Darüber hinaus repräsentiert diese Studie die erste direkt von Olefinen ausgehende katalytische 

Synthese von Azidoketonen. 

In Kapitel 5 wurde die Verwendung von verschiedenen Sulfonylchloriden in durch sichtbares 

Licht vermittelte Transformationen erörtert. In nur einem photokatalytischen Schritt kann die 

direkte Trifluoromethylierung, Sulfonylierung und Arylierung von organischen Verbindungen 

verwirklicht werden. Dies wurde anhand ausgewählter Beispiele dargestellt.  

In Kapitel 6 wurde die durch sichtbares Licht induzierte, kupferkatalysierte Chloro-

sulfonylierung von nicht aktivierten Olefinen dargestellt. Dieses Protokoll nutzt käuflich 

erwerbliche Startmaterialien (Sulfonylchloride und Olefine) und läuft bei Raumtemperatur ab. 

Es wurde gezeigt, dass neben dem Cu(I) Komplex [Cu(dap)2]Cl, auch der korrespondierende 

Cu(II) Komplex [Cu(dap)Cl2] diese Reaktion effektiv katalysieren konnte. Dies ist nicht nur 

aus ökonomischer Sicht vorteilhaft, sondern eröffnet auch neue Wege in der 

Photoredoxkatalyse. Ferner übertrafen diese Kupferkomplexe auch die herkömmlich genutzten 

Ruthenium-, Iridium- oder auf organischen Farbstoffen basierenden Photokatalysatoren. Es 

erwies sich, dass stöchiometrische Mengen von Na2CO3 in Kombination mit den 

Kupferphotokatalysatoren für diese Reaktion essenziell sind. Wie durch geeignete 

Kontrollexperimente suggeriert wurde, wurde die Rolle von Na2CO3 der Prävention der 

Katalysatorvergiftung zugeschrieben.
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