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Abstract

Educational repositories contain complex trajectories of students and university data. Being

able to model this data would offer great value in being able to identify students’ trajecto-

ries, predicting their likely future performance, and identifying those who require appropriate

intervention as early as possible. However, understanding the nature of the correlations and

the dependencies among the educational attributes (which can be time-dependant non-linear

relationships) is fundamental for the learning of robust predictive classifiers. When predicting

academic performance, many machine learning algorithms make decisions based on data that

can be imbalanced, badly sampled, or biased based on historical societal prejudices.

In this thesis, I explore, implement, and evaluate temporal predictive classifiers that aim

to overcome some of these issues. The approach combines time-series clustering in conjunction

with probabilistic learning, resampling, feature subspace learning, and specialist deep learning

methods to learn models that are simultaneously accurate and unbiased. A key technical

objective in learning these classifiers is to incorporate different types of temporal performance

data collected at different times (student admission to a higher education institution, and at

Year 1 and 2 of a student’s studies), for the explicit modelling of cognitive styles. A resampling

method is applied with bootstrap aggregating to address the issue of the imbalanced time-series

educational datasets, which is related to miss-classifying the minority-class of the high-risk

or failing students. The evaluation of an unsupervised subspace learning approach using an

Autoassociative Neural Network (Autoencoder) is also made, to reconstruct the educational

data by maximising variance for improved performance prediction. In addition, the issues of

modelling bias are explored such that the types are identified and whether they are accounting

for inflated predictive accuracies is established. A graphical learning approach with a BN, that

is transparent in how they make decisions, is compared with three forms of Deep Multi-label

Convolutional Neural Network (CNNs) to investigate whether deep learning classifiers can be

learned that maximise accuracy and minimise bias.

The evaluation of the experimental results reveals that identifying cognitive styles improves

both explanation and accuracy; that rebalancing also improves accuracy, and that a combi-
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nation of probabilistic modelling and deep 1D Multi-label CNN can successfully identify and

eliminate many biases when predicting student’s academic performance.
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Chapter 1

Introduction

1.1 Motivation

Predicting student performance is a major area of interest within the field of Educational Data

Mining (EDM). For example, ascertaining accurately what final grades (Romero, Lopez, Luna

and Ventura, 2013), will be achieved. However, it is a very complex task as it is influenced by

social, environmental and behavioural factors (Bhardwaj and Pal, 2012) (Araque et al., 2009).

Identifying these factors will enable predictive models to identify high risk students who may

need intervention. Many educational datasets are complex as they often capture a temporal

process with only a small number of observations. They are also often imbalanced with only

a limited number of high-risk students (likely to fail). Learning from such data requires novel

approaches and combinations of techniques to transform such data into useful knowledge (He

and Garcia, 2009). As well as these technical challenges, data driven models are facing other

challenges as many make decisions based on data that are biased and can therefore result in

prejudiced decisions. For instance, in higher education, which this thesis focuses on, a student

may be rejected from a course or an academic program based on historical decisions in the

data that only exist due to historical biases in society. Furthermore, educational datasets can

have missing data and biased samples. A predictive model may therefore predict a student as

a high risk or failing student based on decisions in the data that only exist due to the skewed

sampling of such data. These issues of course are not solely the preserve of educational data
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mining but are also very common issues in many other applications involving sensitive variables

and important decision making.

Ensuring trust in the AI data driven models is crucial for many of the real-world challenges.

Indeed, the whilst AI algorithms have demonstrated abilities in making accurate predictions,

there is no consensus in what algorithms constitute useful explanations as to how and why

the predictions are made. Explainable AI (XAI) has emerged as a topic to explore explainable

models while achieving as good or better prediction. This is to overcome the dominance of

black-box algorithms which have become very powerful at mapping inputs to outputs (Jia et al.,

2018). Some traditional approaches such as rule-based and graphical-based classifiers (e.g.

Bayesian Networks (Pearl, 2011)) have become popular again as they can be used to generate

explanations because knowledge is more explicitly represented. However, these methods do

not ensure against unbiased predictions: models are only as good as the data that is used to

train them.

In the research area of AI in education, a shift in thinking is required, from unexplainable

decisions by machine learning classifiers to a new approaches where we explicitly consider the

dependencies and correlations between factors to generate accurate and explainable models.

In this thesis, a target will be the implementation of the state-of-the-art machine learning

techniques based on Bayesian Networks and Deep learning to provide explainable predictive

models or classifiers with higher educational temporal data.

In this connection, this chapter seeks to address the motivations, aim, objectives and con-

tributions of the research conducted in this thesis.

1.2 Thesis Aim

The works conducted in this thesis are aimed at identifying accurate, reliable, and interpretable

temporal predictive classifiers. The importance of exploiting temporal models based on stu-

dents’ progression time series trajectories is determined in this work. This allows for the

capturing of students’ dynamics so as to provide accurate and reliable predictions of academic

performance in different time slots of the class modules. In addition, the structure learning

2



Chapter 1: Introduction Thesis Contributions

modelling and the deep learning technique were integrated with the aim of identifying explain-

able classifiers that are transparent in their reasoning and decisions for ethical decision making

with academic performance prediction. By exploiting these modelling approaches, the target is

to produce explainable models, while enabling researchers not only to understand the process,

but also, to trust these AI models. If there is conflict between accurate, reliable, and explain-

able temporal predictive classifiers, the priority is setting the most suitable performance metric

for evaluating each machine learning problem For example, if the target of the machine learning

task is to understand the different dynamics of students and identify their relation to overall

performance (as is the case for this thesis), then the accuracy is an important performance

measurement as well as the reliability of the explained model.

1.3 Thesis Objectives

The objectives of this thesis are specified bellow:

• Identify the temporal cognitive styles of students in Year 1, Year 2 and 3 based on stu-

dents tutoring engagement trajectories and other related data using time-series clustering

approaches.

• Identify temporal profiles from the online self-assessment trajectories using distance-

based similarity clustering methods on time-series data of student engagement.

• Implement a resampling approach using Bootstrap Aggregating on time-series educa-

tional datasets to deal with imbalance in educational datasets.

• Develop an approach for the explicit modelling of bias in machine learning classifiers with

Bayesian Networks and Deep Multi-Label Convolutional Networks.

1.4 Thesis Contributions

The main contributions of this thesis are provided bellow:
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• Discovery of student’s "Temporal Cognitive Styles" based on their engage-

ment (attendance) throughout a module. I explored clustering students’ tutor

group engagement trajectories using Dynamic Time Warping and Agglomerative Hierar-

chical clustering algorithms to group students to different clusters based on their engage-

ment level. We then clustered this information in conjunction with students’ admission

and progression (final grades) for all Year 1 and Year 2 Modules to identify students’

Cognitive Styles.

• Identification of students "Temporal Profiles" from online self-assessment

Progression trajectories of an online module. A distance-based similarity clus-

tering approach for time-series data has been discovered using Dynamic Time Warping

(DTW). This approach was explored to identify different profiles of students’ online

self-assessment trajectories in order to improve the prediction of student’s overall perfor-

mance.

• Improvement to performance prediction using an unsupervised subspace learn-

ing/dimensionality reduction approach. I explored classifying students using non-

linear subspace learning (or NLPCA) via an auto-associative neural network (Autoen-

coder) to reconstruct the educational data by minimizing the squared error and maxi-

mizing variance. The nonlinear subspace learning was exploited to maximize variance to

reduce bias and therefore, improve the classification.

• Incorporation of student’s cognitive styles and online self-assessment pro-

files into an ordered Bayesian Network for predicting student performance at

different stages of their study. I used a structure learning algorithm on students’

time-series data at admission level, Year 1 and Year 2, respectively, for the early detection

of students at risk of failing or dropping out at each stage of their study.

• Improvements to the predictive model of the ordered Bayesian Network using

resampling methods. I extended the investigation of the probabilistic modelling of

the time-series educational data to address the issue that is related to the imbalanced

datasets, especially for classifying the minority-class high-risk students.
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• An exploration in transparent models for predicting student performance

using linear and non-linear PCA, CNNs and BNs. I carried out an exploration

to compare transparent and explainable classifiers using Bayesian Networks and deep

multilabel convolution networks. In particular, I consider modelling the biased features

during classification to ensure decisions are not affected by sensitive features such as

ethnicity or gender (including proxies in other features).

1.5 Thesis Outline

This section explains the structure of the thesis, which is composed of seven chapters including

this introduction. Chapters 3 to 6 have independent research aims and experimental works in

order to achieve the overall aim and objectives of this thesis.

Chapter 2 begins by providing background information related to the state-of-the-art meth-

ods that been explored in Educational Data Mining (EDM) research field especially for pre-

dicting student performance, which is the focus of this thesis. Furthermore, this chapter is

considering background information of the machine learning methods that been used for learn-

ing unbiased classifiers such as: probabilistic modelling, dimensionality reduction/subspace

learning and deep neural networks.

Chapter 3 introduces the initial analysis of the educational datasets to identify the key

features affecting the prediction of academic performance as well as the cognitive styles detec-

tion. This chapter is also exploring the implementation of the subspace learning techniques,

the linear PCA and non-linear PCA, to improve predicting performance.

Chapter 4 provides a novel approach for temporal profiling of online Self-Assessment tra-

jectories using a distance-based similarity approach with Dynamic Time Warping (DTW) for

improving performance prediction.

Chapter 5 describes the implementation of a structure learning approach with bootstrap

aggregation for learning ordered Bayesian Networks from time-series data. This chapter also

investigates the emphasis of a resampling method to deal with imbalanced classes in the edu-

cational datasets.
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Chapter 6 explores a comparison of transparent machine learning models with Bayesian

Networks (BNs) and Multi-labels Deep Convolutional Neural Networks (CNNs) for generat-

ing unbiased classifications. In this chapter the issues of modelling bias explicitly have been

explored so that biased features can be identified that lead to inflated predictive accuracies.

Chapter 7 provides a conclusion of the experimental works conducted in this thesis, limita-

tions of the research and future directions for the development of reliable and ethical machine

learning classifiers.
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Chapter 2

Backgrounds and Literature Review

2.1 Introduction

In recent years, there has been an increasing interest in applying machine learning algorithms

and techniques in various fields such as medicine, marketing, education, engineering and so

forth, due to its advances in transforming huge amount of such data into useful knowledge.

machine learning (ML), or in other words Knowledge Discovery in Databases (KDD), can be

defining as a multi-disciplinary field in which several computing paradigms converge: decision-

trees, artificial neural networks, rule induction, instance-based learning, Bayesian learning,

logic programming, statistical algorithms, etc. The most well-known ML techniques are Clus-

tering, Classification, Association rule mining and Description and visualisation (Hand, 2007).

However, the Higher Education Statistics Agency (HESA) in the UK (HESA, 2019) has

revealed that the drop-out rate among undergraduate students has increased in the last three

years. The statistics published by the HESA in 2016 reported that a total of 26,000 students

in England in 2015 dropped out from their enrolled academic programs after their first year.

Also, the statistics show that the higher education (HE) qualifications obtained by students for

all levels, including undergraduate and postgraduate levels, decreased from 788,355 in 2012/13

to 757,300 in 2016/17. The growing availability of such statistics provides new opportunities

for researchers to investigate the issues associated with students’ learning and overall achieve-

ments. For instance, several attempts have been exploited to analyse and evaluate student
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data to enhance their education and provide solutions to failure issues using the state-of-the-

art Artificial Intelligence (AI) methods. These attempts seek to analyse students learning and

performance data to develop novel machine learning approaches that benefit the students and

enhance their learning process.

However, a major issue with academic performance prediction is that most of the available

applications do not consider the data-related issues when implementing the classifiers, such

as imbalanced classes as well as noisy and biased data. Reliable educational data plays a

crucial role in learning predictive and explainable models aimed at identifying and evaluating

the most predictive educational attributes to students’ end-of-course grade, and to identify

the time-dependent attributes more precisely, thus allowing for appropriate interventions in

real time. If the predictive model can characterise the students with high risk of failure prior

the examination from sequence data (e.g. sequence mining), then the academics can focus on

providing extra effort to improve such students’ performance and thus, enhance their likelihood

of passing the module and/or obtaining higher results. Hence, detecting the data-related issues

is another important aspect for learning robust predictive models.

The explainability of the predictive models is another major challenge with student perfor-

mance prediction, and the main impediment to this is implementing the classifiers using black

box algorithms, such as neural networks that are unexplainable in the way they take their de-

cisions. Despite the high accuracy results of the available predictive models, limited research

has been conducted to consider the transparency of the predictive classifiers when using black

box models. Such models are not reliable as they usually result in biased predictions.

This chapter seeks to remedy these learning and prediction issues by analysing the literature

of educational data mining so as to identify the most predictive attributes and effective ML

algorithms used for academic performance prediction. In addition, I present the research

conducted far for the implementation of the probabilistic modelling approaches, such as BN,

to determine the most reliable and explainable predictive classifiers from the educational data.
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2.2 Educational Data Mining

The growing availability of data in educational databases attracts many researchers to analyse

and evaluate such data to enhance education and provide optimal solutions for the associated

issues. This emerging discipline is called Educational data mining (EDM) where we apply data

mining (DM) techniques or develop new DM methods to explore educational data in order to

understand student’s learning process and their outcomes (Peterson et al., 2010). Educational

Data Mining (EDM) seeks to analyse student learning by developing data mining approaches

that merge student data and machine learning algorithms to benefit the students and enhance

their learning outcomes. Therefore, the EDM process transforms raw learning and performance

data into useful knowledge that benefits educational research. This process passes through a

five step process, which is the same as the general DM process: data selection, data pre-

processing, data transformation, application of machine learning algorithms and evaluating

and deploying the discovered knowledge.

With the recent developments in education, therefore, there has been an increasing interest

in EDM which has been emerged in related areas, for instance (Romero and Ventura, 2007):

• Web based-educational systems: applying data mining to data stored E-Learning

and Learning Management Systems (LMS). These systems provide online tools for in-

struction, collaboration, communication and administration;

• Offline education: understanding the psychometric technique for student learning in

face-to-face teaching environments;

• Intelligent Tutoring System (ITS): the adaption of teaching approach for each indi-

vidual need of the students. This approach is another form of the just-put-it-on-the-web

approach.

All the above mentioned EDM areas have different datasets and educational issues to be

resolved using different data mining techniques. From a practical view point the web-based

educational systems provide details on student interactions and learning process. For example,

the log files contain data on how many times a student logs into the system or how many
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times they visit specific content in the course. In addition, these systems record data for each

student’s submission to a specific assignment, such as the time spent answering the question

and if their answer matches the correct answer or not (Romero and Ventura, 2007).

EDM also helps the academics/instructors to make correct decisions on choosing the learn-

ing environments to best meet student needs and course objectives (Romero and Ventura,

2007). Furthermore, analysing students’ data generated from educational systems provides

better educational processes as EDM allows for the discovery of information about what stu-

dents need to improve and where they did well, and this can be used to identify good examples

(Merceron and Yacef, 2005). However, the process of applying DM in educational systems is

unlike applying it in other systems. When we apply data mining methods to data coming from

the learning management systems (e-learning systems), it should enter a loop of the system,

not just to turn data into knowledge but also to make decisions about the filtered data (Romero

and Ventura, 2007) (see Figure 2.1).

Figure 2.1: The cycle of DM in educational systems(Romero and Ventura, 2007)

As we notice in Figure 2.1, the academics are the main responsible for designing, planning

and developing the online course in the educational systems. Then, the students can use

the educational materials, interact and participate in the online activities and assessments.

Starting from students participation and interactions, different machine learning algorithms

can be applied to discover useful patterns to indicate students’ development as well as the

online course.

A serious weakness with the current data mining cycle displayed in Figure 2.1, however,
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is that it does not take into account the transparency of the decisions made by the data

mining algorithms. This will consequently lead to another critical issue, which is making

unethical decisions based on black box algorithms. It is very important to explore the DM

process in terms of providing better knowledge on the behaviour of the algorithm. This will

produce ethical as well as explainable decisions to enable the instructors/educators not only

to understand, but also, to trust these decisions.

2.2.1 Machine Learning Applications in Education

Machine Learning (ML) has been applied to resolve several issues in educational environments,

including: the detection of students learning behaviours, prediction of academic performance,

provision of recommendations, and feedback on students learning progress to both the aca-

demics and the students. On one hand according to (Baker et al., 2010) there are four main

areas of applying ML methods in educational setting: improve students’ models, improve do-

main models, study the pedagogical aspects of the learning software and investigate learning

process. On the other hand, (Castro et al., 2007) identifies five applications of EDM: assess-

ment of student performance, making learning recommendations based on students behaviour,

evaluation of web-based educational courses and course contents, provision of feedback to

instructors and students in web-based educational systems, and applications for detecting stu-

dents behaviours. (Romero and Ventura, 2010) have classified therefore the tasks of applying

data mining identified in the previous publications based on the main focus of researchers. The

prediction of student academic performance was the main target, followed by analysing and

visualizing data and detecting leaning behaviour. A summary of ML applications in education

and their descriptions are presented in Table 2.1.

2.2.2 Machine Learning Tasks in Education

Classification

Classification, a form of supervised learning, is a very common ML technique that is applied

to map datasets into sets of classes (Aher and Lobo, 2011). To develop such models, the data

undergo a process that consists of learning and classification. In the learning process, the
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Table 2.1: Machine learning applications in Education.

EDM Application Description

Predicting student performance
To predict the unknown outcomes of student knowledge,

scores or final grades.

Detecting students behaviours To analyse students learning styles and learning preferences.

Providing feedback to instructors

To provide information to the instructors about students

learning processes to help them improve their learning

throughout the course.

Providing recommendations to students
To provide recommendations to students about their

tasks and activities in order to overcome any associated issues.

Providing groups of students
To group the students according to their characteristics, learning

data or learning performance.

Developing students modelling
To develop cognitive students models that reflect their

skills and the obtained knowledge.

Constructing courseware
To provide guidance to the instructors and the developers

of the course to better develop effective courseware.

Analysing social network
To study the relationship between individuals rather than

individual features or attributes

Developing concept maps
To develop a graph that presents the relationship between

the concepts and the hierarchal knowledge structure.

Planning and scheduling
To plan for future courses scheduling, resources development,

and admission processes.

Analysing and visualizing data
To provide information with regard to educational process

or outcomes as reports or statistics.

training set is analysed using classification algorithms to generate logical rules based on the

relation between the selected attributes. Consequently, the classification process identifies the

accuracy of the model by applying obtained rules on the test sets to evaluate the classifier

(Bhardwaj and Pal, 2012). In educational data mining for instance, the student work grades

in a particular course can predict the final results or overall performance in that course using

classification algorithms.

Prediction

Prediction is a widely used data mining task to model continuous valued functions (Abu Tair

and El-Halees, 2012). It can be applied through classification algorithms to predict the un-

known class or through regression to predict the unknown or missing value. In educational

data mining prediction can be used to predict student final grades, educational outcomes and

identify the weak students among their classes, and so forth. More exploration about predicting
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student performance or outcomes are predicted in the following chapters.

Clustering

Clustering is identifying groups of objects in which the objects of such groups are similar

to one another in some aspects and different from the objects in the other groups (Romero

and Ventura, 2010). Clustering is considered as one of the most applied unsupervised learning

technique in machine learning. In educational data mining, clustering is applied to group the

students according to their performance in the course into weak and strong students to help

the weak students improve their studies (Hogo, 2010); (Perera et al., 2008). Also, clustering

method used to identify the active and the non-active students based on their performance in

course activities (Aher and Lobo, 2011).

Association analysis

Association analysis is a data mining task used to analyse the relationship between data

objects to identify interesting correlation among these objects in a given dataset (Aher and

Lobo, 2011). Thus, it generates rules of the form ‘If antecedent then (likely) consequent’ where

antecedent and consequent are items sets consisting of one item or more. According to (Aher

and Lobo, 2011), association rules mining is usually generate through two steps. First step

is identifying the frequent item sets in the database. The second step is generating the rules

through the item sets and the minimum confidence constraint. Association analysis has been

applied in educational data mining for analysing student learning performance. For instance, if

the student attendance is good, then we can estimate the final grade of the student as excellent

or very good.

Outlier/novelty detection

Outlier detection is discovering data objects in which are significantly different from the

other data objects in the database (Mansur et al., 2005). In educational data mining, outlier

detection can identify the students with learning issues (Romero and Ventura, 2007). Also, it

used to detect the outlier students behaviour. Therefore, applying outlier detection method

the instructors can identify the reasons of the irregular behaviour of the students and finding

solutions for the discovered students.
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2.3 Modelling Classifiers for Academic Performance Prediction

Researchers have been increasingly attempting to analyse students’ datasets with machine

learning algorithms in order to understand how students learn and to ultimately increase the

performance of students and the quality of learning. Thus, considerable amount of research has

been published on predicting the performance of the students based on different factors and

attributes. This section will review the classification methods used for learning the predictive

classifiers. Also, the influential attributes on performance prediction will be explained.

2.3.1 Learning Predictive Classifiers

The most popular machine learning task to predict student academic performance is classifica-

tion. There are several ML algorithms have been applied to classify students data and predict

their performance. Among them are Decision Trees, Random forest, Bayesian Networks, Naïve

Bayes, Neural Networks, K Nearest Neighbour and Support Vector Machines. Also, classifica-

tion via clustering approach has been applied to predict student overall performance.

The ML algorithms applied in predicting student academic performance as presented as

follows:

• Decision Tree (DT)

Decision tree is a tree-like structure that provides decisions for specific issues. These de-

cisions provide rules for classifying the dataset (Bhardwaj and Pal, 2012). A decision tree

consist of internal, child and leaf nodes. The internal node splits intro two or more child nodes

depending on the learning algorithm. The internal and child nodes are linked by arcs, which

are labelling the result of bsaed on the test cases in the datasets (Yadav and Pal, 2012). Con-

sequently, the leaf nodes contain the classes of the class attribute.Thus, decision tree is one of

the most commonly used approaches for predicting students’ performance. Several researchers

have applied this method because of its efficiency to predict the performance of the students

even for the small structured datasets (Quadri and Kalyankar, 2010).
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When predicting performance, the C4.5 decision tree is one of the most commonly used

algorithms (Quadri and Kalyankar, 2010); (Kabakchieva, 2013). Several researchers have ap-

plied it owing to its efficiency in predicting student performance, even for small structured

datasets (Merceron and Yacef, 2005). According to Romero et al., C4.5 models can easily be

converted into sets of IF-THEN-ELSE Rules (Romero and Ventura, 2007). Analyzing decision

trees rules is beneficial for educational researchers to extract useful knowledge about what

the most effective factors “attributes” are and how they influence the prediction of student

performance (Romero and Ventura, 2007). Also, Cortez and Silva (Cortez and Silva, 2008)

conducted a study using a combination of three datasets of student attributes, these: demo-

graphics, social aspects and past grades. By means of classification algorithms, in particular,

decision trees, the authors found that the performance of students is highly influenced by past

grades. Furthermore, they achieved a very reasonable accuracy result of 76.70% in predict-

ing the student future performance. In the same vein, Al-Radaideh et al. (Al-Radaideh et al.,

2006) conducted a study to generate a predictive model of the performance of computer science

students at Yarmouk University in Jordan using the same algorithm (the C4.5 decision tree

algorithm). They used student demographics, high school grades and tutors’ data, including

their degree, affiliation and gender.

A broader perspective has been adopted by some authors to compare the performance of the

C4.5 decision tree algorithm and other classification algorithms in predicting weaker students in

the early stages of a course. Yadav and Pal (Yadav and Pal, 2012) applied different decision tree

algorithms (ID3, C4.5 and CART) to an engineering student dataset to identify weaker students

among their groups before the final exam. The student datasets included demographical, social,

environmental and psychological attributes. They revealed that the C4.5 algorithm gave the

best result, with an accuracy of 67.77% in predicting the weaker students in targeted courses.

Similarly, Kaur and Singh (Kaur and Singh, 2016) compared decision tree algorithms and other

classification methods regarding student demographics and psychological data to investigate

their weaknesses, obtaining 61.53 % accuracy for the c4.5 decision tree model. In addition to

previous studies, preliminary work on predicting slow learners was undertaken by Kaur et al.

(Kaur et al., 2015). They analysed high school datasets, including student demographics and
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admission data, to identify slow learning students, with the aim of improving their performance

prior the examination.

However, the studies presented thus far, provide evidence that they have not achieved

greatly accurate results, for 76.70% is the highest accuracy for the decision tree models. Hence,

further investigations need to be undertaken to generate more accurate predictive models for

modelling and predicting the academic performance of students using the C4.5 algorithm. Con-

sidered together, these studies outline that C4.5 produces reasonable accuracies, even though

Support Vector Machines or Neural Net may provide better. We have decided to continue using

C4.5 since we are interested in understanding the meaning of DTW clusters in the prediction

results.

Table 2.2: Predictive models accuracy results based on decision trees.

ML Method Attributes Accuracy Authors

Decision Tree

Students Interaction data & Web usages data (log files) 80.30% (Minaei-Bidgoli et al., 2003)

Past school grades (rst and second periods),

demographic and social data
76.70% (Cortez and Silva, 2008)

High school dataset (Demographic, Personal Data

and Admission data)
69.73% (Kaur et al., 2015)

Personal, social and psychological data 67.77% (Yadav and Pal, 2012)

Personal and pre-university data 65.94% (Kabakchieva, 2013)

Demographic and psychometric factors 65.93% (Gray et al., 2014)

Students Interaction data & Web usages data (log files) 65.86% (Romero, Espejo, Zafra, Romero and Ventura, 2013)

Demographic, personal and psychological data 61.53% (Kaur and Singh, 2016)

Demographic, personal and tutors related data
38.05

%
(Al-Radaideh et al., 2006)

A considerable number of studies have been conducted to predict the performance of the

students based based on some extracted attributes from the educational datasets as shown in

Table 2.2. The best perform decision tree model for predicting the academic performance of

the student was based on the extracted data from students log files in web based educational

systems (Minaei-Bidgoli et al., 2003). Also, past school grades and pre-university data are

highly influencing student academic performance when have been modeled with decision tree

(Cortez and Silva, 2008); (Kabakchieva, 2013). However, most of the researchers have involved

16



Chapter 2: Backgrounds and Literature Review Introduction

personal, social, psychometric and psychological characteristics of the students to develop the

decision tree model and they obtained a very accurate results for the predictive model (Cortez

and Silva, 2008); (Kaur et al., 2015); (Yadav and Pal, 2012); Kabakchieva (2013); (Kaur and

Singh, 2016); (Al-Radaideh et al., 2006).

• Artificial Neural Network (ANN)

An artificial neural network is a computational approach that consists of groups of artificial

neurons inter-connected to each other by process information. Neural network is one of the most

widely used successful method for predicting academic performance because of its advantage

as an adaptive model that could influence and change based on the internal and external

information passed during the learning process (Romero and Ventura, 2010). Numerous neural

network algorithms have been utilized for the purpose of predicting student performance,

the well-known among them are: multilayer perceptron (MLPreceptron), a hybrid genetic

neural network (GANN), neural network evolutionary programming (NNEP) and a radial

basis function neural network (RBFN).

As illustrated in Table 2.3, ANN is one of the best classification methods in predicting the

performance of the students as the models achieved high prediction accuracy results. Thus,

most researchers have compared neural network approach with other classification approaches

to predict student final grades and overall achievement based on some online aspects such as

online assessment grades and students participation in the online dissection forum. It has been

found that ANN performs better than the other classification techniques as the learned clas-

sifiers obtained very high accuracy percentages (Lykourentzou et al., 2009); (Romero, Espejo,

Zafra, Romero and Ventura, 2013).

• Naïve Bayes (NB)

Naïve Bayes algorithm is a simple classification method based on probability theory (Witten

and Frank, 2002), such probability predicts the membership of all attributes and the class

attributes by assuming that the independency of the class attributes is based on the associated
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Table 2.3: Predictive models accuracy results based on Artificial Neural Network (ANN).

ML Method Attributes Accuracy Authors

Artificial Neural Network

Courses final grades for semester 1 97.74% (Arsad et al., 2013)

Online Assessment grades 95.21% (Lykourentzou et al., 2009)

Student demographic, social data and

past school grades (first and second periods)
90.07% (Cortez and Silva, 2008)

Student participation in online forum 88.06% (Romero, Espejo, Zafra, Romero and Ventura, 2013)

Students demographic and CGPA 80% (Ibrahim and Rusli, 2007)

Student demographic and high school grades 74% (Oladokun et al., 2008)

Online assessment data (online quizzes

and assignments)
65.95% (Romero, Espejo, Zafra, Romero and Ventura, 2013)

values with the other attributes in the prediction model (Kabakchieva, 2013). Thus, the

independent effect of the attributes in the classification model plays a crucial role in classifying

the instances. Consequently, Naïve Bayes determines the accuracy of the classification model

according to the classified instances. Thus, a large volume of published papers were examining

Naïve Bayes prediction methods to predict student performance. As shown in Table 2.4,

researchers have been attempting to analyse students demographic, social and assessment data

to predict the slow learning students in order to improve their performance and reduce failure

rate prior the exam (Mayilvaganan and Kalpanadevi, 2014); (Kaur et al., 2015). Also, there

are several studies which compared Naive Bayes method with other classification methods to

classify the students and identify their abilities, interests and weaknesses (Kabakchieva, 2013);

(Kaur and Singh, 2016). These studies are summarised in Table 2.4 with the class accuracy

results of the predictive models.

• K-Nearest Neighbour (KNN)

K-Nearest Neighbour, or nearest neighbour method, is a very simple data mining method

that classifies the instances in the datasets depend on the classes of the K- instances that are

most close to them (Bhardwaj and Pal, 2012). As depicted in Table 2.5, several researchers have

conducted comparative studies to classify student’s performance using K-Nearest Neighbour

method. According to Mayilvaganan and Kalpanadevi (Mayilvaganan and Kalpanadevi, 2014)
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Table 2.4: Predictive models accuracy results based on Naïve Bayes classifiers.

ML Method Attributes Accuracy Authors

Naïve Bayes

Socio-demographic, high school grades and

entrance exam
76.65% (Osmanbegovic and Suljic, 2012)

Demographic, GPA and course assessments data 73% (Mayilvaganan and Kalpanadevi, 2014)

Demographic and psychometric data 68.03% (Gray et al., 2014)

Demographic, social data and past grades

(first and second periods)
65.13% (Kaur et al., 2015)

Demographic, psychological and environmental data 63.59% (Kaur and Singh, 2016)

Demographic and pre-university data 58.10% (Kabakchieva, 2013)

and Minaei-Bidgoli et al. (Minaei-Bidgoli et al., 2003), KNN approach can identify the slow

learners among students to overcome their difficulties and improve their skills based on their

assessments data. Also, KNN predictive models can identify students at risk of fail the course

based on a combination of demographic and psychometric factors (Gray et al., 2014). Classi-

fying student’s data into bad, average, good or excellent performance taking into account their

demographic and pre university data has been also explored by Kabakchieva (Kabakchieva,

2013).

Table 2.5: Predictive models accuracy results based on K-Nearest neighbour.

ML Method Attributes Accuracy Authors

K-Nearest Neighbour

Demographic, CGPA and students assessments data 83% (Mayilvaganan and Kalpanadevi, 2014)

Online assessment and interaction data

in LON-CAPA educational system
82.30% (Minaei-Bidgoli et al., 2003)

Demographic and psychometric data 69.43% (Gray et al., 2014)

Demographic and pre-university data 60% (Kabakchieva, 2013)

• Support Vector Machine (SVM)

Support vector machine is another good classification method for predicting students’ aca-

demic performance. It classifies the dataset by selecting support vectors (data points) in order

to define wide linear margin between the classes (Hämäläinen and Vinni, 2006). In practice,
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SVMs are best designed for the small size datasets as the learning process of the classifier is

selecting only some data points not taking into consideration the dimension or the size ratio

of the dataset.

As shown in Table 2.6, SVM models obtained excellent accuracy results and usually con-

sidered as one of the most optimal classification methods. A number of researchers have

applied SVM method in their comparative studies to predict the performance of the students.

Hamalainen et al. (Hämäläinen and Vinni, 2006) have mined students assessment data and

CGPA to predict their success in the course. Similarly, Sembiring et al. (Sembiring et al.,

2011) have analysed students’ behavioural factors in order to predict students’ success. In

contracts, Cortez and Silva (Cortez and Silva, 2008) applied SVM method on secondary school

students demographic, social data and past school grades to predict students’ final grades.

Table 2.6: Predictive models accuracy results based on Support Vector Machine (SVM).

ML Method Attributes Accuracy Authors

Support Vector Machines

Demographic, social data and past school

grades (first and second periods)
86.3% (Cortez and Silva, 2008)

Psychometric data 83% (Sembiring et al., 2011)

Demographic, CGPA and students

assessments data
80% (Mayilvaganan and Kalpanadevi, 2014)

GPA and students assessment data 80% (Hämäläinen and Vinni, 2006)

• Classification via Clustering

Classification via clustering is a prediction approach that employs via using clustering

algorithms to classify the instances in the dataset assuming that each cluster maps to a class

(Romero, Lopez, Luna and Ventura, 2013). The mapping between the cluster and the class

attribute in the training set is used then for predicting the class label of the instances in the

testset. However, the obtained clusters do not generate classes but this approach utilizes to

evaluate the generated clusters as classifiers. Thus, it is important to set the number of the

clusters same to the number of the classes to create accurate model that each cluster relates

to a class.
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Classification via clustering has been explored by some researchers for classifying and map-

ping students’ academic performance using students data (see Table 2.7). López et al. (Lopez

et al., 2012) reveal that classification via clustering approach obtained similar result to clas-

sification algorithms in predicting student’s final grades starting from their participation in

online forum. Also, Romero et al. (Romero, Lopez, Luna and Ventura, 2013) have applied the

same approach to predict the success and failure from students’ participation trajectories in

on-line forums. Meanwhile, analysing web log files using classification via clustering method

to evaluate the e-learners performance reveals interesting results characterize weak and strong

students to help the weak students improve their studies (Hogo, 2010); (Perera et al., 2009).

Table 2.7: Classification via clustering method.

Method Attributes Authors

Classification via Clustering

Demographic data, GPA, core courses grades,

lab grades and attendance rates
(Alfiani et al., 2015)

Student participation in online forum data (Romero, Espejo, Zafra, Romero and Ventura, 2013)

Student participation in online forum data (Lopez et al., 2012)

Course related data Aher and L.M.R.J., (Aher and Lobo, 2011)

Web access logs file Hogo, (Hogo, 2010)

Group work logs file Perera et al., (Perera et al., 2009)

Most of the studies reviewed so far were able to predict the academic performance of the

students with high accuracy results. However, the accuracy is not the only measurement

for the performance of the classifier. Classification accuracy and model explainability both

greatly influence the decision made when implementing a classifier. It is very essential to

provide a transparent explanation as how the classification has been achieved and therefore,

how the decision has been made by the classifier. A very common solution is observing the

attributes to study the correlation between the most predictive educational attributes and

performance prediction. However, far too little attention has been paid to exploring machine

learning approaches to opening the black box of educational data mining and supporting ethical

decision making.
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2.3.2 Predictive Attributes on Performance Prediction

A primary concern in predicting the academic performance of the students is the important fea-

tures that could enhance the learning process of the classifiers. Extensive researches have been

therefore carried out on predicting the performance of the students based on several students’

attributes and features. These features were identified as one of the most influencing factors of

the prediction process. For instance, student-related attributes (i.e. demographic and personal

data) were involved in several studies to exploit predictive models for students performance

(Bekele and Menzel, 2005); (Al-Radaideh et al., 2006) (Cortez and Silva, 2008); (Yadav and

Pal, 2012); (Bhardwaj and Pal, 2012); (Kabakchieva, 2013); (Alfiani et al., 2015). This in-

cludes student’s category, gender, age, origin and address. Also social and socio-economic data

of students were mostly used by researchers for predicting the academic performance of the

student such as family size, annual income, parent’s status, parent’s qualification and occupa-

tion (Bekele and Menzel, 2005); (Cortez and Silva, 2008); (Yadav and Pal, 2012); (Bhardwaj

and Pal, 2012); (Poh and Smythe, 2014).

In contrast, some studies were involving course and tutor related data as predictive at-

tributes for predicting the student’s performance. Course related data identify information

about students attendance, core lectures grade and lab grade (Alfiani et al., 2015). While,

tutor related data includes information about the tutor of the course such as tutor name,

qualification, gender and the affiliated department (Al-Radaideh et al., 2006).

Pre-univierty data was also used in predicting performance such as: past school grades

and examination grades (Cortez and Silva, 2008); (Aher and Lobo, 2011); (Poh and Smythe,

2014), and students grades in high and senior secondary schools (Yadav and Pal, 2012). These

attributes were rarely used by data mining researchers as they did not obtain very high accuracy

for the predictive model compared to other attributes. Study progress was also investigated

as part of the attributes used to predict the performance of the students (Bhardwaj and Pal,

2012). Study progress identifies information about students feeling about success or failure,

learning difficulties and study skills.

In addition, student interactions and web usage data that recorded in online databases

such as the log files are identified as a good predictor for predicting the performance of the
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Figure 2.2: Predictive attributes and machine learning methods exploited for predicting the academic
performance of the students.

student. Student interaction in the form of their participation in the online forum is analysed

by López et al (Lopez et al., 2012) and Romero et al (Romero, Espejo, Zafra, Romero and

Ventura, 2013) to predict the academic performance of the students. Whereas, students log

files is used to predict the final grades of the students who used Moodle learning management

system (Minaei-Bidgoli et al., 2003); (Romero, Espejo, Zafra, Romero and Ventura, 2013). It

has been proven that mining student data in the educational systems can improves student

overall performance (Aher and Lobo, 2011).

The most predictive attributes and ML methods exploited for predicting the academic per-

formance of the students according to the literature are summarised in Figure 2.2 for reference.

As can be seen, student demographical data, social and socio-economic data, past grades and

students’ interaction data have been widely analysed for predicting the academic performance

using different ML methods, such as decision trees, naive Bayes, Bayesian Networks, Support

Vector Machines and Neural Networks. Each method was used according to the target of the

study, whether to capture learning behaviour, patterns or ascertaining the correlation between

23



Chapter 2: Backgrounds and Literature Review Introduction

the factors and students’ progress. Therefore, the selection of student attributes and machine

learning approaches that used in the following chapters was mainly influenced by the literature.

The experimental works of the following chapters examine combining educational factors col-

lected at different times with the most influential factors identified in the literature, including

student demographical data, social and socio-economic data as well as past grades, so as to

provide robust systems.

2.4 Probabilistic Modelling of Educational Data

Probabilistic modelling methods such as Bayesian Networks (BNs) have been recently involved

in numerous learning tasks in education due to the capability of such method to infer a graphical

probabilistic-based structure. Learning a probabilistic structure enhances the classifiers as

the learned models usually capture the dynamic and the nonlinear correlations between the

attributes (Heckerman et al., 1995). Characterizing such complex correlations in predicting

the academic performance requires exploiting a probabilistic learning approach to infer the

predictive models from the educational performance data.

A considerable number of studies have been conducted therefore to predict the academic

performance of the students based on the Bayesian approach. For instance, (Kabakchieva,

2013) compared the Bayesian approach with other classification approaches to identify useful

patterns that could be extracted from students’ personal and pre-university data in order to

predict students’ performance at the university. Similarly, authors of (Kaur and Singh, 2016)

used the same approach for a comparative study of classification algorithms but the aim was

to classify the students and identify the most influencing attributes on students’ failure.

Bayesian classification method is also applied by (Bekele and Menzel, 2005) to predict

students’ performance based on values of social and personal attributes. The empirical result

revealed that Bayesian network classifier is a valuable method for predicting the students having

satisfactory, or above/bellow satisfactory performance. Another Bayesian classification method

(in particular Naïve Bayes) modelled by (Bhardwaj and Pal, 2012) to predict the slow and the

high learner’s students. The study conducted on 300 student records for BCA module (Bachelor
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of Computer Applications). The attributes included in this investigation were demographic,

academic and socio-economic that obtained from students questionnaire and the database

of the university. By means of Naïve classification approach, it was stated that student’s

performance in university level is dependent on secondary examination grades, students living

location, teaching mode and other potential factors such as parents qualifications, students

habit, family annual income and family status.

Essentially, Bayesian networks used as a method to characterize the relationships between

educational attributes and knowledge predictor attributes such as students end-of-course per-

formance. The probabilistic estimation of the attributes in the BN provides insights for the

uncertainty related to the predictors. In modelling students interactions data from a tutor-

ing system, uncertainty involves lack of understanding how knowledgeable is the student and

the achieved aims by the student (Conati et al., 2002). This is mainly a result of involving

the students in various activities without showing their reasoning for performing such activi-

ties. For example, (Conati et al., 2002) explored managing uncertainty in modeling students

knowledge assessment data from ‘Andes’ (tutoring system) using BN. By means of modling

students’ knowedlge and use this information for predicting students’ responses, the obtained

results provide that the greater granularity of the predictive model enhances the prediction of

students’ performance in online systems.

Although some researchers were attempting to use the BNs for characterizing performance

and exploring the correlation between the students’ performance and the attributes, others were

interested in detecting and modeling students’ learning styles (García et al., 2007) (Carmona

et al., 2008). For example, (Kaur et al., 2015) conducted a study to analyze demographic,

social and assessment data to predict the slow learning students in order to improve their

performance and reduce failure rate prior to the exam.

However, the work conducted far for the implementation of the Bayesian methods on the

educational data has targeted extracting useful patterns for detecting the learning styles of the

students or predicting their overall performance. Limited experimental studies have considered

the issues that were associated with the educational datasets before learning the predictive clas-

sifiers. These issues are including: missing, noisy, imbalanced data and so forth. For instance,
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the imbalanced educational data was investigated through exploiting the bootstrap approach

(Beal and Cohen, 2005) (McLaren et al., 2004). Feng and co-authors (Feng et al., 2009) uti-

lized and validated their statistical results by using bootstrapping with logistic regression to

evaluate students’ learning based on different educational interventions. Similarly, a study has

been conducted by (Pfannkuch et al., 2013) to evaluate students’ understanding of statisti-

cal inference with a bootstrapping approach while did not consider time. To the best of our

knowledge, there is no previous work in this field that applied BNs on the bootstrapped “time

series” dataset of students progression data as this thesis explores. Hence, the work presented

in chapter 5 is a first attempt to use them, with the aim of achieving an improvement in student

performance overall when exploiting BN.

2.5 Clustering Educational Data

A growing body of literature has investigated clustering students based on their extracted

features from educational databases to identify students with similar learning behaviours and

patterns (Romero and Ventura, 2010). For this purpose, different clustering algorithms have

been applied, such as: K-Means, agglomerative hierarchical and model based clustering algo-

rithms (Romero and Ventura, 2010). All of these algorithms have been implemented to model

student learning styles or patterns. For instance, the K-Means clustering algorithm was ap-

plied by (Hogo, 2010) and (Perera et al., 2009) on student log files to discover the unknown

behaviour patterns of each. Interesting results were obtained, whereby they distinguished

weak from strong students, with the aim of helping the former to improve their studies prior

to the final exam. The K-means algorithm has also been effectively applied to a group of

students with similar learning portfolios for their examination and assignment results (Chen

et al., 2007). In another study, which set out to determine the effectiveness of the hierarchical

agglomerative algorithm on detecting student learning preferences, Zakrzewska (Zakrzewska,

2008) clustered students based on extracted features from an eLearning system. He proposed

a method to group students to determine their preferred learning styles from the information

and performance results gathered from an eLearning system.
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The notion of clustering students has also been investigated to support collaborative learn-

ing. (Talavera and Gaudioso, 2004) clustered students’ interaction data in a learning manage-

ment system to identify their profiles and learning behaviours. The main goal of the study

was to evaluate the collaborative activities of an online forum, chat and email. They extracted

useful knowledge showing different collaborative profile patterns of each student based on col-

laboration data. Another study was conducted by (Lopez et al., 2012) to predict the final

grades of the students based on their participation in the online forum using Weka mining

tool. By means of Clustering algorithms (EM, Farthest First, Hierarchical Clusterer, sIB,

Simple KMeans, and X Means) they found that students participation in the course forum is

a predictive factor for predicting student final grade in a module. Similarly, clustering stu-

dents’ profiles in an online discussion forum has been also explored by (Cobo et al., 2011)

to identify Students with similar behaviour profiles. The clustering approach was performed

using the Agglomerative hierarchical clustering algorithm. Hence, to date, clustering students

research has been mainly underpinned by the goal of identifying similar learning behaviours

and preferences.

However, too little attention has been paid to clustering students based on their time series

trajectories for performance prediction purposes. Moreover, most of the previous research on

education that considered clustering students has used a selection of extracted features of ac-

tivity data (not the entire performance sequential trajectory). For instance, (Młynarska et al.,

2016) explored students’ activity attempts in Moodle, a Virtual Learning Environment (VLE),

to extract patterns among students to characterize the struggles and experts. They clustered

activity counts of students completed tasks (counts of: courses, assignments, activities) using

Dynamic Time Warping, which have been considered as time-series data. Seven behaviour

profiles have been identified in this study to help understanding how a large group of student

behave when learning and interacting through a VLE such as Moodle. Furthermore, Shen

and Chi (Shen and Chi, 2017) grouped students using the Dynamic Time Warping (DTW)

algorithm. Their main objective was to capture student learning behaviour patterns so as to

be able to offer personalised learning. They investigated the differential impact of DTW, Nor-

malised DTW and the Euclidean distance on clustering moment-to-moment student sequential
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trajectories, proving that clustering these trajectories was highly effective for detecting learn-

ing behaviour. According to Shen and Chi (Shen and Chi, 2017), the proposed framework

involved the first implementation of DTW in the educational field for the detection of student

behaviours.

Predicting the academic performance based on students-related attributes as well as some

extracted profiles was determined in a recent study by (Al-Luhaybi et al., 2019). A bootstrap-

ping resampling approach was investigated by the authors to accurately predict university

students’ performance using their time-series data with dynamic Bayesian networks. However,

a perspective has been adopted in this paper such that it extends our previous works and argue

that clustering students’ online assessment trajectories in Year1 using a DTW distance-based

clustering algorithm can improve the prediction performance across all modules. Furthermore,

we proved that using the entire self-assessment progression trajectories is better than some stu-

dents selected attributes. Therefore, the application of machine learning algorithms to online

time series progression trajectories provide early insights for student outcomes and outperforms

existing solutions.

2.6 Unbiased Classification

Ensemble-based methods have been executed in several studies (Street and Kim, 2001) (Tsoumakas

and Vlahavas, 2007) Xia et al. (2011) (Tan and Gilbert, 2003) in attempts to provide unbiased

and improved classification. For instance, (Tsoumakas and Vlahavas, 2007) provided an exam-

ple of constructing an algorithm for large-scale classification of streaming data. They obtained

a fast algorithm with very accurate classification results by using a replacement strategy. Sim-

ilarly, the RAndom k-label sets (RAKEL) algorithm was used in (Tsoumakas and Vlahavas,

2007) as an ensemble approach for constructing the classifiers for multi-label classification with

consideration of the label correlations. Moreover, (Tan and Gilbert, 2003) investigated another

ensemble method by using boosted decision trees with compassion with a single decision tree

for cancer classification. Interesting classification results were obtained when using bagged de-

cision trees. A broader perspective was achieved in a study conducted by (Martis et al., 2013)
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using an ensemble bootstrapping approach with time-series educational data for unbiased clas-

sification with a dynamic Bayesian network. However, adapting the ensemble methodology in

classification models may remove some of the good patterns and correlations of the original

data. Hence, such models can be characterised new synthetic correlations that might affect

their predictive generalisability.

Whilst many studies have involved determining approaches associated with data, others

have been focused on considering feature-based approaches, such as dimensionality reduction

and feature extraction. For example, principal components analysis (PCA), linear discrimi-

nant analysis (LDA) and independent components analysis (ICA) were exploited by (Subasi

and Gursoy, 2010) (Martis et al., 2013) as a dimensionality reduction technique to perform

signals classification. In particular, the reduced dimension was considered to learn a classifier

using a support vector machine algorithm. Apart from these studies as a dimensionality re-

duction technique with the PCA method (the original linear mapping approach) to reduce the

bias with many classification algorithms, other studies were investigating further the nonlinear

PCA. A study was conducted by (Hoffmann, 2007), who extracted the principal components

with Kernel principal component analysis (kernel PCA) to detect novelty using breast-cancer

cytology and handwritten digits data. Another study was conducted by (Kim et al., 2001)

which involved using the same Kernel PCA to learn a feature subspace for texture pattern

classification. The studies presented thus far, proved the validity of the dimensionality reduc-

tion approaches to provide accurate classification results. However, the lack of transparency

in the linear and non-linear dimensionality reduction techniques affects the efficiency of the

learned classifiers. In particular, it was observed that there were redundant correlations and

features. To address these shortcomings, in chapter 6, the advances of deep learning approaches

with a BN are examined explicitly to determine the unwanted dependencies for performing un-

biased classification. In essence, the aim is contribute to the debate as to when building trust

in AI models with outputs that are explainable, reliable and accurate.
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2.7 Summary

In this chapter, I presented the machine learning applications and tasks that have been ex-

plored in EDM. In particular, I focused of the prediction of students academic performance

using learning approaches with different characteristics of student data to construct predictive

classifiers. Additionally, I explained probabilistic modelling of educational data with BN as

a potential graphical learning method to capture the relationships among the educational at-

tributes and overall achievements of the students. Hence, in this thesis the aim is to exploit

robust and explainable machine learning classifiers for the prediction of students academic per-

formance in higher education. This will be achieved via identifying the key issues associated

with educational data, learning predictive models with explainable machine learning methods

as well as understanding the students underlying dynamics for predicting the performance.

In the following chapter, I exploit some machine learning approaches to model the predic-

tive classifiers of students academic performance. In addition, I explore the key educational

attributes and investigate a clustering approach to identify the temporal cognitive styles from

students’ engagement time-series to enhance the prediction process.
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Preliminaries and Identification of

Cognitive Styles

In this chapter, the significance of some ML methods, such as classification, clustering and

feature subspace learning approaches, aimed at learning transparent and reliable classifiers

for students’ performance prediction is examined. This includes initial analysis of the edu-

cational datasets to identify the key features affecting the prediction of a student’s academic

performance using different classification methods. This chapter also provides the method of

identification of the temporal cognitive styles from students’ engagement time-series aimed

at enhancing the prediction process. There is also exploration of feature-subspace learning

(dimensionality reduction) techniques, including linear PCA and non-linear PCA with Au-

toencoder, for improving prediction.

3.1 Predicting Academic Risk of Failure with Classification Meth-

ods

Machine learning classification can be used to predict student’s performance as well as identify

the key features influencing the prediction process. This chapter explores classification algo-

rithms to predict academic failure based on a combination of three major attributes categories.
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These are:

i) admission information

ii) module-related data

iii) first year final grades

For this purpose, the J48 (C4.5) decision tree and Naïve Bayes classification algorithms are

applied to predict grades of computer science 2nd year students at Brunel University London

for the academic year 2015/16. The outcome of the predictive model identifies the low, medium

and high risk of failure of students. This prediction will help instructors to characterize and

then assist high-risk students by making appropriate interventions. In this connection, this

study seeks to address the following:

• Factors affecting the prediction of the high risk of failure of students in higher education

institutions and universities,

• Predictive data mining models using classification algorithms based on first year student

final grades, modules related data and students’ admission datasets.

3.1.1 Data Selection and Pre-processing

This chapter considers student and module data obtained from the Admission and Depart-

ment of Computer Science databases at Brunel University London, UK. The integrated data

considered in this investigation are categorised into three categories, are as follows:

1. Admission Data: relating to students’ information when they register at the university

such as Student Enrolment Status, Student Route name, Fee Status, Student Mode of

studying, Qualification on Entry, Location of Study, previous institution ... etc (see Table

2);

2. First Year Grades: the overall grades for all first year modules that were taken by Com-

puter Science Students:

• Information Systems and Organisations

• Logic and Computation
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• Level 1 Group Project Reflection

• Data and Information Assessment

• Software Design

• Software Implementation Event

• Fundamental Programming Assessment;

3. Module-Related Data: the data for the predicted module such as Module teaching mode,

Tutor Code, Tutor Name, Student study mode, Assessment type and Absences.

The attributes and the domain values for the selected attributes for the current study

are defined in Table 3.1 for reference. As can be observed from this table, the educational

attributes for the three categories have been merged into one dataset to exploit the classifiers.

The dataset, therefore, includes the full trajectories of admission data, Level 1 final grades

and module relate data for the same group of students. These pre-processing steps were

fundamental to modelling the classifiers in a way that identifies the key features affecting the

prediction of a student’s academic performance. As can be seen from Table 3.1, the original

educational features include discrete domain values, which can be handled and inferred for the

probabilistic reasoning of the predictive models.

A total of 129 student records (instances) for the year 2015/16 are involved in this investi-

gation to develop the predictive model for the prediction of the students at high risk of failure

in year 2 modules:

• Algorithms and their Applications

• Usability Engineering

• Software Development and Management

• Year 2 Group Project

The predicted class attribute is Overall Grade, which is the final grade obtained by the

student in the targeted module. It has five possible values A: Excellent, B:very Good, C: Good,
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D: Acceptable and F: Unacceptable or Fail, which have been merged to Low risk, Medium risk

and High risk of failure (see later in Table 3.1) as these were seen to be the most useful

distinction between students and also led to most consistently strong results.

I performed steps for the implementation of the classification and clustering algorithms to

predict the academic performance of the students for the year 2 computer science core modules

using Java API and Weka Mining tool. Students overall grades were merged to reduce the

number of classes for the targeted Modules into three classes: low risk, medium risk and high

risk of failure based on discussions with academic staff as to what is the most useful distinction

between students of making informed interventions. The low risk class is for students who

have obtained A and B in the targeted module. Medium risk class is for students who have

obtained a C in the module. Whereas, the high risk class represents students who obtained a

D - F (see Table 3.2).

Data augmentation techniques would be a useful solution to increase the sample size of

the educational data, especially having the datasets include confidential information, such

as student personal data. However, this solution might affect the reasoning process when

implementing the classifiers, especially given that the decisions made using this type of data

will be highly influenced by the synthetic data. The issue of the limited sample is addressed in

later chapters by including more labelled data based on student progression trajectories and

other educational factors collected in different time slots.

3.1.2 Learning Predictive Classifiers

Classification, a form of supervised learning, is a very common data mining technique that is

applied to map datasets into sets of classes (Aher and Lobo, 2011). To develop such models,

one or more training and testing phases are required. In the training process, a training subset

of data is used to infer a classifier model based on the relation between the selected attributes

and the class label. Consequently, the testing process identifies the accuracy of the model by

applying the obtained classifier on the test subset (Bhardwaj and Pal, 2012). The machine

learning algorithms explored in this study were C4.5 decision trees and Naïve Bayes. This is

because of the way that they model the data in a transparent manner using clear tree structured
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Table 3.1: Description of the educational attributes and the domain values.

Attribute Description Domain Values

Category 1:
Admission Data

Enrolment Status Students enrolment status {EE}
Programme Name Student program name {UG Computer Science}

Route Name The student chosen route

{Computer Science, Computer Science (AI),
Computer Science (SE), Computer
Science (Digital Media And Games),

Computer Science (Network Computing)}
Route Code The code of the student chosen route Based on Rout Code at the University

Through Clearing
Whether the student enrolled in the
same course as the course she/he

has applied for
{Y, N}

Fee Status Tuition fee status {Home/EU, Overseas}
Student MOA Students study mode {FT, FSK, FT120, PT80, PT20}
Detailed Fee Status Tuition fee status {Home, European, Overseas}
Fee The amount of paid fees Based on the amount of paid fees
Gender Student gender {M, F}
Country of Domicile Student country Based on Student country

Age on Entry The student’s age when he/she
enrolled at the university Based on Student age

Qualification on Entry Students previous qualification

{Foundation degree, Foundation course at level J,
Higher education (HE) access course, A/AS level,
Level 3 quals, all are subject to UCAS Tariff,
Other qualification at level 2, International

Baccalaureate (IB) Diploma, Non-UK degree}
CRS Code indicates LBIC Payment method for the course {Y, N}

Location of Study Campus name Based on Campus
name

Admissions - Core Grades Flag Indicates admissions decision for
registering the student in the course {Achieved, Predicted}

Previous Institution Student previous school or
institution

{UK State School, UK Independent School,
Any Non-UK Institution,

UK Higher Education Institution}

Category 2:
Level 1 (1st Year)

Final Grades

Information Systems and
Organisations_Grade Module Final Grade

{A – Excellent, B - very Good, C - Good,
D - Acceptable, F – Unacceptable}

Logic and Computation_Grade Module Final Grade
Level 1 Group Project
Reflection_Grade Module Final Grade

Data and Information
Assessment_Grade Module Final Grade

Software Design_Grade Module Final Grade
Software Implementation
Event_Grade Module Final Grade

Fundamental Programming
Assessment_Grade Module Final Grade

Category3:
Module-Related Data

Course MOA Module teaching
mode {FT, FSK}

Tutor 1 Code The code of the tutor at the
university Based on tutor code

Tutor 1 The name of the tutor of the
Module Based on tutor name

Module Module Code at Brunel University Based on module code in the university
MAB_SEQ Assessment code {1, 2}

MAB_NAME Assessment type

{Unseen Examination, Assessment,
Post-Mortem Style Group Review,
Assessment of ethical behaviour,

Open book in-class Programming Test,
Group submission of a design document,
Individual viva voce, Programming Ass.,
Coursework (Practical Assignment)}

MOA Student study mode {full time, part time}
Supervisor Student supervisor’s name Based on supervisor name

Absences The total number of absences
during the semester Based on Module attendance count

Overall Grade Overall Grade Student overall grade
in the Module

{A – Excellent, B - very Good, C - Good,
D - Acceptable, F – Unacceptable}

Overall Grade Overall Grade Student overall grade in the
Module after merging {Low risk, Medium risk , High risk}
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Table 3.2: Class Attribute regarding to student final grades.

Class Grade Band
Low risk A, B

Medium risk C
High risk D, F

decisions or conditional probabilities. The explanation of these algorithms and how they have

been constructed to characterise the students at risk of failure is presented in the following

subsections:

• Learning C4.5 Decision Tree Classifiers

The C4.5 decision tree algorithm was first implemented by Ross Quinlan (Is C5.0 Better

Than C4.5, n.d.). It uses a supervised learning approach to classify the data based on measuring

a gain ratio. The gain ratio measurement is important for evaluating the splitting process of

the attributes based on the sorted data at each node. This process is defined as follows:

GainRatio( p,T ) =
Gain(p,T )

Splitlnfo (p,T )
(3.1)

Where SplitInfo is the amount of components at the position p, considering the test value

j as follows:

Splitlnfo (p, test ) = −
n∑

j=1

P ′
(
j

p

)
× log

(
P ′
(
j

p

))
(3.2)

The C4.5 decision trees are then generated using the training datasets (Hssina et al., 2014).

Every node of the tree considers one attribute only in which it is best splitting the cases into

subsets that fit into one or more classes. The result of the decision tree is then obtained by the

gained information from splitting the data. Thus, the educational attribute with the highest

result of information gain is considered to be the decision node in that tree.

• Learning Naïve Bayes Classifiers
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Naïve Bayes is a simple probabilistic learning method, which constructs the classifier based

on the assumption that the attributes of a particular dataset are independent (Zhang, 2004)

(no correlations between the attributes) given the class attribute value (see Figure 3.1). In

Naïve Bayes classification the target is to learn a classifier based on the training dataset that

includes class labels. In this experiment, I assume that three labels/classes are included in

the class attribute: Low risk, Medium risk and High risk of failing students. The values of an

attribute (E ) are considered as (x1, x2, , · · · , xn). Let (C ) be considered as the class attribute

and the value of this class be (c).

Figure 3.1: An example of a Naïve bayes classifier (Zhang, 2004).

From the probability assumption of the conditional independence of a classifier, the prob-

ability of (E) = (x1, x2, · · · , xn) given a particular class (c) is calculated as:

p(c|E) =
p(E|c)p(c)
p(E)

(3.3)

The assumption of the classifier that all the educational attributes are independents for

learning the probabilities of a particular class attribute is calculated as:

p(E|c) = p (x1, x2, · · · , xn|c) =

n∏
i=1

p (xi|c) (3.4)

Then the resulting function of Naïve bayes classifier fnb(E) is:

fnb(E) =
p(C = +)

p(C = −)

n∏
i=1

p (xi|C = +)

p (xi|C = −)
(3.5)
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• Evaluation Measures for the Predictive Classifiers

The predictive models were based upon level 2 student data from one academic year

(2015/16), which resulted in a limited sample of 129 student records. The evaluation results

of the predictive models, were obtained using the 10-fold cross-validation (CV) evaluation ap-

proach to obtain more robust classifiers. With this learning approach, the educational dataset

was randomly divided into 10 approximately equal groups/sets. The first set (in Fold 1) was

considered as a validation/testing dataset, whereas the sets 2-10 were used to learn the classi-

fiers. This approach was repeated 10 times on the available data, taking a different validation

set in each fold to learn and test the classifiers. The 10 accuracy results obtained from the

folds 1 to 10 were then averaged to obtain a single estimation of the overall accuracy.

After each validation process, the mean squared error (MSE) was calculated for the data

of the validation fold. This testing process computed MSE1, MSE2, ...., MSEk, the average of

which estimated the testing error of the classifier (James et al., 2013).

CV(k) =
1

k

k∑
i=1

MSEi (3.6)

Thus, the 10-fold CV, as resampling approach (James et al., 2013) was utilised in this

experimental work to improve the skill of the predictive classifiers as well as improving the

confidence in the accuracy of the results. The predictive models ‘resulting from the learning

process’ illustrate ways to identify whether the performance of the student is high, medium

or low. To evaluate the skills of the predictive classifiers of the educational datasets, three

evaluation measures were obtained for the classification performance of each class. These

evaluation measurements include model accuracy (ACC), sensitivity (SN) and specificity (SP),

which are commonly used in the literature for testing the classifiers’ performance (Labatut and

Cherifi, 2012). They are defined as follows:

ACC =
(TP + FN)

(TN + TP + FN + FP )
(3.7)
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SN =
TP

(TP + FN)
(3.8)

SP =
TN

(TN + FP )
(3.9)

where, TP, FP, TN, and FN represent the cases that are classified as True Positive, False

Positive, True Negative and False Negative, respectively. For classifying the performance

of the students, for example the high-risk class, TP indicates the number of students that

were classified correctly by the classifier and they were actually in the high risk class. FP

indicates the number of high-risk students that were miss-classified by the classifier but they

were originally in this class (as positive cases). TN represents the number of students in the

other classes that were classified correctly, whilst FN indicates the number of miss classified

students from the other classes and they were originally labelled from these classes.

3.1.3 Experimental Results

A comparison of accuracy of the selected classification algorithms is provided in Figure 3.2. It

can be seen that “Algorithms and their Applications” Module obtained the highest accuracy

result in both Naïve Bayes and C4.5 decision tree comparing to other Modules. However, all

the predictive models produced very good accuracy results in terms of (69%- 84%).

The analysis of the predictive models is summarized in Table 3.3 and illustrates the com-

parison of sensitivity (SN) and specificity (SP) of the applied algorithms on different modules.

The highlighted probabilities in the following table indicate the high risk class for each specific

module. In particular, the probability of correctly detection of high risk failure in “Algorithms

and their application” module is identified by the highest sensitivity of 0.969 and 0.938 for

Naïve Bayes and C4.5 Decision tree, respectively.

Figure 3.3 presents the best preform C4.5 decision tree model that predicts the students

at high risk of failure in Algorithms and their Applications module. Student Overall Grade is

the predicted feature in this classification model, and only several features were considered (8

of 33). Interestingly, a remarkable result to emerge from the predictive model is that student

39



Chapter 3: Preliminaries Predicting Risk of Failure

Figure 3.2: Accuracy comparison of the predictive models.

Table 3.3: Sensitivity (SN) and Specificity (SP) comparison of the predicted modules.

Module Title Class
Naïve Bayes C4.5 Decision Tree

SN SP SN SP

Algorithms and their Applications

Low risk 0.821 0.926 0.776 0.942

Medium risk 0.867 0.957 0.817 0.933

High risk 0.969 0.909 0.938 0.842

Usability Engineering

Low risk 0.671 0.779 0.714 0.766

Medium risk 0.192 0.915 0.192 0.915

High risk 0.865 0.712 0.833 0.733

Software Development and Management

Low risk 0.806 0.541 0.921 0.381

Medium risk 0.379 0.823 0.517 0.872

High risk 0.391 0,885 0.043 0.986

Year 2 Group Project

Low risk 0.732 0.919 0.610 0.879

Medium risk 0.882 0.921 0.882 0.918

High risk 0.920 0.982 0.902 0.953

qualification has a high impact on the prediction of the high risk of failure students. Further-

more, some of the first year module final grades highly influence the prediction result. These
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Modules are Information Systems and Organisations, Logic and Computation, and Software

Implementation Event which are the core Modules of year 1 of the computer science program

and often involve more technical skills in terms of coding.

Figure 3.3: Algorithms and their applications C4.5 decision tree output.

Since the C4.5 decision tree algorithm was modeled the educational data in transparent

structure with clear decisions as shown in Figure 3.4, some interesting rules can be extracted

to predict the high risk students. These rules indicate the influence of student’s qualification

on their academic performance in Algorithms and their Applications Module, for example:

1. if Qualification on entry = Higher Education (HE) access course then high risk;
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Figure 3.4: Algorithms and their applications C4.5 Prefuse tree output.

2. if Qualification on entry = A/AS Level Λ Logic and ComputationGrade = C Λ Software

Implementation EventGrade = C then high risk;

The main goal of this investigation was to explore existing machine learning models for

student academic performance to identify the high risk of failure students. The second aim

was to identify the key features affecting the predictive model. By applying C4.5 and Naïve

Bayes algorithms we revealed that both Naïve Bayes and C4.5 decision trees are promising

methods for predicting the students at high risk of failing the module with an accuracy result

of 88.48% for Naïve Bayes and 84.29% for C4.5. It also shows that both methods can identify

that qualifications on entry have a high impact on students’ academic performance. Moreover,

some of the first year modules final grades are influencing the results of the students in the

second year modules. These findings provide useful insights for the prediction of students’

performance which could be influenced by other factors or features. An investigation of other

student’s features that may influence the prediction process is provided in the following chap-

ters to obtain more accurate and robust classifiers. Moreover, the correlations between the

educational features and academic progress will be identified to characterize the most influ-

ential features. Thus, the next part of this chapter focuses on extracting temporal cognitive

styles from engagement data to improve prediction results.
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3.2 Temporal Cognitive Styles Identification

To date various machine learning methods have been introduced to detect students’ engage-

ment. The majority focus on behavioural and engagement aspects. Temporal cognitive en-

gagement has not been researched in terms of students’ assessments and participation from

their online temporal trajectories. The recent increase in using educational systems provides

significant benefits to researchers to extract a huge amount of data for students’ development,

progression, engagement, and learning processes. Analyzing such data can provide useful

knowledge on student’s styles of perceiving and ways of thinking.

In this section, a distance-based similarity clustering approach was exploited to identify uni-

versity students’ temporal cognitive styles. The proposed method in this section is a temporal

clustering method which focuses on clustering students’ time-series engagement trajectories

based on their attendance at lectures and online tests as well as their progression results for

Year 1 and Year 2 courses so early intervention can be provided.

3.2.1 Explanation of the Temporal Engagement Datasets

The main target of the identification of the temporal cognitive styles of a student is to capture

students’ cognitive patterns that could improve the prediction process. Because of this, time-

series educational datasets were used in this experiment to identify students’ temporal cognitive

styles at different stages of their study, the initial cognitive style at admission level, then at

the end of Year 1 and lastly at the end of Year 2. Three different datasets have been included

in this exploration, each has 377 students records (for the same group of students) for their

achievement during three academic years 2014, 2015 and 2016 as follows:

• The first dataset consists of tutor groups engagement trajectories, which is a track of

computer science (CS) students’ attendance in a group project module over the 24 week

academic term, considered as time-series data.

• The second dataset includes CS students’ admission data that has been explained earlier

in this chapter when predicting student risk of failure.

43



Chapter 3: Preliminaries Temporal Cognitive Styles Identification

• The last dataset contains all Year 1 and Year 2 CS modules final grades. More explanation

on the module titles and the domain values is presented in Appendix A.

All these datasets were merged into one dataset to consider the time dependant order of

students’ progress throughout three academic terms (from 2014 to 2016). Each record in the

dataset considers one student’s data included based on the time for collecting such data. For

example, the first record considers student1 admission data collected at time t, then Year 1 final

grades and then, Year 2 grades (as time t+1, t+2, respectively). The datasets were reshaped

using this approach to allow for the identification of student temporal cognitive styles at three

different stages of their studies.

3.2.2 Distance-based Similarity Clustering Methods

For the temporal cognitive style identification, two steps were exploited to generate the clusters.

Firstly, there was clustering of students’ tutor group engagement trajectories to group students

to different clusters based on their engagement. Secondly, students’ cognitive styles at three

stages were identified at three stages: admission, Year 1 and Year 2.

Step 1: Clustering Time-series Engagement (Attendance) Trajectories

The main objective of this step was to cluster students based on their time-series engage-

ment trajectories with the Dynamic Time Warping (DTW) and Agglomerative Hierarchical

clustering algorithms. Hence, students who had similar engagement patterns concerning their

attendance attitudes were grouped together. This was achieved by measuring the distance

between two students’ attendance trajectories with DTW to align the engagement trajecto-

ries so that the distance was minimised. Figure 3.5 explains the process of finding similarity

between two time-series trajectories with DTW, so that a better alignment "warping" for the

two trajectories can be achieved, which can be seen in Figure 3.5(B)).

The DTW distance between two students engagement trajectories x = [x1, ...., xM ] and

y = [y1, ...., yN ] ofM×N dimensions isD(M,N), which it calculates using a dynamic approach,

as provided in the following equation:
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(a) Two time-series trajectories with a similar trajectory length

(b) Alignment found between the two trajectories after calculating the
distances with DTW

Figure 3.5: Utilisation of Dynamic Time Warping (DTW): Figure (a) indicates two time-series trajectories
with similar overall sequence shapes, whilst Figure (b) presents a sophisticated alignment after measuring the

similarity between the distances with DTW (Keogh and Pazzani, 2001).

D(i, j) = min



D(i− 1, j)

D(i− 1, j − 1)

D(i, j − 1)


+ d(xi, yi) (3.10)

Where, D(i, j) is the local constraint for a given (i, j) node, whereas D(i−1, j), D(i−1, j−1)

and D(i, j−1) determine the values of the restricted node. With this calculation, the final

DTW distance matrix was generated.

Clustering the DTW distance matrix into five clusters was achieved with the Agglomerative

Hierarchical Clustering (AHC) algorithm. This was determined to identify which student
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belongs to which cluster and then to observe their temporal cognitive styles.

Step 2: Identification of the Temporal Cognitive Styles

This step was implemented to characterise the different cognitive styles of students. To

perform this, the K-Means clustering method (MacQueen et al., 1967) was applied to the

DTW engagement clusters identified in the previous step in conjunction with the admissions

data along with the year 1 and year 2 grades. This allowed for the identification of students’

cognitive style at three different stages: at admission, in year 1 and then, in year 2. These

were termed the Initial Cognitive style, Year 1 Cognitive Style and Year 2 Cognitive style. To

identify these temporal cognitive styles, firstly, the student admissions dataset was clustered

to determine the Initial Cognitive style of the students. Secondly, the clustering method was

applied to the admissions data, year 1 final grades and the time-series engagement trajectories

(DTW cluster) to identify Year 1 Cognitive Style. Finally, the K-means clustering method

was implemented on the admissions data, year 2 final grades and the time-series engagement

trajectories (DTW cluster) to partition the students into k groups, thereby identifying the

Year 2 Cognitive Style.

The K-means proceeds by setting the k cluster centres and then refining those iteratively

to obtain the clusters. This process is conducted as follows (Wagstaff et al., 2001):

1. Assigning each instance (di) to the close cluster centre;

2. Updating each cluster centre (Cj) to the mean of instances in that cluster.

An example of the K-means clusters’ identification based on real data can be seen in Figure

3.6. Figure 3.6(a) indicates the data points when no clustering was performed. However, in

Figure (b), the K-means algorithm tended to assign each data point to the nearest cluster

centre with K=3 and hence three clusters were validated based on this data. Setting the value

for the optimal number of K was based on the average silhouette statistical testing method

using the “NbClust” package in R. Using different values of K, the average silhouette procedure

computed the average silhouette of data points to set the best value of K for partitioning the

educational datasets. The optimal number of clusters therefore was the number in which it

maximised the average silhouette over a variety of k-values, in this case being three clusters.
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(a) Dataset with no partition (b) K-mean partition for the dataset
with K=3

Figure 3.6: K-means cluster identification (Jain, 2010).

For performing the k-Means clustering approach on the educational data, five cluster centres

were selected for students’ data and then, each student was assigned to the closest centre. The

statistical testing methods used for estimating the optimal k value (in this study five clusters)

can be found in Chapter 4. The centre of each cluster was then updated based on the mean

of the students in that cluster. Moreover, the initialisation of the clusters of the temporal

cognitive styles was determined randomly, using students’ records from the merged datasets.

The dataset was discretised into ordinal data (see Appendix A) and the Euclidean distance

metric was used to calculate the Hamming distance. Sankey diagrams were used for visualising

the flow of students’ temporal cognitive styles at a different level. They provide a quantitative

explanation about network flows and their relations (Riehmann et al., 2005).

3.2.3 Temporal Cognitive Styles Results

The time-series clustering approach for students’ engagement trajectories grouped the students

into five clusters. Figure 3.7 illustrates the mean value for students with similar engagements in

each cluster. For example, cluster 1 (C1) shows the least engaged group of students in turning

up the course during the academic term. Similarly, C2 identifies an average engagement of

the students. In contrast, the other clusters ‘C3, C4, C5’ in this figure provide fluctuated

higher engagement attitudes with peaks and troughs at different points in the academic year.
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The results of the time-series engagement data showed reliable partitioning for the students’

engagement attitude as the DTW metric was based on computing the similarities between the

trajectories.

Figure 3.7: Clusters’ mean based on student engagement trajectories that been obtained using the DTW and
the Hierarchical Clustering methods.

To project the temporal cognitive styles, K-Means was exploited on the identified engage-

ment clusters with DTW in conjunction with year 1 and year 2 final grades. Projecting the

clusters with data at different time slots will allow for investigating the temporal changes of

students’ cognitive attitudes over time. Figure 3.8 provides a visualization of clusters flows

that been obtained for the cognitive styles of the students with Sankey diagrams. The figure

also indicates the changes in students’ cognitive attitudes between the clusters at three levels.

These were the initial level when the student enters the university, year 1 and then year 2.

These patterns were considered as students’ cognitive styles as they were highly impacted by

the way the students perceived the information and developed their knowledge in each level of

their study through the tutoring and assessments. All these factors (e.g. engagement data, final

grades) were considered during the implementation process of the temporal clusters to capture

the temporal cognitive patterns of students that could be utilised to improve the prediction of

students’ performance. For example, the ‘Initial cog. style’ of the students in ‘cluster1’ has
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been changed in year 1 to another cognitive style based on other factors that were affecting

students attitudes such as the engagement trajectories and year 1 grades (see Figure 3.8). In

addition, the ‘Year1 cog. style’ for the same group of students has been changed further to

another style called ‘Year2 cog. style’ based on students’ progress in year 2.

The interpretation of the clusters at different academic stages is very important for the

investigation of student cognitive style development and how it changes over the study period.

The discovered clusters in each year are significant and meaningful and otherwise cannot be

discovered easily. They demonstrate changing cognitive patterns for different subgroups.

Figure 3.8: Temporal cognitive styles of students.

When discovering the cognitive patterns at different stages, the academic performance of

the students in the clusters were also evaluated further based on the mean value of students’
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grades in each cluster. In Table 3.4 the clusters were observed to show the mean values of the

clusters in year 1 and year 2 based on student grades. Thus, observing these values can explain

the performance contrast of the students between the clusters, so we can explain the clusters

that include students with low performance. For instance, the mean values for students’ grades

of the clusters in year 1 were all B, which indicates that these clusters are including students

with high academic performance. Interestingly, the mean values of students’ grades in Cluster 3

and Cluster 4 in year 2 have been decreased from B to C, this potentially determines the changes

in students’ performance in year 2 modules. Though the students’ distribution for Cluster 3

and Cluster 4 has been slightly reduced in year 2 they capture some useful information about

the students’ performance. The cognitive styles of these groups of students and their academic

performance have worsened in year 2 to medium performance. However, the cognitive styles

of the other clusters (e.g. Cluster 1, 2 and 5) in year 1 and year 2 were stable in terms of the

performance of the students.

Table 3.4: Cluster mean based on student grades in year 1 and year 2 and students’ distribution obtained by
the simple K-Means clustering algorithm.

Cluster
Year 1 Cognitive Style Year 2 Cognitive Style

Year 1 Grades’ Mean Stu. Distribution (%) Year 2 Grades’ mean Stu. Distribution(%)

Cluster 1 5.76 = B 10% 6.38 = B 26%

Cluster 2 5.91 = B 21% 5.81 = B 9%

Cluster 3 5.94 = B 14% 4.72 = C 12%

Cluster 4 5.98 = B 20% 4.79 = C 19%

Cluster 5 6.15 = B 35% 6.46 = B 34%

The experimental work described in this section has demonstrated how the identification

of the temporal cognitive style of students (and how it changes over time) can be insightful.

It also indicates that the predicting of students’ performance can be improved as will be

demonstrated in the following chapters. The findings make an important contribution to the

field of Educational Data Mining by demonstrating the influence of the dynamic clustering

approaches of students’ temporal engagement data for detecting the cognitive style at different

stages of their studies. The next chapter, therefore, moves on to show the influence of the

student cognitive styles identification on improving their performance prediction. Chapters
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5 and 6 examine the identified cognitive styles as independent attributes of overall model

performance using probabilistic graphical modelling and deep learning approaches.

3.3 Feature Subspace Learning “Dimensionality Reduction” for

Unbiased Classification

In many real-world data, high dimensional data is difficult to interpret as it is in a large-

dimension space. Such data impacts learning accurate classification models which typically

causes low classification results. One possible solution to tackle these issues is transform-

ing the data into a lower-dimensional subspace using a dimensionality reduction technique

(Van Der Maaten et al., 2009). This approach should preserve the proprieties of the original

feature-space but in a lower dimension (Fukunaga, 2013). Usually, dimensionality reduction

is performed using an unsupervised linear mapping technique such as Factor Analysis (FA)

(Spearman, 1904) or Principle Component Analysis (PCA) (Pearson, 1901). For example,

in time series data, dimensionality reduction was exploited via a linear mapping in (Yang

and Shahabi, 2004)(Keogh and Pazzani, 2000) (Megalooikonomou et al., 2004) (Wang and

Megalooikonomou, 2008) (Verleysen and François, 2005) as a measure for detecting similarity.

However, the linear mapping of the PCA cannot handle complex data representation as the

PCA components possibly lose the nonlinear relations of the original data in the pre-processing

step.

Explicitly detecting the nonlinear structure of data is a significant task especially for mining

time series data (Scholz, 2012). Nonlinear mapping has been explored to capture diverse

processes dynamics of time-series data as for example in (Scholz and Fraunholz, 2008) (Geng

and Zhu, 2005) (Herman, 2007). Nonlinear PCA was exploited using Kernel PCA as a feature

extraction approach for several purposes such as nonlinear regression (Rosipal et al., 2001),

face recognition (Kim et al., 2002), multivariate time series analysis (Yang and Shahabi, 2005),

time series prediction (Verleysen and François, 2005) and and classifying video motions (Chan

and Vasconcelos, 2007). However, validating the NLPCA models is a very hard task as the

over-fitting is usually caused due to the limited number of data trajectories as well as the
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main structure of the data. An efficient approach to validate the NLPCA is by comparing the

classification results of the NLPCA with the other data representation approaches. For this

purpose, a dimensionality reduction technique was investigated in this thesis using the linear

PCA and the nonlinear principal component analysis (NLPCA) as pre-processing approaches to

learning low dimension subspaces. The nonlinear subspace was learned via an auto-associative

neural network or Autoencoder to improve the classification of students’ performance.

Firstly, the NLPCA methodology is described for learning a nonlinear subspace using an

auto-associative neural network with maximum variance and low square error. Secondly, the

experimental results for classifying students using data that has been processed with PCA and

NLPCA will be compared.

3.3.1 Subspace Learning with Auto-associative Neural Network

Nonlinear Principal Component Analysis (NLPCA) is a generalization of principal component

analysis (PCA). It aims to find a number of components which together explain the variance

structure for a dataset (Kramer, 1991). It performs this through a nonlinear ‘curve’ mapping

between the principal components instead of a straight mapping as in the standard PCA

(Scholz et al., 2008). Therefore, the learned PC subspace is also adjusted with the non-

linear components and it is curved. The NLPCA can be exploited using a neural network

approach with an associative layout called the Auto-associative neural network, Autoencoder or

bottleneck (Scholz et al., 2008). This uses a multi-layer perceptron (MLP) (Bishop et al., 1995)

to exploit a neural network with identity mapping between the input and output. Consequently,

the learned network will be with an identical number of inputs x and output x and output x̂

(see Figure 3.9). This achieved by the following equation to minimize the squared error:

E =
1

2
‖x̂− x‖2 (3.11)

The Autoencoder network learns a layer in the middle called ‘bottleneck’ with a fewer

number of principle components than in the input and output spaces. This layer enforces

the reduction of the inputs into a lower dimension space Z1 ... Zn, which will then provide
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the nonlinear components. The Autoencoder network in Fig 1 represents two parts of two

functions: the extraction Φextr : X → Z and the generation function Φgen : Z → X.

Each part includes a hidden layer to perform the nonlinear mapping. For instance, the Auto-

associative neural network in Figure 3.9 has a 3-4-1-4-3 architecture with five layers having

two hidden and the three units (features) of the input, output and the PCs. The learned

autoencoder neural network can obtain more components by specifying additional units in the

bottleneck ‘component’ layer.

Figure 3.9: Auto-associative neural network (Autoencoder)(Scholz et al., 2008)

For the aim to learn a feature subspace for unbiased prediction of student academic per-

formance. A nonlinear subspace learning with Auto-associative neural network was proposed

in this section as well as an explanation of the datasets used for exploiting the experiments.

• Datasets

A real-world educational time series dataset was analyzed for evaluating the proposed

approach in this section. This dataset includes 377 students progression data for the aca-

demic year 2012, 2013,. . . ,2016, respectively. It was collected from Brunel University London

admissions and computer science department at the university. Each progression trajectory

determines one student achieved grades in Year1, Year2, and Year3 at the university, as well

as students’ application (admission) data considered as time series data. The total number of
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features in the feature space was 34. Here, a three-class problem was determined to predict

the overall performance of a student (Low Perfrmance:0, Medium Performance:1 or High Per-

formance:2). These classes were set to explicitly detect the low-performance students based

on their overall grades so early interventions could be provided. A detailed explanation of the

features and the domain values used in these experiments is presented in Appendix A.
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Figure 3.10: Unbiased Classification with NLPCA.
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• Subspace Learning with NLPCA

To explicitly represent the dependencies between the features, the dimensionality reduction

technique was constructed by using the Nonlinear PCA toolbox for MATLAB (HESA, 2019) to

extract the principal components in a curved subspace without losing any information from the

feature space with the maximize variance for improved classification. Figure 3.10 represents

the proposed approach for subspace learning for performing the unbiased classification with

NLPCA. This was achieved in two steps: a pre-processing step was undertaken to learn the

nonlinear subspace with the auto-associative neural network, followed by the classification and

validation step. The NLPCA extracts the non-linear components by determining a random

value in each run. However, this approach sometime may miss some of the good dynamics

in the data and therefore fails to find an accurate result among them. To avoid this, a pre-

processing step was implemented using the linear PCA for better optimizing the extracted

NLPCA components. After this pre-processing step, the optimization of the NLPCA will be

considered from the linear PCA.

3.3.2 Parameters and K Components Estimation

Determining the optimal number of K components (Z1, ..., Zn in Figure 3.10) in dimensionality

reduction is subjective as it is usually influenced by the method used in projecting the learned

subspace, as well as the explained variance, to be achieved in the learning process. One

possible solution to determine the K components in NLPCA is by testing a different number

of K components to find the optimal K for the issue. Another recommended solution is testing

different values for the parameter (weight-decay) (Nonlinear PCA by Matthias Scholz, n.d.)

which can control the complexity of the curve around the leaned components to avoid overfitting

and achieve better results. If the datasets have a high dimension input for example 20 or

more, it is recommended to pre-process the data with the linear PCA to reduce the dimension

for better NLPCA results. Thus, the number of nonlinear K components was determined

via performing NLPCA with Pre-PCA and different weight-decay values (0.01 and 0.001).

A different number of K was projected to achieve an explained variance of 93% for better

comparison with the linear PCA approach.
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3.3.3 Subspace Learning Results

In this section, a comparison between the learned subspace results with the linear PCA and the

NLPCA with Autoencoder will be presented. To verify the effect of the proposed approach, the

classification results of the learned feature subspaces with ‘PCA’ and ‘NLPCA’ were evaluated

to classify the academic performance of university students. The subspace explained variance

for the PCA and NLPCA methods are presented in Figure 3.11. It presented the learned

subspaces variances in conjunction with the number of the projected components. From this

figure, we can notice that PCA subspace achieved higher explained variance for most of the

projected components than the NLPCA. However, the NLPCA obtained better-explained vari-

ance results than the linear PCA at dimension 16, with an explained variance of around 93%.

Because of this, 93% explained variance has chosen as a measure to test the efficiency of the

two approaches for performing unbiased classification. Therefore, the PCA subspace for the 18

principal components (PCs) and the NLPCA via PCA for 16 (PCs) were evaluated to better

compare the two methods.

Figure 3.11: The explained variance for the subspaces learned with PCA and NLPCA with Autoencoder.

The learned nonlinear subspaces with NLPCA using different initialization is presented in

Figure 3.12. These subspaces were obtained according to an explained variance of 93% using
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different initialization methods. For obtaining the optimal NLPCA initialization method for

unbiased classification, three different methods were examined in this experiment. Firstly, a

NLPCA subspace was exploited via random initialization (see Figure 3.12 (a)). After that,

the NLPCA subspace in Figure 3.12 (b) was constructed with a weight-decay of 0.001 to

control the curve around the non-linear components and avoid overfitting. Lastly, NLPCA

was obtained via Pre-PCA with a weight Decay of 0.001 as shown in Figure 3.12 (c). For all

previous methods, the learned non-linear subspaces were examined for learning the unbiased

classifiers, however, the later classification results show that the best initialization method for

learning the NLPCA was via Pre-PCA with a Weight Decay 0.001.

In the linear PCA we can simply explicit the most corresponding features with the PCs

by observing the ranked eigenvectors or loadings. Thus, the features with low values can be

excluded due to the low dependencies between their loadings and PCs. The loadings of the

first 19 PCs (93% Variance) is available in Appendix B for reference. However, as the nonlinear

PCs are curved in the NLPCA learned subspace, it is not possible to observe the rank of the

features. As the curve between the PCs maps the time-series features and therefore, some

features may have a high impact at a specific time point on the curve whereas the others not.

In other words, the order of the features is depending on the time on a particular time point

on the curve.

3.3.4 Classification and Validation Results

The main issue addressed in this experiment is the biased classification with time series edu-

cational data. An intuitive solution was proposed here to explicitly characterize the unwanted

correlations between components with NLPCA. Therefore, several experiments have been con-

ducted to learn unbiased classifiers with PCA and NLPCA using different machine learning

algorithms. The classification accuracies were determined as a measure for the validation of the

proposed approach in this work. Figure 3.13 compared the classification accuracy for classifying

the class attribute with the original data and the learned subspaces form the Linear PCA and

the NLPCA via Autoencoder. As shown in this figure the best accuracy results were obtained

when learning all classifiers from the NLPCA subspace with all the classification algorithms.
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(a) NLPCA via random initialization

(b) NLPCA via Weight Decay 0.001 (c) NLPCA via Pre-PCA

Figure 3.12: Learned nonlinear subspaces with NLPCA using different initialization.

Furthermore, there was a significant improvement for classifying the students especially with

Bayesian Networks (BNs) and J48. With BNs the accuracy was increased dramatically from
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75% to around 90%. This improvement was achieved due to the maximization of the variance

of the dataset with the Autoencoder.

Figure 3.13: A comparison of the classification accuracy for classifying the class attribute with the original
data and the learned subspaces form the Linear PCA and the NLPCA via Autoencoder.

The classification results of the learned ‘NLPCA’ subspace using different classification

algorithms is provided in Table 3.6. It includes the classification accuracy as well as a detailed

evaluation matrix of each class ‘Low risk, Medium risk, High risk’. As we can observe from

this table, the TP rate shows significant classification outcomes where the predictive models

correctly identify the positive cases in each class. In particular, the High risk classes obtained

significant TP values in terms of 0.94 with NB to 0.97 with MLNN. Further evaluations were

considered in this table to evaluate the classifiers’ performances with precision, recall and F1

measure for the three classes. The precision values indicated the proportion of the students

where the classifier consider them in the class and they were actually within the class. All

classifiers obtained very high precision values in terms of 0.85 and over. Also, the recall values

show the ability of the classifiers in identifying the relevant students in each class.

To conclude, learning feature-subspaces with NLPCA is a very flexible approach. It can be

implemented for any real-world problem to improve the classification results. Here, a nonlinear

subspace learning approach was investigated using the auto-associative neural network. The
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Table 3.5: Classification results obtained by the learned ‘NLPCA’ subspace with Autoencoder.

Classification

Algorithm
Accuracy (%)

Class

‘Student Performance’
TP Rate FP Rate Precision Recall F-Measure

Naïve Bayes

(NB)
89.92

Low risk 0.836 0.013 0.938 0.836 0.884

Medium risk 0.881 0.083 0.856 0.881 0.869

High risk 0.941 0.067 0.919 0.941 0.930

J48-Decision Tree 91.51

Low risk 0.836 0.013 0.938 0.836 0.884

Medium risk 0.881 0.054 0.902 0.881 0.891

High risk 0.976 0.072 0.917 0.976 0.946

Bayesian Network

(BN)
89.92

Low risk 0.836 0.013 0.938 0.836 0.884

Medium risk 0.881 0.083 0.856 0.881 0.869

High risk 0.941 0.067 0.919 0.941 0.930

Multi-Layer Neural Network

(MLNN)
93.36

Low risk 0.808 0.010 0.952 0.808 0.874

Medium risk 0.956 0.062 0.896 0.956 0.925

High risk 0.970 0.034 0.959 0.970 0.965

main idea of the NLPCA is that the learned subspace is adjusted through a curve mapping

as an alternative approach of a straight mapping as in the linear PCA. Thus, the NLPCA

maximizes the variance between the learned principle components and reduces the squared

error. In the area of predicting academic performance, the learned classifier can miss some

of the good dynamics between the students which will usually cause biased classification.

Thus, a subspace learning approach with the NLPCA was exploited to explicitly represent

the dependencies between the space features for improving performance prediction. Although

the classification results have been improved with the Autoencoder, it is difficult to explicitly

capture the influential educational features. In other words, the Autoencoder does not enhance

the explanation of outputs. Further research works are conducted in later chapters to provide

transparent and explainable classifiers with graphical modeling and Deep Learning approaches.
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Chapter 4

Temporal Profiling of Online

Self-Assessment Performance

Trajectories

This chapter provides a novel approach for temporal profiling of online self-assessment tra-

jectories using a distance-based similarity clustering approach. This approach was aimed at

identifying factors that influence the prediction of students’ performance, in particular, the

high-risk group of students as well as learning accurate and reliable classifiers for the predic-

tion of student’s overall performance.

4.1 Introduction

Predicting students’ performance is an increasingly important task within the field of education.

However, many aspects have to be considered to produce more accurate predictive models and

thus, be able to provide the appropriate form of intervention so as to meet the needs of each

student. Traditionally, the performance of a student is measured using final course grades.

These final grades are usually based on assessment grades, course activities and final exam

results (bin Mat et al., 2013). However, new developments in educational technologies and
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Web-based educational systems have been emerging, which have the potential to record data

that can be analysed to help students and enhance their learning outcomes. For instance,

education-based systems can generate large amounts of data regarding students, instructors,

courses, departments, and so forth (Baker et al., 2010). Moreover, electronic educational

systems (eLearning systems), such as Blackboard Learn, D2L and Moodle, can help to analyse

a student’s performance from log files containing data on how many times a student logs

into the system or visits a specific content area of the course. These systems also have the

potential to record detailed data for each student submission to a specific assessment, such as

the time spent answering the question and whether or not their answer matches the correct

one (Michalski and Michalski, 2004).

The assessment of a student’s performance is strongly reflected in many educational sys-

tems, where the student is given a chance to take exams online in order to assess his/her under-

standing for each module. This particular type of assessment is called online self-assessment.

The term “self-assessment” is widely used in education and involves students evaluating their

performance in provided questions or tests “with answers being either right or wrong” (Boud

and Brew, 1995). It is an important part of the learning process and many online tools are

now available for conducting this type of assessment. Perhaps the clearest advantage of on-

line self-assessments is that they are marked automatically allowing instructors to monitor the

performance of the students based on their results, thus not burdening the assessor (Ibabe

and Jauregizar, 2010). Another advantage of self-assessment in the learning process of the

students is that it can determine students’ prior knowledge and their understanding of the

course (Challis, 2005). These properties can provide information on how a particular student

is performing on a course over time. However, capturing signs on the high-risk group of stu-

dents in the online systems is not available in an appropriate form for the instructors, so the

low-performance students cannot be categorized and compared among their class to enable

appropriate interventions. As such, the online self-assessment tools have a real challenge in

categorizing the high-risk students as well as providing an intelligent representation tool that

stating each student’s current assessment profile type among his/her class. Thus, predicting

student performance based on data generated from educational systems enables understanding
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of what students may need to improve, based on appropriate predictive models (Merceron and

Yacef, 2005).

Educational data mining (EDM) research has consistently shown that data mining algo-

rithms and techniques are important components in the prediction process (Hämäläinen and

Vinni, 2011), as they play key roles in providing accurate predictive models. Extensive re-

search has been carried out on identifying student performance using different classification

algorithms (Romero, Lopez, Luna and Ventura, 2013); however, most studies in the field of

predicting students’ performance have only focused on classifying students based on specific

selected attributes, not entire performance trajectories. This was a major reason for investigat-

ing this new research area on Educational data mining: applying machine learning algorithms

on time-series data means that early insights can be provided for students at risk.

In this research chapter, the major goal is the clustering of online self-assessment trajecto-

ries as identifying factors that influence the prediction of students’ performance in particular

the high-risk group of students. To this end, a novel approach was presented for predicting

students’ performance by profiling students from temporal online self-assessment trajectories.

Specifically, students’ online self-assessment trajectories were clustered using a Dynamic Time

Warping algorithm (DTW) and use this as input to classification algorithms for predicting

student outcomes. This investigation makes a major contribution to research on EDM by

identifying and validating the different categories of student performance profile from the on-

line self-assessment trajectories based on a DTW distance-based similarity clustering approach.

Also, the generalisability of such approach can be determined to be applied to different class

modules.

The overall structure of the chapter takes the form of four sections, including this introduc-

tion. The proposed predictive approach with a detailed description of the temporal clustering

method used for grouping students’ trajectories is provided in section 2. The experimental re-

sults are then presented and discussed in the following section in which it includes the resulting

online assessment profiles with an evaluation and validation of the profiles on students’ perfor-

mance. In the summary, the important findings of the temporal profiling of students’ online

self-assessment trajectories using DTW and Hierarchical Clustering algorithms are provided,
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particularly for indicating the influence of learned online profiles on performance prediction.

4.2 Methodology

The proposed approach for improving prediction of students’ overall performance is based on

temporal profiling of their online self-assessment trajectories using the DTW and Hierarchical

Clustering Algorithms. Subsequently, I involve the students’ identified assessment profiles (the

DTW clusters) in conjunction with student admission data to improve prediction of end-of

course grades for the students.

For the purpose of the temporal profiling of students online self-assessments, two processes

are applied to produce and then validate the resulting profiles (see Figure 4.1), as follows:

• Temporal Profiling Process. This determines the profiling of students based on online

self-assessment trajectories using the DTW algorithm and Hierarchical Clustering Algo-

rithms;

• Prediction and Validation Process. For this, the C4.5 Decision Tree algorithm is ap-

plied to student datasets to observe the influence of profiling students’ temporal as-

sessments (DTW Clusters) on improving their performance prediction. The obtained

predictive model is then tested to predict the performance of the students in other mod-

ules. To do this, their attributes in the resulting decision tree are analysed so as to

predict performance.

For the implementation of the proposed approach, MATLAB was used to calculate the

DTW (the distance-based matrix) and then, generating the clusters using the Hierarchical

Clustering algorithm. Subsequently, the GraphViz Package on Java API was used for visualiz-

ing the resultant C4.5 decision tree.

4.2.1 Data Preparation and Collection

The datasets used in this investigation were collected from two databases: the online database

of the Learning Management System of Brunel University, London, namely, Blackboard Learn
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Figure 4.1: Temporal profiling of students’ online self-assessment trajectories

and Brunel University admissions information. All the collected data were merged into one

dataset.

The first dataset consisted of 329 student records for the online self-assessment exercises for

a Logic and Computation Module (Module code. CS1005), taken by students in the 2013/14

and 2014/15 academic years. The online self- assessment dataset contains temporal data that

represents students’ overall grade for each assessment over time throughout the academic term.

During each term, the students were asked to take an online assessment after each lecture to

enhance their learning experience and to evaluate themselves. All student grades were recorded

in Blackboard Learn. There were a total of 23 self-assessment attributes considered in this

investigation, which were used to cluster student trajectories throughout the term to observe

student academic performance. The attributes that were used in this set were: Self-Ass.1, Self-

Ass.2, ... , and Self-Ass.23. Each contained a student grade on that specific self-assessment.

The second dataset included student application data when they registered at the Univer-

sity, including such as: student demographics, previous educational institution, parent educa-

tion level etc. The selected attributes and the domain values for the current investigation are

provided in Table 4.1 for reference. A total of 329 student instances of two years datasets (for
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the academic years 2013 and 2014), for tracking the same students of the students of the online

self-assessments dataset, were included in this study to develop the predictive model for the

academic performance of the students in all Year 1 modules.

Table 4.1: Student related attributes.

Attribute Description Domain Values

Title Student title {MR, MISS}

Route Code The code of student chosen route
{G400USCMPSC1 for Computer Science,

G400USOFENG1 for Computer Science

(Software Engineering), ....., etc}

Nationality Student nationality {British national, Belgian, Bulgarian, ....., etc}

Ethnicity Student ethnicity
{Arab, Asian, White, White-British,...., etc}

based on Student’s ethnicity

Country of Domicile Student country of domicile
{England, Greece, Spain, .... , etc}

based on student’s country of domicile

Country of Birth Student country of birth
{England, Greece, Spain, .... , etc}

based on student’s country of birth

Level Student level {1 for Undergraduate, 2 for Postgraduate}

Socio Economic Class Student socio economic class
{1-Higher managerial and professional occupations,

2-Lower managerial and professional occupations, -

Not Classified, . . . .. , etc}

Been In Care Whether the student has spent any time in care {DATA UNAVAILABLE, No, Unanswered}

Parents Been In HE
Whether the student’s parents have been to any

higher education institution
{Yes, No, Do not Know, Prefer Not To Say}

Sum of Self-Assessments
Sum of grades across all

self-assessments that were attempted
{Numerical values}

Temporal Profiles
The resulting clusters from the DTW and

hierarchical clustering process
{C1, C2, C3, C4, C5}

CS1005_Grade Logic and Computation – final grade
{A: Excellent, B: Very Good, C: Good,

D: Acceptable, F: Unacceptable}

The predicted class attribute was CS1005 Grade, which refers to the final grade obtained

by the student in the targeted module. It had five possible values, A: Excellent, B: Very Good,

C: Good, D: Acceptable and F: Unacceptable or Fail, which were later merged to low risk,

medium risk and high risk of failure (see Table 4.2) to improve the classification results. More

information on the class integration process is provided in the pre-processing section.

The Logic and Computation Module (CS1005) was chosen for the identification of stu-

dents’ performance for the following reasons. This module is a foundation module for year

1 computer science (CS) students, which provides the fundamental concepts of computation
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and programming. By the end of this module, CS students should have a specific aptitude in

programming to be prepared for the next levels. Also, CS1005 is a blended module that com-

bines online activities and assessments through an eLearning system, Blackboard Learn, with

traditional class lectures. Thus, analysing students’ grades in a fundamental module provides

valuable insights for students’ profile and their future performance. However, when modeling

a predictive classifier for predicting the performance of the students in year 1, the university

database is only including the students’ admission/application attributes. Because of this, a

decision was made to learn the predictive classifier based on these attributes in conjunction

with the learned temporal profiles from CS1005 (the proposed approach in this chapter).

4.2.2 Temporal Profiling of Students’ Online Self-Assessments

The main objective of this process was to cluster students based on their trajectories in the

online self-assessment to profile students who performed similarly in respect to their online

self-assessment results. To generate these profiles or clusters of students, a two-step process

was implemented as follows:

Step1. Calculate the DTW Distance

The first step was to calculate the distance matrix by applying the DTW method (Keogh

and Ratanamahatana, 2005) to measure the similarity between each pair of students’ self-

assessment results over the duration of the module. Suppose that we have two student trajec-

tories x and y of length M and N for the self-assessments, respectively, where x = [x1, ...., xM ]

and y = [y1, ...., yN ] (see Figure 4.2(a)). The dimension of the DTW distance matrix between

these two trajectories is D(M,N) which is shown in the matrix in Figure 4.2 (b).

For measuring the similarity between two trajectories, the distance matrix is calculated

using a dynamic approach to align the trajectories to a wrapping path, as provided in the

following equation:
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(a)

(b)

Figure 4.2: Utilisation of Dynamic Time Warping (DTW) on the self-assessment temporal trajectories: (a)
two temporal self-assessment trajectories x and y , (b) the resulting DTW matrix with a “warping” path (the

highlighted white line) of the alignment between the two trajectories with DTW.

D(i, j) = min



D(i− 1, j)

D(i− 1, j − 1)

D(i, j − 1)


+ d(xi, yi) (4.1)

where, D(i, j) is the local constraint for a given (i, j) node, whereas D(i−1, j), D(i−1, j−1)
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and D(i, j−1) determine the values of the restricted node. Using this calculation, we obtained

sets of distance values for each pair of student trajectories, which are then been computed to

generate the final DTW distance matrix.

Step2. Clustering using Agglomerative Hierarchical Clustering

The second step was to cluster the DTW distance matrix into clusters by applying the Agglom-

erative Hierarchical Clustering (AHC) algorithm. This step was considered to understand the

behaviour of the obtained clusters and reveal which student belongs to which cluster to then

observe their overall performance in the targeted module. To achieve this, the DTW-based

distance matrix was clustered using different linkage methods (single, complete, weighted and

average) to test the efficiency of each on the produced clusters. These linkage methods de-

termine how to cluster student performance in the assessments based on the distance value

between the clusters as well as deciding the number of them being looked for. However, the best

clusters were obtained via the complete linkage method, which showed an adequate correlation

between each cluster and student performance profile.

4.2.3 Data Pre-processing

The improvement in the prediction of student performance was influenced by the pre-processing

techniques applied to solve the misclassification and the class imbalance issues on the original

dataset. In this section, the proposed pre-processing techniques utilised in this study will be

explained to achieve better accuracy and prediction results for the targeted modules.

4.2.3.1 Class Attribute Transformation

Class attribute construction is a very popular data transformation technique for the pre-

processing stage, which is usually applied to reduce fundamental issues arising from inadequate

attributes. The main goal of attribute construction is to produce a high level attribute from

the original attribute to improve the representation of the data space (Hu, 1998). Kampouridis

et al. (Kampouridis and Otero, 2013) noted that the original attributes can be merged using

attribute construction to provide more predictive ones.

69



Chapter 4: Temporal Profiling of Self-Assessment Trajectories Methods

In this study, attribute construction was applied to the class attribute to minimize the

number of classes and improve the prediction result. Since the number of classes of student

final grades was large with five possible values (A, B, C, D and F) affecting the performance of

the predictive models, student final grades were merged. This also made more sense to iden-

tifying at-risk students. Table 4.2 shows the proposed 3 class approach, which identifies new

class values of the performance of students based on their final grades. Also, some statistics

on the number of students in each class, and their overall percentage was included. From this

table, it is apparent that the majority class attribute was the low risk class with 70% of the

entire population of students and so class balancing is explored in the next section.

Table 4.2: Class Values regarding to student final grades and the number and percentage of students were in
each Class

New Class Values Original Class Values Number of students Students Percentage

Low risk A and B 233 70.22%

Medium risk C 64 19.45%

High risk D, E and F 32 9.72%

4.2.3.2 Class Balancing with SMOTE

The Synthetic Minority Over-sampling Technique (SMOTE) is a technique that oversamples

the dataset to solve the imbalance issue of the class attribute. This is a well-known technique in

data mining research due to its benefit of increasing the predictive accuracy for a specific model

(Chawla et al., 2002). Since the student dataset was not large (329 records), I encountered a

class imbalance issue. To solve this, SMOTE was applied to the minority classes, which were

the high risk and medium risk classes (see Table 4.2) to over-sample the dataset. Therefore,

the performance of the model was improved by adding synthetic instances to the minority

classes. These synthetic instances were randomly inserted into the minority class depending

on the K-nearest to the minority class.

Five nearest neighbours were used for each minority class (high and medium risk). Further-

more, the percentage of the oversampling size for the minority class was 300%. Oversampling
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the minority classes by this percentage was determined to obtain an approximately equal bal-

ance with the low risk class (see Table 4.3). The resulting new synthetic data points were

created in the following way:

• Computing the difference between the minority class instance (a student) under consid-

eration and its nearest neighbour

• Multiplying the result by a random number between 0 and 1.

• The obtained result of the previous step is added to the minority class instance under

consideration to create a new synthetic instance, as defined in the following equation:

xnew = xi + (x̂i − xi)× δ (4.2)

Where xnew = the new synthetic data point, xi = the minority class instance, x̂i = the

nearest neighbours to xi and δ = random number [0,1]

Table 4.3: The number and the percentage of students in each class after SMOTE

Class Number of Students Percentage of Students

Low risk 233 37.76%

Medium risk 191 30.96%

High risk 192 31.19%

4.2.4 Prediction

Predictive machine learning has been used before to model student performance (El-Halees,

2009), (Romero, Lopez, Luna and Ventura, 2013), (Romero, Espejo, Zafra, Romero and Ven-

tura, 2013). Here the C4.5 decision tree algorithm is used as the aim was to test the influence

of the DTW clusters in the prediction of student performance and therefore a transparent

model where the features can be examined is needed. Since the datasets were not large the

best performing predictive model was identified by firstly using 10-fold cross validation on the
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original datasets without any identified student cognitive clusters. Next, the DTW generated

clusters (students’ profiles) were added to the dataset to determine whether the identification

of students’ assessment profiles improved the prediction of student performance, as proposed

in this investigation.

4.3 Experimental Results

The primary objective was to investigate whether the proposed approach of profiling students’

online self-assessments using DTW could provide better prediction of student performance

than has previously been achieved. In this section, an evaluation of the identified profiles is

presented along with an explanation of student assessment profiles from clustering the online

self-assessment results.

4.3.1 Profile K Estimation

Identifying the optimum number of clusters or profiles is subjective as it depends on the

parameters and the measures used for partitioning the dataset (Kassambara, 2017). In this

investigation, the elbow, average silhouette and gap statistic methods were all explored to

determine the ideal number of clusters. The “NbClust” (Charrad et al., 2014) package in R

was used for the implementation of all the statistical indices. A visualization of the results

obtained from the elbow, average silhouette and gap statistic indices methods is shown in

Figure 4.3.

From this figure, it is apparent that each statistical method has given a different result for

the best K cluster. For example, the optimal number of clusters using the silhouette method

was three clusters or profiles based on the average silhouette width between the students.

Whereas, five clusters were delivered from the elbow method and two clusters for the gap

statistic technique. Given this lack of agreement, I performed tests on all the 30 indices

provided in NbClust package to identify the ideal number of clusters based on the “majority

rule”. Figure 4.4 illustrates that the optimal number of clusters is five based on the majority

rules results among all the statistical indices (30 indices) that were tested on the educational
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Figure 4.3: Optimal number of clusters (students’ profiles) obtained using the elbow, silhouette, and gap
statistic methods

datasets.
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Figure 4.4: Optimal number of clusters obtained using the majority rules for all the 30 indices in the
’NbClust’ package in R

4.3.2 Temporal Profiles Evaluation

Clusters were obtained by calculating the distances between the 23 self-assessment results of

each student using DTW. Then, the Hierarchical Clustering algorithm was implemented on the

distance matrix of DTW to generate the students’ online assessment profiles. It is important

to mention that, the cluster number was chosen based on the statistical methods implemented

earlier in this section. Figure 4.5 shows the tree-view structure of the profiles obtained from

the Hierarchical Clustering algorithm. From these clusters, we can determine which student

belongs to which cluster based on the his or her unique identifier. Also, it is interesting to

highlight that the clusters C3 and C4 are distinct from the other clusters, with these two

containing the least number of students and having very close distance between them. These

findings led to conduct further analysis to the students’ grades and overall performance to

investigate the underlying characteristics of the clusters.

The Hierarchical Clustering of Profiles in Figure 4.5 shows the distribution of student tra-

jectories in the five clusters based on students’ performance in 23 online self-assessments and

their obtained grades. The grades in the online self-assessments were up to 40 depending on

the number of questions in each assessment. By calculating the distance of each pair of stu-

dents’ recorded grades and then clustering these distances (distance matrix) using Hierarchical
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Figure 4.5: Hierarchical Agglomerative Clustering using the DTW distances Matrix for all the temporal
trajectories of student’s online self-assessments grades. It also shows the margin between the clusters (C1, C2,

C3, C4 and C5)

clustering, the clusters (profiles) of students were obtained.

However, the difference between the resulting clusters in Figure 4.6 was not observing the

performance of the students, especially between C1 and C2. Because of this, further analysis

was conducted to obtain better insight regarding these time-series profiles, and optimally ex-

tract useful knowledge on students’ profiles differences. I calculated and then plotted the mean

values of the 23 self-assessments for all the students in each cluster, as provided in Figure 4.7.

From this plot, therefore, I compared the variation between the obtained clusters to observe

the performance differences of the students in each cluster. This reveals that the student profiles
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Figure 4.6: The distribution of students’ self-assessment trajectories into five clusters. This indicates the
hierarchical clustering of profiles and the size of each cluster. This plot was generated using MATLAB

Figure 4.7: Mean of students’ grades for the online self-assessments per cluster

in the online self-assessment can be categorized as follows:

• C1: High-Performance Early Profile

C1 includes the first highly achieving group of students in respect of their online self-

assessment grades. This profile includes students who were performing well early; ob-

taining the highest grades among their class in the beginning of the academic term.
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• C2: High-Performance Late Profile

C2 includes the second highly achieving group of students in respect of their online

self-assessment grades. This profile involves students who were performing well late;

obtaining the highest grades among their class from self-assessment 2 to self-assessment

9.

• C3: Low-Performance Profile

C3 includes the low performance students, who did not participate in all the self-assessments

and obtained low results.

• C4: V. Low Performance Profile

C4 includes the very low performance students, who did not participate in all the assess-

ments and obtained very low results.

• C5: Medium-Performance Profile

C5 includes the medium performance students, who participated and obtained medium

results in most of the online self-assessments.

These profiles have important implications for enhancing students’ learning, because by

characterizing low performance student’s, early intervention can be provided by module tutors.

In addition, identifying students’ profiles from their online self-assessment trajectories can help

instructors determine the needs of each group of students and to decide either to provide extra

educational materials or assign other learning activities that may be more suitable for them.

Table 4.4 shows the distribution of students into five clusters and their overall performance

in the module. Some interesting findings began to emerge as the follows. The majority of the

low risk students were clustered to C1, C2 and C5, which I defined earlier as high performance

nd medium performance profiles. The majority of the medium risk students (23 students) were

clustered to C5, which I defined earlier as a medium performance profile. Whilst the majority

of the high risk students were clustered to C4, which defined above as a very low performance

profile.
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Table 4.4: Distribution of students in each cluster based on their overall performance for the module

Cluster Label Cluster Size
Low risk students

(Grade A & B)

Medium risk students

(Grade c)

High risk students

(Grade D, E & F)

C1: High-Performance Early Profile 85 students *61 16 8

C2: High-Performance Late Profile 80 students *61 15 4

C3: Low-Performance Profile 27 students 21 4 2

C4: V. Low Performance Profile 27 students 11 7 *9

C5: Medium-Performance Profile 110 students *79 *23 8

4.3.3 Predictive Model Evaluation

As shown in the proposed approach in section 2, clustering students’ self-assessment trajec-

tories was exploited to improve the prediction of their end-of course results. I performed

predicting student performance in the Logic and Computation Module using the C4.5 decision

tree algorithm by applying two different approaches. The first indicates the prediction of stu-

dent performance using the CS1005 final grade as a dependent factor on admission attributes

only. In the second proposed approach, final student grade was used as a class attribute and

the cluster as an independent attribute in the prediction process. The accuracy result is the

key indicator for evaluating the approaches. Table 4.5 compares the results obtained from the

preliminary predictions of the two approaches and it is apparent from this table that this has

been significantly improved in the second approach from 71.31% to 75.52%, when including the

DTW cluster as an attribute to predict each student’s class or overall performance. It appears

that extracting the student performance from their self-assessment profiles in the online mod-

ule improves the ability to predict how a student will perform. Also, In Table 4.5 the Kappa

statistical results of the previous two prediction approaches are provided, which are statisti-

cal testing measures (Viera et al., 2005) that consider the agreement between the prediction

results and the true classes of students’ performance. The Kappa values were improved when

students’ resulting profiles were added to the dataset from 0.56 to 0.64.

However, accuracy results and weighted Kappa statistics are not the only measures for the

efficiency of the predictive model. In Table 4.5, I also include the breakdown of other important

measures of the sensitivity and specificity analysis including: True Positive (TP), False Positive
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(FP). The TP and FP refer to the correct and incorrect detection of student risk using the

C4.5 decision tree algorithm. In particular, the probability of correctly detecting low, medium

and high risk students in the Logic and Computation module (CS1005) is clearly improved in

terms of 0.665, 0.740 and 0.880 in the three classes, respectively compared to the identified

TP Rate of the first prediction approach. Moreover, detailed information on Precision, Recall

and the F-Measure are provided (see Table 4.5). Precision refers to the correct fraction of

students who were classified positively out of all the students, whereas Recall pertains to the

fraction that the predictive model picked up of all the positive cases of the classified students. I

used the F-Measure to represent a balanced mean between Precision and Recall for comparing

the two approaches. Regarding which, this measure of the high risk student class has been

improved in the second approach compared to the first one from 0.83 to 0.86.

Table 4.5: Detailed accuracy of the predictive model by class

Approach Accuracy Kappa Value Class TP Rate FP Rate Precision Recall F-Measure

Low risk 0.56 0.14 0.70 0.56 0.62

Student Attributes

only
71.31 0.56 Medium risk 0.76 0.20 0.62 0.76 0.68

High risk 0.83 0.08 0.82 0.83 *0.83

Low risk *0.66 0.14 0.73 0.66 0.69

Student Attributes +

Temporal Profiles
75.52 0.64 Medium risk *0.74 0.14 0.69 0.74 0.71

High risk *0.88 0.07 0.84 0.88 *0.86

The obtained C4.5 decision tree after deploying the DTW distance-based clusters is shown

in Figure 4.8. Some interesting findings can be extracted from the resultant predictive model.

Firstly, the model shows that the prediction of student performance is highly influenced by

the clusters. Secondly, the clusters were related to two route codes (G400USCMPSC1 for

Computer Science and G500UBUSCOMP for Business Computing) indicating differences in

students’ ability based on their routes. Further, the cluster is the third most influential factor

after the route code and socioeconomic class. It can therefore be assumed that this result

was achieved due to the association of student performance with the other student features.

Thirdly, it is interesting to note that the prediction result has clearly improved when including

the clusters, which means the approach provided in this chapter gives a better prediction result

by including the cluster as an independent factor. These findings were very encouraging for
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future investigation.

Figure 4.8: C4.5 Decision tree result for predicting student performance on the Logic and Computation
Module (CS1005) based on the DTW clusters and admissions datasets. This tree was generated using the
Prefuse tree Package in the WEKA Mining Tool. It indicates the most influential factors of the predictive

model as being: Route code, Socioeconomic Class and DTW clusters

I then explored whether we could generalize the discovered student types to other module

results. For example, if we could establish that a student is highly engaged and motivated

in one module, then maybe this may help in the prediction for other module grades. To

test and evaluate the proposed framework, the same approaches were applied to all Year 1

Computer Science Modules. I continued to use student online trajectories of the Logic and

Computation module (CS1005) for the prediction of student performance in these modules. It

is interesting that the consideration of students’ temporal profiles enhances the prediction for

some modules. However, these identified profiles are not relevant for enhancing the prediction
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of student performance in the other modules as each one has different learning activities and

objectives. As can be seen from Table 4.6, some improvement in the prediction results were

found when adding the obtained DTW clusters in which the performance of students based

on their online self-assessment trajectories is characterised. Whilst the prediction results of

some modules were not significantly improved compared with the prediction results of CS1005,

these results still report some interesting findings. It is recommended that students’ online

profiles should be considered as an independent factor for the measurable modules, such as

CS1005, when the students are required to test their understanding and abilities of some

specific elements of the module through online activities and/or assessments. This is actually

a very important aspect of the learning process particularly when assessing the students for one

course using an online tool. Also, each module has different objectives and learning outcomes.

It is not appropriate, therefore, to apply data from one module across multiple modules that

might consider complex solutions.

The results of clustering students’ temporal assessment trajectories in eLearning systems

using DTW therefore are significant in two respects: clustering of students’ performance using

the online assessments when measuring students’ understanding and/or skills online so that

early intervention can be provided to these cohorts; and enhancing students learning experience

during the academic term to help them then to improve their academic performance, hence

too, their learning outcomes.

Table 4.6: Accuracy comparison of all Year 1 predictive models.

Approach CS1004 CS1005 CS1803 CS1804 CS1805 CS1809 CS1810

Student Attributes Only 65.50 71.31 84.83 80.90 71.40 70.15 61.75

Student Attributes +

Temporal Profiles
66.05 75.52 85.71 81.51 71.25 74.03 61.53
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4.4 Summary

Predicting student performance has become a major concern for many educational data min-

ing researchers. Several aspects could influence the prediction process and provide optimal

prediction results in early stages. Accordingly, the present chapter was designed to investigate

the effect of clustering student online temporal data on improving performance prediction. I

proposed a prediction approach based on temporal profiling of students’ online self-assessment

trajectories using DTW and Hierarchical Clustering algorithms. The most important finding

was that the DTW distance based-clustering approach to these trajectories enhanced the pre-

diction of students’ performance in the targeted module. That is, the accuracy of predicting

student performance in Logic and Computation Module (CS1005) increased when the DTW

clusters (for the same module) was included, from 71.31% overall accuracy to 75.52%. Another

important finding is that clustering student online self-assessments using DTW can be useful

in identifying students’ temporal profiles and for determining whether a student has a low,

medium or high level of performance for the online modules. Although the increase in accu-

racy cannot be seen for all level one modules (e.g CS1805) but the prediction results of some

modules have increased when using the online profiles of CS1005 in these modules. The reason

behind these limited improvements is because of the lack of identifying online self-assessment

profiles for each module.

This chapter confirms previous findings and contributes additional evidence that suggests

that tracking student features of the learning management systems (eLearning platforms) for

modelling performance prediction can provide useful results. Furthermore, the ML approach

used for clustering students’ online self-assessment trajectories on eLearning systems has sig-

nificant practical applications. This method is not only useful for performance prediction, for

it can also be developed as a visualisation tool on BlackBoard Learn or any other learning man-

agement system to enhance students’ experience when being assessed online. The students can

track their progresses in the online module throughout the academic term and identify their

achievements comparatively among their class. Therefore, a number of possible future studies

using the same experimental set up are apparent to generate effective models of students’ per-
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formance using other learning trajectories - in particular, the time series features that could

be extracted from eLearning systems.

In the following chapters, the DTW clusters will be assessed in more detail, in particular,

with regard to identifying the relation between the students’ identified online profiles and their

performance. To this end, a probabilistic graphical modelling approach, namely Dynamic

Bayesian Networks (DBNs), will be used for performing predictions of student trajectories.
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Chapter 5

Bootstrapping “Ordered Bayesian

Networks” for Predicting Minority

Class Students-At-Risk

This chapter explores a bootstrapping method to resample temporal educational datasets in

order to improve learning the Bayesian Network structures for detecting the minority class

of high-risk students. This chapter also investigates the incorporation of students’ cognitive

styles and online self-assessment profiles results from Chapters 3 and 4 into an ordered Bayesian

Network so as to enhance the prediction of students’ performance at different stages of their

study.

5.1 Introduction

Predicting student academic performance is a major area of interest within the field of EDM in

terms of ascertaining accurately what, as yet, unknown knowledge regarding this performance,

such as final grades (Romero, Lopez, Luna and Ventura, 2013), will transpire to be. However,

predicting students’ academic performance is a very difficult task as it is influenced by social,

environmental and behavioural factors (Bhardwaj and Pal, 2012); (Araque et al., 2009). Thus,
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machine learning algorithms are increasingly being used to discover the relationships and the

hidden patterns between these factors and the academic performance of students. There are

different educational predictive models, using machine learning, for student assistance aimed at

helping them to achieve an improvement in their studies. Students’ academic achievement and

future performance by can be modelled using Bayesian networks (BNs) to handle uncertainty

in the data. For instance, (Seffrin et al., 2014) used dynamic Bayesian networks (DBNs) to

interpret and analyze students’ cognitive structure over time. Bayesian networks (Pearl, 2014)

involve a classification approach based on probability theory (Witten and Frank, 2002) and are

considered the best predictors. Such probability predicts the membership of all student-related

factors and the class factor by assuming that the independency of the latter is based on the

associated values with the other attributes in the prediction model (Kabakchieva, 2013). Thus,

the independent effect of the attributes in the Bayesian network model plays a crucial role in

classifying students. As a result, the classification model determines the accuracy of predicting

classes according to the classified instances.

Previous research has recommended bootstrapping for sample-size related issues. For exam-

ple, (Adèr, 2008) has recommended bootstrapping when the size of the sample is insufficient for

straightforward statistical inference as the case of the number of the high-risk students in the

educational datasets. It is not possible to infer an accurate probabilistic graphical model that

predicts the high-risk students with very limited data trajectories compared to the medium

and low risk students. Hence, a balanced sample is required for optimal statistical inference of

the model. This is important for generalising the results of the sample to a larger population.

However, (Athreya, 1987) states that “Naive bootstrap could be bad if the underlying popula-

tion has no forth moment”, such as doing some modifications on the sample size or trimming

a smaller sample from the original one. This will lead to incorrect variance estimation of the

underlying distribution of the sample. Because of this, a decision was made in this chapter to

consider this in the resampling process and not to change the size of the sample to either a

larger or smaller size to obtain efficient results.

There has not been much related work in the educational system that has exploited the

bootstrap approach (Feng et al., 2009); (Beal and Cohen, 2005) for overcoming the issue of the
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imbalanced datasets, where the number of instances in each class is different, with there being

a much higher instance distribution in one class than the others. Regarding which, McLaren

and co-authors (McLaren et al., 2004) utilised and validated their statistical results by using

bootstrapping with randomisation to develop a tutoring component from students’ log files

and interactions in intelligent tutoring systems. The technical objective of their work was to

transform the log file data into sequences of action messages. There has been no previous work

in educational informatics that involved applying BNs to bootstrapped time-series datasets of

students’ progression information to address the issue relating to imbalanced classes. The work

presented in this chapter is the first usage of them with the aim of achieving an improvement

in student performance overall, especially for classifying the minority-class high-risk students.

Also, this chapter contributes to the field of EDM by incorporating students’ cognitive styles

and online self-assessment profiles into an ordered Bayesian Network for predicting student

performance at different stages of their study.

However, from a practical point of view, a common issue with classifying students from the

educational datasets is that prediction is always dependent on attributes and the prediction can

be easily improved or changed when we include more factors over time during the prediction

process. This means time is really important for performance prediction modelling as well as

including more parameters before predicting the targeted classes. Another issue with classifying

students is that the educational datasets usually contain imbalanced data, especially for high

risk or failed students compared to the excellent or medium performance ones. Because of this,

I proposed in this chapter a Dynamic Bayesian approach for predicting academic performance

using a resampling method in order to achieve more accurate prediction results even when we

have imbalanced data. That is, a probabilistic graphical model that models the performance

of university students is proposed here taking into account the imbalance issue in educational

datasets.

In this chapter, a resampling method was exploited on students’ obtained grades and other

students related attributes, with bootstrapping, to compare the accuracy of the Bayesian mod-

els to ensure that more states of student overall performance are obtained than using the

original time series datasets. The most salient finding is that, the accuracy of the results is
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improved when determining the bias issues using the bootstrapped data from the time series

educational data.

This chapter provides, first, a novel Bayesian approach for predicting university students’

academic performance from time series educational data. Here, a probabilistic modelling ap-

proach was exploited to identify the relationships between student’s time series attributes and

their overall performance. Secondly, I explored the use of a bootstrapping method to resample

the educational datasets in order to improve learning of the Bayesian structure, whilst also

enhancing the detection of the students of the minority class, who are those at high risk, as

early as possible.

5.2 Bayesian Networks, Dynamic Bayesian Networks and Or-

dered Bayesian Networks

Bayesian Networks (BNs) (Nielsen and Jensen, 2009) (Friedman et al., 2000) is a machine

learning method that is implemented using a graph theory in conjunction with statistical

methods to characterise the correlations and dependencies between the features or attributes.

The representation of such dependencies is generated through a graph-based structure showing

a graphical network based on a conditional probability distribution among the features. The

graph-based structure is convenient for explaining the dependencies of the relations among the

discrete or continuous features.

However, when modelling different a data type (i.e. time series data) the BN is achieved

using another learning approach to represent the features at a particular time slot. This

structure based learning approach is called Dynamic Bayesian Networks (DBN), which apply

complex processes to capture the observed as well as the unobserved states of the features

(in terms of having temporal aspects, such as time-series dimensions) (Murphy and Russell,

2002). Thus, these learning processes allow for observing and updating the network when time

progresses to provide robust predictive models with consideration of the behaviour of the BN

(Mihajlovic and Petkovic, 2001). This assumption will learn a dynamic model which is not

determining any changes in the structure of the BN over time.
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In contrast, with the discrete time BNs, three-time steps were observed for learning the

Ordered Bayesian Network in this chapter, as shown in Figure 5.1. The Ordered Bayesian

Network is a machine learning method that is implemented using a graph theory to learn the

joint probability distribution between the features over time, with consideration of the time-

dependent order between the different features. For example, the structure learning approach

in Figure 5.1 was utilised to identify the joint probability distribution between students’ overall

performance and other related attributes over time, including module grades in Years 1 and

2, online temporal assessment profiles and students’ cognitive styles, as identified from the

experimental works of clustering students’ temporal engagement datasets in Chapter 3. Thus,

with this structure learning approach, the features will be assigned to different temporal slots (t,

t+1, t+2) to indicate the time-dependant order between the features. The Ordered BN learning

approach, therefore, is not exploiting a dynamic Bayesian (DBN) approach (or temporal) as the

nodes at each time slot changes and are not repeated. For example, in time (t) the structure

learning approach of the BN is encoded to include the background knowledge of the admissions

features as an initial step, whereas in time (t+1), different features are included, such as year

1 end-of course grades. Thus, this type of the BN structure construction can be determined

as ordered Bayesian Network, where each node is placed in a time slot, which indicates that

no backward links (arcs) from the students’ features in Year 2 to the features in the admission

level or Year 1. This constrain is really important especially when considering the causality

of the earlier students’ performance (in Year1) to the later temporal modules in Year 2. This

has the assumption that the prior probability of the BN structure is related to data given the

probability of such structure (Heckerman et al., 1995).

5.3 Experimental Settings

5.3.1 Dataset pre-processing

The datasets used in this investigation were collected from Brunel University admissions and

computer science databases. This consists of 14,160 records for computer science students,

but I only considered 377 records as I were targeting to track the performance of the same
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Figure 5.1: Proposed ordered Bayesian network approach for three time slots (t, t+1 and t+2). It illustrates
the correlations between the admissions/applications data of students in time slot t, students’ grades and

other related attributes in Year 1 and Year 2 for time slots t+1 and t+2, respectively.

group of students in three different time slots: t at admission level, t+1 at Year 1 and t+2 at

Year 2 (see Table 5.1), for the academic years 2014, 2015 and 2016, respectively. The datasets

contained the following data categories:

• Admissions Dataset: includes students’ application data when entering the university this

was considered in this study as time (t) data, such as: nationality, ethnicity, country of

birth, disability, been in care, socioeconomic class . . . etc.;

• Progression Dataset: this includes student coursework, online assessments and final grades.

In this study I only considered student final grades for all Year 1 (t+1) and Year 2 (t+2)

modules at the university for measuring students’ overall academic performance;

• Cognitive Style: this includes students’ attitude towards turning up to classes and labs in

Year 1 and Year 2 at the university (obtained from Chapter 3);
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• Online Temporal Assessment Profiles: this includes a student online self-assessment

profile based on their online time-series assessment trajectories. These profiles were ob-

tained (in Chapter 4) using Dynamic Time Warping (DTW) and Hierarchical Clustering

Algorithms.

The data mentioned in Table 5.1 has been then discretized to different data categories

based on the domain values of each feature. This is a fundamental pre-processing mechanism

to transform categorical and nominal data to numerical values to feed the Bayesian Network

and calculate the prior and posterior probabilities for all features. The Feature Engineering

and the discrtization mechanism for the educational features is available in Appendix A.1 with

details of the new domain values.

As with many prediction issues, educational datasets usually include imbalanced data, in

this case, because not all students are performing similarly. Thus, the number of students in

Low, Medium and High risk classes is not equally balanced (see Figure 5.5 (A)). Figure 5.2

indicates the methods applied for learning ordered Bayesian Network from imbalanced educa-

tional classes. Two different approaches were determined to learn such models. I focus on first

predicting students overall future performance at university based on the original educational

time series records. Then, the resampling approach was investigated with replacement in order

to have some insights into the current problems with the imbalanced educational time series

records. Hence, the issue of predicting students’ performance based on imbalanced time series

data can be determined using the resampling bootstrapping approach.

Whilst the main objective of this chapter is to determine the imbalance issue with time

series educational data using a resampling strategy, another is to model university student

academic performance using probabilistic modelling to identify the relationships between stu-

dents’ admission attributes, final grades for modules and their final progress at the end of

Year 3. For this purpose, I designed an ordered Bayesian model on student’s temporal data,

taking into consideration the imbalance issue of the predictive classes. I examined the use of

the bootstrapping method (see Figure 5.2) for better and early detection of students at risk

by deploying temporal educational and progress data.
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Table 5.1: The educational time-series datasets. It includes the admission (entry) datasets and the
progression datasets for all the Year1 and Year2 modules.

Time of Data Collection Feature Description Domain Values

Admission Level

(t)

Gender Student gender {M, F}

Disability
Whether the student has any disability

issue

{A social/communication impairment , A specific learning difficulty,

No known disability}

Nationality Student nationality {British national, Belgian, Bulgarian, .., etc}

Ethnicity Student ethnicity
{Arab, Asian Other, White, White-British,., etc} based on Students

ethnicity

Country of Domicile Student country of domicile
{England, Greece, Spain, . , etc} based on students country of

domicile

Country of Birth Student country of birth {England, Greece, Spain, . , etc} based on students country of birth

Entry Year
The entry year of the student at the

university
{2012/13, 2013/14, 2014/15, 2015/16}

Fee Status Tuition fee status {Home, European, International}

Socio Economic Class Student socio economic class
{1 - Higher managerial and professional occupations,

2 - Lower managerial and professional occupations,

- Not Classified, ... , etc}

Previous Ed Estab LEA
The student previous education

establishment

{Bexley, Hillingdon, Leicester, Harrow, City of London, Ealing, . . . ,

Unanswered} based on student’s previous education establishment

Been In Care
Whether the student has spent any time in

care
{DATA UNAVAILABLE, No, Unanswered}

Mature
Whether the student is fully developed

physically
{Yes, No}

Age on Entry Student age when entry {17, 18 . . . ..} based on students age on entry

Parents Been In HE
Whether the students’ parents have been to

any higher education institution
{Yes, No, Do not Know, Prefer Not To Say}

Route Code
The code of student chosen route at the

university

{G400USCMPSC1 for Computer Science, G400USOFENG1

for Computer Science (Software Engineering), .., etc}

Current Student? Is the student crrently at the univerity? {Yes, No}

Initial cog. Style
The resulting Year 0 clusters from the

cognitive style detection (Chapter 3)
{C1, C2, C3, C4, C5}

Year 1

(t+1)

CS1004
Information Systems and Organisations

Module Final Grade

{A - Excellent, B - very Good, C - Good, D - Acceptable,

E- PASS, F-Unacceptable}

CS1005
Logic and Computation Module Final

Grade

CS1803
Level 1 Group Project Reflection

Module Final Grade

CS1805
Data and Information Assessment

Module Final Grade

CS1809 Software Design Module Final Grade

CS1810
Software Implementation Event Module

Final Grade

CS1811
Fundamental Programming Assessment

Module Final Grade

Temporal Profiles
The resulting clusters from the DTW and

hierarchical clustering process (Chapter 4)

{Very Low Performance Profile, Low Performance Profile,

Average performance Profile, High Performance Late Profile,

High Performance Early Profile}

Year1 cog. Style
The resulting Year 1 clusters from the

cognitive style detection (from Chapter 3)
{C1, C2, C3, C4, C5}

Year 2

(t+2)

CS2001 Year 2 Group Project Module Final Grade

{A - Excellent, B - very Good, C - Good, D - Acceptable,

E- PASS, F-Unacceptable}

CS2002
Software Development and Management

Module Final Grade

CS2003
Usability Engineering Module Final

Grade

CS2004
Algorithms and their Applications

Module Final Grade

CS2005
Networks and Operating Systems

Module Final Grade

CS2555
Work Placement Module Final

Grade

Year2 cog. Style
The resulting Year 2 clusters from

the cognitive style detection (Chapter 3)
{C1, C2, C3, C4, C5}

CLASS Student overall performance {Low Risk, Medium Risk, High Risk}
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Figure 5.2: This Figure presents Bayesian structure learning and the resampling strategy used for learning the
Ordered Bayesian model. Two different approaches were applied to learn the structure; use of the original and

bootstrapped time series educational datasets.

5.3.2 Bayesian Structure Learning

As mentioned earlier, this chapter provides also a model for predicting students’ future per-

formance using a graphical probabilistic method with Bayesian Networks (BNs). The BN

algorithm was exploited here to encode the probability distribution over the educational fea-

tures as well as identifying possible correlations between the educational features and the

future performance of students. To obtain that, the BN algorithm represents first a directed

acyclic graph (DAG) by performing conditional independence relationships between the fea-

tures (Friedman et al., 2013). The nodes in the DAG are the educational features and the links

consider the conditional dependencies between the features in the graph. Thus, the links are

directed from the parent nodes to the child nodes of the educational features and the lack of

identifying links computes conditional independences. The conditional independence between

two educational features x1 and x2 given x3 represents that x1 and x2 are independent once

x3 is known which is encoded as:

p(x1|x2, x3) = p(x1|x3) (5.1)

Therefore, a particular feature (node) in the BN is conditionally independent of all the
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other educational features, in which it gives the conditional probability distribution (CPD)

for this particular feature. Computing the CPD of each feature will obtain the conditional

probability table (CPT) of the BN that encodes the joint probability as:

p(x) =
n∏

i=1

p (xi|pai) (5.2)

Where xi is a node in the BN and pai are the parents nodes of this particular. This will

denote features and nodes.

The learning of the Bayesian network structure was performed using GeNIe (Druzdzel,

1999), software implemented in Java for learning and modelling Bayesian networks (BNs),

dynamic Bayesian networks (DBNs), and influence diagrams (IDs). For learning the BN struc-

ture, a Bayesian search method was exploited on the background knowledge of two educational

datasets: the original and bootstrapped datasets. A comparison between the trained BNs based

on these two datasets was performed to obtain a very accurate and reliable predictive model.

The BNs with temporal links inferred from the admissions and students historical grades, are

represented in ordered BN of the featuers in time slots (t, t+1 and t+2) as shown in Figure

5.1.

To learn the ordered BN structure, a Bayesian Search (BS) structure learning algorithm

was exploited using the temporal dataset to learns the highest posterior probability of the

class feature. The BS algorithm essentially is a hill climbing based procedure (controlled by

a scoring function) that generates the DAG to determines a maximum score/probability that

give the BN structure. This imposes with an assumption that the prior probability of the BN

structure is related to data given the probability of such structure (Heckerman et al., 1995).

5.3.3 Bayesian Inference and Parameter Learning

Once the DAG is generated, an important aspect to examine the BN structure is to perform the

Bayesian inference for the probabilistic reasoning of the time-dependent educational features.

Identifying Bayesian inference therefore enables detecting the state of the educational features

as evidence based on the temporal educational data. Each feature/node in the BN is considered
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by a state that is dependant the state of the other features. Inferring the BN with such approach

allows for updating the evidence with new datasets to examine the posterior probabilities of

the features (Koller and Friedman, 2009).

To perform the Bayesian inference, the Bayes rule (Murphy et al., 2001) was encoded to

identify the posterior probability of the educational features based on the prior probability.

For example, to calculate posterior probability for the class feature ‘Student Performance’

P (StudentPerf |CS2005) given the prior probability for one of year 2 courses ‘CS2005’, the

Bayes rule is calculated as:

P (StudentPerf |CS2005) =
P (CS2005|StudentPerf)P (StudentPerf)

P (CS2005)
(5.3)

Where P (StudentPerf) is the prior probability (values of student performance feature) and

P (CS2005|StudentPerf) is the likelyhood given the observed data for CS2005 and Student

Performance.

Identifying the joint distribution of the BN based on the calculated Bayes rule among the

educational features allow to infer the probability distribution of a targeted feature, given

the educational data for the other features in the dataset. Exact inference identification was

applied to all of the educational features to obtain the posterior probability in the BN for the

class feature ’Student Performance’ as well as the other educational features.

Thus, the principle goal of learning the ordered Bayesian network is to find the posterior

distribution that is adapted to students’ progression data in Year 1 and Year 2, which allows

for identifying the states of all students’ attributes as well as overall performance. The param-

eters of the ordered Bayesian model were learned using the expectation maximization (EM)

algorithm (Moon, 1996) with the bootstrapped data. This algorithm was implemented to es-

timate the posterior distribution of students’ attributes in time slots t, t+1 and t+2. The EM

algorithm was used for learning the parameters of the BN to estimate the maximum likelihood

for data (Moon, 1996), which supports learning from time series data. This iterates over a

two-step approach to fully learn the BN parameters as follows:

• Expectation (E) Step: this step considers learning an expectation function to eval-
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uate the log-likelihood for the current parameters of the resampled temporal dataset of

students DSi. Suppose that the temporal student features are {x1, x2, . . . , xn} then the

expected values of x1, given a measurement Y1 of the current parameter estimation is

computed as:

x
[k+1]
1 = E

[
x1|Y1, p|k|

]
(5.4)

• Maximization (M) Step: this step maximizes the parameters of the log-likelihood that

were expected in the previous step. In the context of student data, the expected values

of x[k+1]
1 and x[k+1]

2 are imputed with x3 to estimate the parameters of the log-likelihood,

considering the result of log function equals to 0, this log function is provided as follows:

0 =
d

dp
log f

(
x
[k+1]
1 , x

[k+1]
2 , x3|p

)
⇒ p[k+1] =

2x
[k+1]
2 − x3

x
[k+1]
2 + x3

(5.5)

The BN parameters are then learned by iterating the equations (5.4) and (5.5) until con-

verging all the educational features in the dataset.

5.3.4 Resampling with Bootstrapping

Resampling strategies are fundamental approaches in the pre-processing phase, which are used

to change the distribution of data in a dataset (Chawla et al., 2002). After the students’ overall

grade bands from (A, B, C , D, E and F) have been discretized to qualitative states of low,

medium and high risk students, I still encountered an imbalance issue especially for the high

risk students (see confusion matrix in Figure 5.5). Though, imbalance data is a very common

issue in educational datasets, which affects learning the predictive models as well as making

difficulties in identifying the cases of the minority classes. The minority class in this work is

the high risk class, which is the class assigned for those students who obtained low grades (D,

E and F) in all or most of the modules. Here a resampling approach was exploited on the

datasets to obtain reliable accuracy of the prediction results using bootstrapping.

95



Chapter 5: Bootstrapping “Ordered BNs” for Predicting Students-At-Risk Methods

The resampling approach was exploited using bootstrap aggregation (bagging) (Moniz

et al., 2016) to ensample the original students’ data in Year 1 and Year 2, with replacement.

This technique is useful to learn robust classifiers from the small size datasets. Therefore, it

has been applied in this experiment to estimate the accuracy of the BN in predicting more

student records of all classes and to avoid overfitting. To implement the bootstrap approach,

the REPTree algorithm with the classification and regression tree algorithm (CART) were

learned using the educational time-series data. The data was resampled using the decision tree

algorithms as they are widely used for the low bias and high variance models.

Suppose we have a student datasetDS that consists of the following features {x1, x2, . . . , xn},

where each student is labeled to a particular class C = {Cl, C2, . . . , Cm}, in this study as

C = {Cl : LowRisk, C2 : MediumRisk, C3 : HighRisk}. The bagging method first learns a

subset DSi from the student dataset DS with a replacement approach. Some of students tra-

jectories in DS therefore will be repeated more than once to achieve more balanced classes.

The classifier is learned then with the REPTree and the CART algorithms from the subset

DSi to initialize the weight based on the correctly classified students in the subset. The aim

behind learning the classifier with the decision tree algorithms is to determine splitting stu-

dents’ features with the highest gain ratio, therefore the model can obtain high accuracy result

on the testing data. It is important to mention that, I could have resampled any size from the

educational dataset, but the same number of students’ records as in the original (377 students)

was decided here for better comparisons to the imbalanced data and decision making when

learning the BNs. To this end, the proposed approach for resampling the student dataset is

provided as follows:

The algorithm: a resampling classifier with the REPTree and the CART algorithms, as

follows:

Input:

• DS : a dataset of student performance trajectories.

• k=2 : the number of predictive models use for resampling the dataset.

• Learning Methods: REPTree and the CART algorithms
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Output: a composite resampling classifier.

The resampling/bagging approach:

1. Learn a data subset DSi from student dataset DS with a replacment strtegey.

2. for i = 1 to k do

3. Learn a classifier based on the student subset DSi.

4. Predict each student class in DSi and calculate the accuracy based on the correctly

classified students in DSi.

5. end for

To validate the bootstrapped data, the mean µ of the distribution to give an 95% bootstrap

condence interval was then computed. The mean was x = 0.67 for students overall performance,

which I used as an estimated value of the mean for the underlying distribution. To calculate

the confidence interval I needed to measure the difference between the distribution of x around

the mean µ, as follows:

δ = x− µ (5.6)

To get this distribution, the standard deviation was computed for the entire student records

δ.1 and δ.9, the 0.1 and 0.9, which are critical values of δ to achieve a 95% condence interval

of [ x−δ.1, x−δ.9]. The StdDev for the full data was obtained from the following equation:

P (δ.9 ≤ x− µ ≤ δ.1|µ) = 0.95 ⇐⇒ P (x− δ.9 ≥ µ ≥ x− δ.1|µ) = 0.95 (5.7)

However, the bootstrap offers a direct approach to obtain the distribution of δ, which can

be measured by the distribution of:

δ∗ = x∗ − x (5.8)

Where, x∗ indicates the mean of the bootstrap data. One bootstrapped sample was gener-

ated of size of 377, which was the size of the original data.
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5.4 Experimental Results

The results presented in this section provide an evaluation of the proposed Bayesian approach

in predicting third year university students’ academic performance at the admission stage,

followed by the Year 1 and Year 2 stages. Two key experiments were undertaken in this

investigation: learning from the original data and learning from the bootstrapped data. I

set up these two experiments to show improvement in predicting the academic performance

of a student, especially for high risk students, who belonged to the minority class in these

experiments.

Figure 5.3: Ordered Bayesian structure learned from the bootstrapped temporal educational data. This
represents the correlations between students’ admissions attributes, Year 1 and Year 2 grades, other attributes

and overall performance. The strong relationships between students’ attributes and overall academic
performance were coloured in blue.

In the learning process, the ordered Bayesian structure was learned from students’ data
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using the attributes from three different time slots. These were students’ admissions attributes

(time slot t) when they entered the university, their obtained grades at Year 1 (time slot t+1)

and their achieved grades for Year 2 (time slot t+2). In Figure 5.3, I present the discovered

correlations between students’ admission data and progression data (grades) for the three steps

of the ordered Bayesian approach. It is interesting to note that some of the admission nodes

in time slot t influence students’ achievement in some of the Year 1 and Year 2 modules. In

addition, students’ overall performance at the end of Year 2 was mainly influenced by their

grades in CS1811 (Fundamental Programming Assessment), CS2003 (Usability Engineering)

and CS2005 (Networks and Operating Systems), which are compulsory modules for computer

science students.

5.4.1 Bootstrapping Validation Results

To examine the effectiveness of bootstrapping on improving prediction of the high risk stu-

dents and the other classes, a comparison between the two approaches was provided in Figure

5.4. The accuracy results were obtained using the 10 –fold cross validation for predicting the

academic performance in time slot t+2, based on all student data, as mentioned earlier. Fig-

ure.5.4 shows a significant improvement in identifying the low, medium and high risk students

for the bootstrapped data. In other words, the most accurate result for predicting academic

performance was obtained using these data. For example, the accuracy obtained for the high

risk class using the bootstrapped data was 0.94, whilst when using the original data it was

only 0.63.

The confusion matrices in Figure 5.5 indicate the number of predicted low, medium and high

risk students for the class attribute ‘overall performance’ using the original and the proposed

bootstrapped data approach. It also reveals the percentage of classification accuracy for each

predicted class using the original dataset (A) and bootstrapped dataset (B).

For evaluating the performance of the temporal predictive model, I performed sensitivity

and specificity analysis on the cohort of students who were predicted to be at low risk, medium

risk and high risk for the best performed Bayesian model, which was when applied using the

bootstrapped data. To this end, the Receiver Operating Characteristics curve (ROC) and the
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Figure 5.4: Prediction probabilities for students’ overall performance using two approaches (original and
bootstrapped data). It represents the accuracy results for the three classes.

Figure 5.5: Academic performance confusion matrices comparing prediction results for the class attribute
(student academic performance) using the original dataset (A) and bootstrapped dataset (B).

Area under the Curve (AUS) were visualized, as shown in Figure 5.6. These two performance

measurements were used as I had a multi class predictive model. It can be seen from the ROC

curves in Figure 5.6 that for the low risk prediction (a) and high risk prediction (c) are very

close to 100% sensitivity and 100% specificity, which means a perfect discrimination of the

overall prediction accuracy based on the bootstrapped educational data.

The validation of the ordered Bayesian approach in predicting the academic performance in

Year 3 was then examined using supplied test sets, as shown in Figure 5.7. This is a key result
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(a) Low Risk ROC curve

(b) Medium Risk ROC curve (c) High Risk ROC curve

Figure 5.6: ROC curves of students’ overall performance using the bootstrapped data. It represents the ROC
curves for the three states, these being: (a) state 0 for the low risk, (b) state 1 for the medium risk and (c)

state 2 for the high risk students.

101



Chapter 5: Bootstrapping “Ordered BNs” for Predicting Students-At-Risk Results

that showing how the “Ordered BNs” allow to make predictions that are increasingly accurate

as more evidence is made available when bootstrapping is used. Firstly, students’ performance

was predicted based on admissions data only at time slot t for the two datasets explained in

the methodology section, which were the original data and the bootstrapped data. Secondly, I

added more data, which were students’ progressions and final grades at Year 1, to observe how

better I can predict using the temporal approach. After that, the performance was predicated

using all students’ attributes. It is apparent from Figure 5.7 that, the prediction was improved

in time slot t+1 when Year 1 grades were added to the admissions data. This improvement

was due to the direct relation between students’ achieved grades in Year 1 with their overall

performance.

The most important limitation lies in the reasonableness of the model assumptions of

drawing inferences when using the bootstrapped educational sample. This is because with the

Bayesian bootstrapping the predictive model/classifier is inferred based on the posterior distri-

bution of the parameters, rather than the sampling distributions, as in inferred in the normal

Bayesian network, which will affect the resulting distributions as well as the interpretation of

the graphical model. However, the resulting inference of the Bayesian bootstrap can be consid-

ered as an advantage, because it produces probability statements about parameters rather than

frequency statements about statistics. Moreover, the generalisability of the prediction results

using the bootstrapped educational sample is subject to certain limitations. The educational

data includes biased features, such as students’ gender, nationality, ethnicity and so on, which

exist in the datasets due to the data collection or sampling approaches. Thus, the Bayesian

bootstrapping will also carry bias into its implementation process as the Bayesian model is

inferred using biased features, which should be not determined in the classification process.

This issue is addressed in the next chapter to perform transparent classifiers for ethical decision

making with predicting student performance using the advances of the BNs and Deep learning

methods. However, if the biased features are explored and handled the generalisation of the

learning approaches will be satisfactory for many practical applications.

It is possible, therefore, that the Bayesian bootstrapping of the ordered Bayesian Networks

could be applied to many other domains, when the analysts aim to demonstrate how good
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Figure 5.7: Validation probabilities for students’ overall performance based on the original and bootstrapped
data. It represents the accuracy results for the two different attempts. These are when student admissions

data were used in time slot (t), then admissions data plus Year 1 student grades in time slot (t+1) and finally,
all students’ data, these being admissions data,Year 1 and Year 2 students grades in time slot (t+2).

the time-series data trajectories are in supporting the findings of the model-based analysis.

Furthermore, Bayesian bootstrapping is another alternative approach to the non-parametric

Bayesian models, which is less computationally demanding. This method could see greater use

as computational environments change.

5.4.2 Confidence Interval Results

This section presents the influence of using bootstrapping to improve learning a Bayesian

network model for the purpose of predicting the academic performance of students. The plotted

chart in Figure 5.8 (A, B and C) compares the accuracy, the precision and the sensitivity results

for predicting the academic performance of students, among 377 students’ time series records

for two different datasets (original data, bootstrapped data). I also show the error bars with a

95% confidence interval, which helps in observing the difference between error bars where they

overlap or not.

It is apparent from Figure 5.8 (a) the error bars are quite small due to the corresponding
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(a)

(b) (c)

Figure 5.8: Confidence interval (CI) error bar charts for the accuracy (a), the precision (b) and the sensitivity
(c) for predicting the academic performance of the students based on the original and the bootstrapped data

approaches.

confidence interval results. Whenever the confidence interval error bars do not overlap, as

clearly illustrated in Figure 5.8 (b and c), for the precision and the sensitivity analysis, then,

this means that the two datasets are statistically significant.

5.5 Summary

The prediction of the academic performance of students has been increasingly emerging in the

educational field as it is now possible to transform huge amounts data into useful knowledge

that can be utilized to enhance education by making appropriate interventions at an early stage.
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However, this is a very difficult task in the educational data mining field because of the issues

associated with data. Usually, educational datasets have missing, inaccurate, imbalanced data,

which are also very common issues in all the other research fields. Learning from imbalanced

data requires approaches and techniques to transform such data into useful knowledge (He and

Garcia, 2009). To this end, a resampling approach was provided to learn “Ordered Bayesian

Networks” with bootstrap aggregating (bagging). This approach was adopted to tackle the

imbalance issue with educational datasets, thereby providing a more accurate educational

predictive model which can be updated with new evidence as the student progresses through

each year of study.

The objective of this chapter was to model an “Ordered Bayesian Network” for predicting

the performance of students and the early detection of students at risk of failing or dropping

a module based on progression data. This model can be updated with new evidence as the

student progresses through each year of study. For this purpose, students’ admission, Year

1 and Year 2 data were used incrementally in conjunction with other related attributes to

predict the academic performance at Year 3, taking into consideration the imbalanced issue

of the educational data. A set of two Bayesian models were learned from the educational

time series data. The first was learned from the original data, whereas the second model was

learned from the resampled data (via bootstrapping). The obtained BN models were evaluated

in terms of predicting more states of students’ overall performance from temporal educational

data using the two different approaches.

In the current study, important analytically relevant findings were found when comparing

the two different data approaches used for learning the DBNs. The results show that more

states of student’s overall performance were achieved when learning from the bootstrapped

data, especially for the minority class which was for detecting the high-risk students. Also,

I have demonstrated how the bootstrapped resampling approach enhances overall prediction

of student academic performance using time series educational data in DBN. These findings

have significant implications for developing education and enhancing students’ learning using

artificial intelligence.

These findings are intended to be used to differentiate between the different cohorts of
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students who perform with similar dynamics and therefore, simplify them to obtain better

understanding on students’ performance. Further experimental works are needed to explore

the extension of these Bayesian models with the investigation of latent attributes, with the aim

of capture hidden factors that may influence the dynamics of students’ academic performance.

In the following chapter, the proposed methodology, especially the ordered BNs, is com-

pared with other classification approaches, including deep learning to explore the explicit mod-

elling of bias in educational classifiers. Also, the identified BNs will be examined further to

obtain the influence strength between the features in order to Identify the most important

ones for the reasoning of the class. This is important to compare other methods with the

bootstrapping approach and being more precise in bootstrapping time series data.
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Chapter 6

Ethical Decision Making in Machine

Learning Classifiers with Probabilistic

modeling and Deep Learning methods

In this chapter, the impact of biased features in educational datasets is explored to generate

transparent ML models for unbiased classification. This includes the experimental setup for

learning the predictive classifiers with Bayesian Networks (BNs) so that the impact of any

biased features can be assessed and the use of Multi-label Deep Convolution Neural Networks

(CNNs) that are designed to remove any biases.

6.1 Introduction

Explainable AI (XAI) is behind the development of many real-world successful applications.

It concerns ‘understanding’ the functionality of a particular classifier to seek better knowledge

on the behaviour of a black box model (Holzinger et al., 2017). It also involves producing new

explainable AI systems, while enabling users not only to understand, but also, to trust these

systems (Gunning, 2017). Indeed, several black-box algorithms have been implemented for

categorising the correlation between the input data and the output (Jia et al., 2018). However,
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classifying data based on these algorithms without an explanation raises numerous concerns,

one of which is the bias of decisions made by classifiers. This can be because of biases that

were existing in the datasets due to the sampling approach or due to the way decisions were

made historically within the data resulting in biased labels (Agurto et al., 2010).

Hence, classification accuracy and explainability must be balanced. Therefore, both greatly

influence the decisions made when implementing AI models. A common solution to identifying

which features are influencing a decision is to detect conditional independencies by using Prob-

abilistic Graphical Models (Pearl, 2011), e.g. implementing Bayesian Networks (BNs). This

provides a transparent explanation as to how a classification has been made, and therefore

highlights the use of unwanted dependencies (e.g. involving sensitive variables such as gender

or ethnicity). However, removing these relationships/features may not remove “proxies” for

sensitive variables (for example a postcode may be a proxy for household income) and so we

need to ensure that all influences concerning sensitive features are handled.

In this chapter, a number of approaches to classification using different features selections

were explored for making ‘performance prediction’. As stated earlier the datasets may include

proxies which might implicitly reflected sensitive features and here I show how the deep Convo-

lutional Neural Network (CNN) implemented in the context of Human Activity Recognition in

(Jason, 2018) can be adjusted to learn a representation that does not incorporate these biased

features and proxies. The learned CNNs can therefore remove any proxies and also improve

prediction.

In detail, three experiments have been compared to investigate the modeling of bias during

classification. The first experiment was mainly determined to predict the performance of the

students using the original feature space with a standard deep multi-label CNN. Whereas in

the second experiment, the prediction has been made after removing the sensitive features from

the feature space to capture the influence of those features on the classifier performance. The

impact of the sensitive features were explored explicitly by using a BN to make a transpar-

ent classification decision – by exploring the discovered BN structure to identify the Markov

Blanket which demonstrates which features are used for classification. Finally, in the third

experiment, a deep Multi-label ConvNet was used where the sensitive features/variables were
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considered as outputs to make them independently correlated to the class feature and remove

the effect of proxies in other features. These experiments have been explored therefore to show:

• The features that are independent of the class so we ensure that the fundamental depen-

dencies on the posterior probability of the class are not removed.

• How the deep Multi-label CNN improves the accuracy of the BNs.

• How the improved CNN can remove any proxies (and also improve prediction).

Exploring these constraints enable the deep learning classifiers to perform transparent mod-

els for ethical decision making while predicting student performance.

In this connection, the first section provides the BN classification methodology used for

the identification of the class-dependent features having identified the sensitive features, as

well as the proposed approach for explicitly representing the redundant dependencies with a

Deep Multi-label ConvNet. The remaining sections of the chapter proceed as follows: the

experimental results for feature importance identified by the BNs, followed by provision of the

classification results obtained using the BN and deep multi-label ConvNets and finally, in the

conclusion there is a summary of the findings for modeling the biased features for maximizing

classification.

6.2 Methods

The technical objective of this chapter is to explicitly represent the unwanted correlations

between the educational features for unbiased prediction of student academic performance. To

evaluate the proposed method, 1D multi-label ConvNets were implemented with the Keras

(Gulli and Pal, 2017) and TensorFlow Python libraries using Google Colaboratory (Google

CoLab). CoLab is a project launched recently (in 2018) by Google to support deep learning

research on cloud. It is based on the Jupyter notebook, which runs Python 3, with a pre-

configuration of deep learning libraries, such as Keras, Matplotlib, and TensorFlow.
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6.2.1 Dataset Description and Correlation Identification

A real-world educational time series dataset was analysed for evaluating the proposed approach

in this chapter. This dataset was also used in Chapter 5 to learn an Ordered Bayesian Network

via a bootstrapping approach to predict student performance. However, more students’ records

(instances) were included for the experimental works of this chapter to avoid over-fitting the

deep learning classifiers. This means that the model will literally only work well for the set we

trained, making the learning of the layers pointless. Also, deep learning needs a lot of training

data owing to the large number of parameters needing to be tuned by a learning algorithm.

Therefore, the sample used in this chapter included 491 student entry and performance records

for the academic years 2012-2016, respectively.

Each progression trajectory determined one student’s achieved grades in Year 1, Year 2,

and Year 3 at the university, as well as his/her application (admission) data such as: student

demographics, previous educational institution and parent education level, which was consid-

ered as temporal data (see Table 6.1). The total number of features in the feature space was

34. Here, a three-class problem was created to predict the overall performance of a student

(Low Risk: 0, Medium Risk: 1, or High Risk: 2). These classes were set explicitly to detect the

‘High Risk’ students based on their overall grades and other factors, so that early interventions

could be provided.

Table 6.1 presents basic statistics of the educational time-series features used for this exper-

iment, including the mean (µ), variance (σ2) and StdDev (σ). These statistical measurements

provide an insight on the quality and variability of the features used, especially that the sample

size in this experiment is quite limited with 491 student records. Considering these statistics

give also insights into the initial properties of each feature. As we can observe from this table,

the standard deviation values show how consistent is the feature from the mean. Most of the

educational features have good spread around the mean.

A step was exploited further to identify the correlation matrix of the educational features

based on the multi-variate Gaussian distribution. This correlation matrix provides any possible

correlations of each feature that clustered around the mean. This step was mainly determined

to obtain an initial insight on the correlations between the features and the class ’Student
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Table 6.1: Basic statistics of the educational time-series features used in this experiment.

Feature Mean(µ) Variance(σ2) StdDev(σ) Min Max Count

Gender 0.170 0.141 ±0.376 0 1 491

Age_on_Entery 0.215 0.206 ±0.454 0 2 491

Ethnicity 1.679 0.926 ±0.962 0 4 491

Disability 8.088 6.059 ±2.461 0 9 491

Nationality 0.782 2.655 ±1.629 0 6 491

Country of Domicile 0.093 0.281 ±0.530 0 6 491

Country of Birth 1.286 4.189 ±2.047 0 6 491

Entry Year 1.947 0.838 ±0.915 0 3 491

Fee Status 0.066 0.062 ±0.249 0 1 491

Previous Ed Estab LEA 3.501 6.947 ±2.636 0 8 491

Socio Economic Class 2.714 5.896 ±2.428 0 10 491

Been In Care 1.963 0.052 ±0.228 0 2 491

Mature 0.894 0.095 ±0.308 0 1 491

Parents Been In HE 1.194 1.454 ±1.206 0 3 491

Route Code 3.228 2.278 ±1.509 0 7 491

Current Student? 0.371 0.234 ±0.484 0 1 491

CS1004 1.308 1.187 ±1.089 0 6 491

CS1005 0.934 1.121 ±1.059 0 6 491

CS1803 0.355 0.554 ±0.744 0 6 491

CS1805 1.090 1.428 ±1.195 0 6 491

CS1809 0.899 1.054 ±1.026 0 6 491

CS1810 0.844 0.989 ±0.994 0 6 491

CS1811 1.263 1.529 ±1.237 0 6 491

CS2001 1.244 2.685 ±1.639 0 7 491

CS2002 1.607 1.830 ±1.353 0 7 491

CS2004 1.806 2.465 ±1.570 0 7 491

CS2003 1.568 2.954 ±1.719 0 7 491

CS2005 1.881 2.345 ±1.531 0 7 491

CS2555 0.889 0.519 ±0.721 0 6 491

Temporal profiles 2.973 2.228 ±1.493 0 4 491

Initial cog. Style 2.095 1.523 ±1.234 0 4 491

Year1 cog. Style 2.180 1.318 ±1.148 0 4 491

Year2 cog. Style 2.210 1.352 ±1.163 0 4 491

CLASS/Student Performance 0.745 0.579 ±0.761 0 2 491

Performance’. Identifying these correlations will indicate the importance of the relationship

between features, therefore it can be used as a basic quantity for modeling the unbiased clas-

sifiers. Furthermore, this process shows the presence of any relationships between the features

and the class, so to ensure that we are not removing any of the fundamental features. However,

due to the large feature-space of the educational data, Table 6.2 presented only the correlations

of the features on the class ‘Student Performance’. The table presents the correlation values

identified from the correlation matrix of the educational features between the class feature

‘Student Performance’ and all the other features of the feature-space.
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Table 6.2: Feature correlation values of the class and the other features, obtained from the correlation matrix
of the multi-variate Gaussian distribution.

Student Performance

Gender -0.081

Country of Birth -0.057

Mature -0.047

Been In Care -0.039

Current Student? -0.017

Parents Been In HE -0.007

Socio Economic Class -0.005

Disability 0.003

Fee Status 0.005

Country of Domicile 0.006

Route Code 0.011

Previous Ed Estab LEA 0.021

Nationality 0.024

Age_on_Entery 0.036

Temporal profiles 0.039

Intial cog. Style 0.071

Ethnicity 0.077

Entry Year 0.080

Year1 cog. Style 0.129

Year2 cog. Style 0.148

CS1803 0.259

CS2555 0.268

CS1810 0.348

CS1809 0.386

CS1005 0.494

CS1811 0.498

CS1004 0.567

CS1805 0.575

CS2004 0.616

CS2002 0.616

CS2001 0.630

CS2005 0.663

CS2003 0.721

From this table, it is apparent that the features were sorted from the less correlated to

the most correlated. There is some evidence that the admission (application) features may

have a low impact on predicting the class. Some of these features have negative correlations

on student performance but these are all very small. These were Gender, Country of Birth,

Mature, Been In Care, Current Student, Parents Been In HE, Socio Economic Class. Having

those negative correlations in the dataset determine that the features do impact the class but

in a negative way in which they may represent causality for predicting the class, but no existing
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patterns can be indicated. Therefore, the negative correlations can be eliminated or projected

as outputs without decreasing the performance of the prediction results.

6.2.2 Identifying Feature Dependency and Importance with BNs

A constraint-based feature selection algorithm was implemented for this work to identify fea-

ture importance from the graphical model of BN. For implementing this, first, the Parents and

Children (PC) algorithm was exploited (Spirtes et al., 2000) to learn the BN structure of the

feature space via discovering the probabilities of the parents and children’s nodes for all fea-

tures. This process imposes with an assumption that the prior probability of the BN structure

is related to the features given the probability of such structure. This implementation was

performed through the MXM Package in R, as it includes functions for learning BNs, perform-

ing feature selection and cross validation (Lagani et al., 2016). The MXM was also used as it

characterises the target and predictor features by performing several conditional independence

tests with the MMPC (Max-Min Parents and Children) algorithm (Brown et al., 2004) in order

to identify the significant features on predicting the class. Basically, the MMPC Algorithm

encodes several conditional independence tests to identify the irrelevant features. The final

features, in our case the signature or the significant features for predicting the class/student

Performance will be identified after all those elimination processes as the MMPC outputs them

as signatures.

Essentially, the MMPC() inputs the objects of the target feature ’class’ and educational

dataset. Assigning the target feature to the MMPC() will fit the target and ensure that

the signature feature does not contain the “class” feature. After encoding this algorithm, the

MMPC() has identified the signature on predicting the class as it can be seen below (the output

results), which highlights the “CS2003”, “CS1805”, “CS1811”, “CS2004”, “CS1004", “CS2005”,

“CS1809”, “CS2555” and “CS2001” contents as features of high importance in relation to the

selected target feature “class” content.
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This process can therefore help to observe the Markov Blankets (MB) of the sensitive

features to represent the optimal set of features for predicting a given target feature (Koller

and Sahami, 1996). In detail, the Markov Blanket of a feature shows the sets of parents,

children and the parents of the children nodes as constructed by the graphical structure of the

BN (Yaramakala and Margaritis, 2005) to shield the target feature from the other features in

the network. For instance, the Bayesian Network in Figure 6.1 highlights the Markov Blanket

of a student performance feature. The MB of this feature (red node) therefore consists of

seven highlighted features as CS1805, CS1811, CS1004, CS2003, CS2002, CS2001, CS2005 in

which they protect student performance node from the effect of the other features outside

this MB. The identification of these features is important to ensure that we are not handling

any important characteristics of the class feature when applying the deep learning approach.

These findings of the MB confirm the other results of the signature features learned by the

MMPC algorithm which are indicating the features of high importance in relation to “Student

Performance” content.

Since the Markov Blankets of the features can be extracted from the structure of the learned

BN, a step was performed further to identify the sensitive features in the BN. A validation

technique is used to explore the probability distributions of the parameters in the BN (Castillo

et al., 1997). This step has been performed to investigate the effect of the probabilities of the
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Figure 6.1: Markov Blanket idntification for the feature of student performance (red node) using the BN
network structure learned with the PC algorithm. The network represents sets of parents, children and the

parents of the children nodes for predicting the target feature.

features on the posterior probabilities of the output feature ‘Student Performance’. Identifying

the most important features that influence the reasoning of the class will ensure that we are

not removing any of the significant dependencies of the BN when implementing the multi-

label convolutional network. Also, this step was investigated to explore the importance of the

features that could have resulted in classifier bias which plays a crucial role for the knowledge

acquisition as well as the validation of the classifiers. To perform this, an algorithm proposed

by Kjærulff (Kjærulff and van der Gaag, 2013) was exploited to explore this.

Given a target node ‘Student Performance’ in our case, the algorithm estimates a set of

derivatives of the posterior probability of Student Performance’s node over each feature in the

BN. These derivatives determine the importance of the features for calculating the posterior

probabilities of the output ‘Student Performance’.

6.2.3 Learning Deep Multi-label ConvNet Classifiers

Data pre-processing steps were performed on the datasets to be fitted and evaluated by the

CNN. Firstly, the one-hot-encoding scheme was applied to the labels/the target features in or-
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der to encode them as they were categorical. These target features were Class, Gender, Age on

Entry and Ethnicity, with each having two or more categories. With this approach the features

have been transformed from categorical to binary. For example, the Ethnicity feature has five

different categories, these being Arab, Asian, White, Black and Other. When converting this

feature to binary, each category is considered as a feature. Hence, five new features have been

added to the feature space to replace the original categorical feature ’Ethnicity’, with each

having a 0 or 1 value. These new features are Ethnicity _Arab, Ethnicity _Asian, Ethnicity

_White, Ethnicity _Black and Ethnicity _other. If the Ethnicity of the student, for instance,

is Asian, the value of this feature is considered as 1, whereas all the other Ethnicity features

are considered as being 0. This encoding scheme is a very effective approach as it does not

involve changing the semantics of the original educational data, especially that the educational

data includes very sensitive features. Also, this encoding approach will boost the model since

it keeps all the natural aspects for the different features. Therefore, the number of the target

features is increased to 13 instead of 3, which are Low risk, medium risk, high risk, Male, Fe-

male, Age 17-19, Age 20-24, Age 25+, Ethnicity_Arab, Ethnicity_Asian, Ethnicity_White,

Ethnicity_Black, Ethnicity_other.

Subsequently, the training and testing datasets were reshaped into arrays of one dimension,

as [len(train/test), nb_features, 1] based on the length and number of features in the datasets,

with the new array for training data being [377,43,1] and for testing [114,43,1].

The structure used for performing the deep multi-label CNNs is presented in Figure 6.2,

which was based on a simplified model of the 1D CNN for Human Activity Recognition in

(Jason, 2018) that predict human movements from sequences of accelerometer data (time-

series data). Student data was determined in these experiments as time-series trajectories

(see the input layer in Figure 6.2). Each trajectory includes one student’s admission data:

student demographics, previous educational institution and parent education level as well as

his/her grades achieved in Year 1, Year 2, and Year 3, respectively. All were considered as one

time-series records based on the time for recording that feature. The main reason therefore

for using the Deep 1D multi-label CNN as the educational trajectories contain time-series

features. Preparing the data trajectories to capture the time dependent aspects was very
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important to achieve accurate and reliable predictions. The feature extraction layers used in

these experiments include two 1D convolutional layers, namely Conv1d 1 and Conv1d 2, with

1D ‘MaxPooling’, ‘Dropout’ of 0.4 and ‘ReLU’ activation, with all being inserted after the

second convolutional layer. The MaxPooling layer was determined to reduce the dimension of

the data, whereas the dropout layer was to avoid overfitting. After this, the output layer was

composed of one fully connected layer, with the ‘ReLU’ activation function and one last dense

layer for projecting the labels. This fully connected layer was used to represent the vector

of the features of the input. The last layer for the multi-labels CNN was computed with the

‘Sigmoid’ activation function to determine the probability of the 13 classifiers/labels, it has

been set to this function as I have a multi-label classification problem.

Figure 6.2: Deep 1D multi-label CNN Structure Learning Approach.

A 10-fold cross-validation approach was used in the three experiments due to the limited

number of records in the training and testing sets, in terms of 491 time-series educational

overall records, 70% (377 records) for training and 30% (114 records) for testing. The training

data set was split into 10 folds, with the folds 1-9 being turned into the training data and

fold 10 a set for validation (see Figure 6.3) and then each fold is used as a test set iteratively.

This approach was performed to tune the CNN hyperparameters and to optimise the classifier.

Consequently, the CNN model was trained, while considering all the hyperparameters learned

during the 10-fold cross-validation. An evaluation of the CNN model was undertaken next, with
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testing data of 114 time-series records (unseen data) being utilised to evaluate its performance.

This process was repeated 10 times, with the same test set in each fold. The mean accuracy

and standard deviation were reported then to assess the performance of the CNN models.

Figure 6.3: 10-fold cross-validation approach for optimizing and testing the CNNs.

Given a set of data S =
{
x (i), y(i)

}
containing m time-series patches, where x (i)is the

training patch and y(i) is the corresponding label for the patch. y(i) ∈ {0, 1}, if the y(i) = 1 then

the x (i) is positive for this particular label or classifier, whereas the opposite for determining

the negative label y(i) = 0.

Hence, for computing the probability for the labels of the CNN model Zj was projected.

Let zj(i) be the last layer (fully connected) of unit j for the training patches x (i)and then, the

probability of the label y(i) is calculated by:

p
(
y(i) = j|z(i)j

)
=

ez
(i)
j∑k

l=1 e
z
(i)
l

(6.1)

This was computed for all the labels y(i) of the output zj(i).

The CNNs were trained for 30 epochs, with a batch size of 50 and different values of epoch

were tested on the training samples. When optimising the CNNs to 30 epochs, the validation

loss was reduced, which indicates that the model’s coverage is good when using this value.

The CNNs were compiled using the ‘binary-crossentropy’ loss function and the (Kingma and

Ba, 2014) optimiser. The loss function was set to binary-crossentropy as the labels of the

CNNs involved binary decisions of 0 and 1. Performing this loss function in the multi-label

classification was aimed at deciding whether the case belonged to that label or not.
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6.2.4 Evaluation Matrices for Multi-Label Classification

The evaluation of multi-label classification is a very challenging task and the criteria for evaluat-

ing this type of classification approach is entirely different than in the traditional classification

approach ‘the single-label problem’. For example, the most popular evaluation matrices in

the single-label problems are Accuracy, Precision, Recall and Roc area specified for each class

(Fawcett, 2006). However, the original notion of these measurements cannot capture more than

one correct label as the case of the multi-label classification problem, because each instance in

the dataset has been connected to one label either corrects or not.

Initially, the evaluation matrices in Multi-Label classification can be categorized into three

different approaches depending on the classification problem. These are partitions evaluation,

ranking evaluation, and label hierarchy evaluation (Tsoumakas et al., 2009). In this work, the

multi-label ConvNet was evaluated with the partitions evaluation approach as the main target

was to capture the quality of classifying the labels. Another reason is that with this evaluation

approach we can determine how far is the trained network in predicting the labels comparing

to the actual ones. With this strategy, the notion partially correct will captured to evaluate

the average variation between the predicated and actual labels over all the instances in the test

set. Consequently, Godbole et. (Godbole and Sarawagi, 2004) suggested a set of definitions

for measuring accuracy, precision, recall, and F1 measure in consideration with the notion of

being partially correct.

Let T be a dataset containing n multi-label instances (Xi, Yi) ,

1≤ i ≤ n, (Xi ∈ X,Yi ∈ Y = {0, 1}K), with a label set L, |L| = K. Let h be a classifier

for a multi-label classification model and Zi = h(xi) = {0, 1}, k be the set of labels that are

predicted by the classifier h for the xi.

Accuracy (ACC): Accuracy is specified as the fraction of the predicted labels to the total

labels (the predicted and the actual) for each instance. Overall accuracy is calculated then by

the average among all instances.

ACCURACY,ACC =
1

n

n∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

(6.2)
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Precision (PREC): Precision is the fraction of predicted labels to the total labels of

actual ones, averaged among (over) all instances.

PRECISION,PREC =
1

n

n∑
i=1

|Yi ∩ Zi|
|Zi|

(6.3)

Recall (REC)/Sensitivity (SN): Recall is the correctly predicted labels to the total

number of predicted labels, averaged among all instances.

RECALL,REC =
1

n

n∑
i=1

|Yi ∩ Zi|
|Yi|

(6.4)

F1-Measure (F1): is the mean of Recall (REC) and Precision (PREC) over all predicted

labels.

F1 =
1

n

n∑
i=1

2 |Yi ∩ Zi|
|Yi|+ |Zi|

(6.5)

Therefore, when calculating all the above-mentioned matrices for the Multi-label classifica-

tion model, the overall performance can be simply observed as in the single-label classification

case. The higher average/mean results of ACC, REC, SP, PREC, and F1, the better of overall

performance accuracy for the learning classification algorithm.

6.3 Experimental Results and Discussion

The experimental work consists of the influence strength and sensitivity analysis of the BN

results followed by the deep Multi-label ConvNet for representing the class as well as the biased

features. Thus, the results obtained from the BN algorithm was evaluated first for finding

feature correlations and importance from the MB of the learned BN. Subsequently, in this

section a detailed evaluation of the Multi-Label CNNs is presented to capture the significance

of the proposed approach in this work.
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6.3.1 Influence Strength and Sensitivity Analysis of BN

The learned BN from the temporal educational data is shown in Figure 6.4. This network

detects the correlations between the features to predict the class ‘Student Performance’ as well

as the influence strength identified between the features. The influence strength is calculated

from a conditional probability tables (CPT) of the child nodes. Essentially, this can be achieved

via performing some sort of distances between the probability distributions of the child nodes

and the parent nodes. Table 6.3 provides the influence strength values that been identified

between the parents and child nodes based on three different approaches of measuring the

distances. These were Average, Maximum and Weighted. As we can noticed from this table

the results of the three different measurements are quite similar. As a result, a representation

of the weighted approach was selected to show a graphical influence strength on the network

between the parent nodes and the child nodes based on the marginal probability distribution

(more information about the exploited BNs with the other influence strength methods is shown

in Appendix B.2).

Figure 6.4: Influence strength and sensitivity analysis of the BN based on the marginal probability
distribution of the parent and child nodes.
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Table 6.3: Influence strength values of the correlations between the parents and child nodes.

Parent Child Average Maximum Weighted

year1 cog. Style Temporal profiles 4.39E-17 4.39E-17 4.39E-17

year1 cog. Style year2 cog. Style 4.39E-17 4.39E-17 4.39E-17

Socio Economic Class Been in Care 4.79E-17 6.80E-17 4.79E-17

Route Code Disability 9.81E-18 1.96E-17 9.81E-18

Parents Been In HE Initial cog. Style 0 0 0

Nationality Country of Domicile 5.03E-17 8.09E-17 5.03E-17

Nationality Country of Birth 2.90E-17 4.81E-17 2.90E-17

Mature Age on Entry 0.426724 0.848928 0.163045

Intial cog. Style Entry Year 7.85E-17 1.57E-16 7.85E-17

Intial cog. Style Current Student? 2.78E-17 5.55E-17 2.78E-17

Intial cog. Style year1 cog. Style 0 0 0

Entry Year year1 cog. Style 1.96E-17 3.93E-17 1.96E-17

Current Student? CS1805 5.43E-17 9.93E-17 5.11E-17

Current Student? year1 cog. Style 0 0 0

Country of Domicile Route Code 0 0 0

Country of Domicile Socio Economic Class 4.24E-17 6.51E-17 4.24E-17

Country of Domicile Fee Status 5.55E-17 1.11E-16 5.55E-17

Country of Domicile Current Student? 0 0 0

Country of Domicile CS1803 9.87E-17 1.59E-16 9.94E-17

Country of Domicile CS2555 1.02E-16 1.68E-16 1.05E-16

Country of Birth Ethnicity 6.09E-17 7.93E-17 6.69E-17

CS2555 year2 cog. Style 7.40E-17 1.42E-16 8.73E-17

CS2003 CS2001 0.313901 0.656048 0.196694

CS2003 CS2002 0.291389 0.688189 0.16124

CS2003 Student Performance 0.311993 0.593084 0.257858

CS2001 CS2004 0.322836 0.706863 0.163135

CS2001 CS2005 0.277733 0.73375 0.175944

CS1811 CS1805 0.1783 0.398358 0.128716

CS1811 CS1810 0.227302 0.516141 0.138164

CS1811 Student Performance 0.150816 0.217358 0.140775

CS1805 CS1004 0.270798 0.60108 0.164474

CS1803 CS1811 0.200368 0.628067 0.065903

CS1803 CS1809 0.224276 0.628067 0.097312

CS1004 CS1005 0.268009 0.499605 0.154704

CS1004 CS2003 0.232062 0.539674 0.149187

Been In Care Entry Year 0 0 0

Been In Care Fee Status 0 0 0

Age on Entry Nationality 0.204849 0.596554 0.06575

The thickness and the colour of the arcs in Figure 6.4 indicates the influence strength

between the parent nodes and the child nodes. Therefore, the highlighted ‘blue’ arcs have
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the strongest influence in the network. Features that were assigned to be “sensitive” were

‘Gender’, ‘Ethnicity’ and ‘Age on Entry’. Notice that based on this structure it appears that

these variables have no direct influence on the class ‘Student Performance’.

The BN in Figure 6.4 is also indicating the link strength analysis of the significant pa-

rameters on the class node. For example, the red nodes are the significant parameters for

calculating the posterior probability distribution of the class ‘Student Performance’. Hence,

we can clearly distinguish the important dependencies and their correlations with the class

node. It is clear that the posterior probability of the class ‘Student Performance’ was learned

from some of Year 1 and Year 2 modules. This result was achieved due to the nature of the

features in Year 1 and 2 and their relation to student overall performance, which was directly

impact the result. However, the grey and transparent nodes did not include parameters for

calculating the posterior probability of the target class. From this BN, it can be observed that

most of the grey-coloured nodes contained admission features that did not directly impact

on the overall performance of the students. Whilst the BN included categorical features (the

admission features), these did not influence the results since they were encoded before the BN

learning process. This finding provides evidence supporting the results obtained earlier from

the correlation matrix that the features of the Year 1 and 2 modules are mainly correlated

to the class. Although the results are applied in context of Brunel’s data, they show great

influence of students’ achievement in Year 1 and Year 2 to their overall performance in Year 3.

These results provide additional evidence with respect to modelling time-series independent

features to the prediction of future performance. It also contributes to the EDM by offering year

by year profiling of students according to their learning developments or characteristics. This

can be very useful therefore to provide personalised education especially for the low performing

students. These results can be widened to exploit cognitive models that reflect students’ skills

and the obtained knowledge.

To measure the performance of the BN model, however, the accuracy, sensitivity, precision

and F1- Score were evaluated for predicting the class variable ‘Student Performance’. The

model achieved 0.76 overall accuracy results for predicting the three classes: Low Risk, Medium

Risk, and High Risk (see Table 6.6). Therefore, these measurements wew identified so a
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fair comparison can be obtained to investigate the importance of the proposed model when

implementing the deep multi-label CNNs. However, the accuracy for the BN as more evidence

was added has been investigated further: firstly, for predicting the class entering just the

application evidence, then the Year 1 results, then Year 2. This process was determined to

investigate that how influential the sensitive variables are on the prediction results (see Figure

6.5). In other words, applying these evidences constrains will score the mutual information

between each variables and performance given this network.

Figure 6.5: Bayesian networks accuracy comparison for predicting the class variable ‘Student Performance’.

6.3.2 Deep Multi-label ConvNet Models Evaluation

In this section, I present evidence that with the use of the proposed method of the deep multil-

abel CNNs the performance of classifiers can be improved, particularly with the constraint that

they should not be influenced by the biased or the redundant features. With this constraint,

the classifiers will be learned from the strong dependencies between the features in the feature

space. I investigate further the redundant features (i.e. those that have the lowest influence

on the class) used for classification in experiment 3.

Keeping all the parameters of ConvNet, apart from the final dense layer the ‘output layer’

in experiment 3 to project 13 classifiers instated of 3, a Multi-label ConvNet was trained

using the 10-fold cross-validation for the training set, with the output layer predicting the

redundant features as well as the original class features. By doing so, these constraints forced

the CNN to learn only the strong feature dependencies of the feature space, which maximised

the performance of the predictive classifiers.
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In Figure 6.6, the 10-fold cross-validation accuracy results using the three approaches are

provided. Firstly, to classify the class variables only using the original feature-space. Secondly,

to classify the class with removing the sensitive variables from the dataset. Finally, to classify

all the redundant ‘sensitive’ variables as well as the class variables. The results reveal that when

projecting the sensitive variables (in experiment 3: the Multi-label ConvNet for classifying

all the sensitive variables (13 Labels)) the accuracy has improved dramatically. Therefore,

the results confirm that the transferred unwanted features to the output layer are useful for

enhancing the predictive model.

Figure 6.6: 10-fold cross validation accuracy results. It shows the accuracy per fold for validating the
multi-label CNN models using the three experiments mentioned in the methodology section.

The CNN average accuracy and loss results were then plotted in Figure 6.7 for all ex-

periments to explore the validation of the method used when applying some constraints (in

experiment 3) to represent the sensitive variables in the data set. From these figures, it can be

observed that the validation average accuracy has improved dramatically from 84% in Figure

6.7 (a) to around 95% in Figure 6.7 (c) when projecting the class variables as well as all the

redundant or sensitive variables. In addition, it is clear that the interpretation of the loss for

optimizing the three models have decreased as the models are improved, in which it indicate

the behaviour of the models on the validation sets. For instance, the model loss of experiment
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3 in Figure 6.7 (c) show a sharp drop in the loss value compared to experiment 1 and 2 as a

result of the improvement of the classifier performance. Despite the data set having very few

cases to optimize the classifiers, the model shows an impressive prediction result when using

the proposed approach introduced in this chapter.

The confusion matrices testing results were further explored for predicting the unseen cases

using the three different classification approaches (see Table 6.4). The ConvNet algorithm

returns the probabilities for the predicted cases in each classifier. To determine the classes, a

classification threshold was set to 0.5, whereby those cases above the threshold were considered

1 and 0 for the results below 0.5. From Table 6.4, it can be observed that the true positive (TP)

results of the ‘Low Risk’, ‘Medium Risk’, and ‘High Risk’ classifiers have been improved in the

third approach (experiment 3) when projecting the classes alongside the sensitive variables.

For example, the correctly classified high risk students in experiment 1 was 220 students,

but when constricting the classifiers of experiment 3 to detect the sensitive features (biased

ones) alongside the class features, the predicted positive cases was improved to 376 students.

However, misclassification for some of the sensitive labels can be noticed in Table 6.4, these

being: Age 25+, Ethnicity Arab and Ethnicity-other due to the limited number of positive

cases for these, but this does not affect the overall classification model accuracy as the technical

target was to perform unbiased classification for the class labels.

Besides observing good classification results in the confusion matrices, further evaluation

analysis was performed to obtain classifiers accuracy (ACC), sensitivity (SN), specificity (SP),

precision (PREC) and F1-score for the three approaches (see Table 6.5). With these detailed

evaluation matrices, the usefulness of projecting the unwanted dependencies with the class

variables for performing unbiased classification can be observed. The models overall testing

accuracy are indicated therefore in Table 6.6 for predicting the labels of the class variable (Low,

Medium and High Risk) with the BN, the original Multi-label ConvNets and the proposed

approach of Multi-label ConvNet for predicting all the sensitive variables. As a result of

removing the sensitive features from the feature-space in experiment 2, the model accuracy was

decreased from 84.74% to 80.99%. This reduction mainly resulted owing to the removal of some

of the dependent parameters and proxies that were associated with the sensitive features. In
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(a) Experiment 1: CNN trained and validated with the original feature space to predict the
class variables.

(b) Experiment 2: CNN trained and validated with removing the sensitive variables from
the feature-space to predict the class.

(c) Experiment 3: CNN trained and validated with some constrains to predict the class
variables as well as the sensitive variables.

Figure 6.7: Accuracy and loss results from experiment 1,2 and 3 for the average performance predictive models
showing the CNN models for predicting: (a) the class variables only, (b) the class virables with removing the

sensitive variables from the feature space and (c) the class variables as well as all the sensitive variables.
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Table 6.4: Confusion matrices testing results for the multi-label ConvNets of predicting the labels of the class
variable (Low, Medium and High Risk) vs the class + the sensitive variables (with threshold=0.5).

Experiment 1:

CNN for predicting the labels

of the class variables

Experiment 2:

CNN for predicting the class

variables with removing

the sensitive variables

Experiment 3:

CNN for predicting the class

variables and the sensitive variables

(proposed approach)

Predicted Labels TP FP FN TN TP FP FN TN TP FP FN TN

Low Risk 360 30 80 670 354 47 119 620 372 18 7 743

Medium Risk 250 120 130 640 217 153 138 632 345 15 24 752

High Risk 220 170 0 750 337 53 159 591 376 14 0 750

Male - - - - - - - - 950 0 82 108

Female - - - - - - - - 116 74 0 950

Age 17-19 - - - - - - - - 870 0 23 247

Age 20-24 - - - - - - - - 212 28 26 874

Age 25+ - - - - - - - - 0 30 0 1110

Ethnicity-Arab - - - - - - - - 0 80 0 1060

Ethnicity-Asian - - - - - - - - 536 4 43 557

Ethnicity-White - - - - - - - - 244 66 60 770

Ethnicity-Black - - - - - - - - 20 130 3 987

Ethnicity-other-Mixed - - - - - - - - 0 60 0 1080

contrast, the model accuracy results in experiment 3 reveal that when projecting the unwanted

dependencies of the biased features to the output layer to classify all the sensitive variables (13

Labels) the model accuracy increased to 96.67%. I further captured the skill of the predictive

models with the standard deviation of the mean accuracy. The standard deviation in Table

6.6 has been decreased when using the proposed approach of this paper from +/-3.263 to

+/-0.622. This measurement shows the importance of plotting the sensitive features as the

standard deviation has been reduced, which proof that the mean is not far from the predictions.

Hence, the results obtained in Tables 6.4, 6.5 and 6.6 reveal a significant finding that confirms

that the transferred sensitive features to the output layer are useful for enhancing the temporal

predictive model. The CNN in experiment 3 removed the proxies of the sensitive features, which

in turn, improved the performance prediction for the target classes ‘Low Risk’, ‘Medium Risk’,

and ‘High Risk’.

Figure 6.8 provides a chart showing the improvement in the model accuracy, sensitivity

and F1-Score when predicting the biased features/sensitive variables using the multi-label
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Table 6.5: Evaluation matrices of Multi-label ConvNets for predicting the labels of the classifiers with the
three experimental approaches using the test data with ‘threshold= 0.5’.

Experiment 1:

Multi-label ConvNet for predicting

the labels of the class variables

Experiment 2:

Multi-label ConvNet for predicting

the class variables

with removing the sensitive variables

Experiment 3:

Multi-label ConvNet for predicting

all the sensitive variables

Predicted Labels ACC SN/REC SP PREC F1- Score ACC SN/REC SP PREC F1- Score ACC SN/REC SP PREC F1-Score

Low Risk 0.90 0.82 0.96 0.92 0.86 0.85 0.75 0.93 0.88 0.81 0.98 0.98 0.98 0.95 0.94

Medium Risk 0.78 0.66 0.84 0.67 0.67 0.74 0.61 0.80 0.59 0.60 0.96 0.93 0.98 0.96 0.94

High Risk 0.86 1.00 0.81 0.56 0.36 0.81 0.68 0.92 0.86 0.76 0.96 1.00 0.98 0.96 0.98

Male - - - - - - - - - - 0.93 0.92 1.00 1.00 0.96

Female - - - - - - - - - - 0.94 1.00 0.93 0.60 0.75

Age 17-19 - - - - - - - - - - 0.98 0.97 1.00 1.00 0.98

Age 20-24 - - - - - - - - - - 0.95 0.89 0.97 0.88 0.88

Age 25+ - - - - - - - - - - 0.97 N/A 0.97 0.00 N/A

Ethnicity-Arab - - - - - - - - - - 0.93 N/A 0.93 0.00 N/A

Ethnicity-Asian - - - - - - - - - - 0.96 0.93 0.99 0.99 0.96

Ethnicity-White - - - - - - - - - - 0.89 0.80 0.93 0.79 0.79

Ethnicity-Black - - - - - - - - - - 0.88 0.87 0.88 0.13 0.23

Ethnicity-other-Mixed - - - - - - - - - - 0.95 N/A 0.95 0.00 N/A

Table 6.6: Evaluation matrices for predicting the labels of the class variable (Low, Medium and High Risk)
with the BN, the original Multi-label ConvNets and the proposed approach of Multi-label ConvNet for

predicting all the sensitive variables.

BN for predicting the class

variables

Experiment 1:

Multi-label ConvNet for predicting

the class variables

Experiment 2:

Multi-label ConvNet for predicting

the class variables with removing

the sensitive variables

Experiment 3:

Multi-label ConvNet for predicting

all the sensitive variables

Labels ACC SN SP PREC F1- Score ACC SN SP PREC F1-Score ACC SN SP PREC F1-Score ACC SN SP PREC F1-Score

Low

Risk
0.82 0.79 0.46 0.79 0.79 0.90 0.82 0.96 0.92 0.86 0.85 0.75 0.93 0.88 0.81 0.98 0.98 0.98 0.95 0.94

Medium

Risk
0.67 0.67 0.44 0.60 0.63 0.78 0.66 0.84 0.67 0.67 0.74 0.61 0.80 0.59 0.60 0.96 0.93 0.98 0.96 0.94

High

Risk
0.79 0.79 0.67 0.89 0.84 0.86 1.00 0.81 0.56 0.36 0.81 0.68 0.92 0.86 0.76 0.96 1.00 0.98 0.96 0.98

Average 0.76 0.75 0.52 0.76 0.76 0.84 0.83 0.87 0.72 0.63 0.80 0.68 0.88 0.78 0.72 0.97 0.97 0.98 0.96 0.95

Model Accuracy

(std.)

76.32%

(+/-0.805)

84.74%

(+/-3.263)

80.994%

(+/-1.926)

96.67%

(+/-0.622)

ConvNets compared to the BN for predicting the classes only. In this figure, the results for the

prediction of the class variables (Low Risk, Medium Risk, and High Risk) using the proposed

approach of experiment 3 are provided (the highlighted bars). The model achieves an average

accuracy result of 0.97 using this approach. Furthermore, the model reports an average of

0.97 for the sensitivity result, an average of 0.98 for the precision result and an average of

0.95 for the F1-Score result in relation to predicting the class variables. In addition, the SN,

SP and PREC charts illustrate the improvements that were achieved as more constrains be

added to exploit the classifiers. This can be clarified by how the classifiers were trained from

a representation that has not been influenced by the biased features. For example, in the
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BN the students were always categorised as ‘Low Risk’ students when setting the evidence of

the gender as ‘Female’ and Ethnicity as ‘White’. In other words, preventing these redundant

feature dependencies, such as ‘Female’ and ‘Ethnicity’, the classifiers will be guided only to

the significant dependencies.

It would be appropriate, therefore, to undertake profiling, such that the predictive models

target the academic performance of different cohorts of students. This can help in assessing

the students and thus, identifying those who may need more support. However, profiling

students using demographical data must be implemented with some constraints to ensure

achieving unbiased classifiers. These constraints include observing the influence strength of

the demographical parameters/features on students’ overall performance based on the marginal

probability distribution of the Bayesian Network. Exploring this constraint will enable the users

to identify the biased demographic features. This identification, however, will not remove the

proxies that are associated with the biased features. Another important constraint has to

be determined to handle the less dependent demographic features on students’ achievements

to ensure removing any associated proxies with these biased features. By taking into account

these constraints, the model will be guided to the unbiased features and hence, the performance

prediction will be improved.
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Figure 6.8: Evaluation matrices ACC, SN, SP and PREC for predicting the labels of the class variables (Low,
Medium and High Risk) with the BN and multi-label ConvNets approaches131
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6.4 Summary

The identification of new methods for gaining trust in AI decisions is a primary task for many

researchers. Given AI is encountering many application challenges related to the understanding

of the technical setup and the explicability of AI systems, in this work, a new dimension to the

implementation of transparent classification systems has been explored. A well-known prob-

lem in educational AI was addressed in this chapter, where the performance of any classifier is

dependent on the quality of the educational features. In fact, Convolutional Neural Network

cannot do a miracle when the first learning layers are not appropriate designed to extract good

features. I have proposed an approach aimed at increasing trust in AI not just by removing

the unwanted features from the feature space, but also, by performing unbiased classification.

A classification model consisting of several constraints was identified to make intelligent deci-

sions without being biased by other concepts. These constraints are much stronger than the

ensembling bootstrapping approach used in my previous work (Al-Luhaybi et al., 2019) for

performing unbiased classification. I have focused on the identification of the biased features,

which should be not determined in the classification process in order to make ethical decisions.

This exploration is important as it shows that some machine learning techniques can be used

in order to force CNN to learn strong feature dependencies in the feature space.

The experimental results have revealed that the deep 1D Multi-label CNN successfully

eliminated the biased features dependencies, and result in unbiased classifiers. However, un-

derstanding the decisions of AI models is fundamental for the adaptation stage of many real-

world AI systems. Further works are required to project intelligent models that are human-

interpretable including approaches such as ‘Google Explainable AI’ tools which explore the

weightings within different hidden layers of the network models.
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Conclusion

This thesis involved examining whether non-linear implementations, such as sequential cluster-

ing, structure modelling and deep learning, can efficiently exploit explainable and transparent

models for ethical prediction of academic performance. The principal aim was to achieve

transparent models, while also obtaining strongly reliable accuracy results. This chapter pro-

vides the conclusions of the research conducted in this thesis. Firstly, the contributions in the

context of the extant literature are considered to show how the findings have added to the

state-of-the-art of educational informatics. Then, the limitations of the research are discussed.

Finally, future directions for the development of reliable and ethical machine learning classifiers

for performance prediction are put forward.

7.1 Thesis Contributions

The thesis presents the implementation, and evaluation of machine learning methods using

students time series educational trajectories. It has identified explainable classifiers by exploit-

ing structured learning methods, using ordered Bayesian Networks, with consideration of the

time dependent order of the educational features. The methods also target analysing tempo-

ral data to identify new temporal features of students’ progression, such as cognitive styles

and online assessment profiles, while enhancing overall prediction of academic performance for

characterising high-risk students. Significant analytical findings emerged when implementing
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the predictive models using the temporal trajectories. This is unlike other prediction mod-

els, where the models were implemented using some selected educational features. The thesis

makes the following contributions.

7.1.1 Temporal Profiling of Time-Series Educational Trajectories

The literature review confirmed that most of the available ML models have been focused on be-

havioural and engagement aspects of students. There have been very few works conducted on

students’ assessments and participation based on their online temporal (time-series) progres-

sion trajectories. Most of the previous research in EDM consider clustering students used some

educational features not the full time-series performance trajectories. This was mainly devel-

oped for the purpose to extract students’ patterns from the activity counts of the completed

assessments to detect students learning behaviours. However, we investigate in this thesis

a novel approach to profile the full time-series progression trajectories in order identify new

features to enhance predicting the academic performance of students. In this thesis, a distance-

based similarity clustering approach using the Dynamic Time Warping (DTW) method was

exploited to identify students’ temporal cognitive styles. The method is a temporal similarity

based clustering method, which involves clustering students’ time-series engagement trajecto-

ries based on their attendance at lectures and online tests as well as their progression results

for Year 1 and Year 2 courses. The main aim of using this method is to capture students’

cognitive patterns that could improve the prediction process of student academic performance.

The cognitive styles identified managed to explain the performance contrast of the students

between the clusters, such that those that included students with low performance (high risk

students) are characterised.

Moreover, most of the previous research on education that has considered clustering stu-

dents has used a selection of extracted features of activity data and not the entire sequential

performance trajectory. A predictive model that assesses the performance of university stu-

dents was identified in this thesis based on profiling students’ time-series trajectories of online

self-assessments. The principle idea behind the approach is temporal clustering of students’

time series data by applying Dynamic Time Warping (DTW) to measure the distance between
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their self-assessment trajectories and using this information in conjunction with student ad-

mission data to predict overall performance. The predictive model is capable of identifying

different profiles of students’ online self-assessment, these being classified as: very low, low,

medium, high and very high performance profiles. Also, significant improvement to the pre-

diction results was found when adding the generated the students’ profiles as an independent

attribute in the prediction process. This proved that using the entire assessment trajectories

are more insightful than predicting performance with some selected attributes. These find-

ings make major contributions to research on educational informatics and demonstrate the

effectiveness of DTW distance-based clustering in profiling students for improved performance

prediction.

7.1.2 Ordered Bayesian Network Modelling

A new concept of a structured learning approach was introduced in this thesis, that is, an

Ordered Bayesian Network. It is a machine learning method that is implemented using graph

theory to learn the joint probability distribution between the features over time, with consid-

eration of the time-dependent order between the different features. It is introduced in this

thesis for the case of modelling students’ data collected at different times: at admission, Year

1, and Year 2. It is a very important method particularly when considering the causality of

the earlier attributes, such as students’ performance in Year 1 to the later attributes/modules

in Year 2.

The concept of the ordered BN was extended to explore the incorporation of students’ cog-

nitive styles and online self-assessment profiles for predicting performance at different stages for

the early detection of those at risk of failing or dropping out of the course. Important analyt-

ically relevant findings were achieved when learning the structure using the Ordered Bayesian

Networks. The findings indicate that more states of student performance were achieved when

learning using time dependent features in the ordered network, especially for enhancing the

predictions of the minority class which was for detecting at risk students. These results are

intended to be utilised to differentiate between the various cohorts of students who perform

with similar performance and thus, obtain improved models.
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7.1.3 Bootstrapping Temporal Bayesian Models

The research conducted far on educational data has targeted extracting useful patterns for

characterizing the learning styles of students or modelling student’s performance. Limited

experimental works have been conducted to handle the issues that were associated with the

quality of the educational datasets. These issues are including imbalanced classes, which

is also a very common machine learning problem in all the other research fields. Learning

from imbalanced data requires special techniques to convert it into valuable knowledge. A

resampling approach was conducted in this thesis to learn “Ordered Bayesian Networks” with

bootstrap aggregating (bagging). This approach was implemented to tackle the imbalance

issue with the educational datasets, thereby providing a more accurate educational predictive

model, which can be updated with new evidence as the student progresses through each year

of study. The predictive model shows how the bootstrapped resampling approach enhances

the overall prediction of student academic performance using time series educational data.

Moreover, the bootstrapped temporal model managed to identify more cases of the minority

class of high-risk students. These findings have important implications for enhancing the

learning process of educational predictive models using the advances of resampling techniques,

such as bootstrapping.

7.1.4 Explainable Machine Learning Models

The majority of the available predictive models for student performance and outcomes are

unexplainable, having been developed using black box algorithms that are not transparent in

how the predictive model or classifier reached its decisions, e.g. Random Forest, or Neural

Network. Hence, the target when using these algorithms by many researchers is to obtain high

accuracy results as an important evaluation measurement for algorithm performance, without

any consideration as to how reliable are these models for real-world inference. Classifying

students using these predictive models, however, raises concerns during the practical and the

application process. In particular, the educational data can contain biased features that exist

in the datasets, such as students’ ethnicity, nationality, gender and so on, which could result

biased decisions by the classifier. The transparency of the classification processes and the
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decisions made by the predictive classifiers are also important evaluation measurements for

gaining trust in classifier decisions.

This thesis has involved exploring linear and non-linear PCA, CNNs and BNs to exploit

transparent models for predicting student performance. The main issue addressed is biased

classification by black box methods. In particular, there has been exploration of ML methods

to perform transparent models using the advances of the BNs and Deep Learning methods.

Investigating these different methods enables the users to engage in transparent models for

ethical decision making, while improving student performance prediction. These methods

involve modelling the biased features during classification using deep 1D Multi-label CNN

to ensure that classification decisions are not affected by any of the biased features, such as

ethnicity or gender. The findings have revealed that this CNN successfully excluded the biased

features dependencies. In addition, the results show a great improvement in the model accuracy

when handling the biased features/sensitive variables using the multi-label ConvNets compared

to BN for predicting academic performance. These results allow assessment of the predictive

models to explicitly representing the unwanted correlations between the educational features

for unbiased prediction of student academic performance. Understanding the decisions of AI

models is crucial for the adaptation stage of many real-world AI systems.

7.2 Limitations

The results of the experimental works conducted in this thesis were affected by the quality and

the volume of the educational data. However, learning robust and accurate predictive models

required numerous pre-processing techniques to prepare the educational data trajectories before

learning the classifiers. Whilst accurate predictive classifiers were obtained, I will explain

in this section the limitations of the research, especially with regards to the data related

issues that impacted on the predictive and explanatory power of the predictive models. These

shortcomings were as follows:
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• Limited Data Trajectories

The small sample size of the educational data was resulted due to the time series considera-

tion in preparing the datasets for the experimental works of Chapter 5, in particular, capturing

the dynamics of the same group of students in different time slots with their application ’ad-

mission’ data and Year1 and Year2 performance data. Also, some of the students dropped out

of the academic programs they were enrolled on or changed their topic of study, which caused

missing performance data for Year 1 or Year 2 CS modules. It was decided to consider only

the full time-series data trajectories and ignore the missing ones so as to obtain accurate and

robust classifiers.

• Imbalanced Classes

The imbalanced classes was another issue that affected learning of the predictive models

as well as in identifying the cases of the minority classes. This was caused due to the limited

number of high-risk students compared to the low and medium risk ones. The minority class

in this thesis was the high-risk class, with those students who obtained low grades or failed

(e.g. D, E, and F) in all or most of the modules. Learning from imbalanced classes occasion-

ally results in misclassification and it required several approaches and techniques to transform

such data into useful forms. For example, in chapter 4, the issue of the imbalanced classes

was addressed with an oversampling technique, using SMOTE to oversample the dataset to

solve the imbalance issue of the minority class attribute. Implementing such technique on the

educational data generates synthetic instances (e.g. High-risk Students) without considering

that these synthetic instances could be neighboring cases to the other classes. This can cause

an overlapping issue with the other classes and can produce further noise. Furthermore, in

Chapter 5, a resampling approach was applied with bootstrap aggregation to learn temporal

Bayesian Networks from imbalanced performance classes. Although the classifier performance

of predicting the academic performance has been improved with bootstrapping, the predic-

tion result might be affected by the representation and the skewed sampling of the original

138



Chapter 7: Conclusion Future Work

educational dataset.

• Heterogeneous Data

Educational data can be extracted from different sources (e.g. progression, admission,

departments’ databases, online repositories) which could bring an additional challenge to ma-

chine learning researchers. For example, the modeling approaches implemented in this thesis

were adapted to analyse educational temporal data categories that were collected from Brunel

University’s admissions, Computer Science department databases, and the Blackboard Learn.

However, the categories of this type of data (multi-source) were genuinely complex due to the

variation of the different datasets included to obtain such data. Also, the domain values of the

educational features (especially the admission features) were complex as the majority included

categorical values, which were complicated to discretise and integrate into one temporal and

consistent dataset.

• Running Time

Whilst the majority of the temporal models were learned and validated in a reasonable

time and the step of modelling the biased features using the deep Multi-label Convolutional

Networks (with Keras and Tensorflow on Google’s Colaboratory) was completed successfully,

there was a long running time. In particular, this was the case when learning the parameters

of the Multi-label CNNs. This was expected as a shared Virtual Machine (VM) resource was

being utilised. However, this was overcome for the later experiments using GPU acceleration

to run the Python notebooks on Google Colab.

7.3 Future Work

7.3.1 Explainable AI

The development of the approach presented in this thesis with graphical models and deep

learning contributes to the debate on ethical decision making with machine learning. With
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this approach, unbiased and accurate classifiers, which consequentially improve performance

prediction, were achieved. However, it is important to ensure that the data-driven models

are applied responsibly, such that not just the learning approach is explainable, but also, the

outputs are trustworthy. A new research direction would be useful to explore the explainable

AI frameworks offered by Google to provide transparent temporal machine learning classifiers

to users. Moreover, mimic learning could be constructed to learn explainable classifiers for

transparent models. This technique uses deep learning approaches that mimic other models

(e.g. BNs) without accessing the original data. Thus, the new capability will intend to provide

user interpretable classifiers that are transparent in how and why the decision is made therefore

the users can trust these decisions.

7.3.2 Temporal Profiles Assessment

It would be useful to assess the temporal clusters in more detail, in particular, with regards to

identifying the correlations between the identified cognitive styles of students and their future

work performance. To this end, graphical modelling approaches (e.g. Hidden Markov Models)

and deep learning (e.g. Long Short Term Memory Models) are recommended for assessing the

clusters as well as increasing the prediction of students’ academic performance.

7.3.3 Synthetic Data Generation for Time-series Educational Data

As mentioned earlier, the temporal data extracted from the educational datasets were very

limited due to the consideration of the time-series aspects in generating such data. It would

be interesting to investigate synthetic data generation approaches with time-series data, es-

pecially where the educational datasets include confidential information, such as students’

demographics and performance grades. This data could be generated with generative machine

learning methods. For example, it would be interesting to investigate the Ordered Bayesian

Networks and Deep Learning that exploited the robust classifiers in Chapter 5 and Chapter 6

for generating such data.
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Appendix A

A.1 Feature Engineering of Educational Data

Feature engineering is a fundamental pre-processing mechanism for preparing the datasets

before learning the conditional probabilities that project Bayesian and deep learner structures.

As can be observed from Table 1, the original educational features include discrete as well as

continuous domain values, which cannot be handled and inferred for the probabilistic reasoning

of the networks. A discretisation technique was thus applied to the continuous features in the

educational datasets. This was performed with an unsupervised learning method to exploit the

hierarchical clustering to each continuous feature. When implementing the clustering method,

the discretisation intervals were automated based on the bin count for each continuous feature.

The clustering method used for discretising the data was exploited as follows:

Input: the number of student trajectories in the dataset (S ) and the number of the desired

bins (DB) for the educational feature

1. Let DB indicates the desired number of bins, then set (DB) to DB=S (where each

student trajectory/record initialized by its cluster).

2. If DB=DB quit else DB=DB -1 by merging the two bins (those of the smallest separation

among the mean values).

3. Repeat step 2 until coverage.
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Table A.1 .1: The discrtization values used for pre-processing the educational datasets.

Feature Domain Value Equivalent Value

Gender
M 0
F 1

Disability

A mental health condition, such as depression, schizophrenia
or anxiety disorder 0

A specific learning difficulty such as dyslexia, dyspraxia or
AD(H)D 1

A social/communication impairment such as Aspergers
syndrome/other autistic spectrum disorder 2

You have two or more impairments and/or disabling medical
conditions 3

You have a disability, impairment or medical condition not
listed above 4

Blind or a serious visual impairment uncorrected by glasses 5
Deaf or a serious hearing impairment 6
Wheelchair user/mobility difficulties 7
A long standing illness or health condition such as cancer,
HIV, diabetes, chronic heart disease, or epilepsy 8

No known disability 9

Nationality

British 0
European 1
American 2
Australian 3
African 4
Asian 5
Middle Eastern 6

Ethnicity

Arab 0
Asian 1
White 2
Black 3
Other 4

Countery of Domicil

UK 0
Eurpoe 1
America 2
Austraia 3
Africa 4
Asia 5
Middle East 6

Countery of Birth

UK 0
Eurpoe 1
America 2
Austraia 3
Africa 4
Asia 5
Middle East 6

Fee Status
Home 0
European 1
Overseas 2

Socio Economic Class

Higher managerial and professional occupations 0
Lower managerial and professional occupations 1
Intermediate occupations 2
Small employers and own account workers 3
Lower supervisory and technical occupations 4
Semi-routine occupations 5
Routine occupations 6
Never worked and long-time unemployed 7

142



Not Classified 8

Previous Ed Estab LEA

South west england 0
South east england 1
Greater London 2
Eastern england 3
East midlands 4
West midlands 5
Welsh LEA 6
North west england 7
Yourkshir and Humerside 8
North east england 9
NA 10

Been In Care
Yes 0
No 1
NA 2

Mature
Yes 0
No 1

Age on Entry
17-19 0
20-24 1
25 and over 2

Parents Been In HE

Yes 0
No 1
Prefer not to say 2
NA 3

Route Code

Computer Science (Artificial Intelligence) 0
Computer Science (Digital Media and Games) 1
Computer Science (Network Computing) 2
Computer Science 3
Computer Science (Software Engineering) 4
Business Computing (eBusiness) 5
Business Computing 6
Business Computing (Social Media) 7

Current Student?
Yes 0
No 1

Module Grade

MA (Mitigating Circumstances Accepted) 0
FT (Failed Terminated) 1
F 2
E 3
D 4
C 5
B 6
A 7

Temporal Profiles

Very Low Performance Profile 0
Low Performance Profile 1
Average performance Profile 2
High Performance Late Profile 3
High Performance Early Profile 4

Initial Cog. Style,
Year 1 Cog. Style
and Year 2 Cog, Style

C1 0
C2 1
C3 2
C4 3
C5 4
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Appendix B

B.1 Feature Subspace Learning Additional Results

In the linear PCA, the most corresponding features with the PCs can be elicited by observ-

ing the ranked eigenvectors or loadings. Thus, the features with low values can be excluded

due to the low dependencies between their loadings and PCs. Table 2 illustrates the load-

ings of the first 19 PCs (93% Variance) obtained by the varimax rotation. Varimax rotation

kaiser1959computer is adapted here to maximise the variances via squaring the loadings be-

tween the features and the PCs abdi2003factor. After rotating the features with Varimax, the

interpretation of the loadings will be simplified as each original feature will be associated with

a small number of PCs, or in other words, each PC characterises a small number of features.

Therefore, conducting varimax rotation makes the learned sub-space invariant as the PCs turn

out to be uncorrelated with each other. The significance between the features and the PCs

can be determined by observing the loading values of each feature. For example, if any given

feature has a high loading value on a single PC and very low loading values (near-zero) on

the other PCs, then the feature is highly correlated to this particular PC. Thus, identifying

the unwanted dependencies between the features and the PCs can be determined by identi-

fying the features with very low loadings in all the PCs. Then, the feature is statically not

significant due to the low dependency between this particular feature and the PCs. In Table

2, it can be observed that the ‘Gender’, ‘Country of Domicile’, ‘Fee Status’, ‘Mature’, ‘Age

on Entry’, ‘Current Student?’ and ‘CS2555’ features obtained the low corresponding loading

values among the PCs.
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Table B.1.1: Loadings of the first 19 PCs (93% Variance) obtained by the varimax rotation (Empty cells have
zero loadings).

Feature PC1 PC2 PC3 PC4 PC 5 PC6 PC7 PC 8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC 18 PC19

Gender -0.01 0.01 0.01 0.02 0.01 0.04 0.02 0.01 0.03 -0.03 0.03 -0.05 -0.04 0.04 -0.01 -0.02

Disability -0.01 0.01 1.00 -0.01 0.01 -0.01 0.01 -0.01 -0.01 -0.01

Nationality -0.01 -0.01 0.01 -0.01 -0.01 0.99 -0.01 -0.01 -0.01 -0.02 0.02 -0.01 0.01 0.03

Ethnicity -0.07 0.03 -0.01 0.02 0.03 0.01 -0.01 -0.04 -0.01 0.06 0.92 -0.06 0.06 -0.09 0.03

Country of Domicile 0.06 -0.01 0.03 -0.01 0.01 -0.02 -0.02 -0.03 -0.06 0.06 0.01 -0.08 0.01 0.01 0.02 -0.03 0.11 -0.04

Country of Birth 1.00 -0.01 -0.01 0.01 -0.01 0.02 0.02 0.03

Entry Year -0.03 -0.01 0.06 0.03 0.02 -0.02 -0.01 0.09 -0.05 0.09 -0.03 -0.06 0.75 0.11

Fee Status 0.05 0.01 0.01 -0.01 -0.01 0.01 0.02 -0.01 -0.01 0.05 0.01

Socio Economic Class 1.00 0.01 -0.01 -0.01 0.04

Previous Ed Estab 0.01 0.99 -0.01 0.01 -0.01 0.01 0.01 -0.01 -0.01 -0.03 0.01 0.01 -0.01

Been In Care -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.01 0.01 -0.03

Mature -0.01 -0.03 -0.03 0.01 -0.01 -0.02 0.01 -0.02 -0.03 -0.02 -0.03 0.03 0.03 -0.02 -0.02

Age on Entry 0.02 0.02 0.05 -0.01 0.03 0.02 0.07 0.01 0.01 0.03 0.03 -0.06 -0.03 0.06 0.01 0.01

Parents Been In HE 0.01 0.01 0.01 0.01 0.98 0.02 0.01 0.01 -0.04 0.03

Route Code -0.01 -0.01 -0.01 0.99 0.01 -0.03 0.02 -0.02

Current Student? 0.01 0.01 -0.01 -0.01 -0.03 -0.02 0.02 0.01 0.01 -0.02 -0.01 -0.02 -0.33

CS1004 0.51 -0.01 0.02 -0.02 0.12 0.09 -0.01 0.01 -0.09 0.02 0.09 -0.13 0.05 0.04 -0.12 -0.16 -0.01

CS1005 0.18 -0.02 0.02 0.09 0.19 -0.01 0.04 -0.03 -0.03 -0.10 0.23 0.13 0.08 -0.47 -0.27 0.39

CS1803 0.04 0.01 0.02 0.01 0.01 -0.07 -0.06 -0.06 -0.05 -0.02 -0.07 -0.06 0.04 0.38 0.06 0.23 -0.04

CS1805 0.79 0.01 -0.02 -0.02 -0.11 -0.08 -0.01 0.05 -0.01 -0.09 0.07 -0.09 -0.01 0.13 0.16

CS1809 -0.07 -0.01 -0.02 0.01 0.02 0.01 0.03 -0.02 0.07 0.06 -0.08 0.79 0.05 -0.07 -0.01 0.03

CS1810 0.16 0.04 -0.02 0.05 0.05 0.06 0.21 0.01 -0.15 0.33 0.38 -0.21 0.22 -0.09 0.02

CS1811 -0.04 -0.01 0.01 0.03 -0.01 -0.01 -0.01 0.96 0.02 -0.06 -0.04 0.04 -0.04 0.02

CS2001 -0.02 0.01 0.02 -0.95 0.02 0.01 -0.01 -0.01 0.06 -0.02 0.05 0.02 -0.07 -0.09

CS2002 0.02 0.01 -0.02 -0.04 -0.11 -0.03 -0.02 0.02 0.04 0.06 -0.11 0.04 -0.06 -0.07 -0.78 0.17 -0.05

CS2004 -0.02 0.01 0.01 0.01 -0.02 -0.01 0.04 -0.03 -0.04 -0.96 -0.04 -0.03 0.05

CS2003 0.02 0.01 0.01 -0.01 -0.02 -0.05 -0.02 -0.01 0.02 0.05 0.01 0.90 0.04 -0.05 -0.02 0.11 0.11 -0.01

CS2005 0.05 0.03 -0.01 -0.01 0.04 0.04 0.10 0.03 0.03 -0.02 -0.01 0.14 0.02 0.09 -0.02 -0.14 -0.06 -0.89

CS2555 -0.01 0.04 0.01 -0.02 -0.01 -0.01 0.05 0.03 -0.02 0.09 -0.05 -0.13 0.05 0.01 -0.01 -0.16 -0.14

Temporal profiles 0.02 -0.02 0.01 -0.01 0.98 -0.01 0.01 -0.01 -0.04 0.01 0.01 0.05 0.03

Initial cog. Style 0.10 -0.02 -0.06 0.02 0.01 0.52 0.01 -0.08 -0.01 0.10 -0.09 0.03 -0.12 0.01 -0.02 0.24 -0.05

Year 1 cog. Style -0.02 0.02 0.59 -0.02 0.05 -0.02 0.02 -0.01 0.03 0.04 -0.05 0.03

Year 2 cog. Style -0.06 0.01 0.02 -0.01 -0.01 0.60 0.02 0.01 -0.05 0.03 -0.01 0.04 -0.01 -0.09

No. of

NON-Zero Loadings

26 16 20 19 22 21 24 26 21 23 24 22 30 28 26 27 29 26 28

Variance 2 (%) 2.57 6.95 5.99 6.08 4.18 3.57 2.48 2.23 2.32 2.71 1.79 1.50 3.54 0.99 1.45 2.64 2.32 1.18 1.80
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B.2 Chapter 6 Additional Results

• Feature Importance with BNs

The influence strength identified between the features and the class node with the average

and maximum influence strength distance measures is presented in Figures 1 and 2. These

representations were learned from the conditional probability tables (CPT) of the child nodes

in the BNs through performing some sort of distances between the probability distributions

of the child nodes and the parent nodes. The influence strength in those figures is presented

by the thickness and the colour of the arcs. The strong influences in the networks have been

highlighted in ‘blue’. The BNs are also representing the sensitivity analysis of the significant

parameters on the class node. For instance, the red nodes include significant parameters for

calculating the posterior probability distribution of the class ‘Student Performance’, whereas

the grey ones do not contain any of the parameters used for learning the class. Hence, the

important dependencies and their correlations with the class node can clearly be distinguished.

Moreover, the results show that the average and maximum influence strength approaches have

obtained quite similar representations in terms of characterising the important features on

learning the posterior probability of the class.
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Figure B.2.1: Average influence strength which takes the average over distances between the parent and child
nodes.

Figure B.2.2: Maximum influence strength which calculated based on the largest distance between
distributions.
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• Deep Multi-Label ConvNets Results

The results obtained with the CNNs for ethical decision making in machine learning clas-

sifiers are presented next. This includes the CNN network structure and the 10-fold cross

validation accuracy results obtained for the three different experiments presented in chapter 6.

These results were obtained with the Keras and TensorFlow Python libraries on Google Colab.

Figure 3 provides the output results of experiment 1. In this experiment, the labels of the class

variable were predicted, of which there were only three (Low Risk, Medium Risk, and High

Risk), as can be seen with the structure of the network, keeping all the feature dependencies

in the input layer. Whereas in experiment 2, the prediction was performed after removing the

biased features from the original feature-space, as shown in Figure 4, to investigate whether

removing the sensitive features (biased ones) from the feature-space will enhance the perfor-

mance of the classifiers. Whilst the issue of using all feature dependencies (even the biased

ones) was demonstrated in experiment 3, to investigate the possibility of performing unbiased

and transparent classification (see Figure 5). In this experiment, the biased features identified

from the Markov Blanket (MB) of the BN were assigned as labels/classifiers in the output layer

alongside the class variables to ensure that they were conditionally independent of the class.

From these figures, it is clear that the structure used for performing the deep multi-label

CNNs included the same feature extraction layers for better comparisons between the three

approaches. The feature extraction layers included two 1D convolutional layers, namely Conv1d

and Conv1d, with 1D ‘MaxPooling’, ‘Dropout’ of 0.4 and ‘ReLU’ activation, all being inserted

after the second convolutional layer. The MaxPooling layer was determined to reduce the

dimensions of the data, whereas the dropout layer was set to avoid overfitting. After this, the

output layer was composed of one fully connected layer, with the ‘ReLU’ activation function

and one last dense layer for projecting the labels. This fully connected layer was used to

represent the vector of the features of the input. The last layer for the multi-labels CNN

was computed with the ‘Sigmoid’ activation function to determine the probability of the three

classifiers for experiments 1 and 2 as well as three labels for experiment 3. The last layer was

set to the ‘Sigmoid’ function, as there was a multi-label classification problem.
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Figure B.2.3: Deep 1D multi-label CNN network structure and 10-fold CV accuracy results of experiment 1
exploited by the Keras and TensorFlow Python libraries.
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Figure B.2.4: Deep 1D multi-label CNN network structure and 10-fold CV accuracy results of experiment 2
exploited by the Keras and TensorFlow Python libraries.
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Figure B.2.5: Deep 1D multi-label CNN network structure and 10-fold CV accuracy results of experiment 3
exploited by the Keras and TensorFlow Python libraries.
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Figure B.2.6: Deep 1D multi-label CNN network structure of experiment 3 exploited by the Keras and
TensorFlow Python libraries on Google Colaboratory (Google CoLab).
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