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Abstract

In their article [25], Wu-Chung Hsiang and Wu Yi Hsiang write on pages 224 and 231
the following.

"Due to the existence of natural linear actions on Euclidean spaces, spheres and disks, it
is quite fair to say that they are the best testing spaces in the study of differentiable transformation
groups (...) We share the prevailing conviction that the study of differentiable actions on these
best testing spaces is probably still the most important topic in transformation groups."

The thesis concerns exotic smooth actions of finite groups on manifolds. We focus on
actions on spheres with one and two fixed points. The exoticism means that the actions are not
equivalent to linear ones. An important problem is, on one hand, exlcuding of the exotic actions,
and, on the other hand, the constructions of them. For two fixed point actions of a finite group
G on a sphere, we focus on these cases where the tangent spaces at the two fixed points have
non-isomorphic RG-module structures.

The first subject of our research are exclusions of smooth one fixed point actions of finite
groups on spheres. We develop a strategy of excluding of such actions on spheres of a given
dimension. The strategy relies on homological properties of the fixed point data and intersection
theory. We provide new algebraic conditions, sufficient to exclude one fixed point actions. We
present an algorithm which, by verifying the appropriate sufficient conditions (both described in
this thesis, and the conditions obtained earlier by Morimoto and Tamura [41] and Borowiecka
and the author [5,6]), allows us to exclude the actions in question. This algorithm, implemented
in GAP [23], provides new exclusion results.

This thesis is also concerned with two fixed point actions on spheres having non-isomorphic
RG-module structures on the tangent spaces at the fixed points, which are defined by differentia-
tion of the action. The question about the existence of such actions was raised by Smith [65] who
asked whether for a finite group G acting smoothly on a sphere with exactly two fixed points,
the RG-module structures induced on the tangent spaces at the two fixed points, are always iso-
morphic to each other. There is a conjecture of Laitinen [29] which predicts the negative answer
to the Smith question for groups satisfying certain algebraic conditions. Although not true in
general, the conjecture holds for many families of finite groups. Still, the Laitinen Conjecture
remains unsettled for various families of groups. Our main result of this part is indicating a new
infinite family of finite groups for which the Laitinen Conjecture holds.
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Abstrakt

W artykule [25], Wu-Chung Hsiang oraz Wu Yi Hsiang piszą na stronach 224 i 231 w
sposób następujący.

„Ze względu na istnienie naturalnych działań liniowych na przestrzeniach euklidesowych,
sferach i dyskach, można uczciwie powiedzieć, że są one najlepszymi przestrzeniami testowymi w
badaniu różniczkowalnych grup przekształceń (...) Podzielamy powszechne przekonanie, że badanie
różniczkowalnych działań na tych najlepszych przestrzeniach testowych jest prawdopodobnie ciągle
najważniejszym zagadnieniem dotyczącym grup przekształceń."

Praca dotyczy egzotycznych gładkich działań grup skończonych na rozmaitościach. Sku-
piamy się na działaniach na sferach z jednym, bądź dwoma punktami stałymi. Wspomniana
egzotyka oznacza, że działania nie są równoważne z liniowymi. Ważnym zagadnieniem jest, z
jednej strony, wykluczanie egzotycznych działań, a z drugiej ich konstrukcja. W przypadku dzi-
ałań grupy skończonej G na sferze z dwoma punktami stałymi, rozważamy te przypadki, gdzie
przestrzenie styczne w punktach stałych mają nieizomorficzne struktury RG-modułów.

Pierwszym tematem naszych badań jest wykluczanie gładkich działań grup skończonych
na sferach z jednym punktem stałym. Podajemy strategię wykluczania działań z jednym punktem
stałym na sferach o zadanym wymiarze. Strategia ta polega na wykorzystaniu własności homo-
logicznych danych dotyczących punktów stałych oraz użycia teorii przecięć. Podajemy nowe alge-
braiczne warunki, wystarczające do wykluczania działań z jednym punktem stałym. Przedstaw-
iamy algorytm, który, poprzez weryfikację odpowiednich wystarczających warunków (opisanych
zarówno w tej pracy, jak i warunków uzyskanych wcześniej przez Morimoto i Tamurę [41] oraz
Borowiecką i autora [5,6]), pozwala nam wykluczyć rozważane działania. Wspomniany algorytm,
zaimplementowany w języku GAP [23], daje nowe wyniki wykluczające.

Praca dotyczy również działań z dwoma punktami stałymi na sferach, dla których struk-
tury RG-modułów na przestrzeniach stycznych w punktach stałych zdefiniowane za pomocą
różniczkowania działania nie są ze sobą izomorficzne. Pytanie dotyczące takich działań zostało
zadane przez Smitha [65], który zapytał, czy dla grupy skończonej G działającej w sposób
gładki na sferze z dokładnie dwoma punktami stałymi, struktury RG-modułów zaindukowane na
przestrzeniach stycznych w punktach stałych są izomorficzne. Hipoteza Laitinena [29] sugeruje
negatywną odpowiedź na pytanie Smitha dla grup spełniających określone warunki algebraiczne.
Chociaż wspomniana hipoteza nie jest prawdziwa w pełnej ogólności, zachodzi ona jednak dla sz-
eregu grup skończonych. Hipoteza Laitinena pozostaje nierozstrzygnięta dla różnych rodzin grup.
Naszym głównym wynikiem tej części rozprawy jest wskazanie nowej nieskończonej rodziny grup
skończonych, dla których zachodzi hipoteza Laitinena.
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Chapter 1

Introduction

All groups occurring in the thesis are assumed to be finite. Since we deal mostly with
smooth actions, without mentioning it explicitly, we assume that manifolds and group actions
are smooth. If smoothness is not required, we note this explicitly. Throughout, unless stated
otherwise, by an R-homology sphere (R is the coefficient ring), we mean any closed manifold M
with the R-homology of a sphere. If R = Z, we skip the coefficient ring and say briefly that M
is a homology sphere. Analogously, a homotopy sphere is a closed manifold homotopy equivalent
to a sphere.

Let G be a group acting on a manifold M . We are interested in the cases when the fixed
point data of the action of G on M reveals some atypical properties. Our goal is to follow the
spirit of the following question.

Assume G can act on a manifold M with specific properties, and with fixed point data
satisfying some exotic conditions. What are the dimensions of manifolds M admitting actions of
G, which satisfy the exotic conditions?

In this work, we deal with answering the question above for one fixed point actions
on spheres. Apart from that, we consider also two fixed point actions of groups on spheres with
distinct local behaviour around the two fixed points. In this case, we focus mostly on the existence
of such actions, instead of indicating the dimensions of the spheres in question.

The groups admitting one fixed point actions on spheres are already characterized. The
characterization is a combined work of several mathematicians through years 1977 – 1998, in-
cluding Stein, Petrie, Laitinen, Morimoto, Oliver, and Pawałowski. Groups admitting one fixed
point actions on spheres are known to be Oliver groups. The notion of Oliver group (coined
by Laitinen and Morimoto) is recalled in [28]. According to Oliver [44], a finite group G has a
smooth fixed point free action on a disk if and only if G is an Oliver group. Similarly, by the
work of Laitinen and Morimoto [28], a finite group G has a smooth one fixed point action on a
sphere if and only if G is an Oliver group. This allows us to use each of the group action property
of G as the definition of an Oliver group.

The research on finding the dimensions of spheres which admit one fixed point actions
of Oliver groups is getting more and more advanced lately. One should mention the remarkable
result which is a combined work of Morimoto [35], Furuta [22], Buchdahl, Kwasik and Schultz [9].
This result states that if G acts with one fixed point on Sn, then n ≥ 6. Due to the work of
Bak, Katsushiro and Morimoto (see [3, 4, 42]), we can give the full classification of dimensions
admitting such an exoticism for G = A5, the alternating group on five letters. It turns out that
A5 admits one fixed point actions on Sn whenever n ≥ 6. There is also a result of Borowiecka [5]
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1. Introduction

which excludes effective one fixed point actions of G on S8 for G = SL(2, 5), the group of 2× 2
matrices with entries in the field of 5 elements. The joint article of Borowiecka and the author [6]
generalizes the methods used in [5] and applies this generalization for more Oliver groups and
dimensions of spheres. In 2018, further exclusions were obtained by Morimoto and Tamura [41].
They showed that S5, the symmetric group on five letters, does not admit a one fixed point
actions on Sn whenever n ∈ {7, 8, 9, 13}. The analogous statement for SL(2, 5) and n ∈ {6, 8, 9}
was also shown in [41]. In this thesis, we extend these exclusion results to increase their efficiency.
We establish an algorithm for exclusion of one fixed point actions on spheres. This algorithm uses
essentially our three new results from this thesis. Suppose Σ is a homology sphere with a group
G acting on it and, for H ≤ G, denote by C(H) the connected component of the fixed point set
ΣH containing ΣG in the case the fixed point set ΣG is connected. Using these assumptions and
notations, we can present the announced results below – the details are described in chapter 5.

Theorem 1.1. (cf. Theorem 5.3) Suppose that H1 and H2 are non-Oliver subgroups of G which
generate G and suppose P is a prime power order subgroup of H1 ∩H2. If there exists x ∈ ΣG

with dimTx(ΣP ) = 0, then ΣG is a two point set.

Theorem 1.2. (cf. Theorem 5.8) Assume ΣG is connected. Suppose there exist subgroups H1, H2 ≤
G with 〈H1, H2〉 = G such that the submanifold C(Hi) is of positive dimension for i = 1, 2. More-
over, assume there is a p-subgroup P ≤ H1 ∩H2 for some prime p such that

dimC(H1) + dimC(H2) = dim ΣP

Suppose further that at least one of the following conditions hold.

(1) P is of 2-power order.

(2) The orders of H1 and H2 are odd.

(3) P is normal in H1 and H2, and the orders of H1/P and H2/P are odd.

Then ΣG cannot consist of a single point.

Theorem 1.3. (cf. Theorem 5.10) Assumme ΣG decomposes into the connected components
C1, ..., Ck. Suppose there exist subgroups H1, H2 ≤ G with 〈H1, H2〉 = G such that for any
connected component Cj, j = 1, ..., k, the submanifold Cj(Hi) which is the connected component
of ΣHi containing Cj, is of positive dimension for i = 1, 2. Moreover, assume there is a p-subgroup
P ≤ H1 ∩H2 for some prime p such that for any j = 1, ..., k,

dimCj(H1) + dimCj(H2) = dim ΣP .

Suppose further that at least one of the following conditions hold.

(1) P is of order which is a power of 2.

(2) The orders of H1 and H2 are odd.

(3) P is normal in H1 and H2, and the orders of H1/P and H2/P are odd.

Then ΣG cannot consist of odd number of points.

In chapter 5, also, using the GAP software [23], we present new results obtained from
the application of the exclusion algorithm. As a corollary from these exclusion results we can
formulate the following.
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1. Introduction

Theorem 1.4. (cf. Theorem 5.29) An Oliver group G cannot act on Sn with exactly one fixed
point, provided:

• n = 6 and G ∈ {C3 × S4, C3 o S4, S3 ×A4, C3 o F7},

• n = 7 and G ∈ {C3 o S4, S3 ×A4, S5, C3 o F7},

• n = 8 and G ∈ {C3 × S4, S3 ×A4, C3 o S4, S5, C3 o F7},

• n = 9 and G ∈ {S5, C3 o F7},

• n = 10 and G ∈ {C3 o S4, S3 ×A4}.

The question concerning two fixed point actions on spheres mentioned at the beginning
was firstly posed by Smith in 1960 [65, pp. 406, the footnote]. He asked whether for a group
G acting on a sphere with exactly two fixed points, the RG-module structures at the tangent
spaces at the two fixed points (defined by the differentiation of the action) are always isomorphic.
The Smith question can be exhaustively answered once we know the so called Smith set of G,
defined for actions on (homotopy) spheres. Then, the answer to the Smith question for G depends
only on the triviality of Sm(G), the Smith set of G – this answer is affirmative if and only if
Sm(G) = 0. A lot of interesting results concerning the structure of the Smith sets were obtained
during the last 10 years. In favorable cases, we can show that the list of dimensions of spheres
admitting exotic actions in the Smith question is finite. Our main result on the Smith question
concerns a conjecture of Laitinen which predicts circumstances under which the answer to the
Smith question is negative. This conjecture remains still unsettled for the so called special Oliver
groups. We indicate a new infinite family of special Oliver groups for which this conjecture holds.
The groups (denoted in this thesis by Gp,q) are certain semidirect products of cyclic groups of
order q and dihedral groups of order 2pq for certain primes p and q. The main result can be
stated as follows (for the precise statement of the Laitinen Conjecture, as well, as for the concept
of being P-matched and Smith equivalent, and the definition of the Laitinen number, λ(G), we
refer the reader to chapter 7).

Theorem 1.5. (cf. Theorem 7.3) For any two odd primes p and q such that q|(p − 1), Gp,q is
a special Oliver group with λ(Gp,q) ≥ 2, possessing pairs of non-isomorphic P-matched Smith
equivalent RGp,q-modules.

The contents is organized as follows. In the first part, we setup the necessary theoretical
background for understanding the most important results presented here. In the second chapter
(the first one is the Introduction), we present the exposition of representation and intersection
theories needed for our purposes. The first section is a collection of notions from representation
theory. We cite here the result which states, for a given groupG, that FG-modules are determined
by their characters if F is the field of characteristic zero. Also, we indicate how to read off the
characters of real irreducible representations from complex ones. Further, we cover the necessary
ideas from intersection theory. This includes intersection product and intersection number. We
conclude this section with a helpful relation between these two ideas. In the third chapter, we
recall concepts concerning group actions on manifolds and point out several useful properties of
these actions. The first section contains basic notions on this topic. We recall that fixed point sets
of group actions on manifolds are their submanifolds. Next, we look closer at tangent spaces at
fixed points. Using the actions by differentiation, the spaces can be equipped with group module
structures, linking the world of group actions on manifolds with representation theory. We state
the Slice Theorem [2] which asserts in particular that, if G acts on M with fixed point p ∈ M ,

3



1. Introduction

then there exists a G-invariant open neighborhood of p which is G-equivariantly diffeomorphic
to TpM . Then, we look at linear actions on disks and spheres. We recall their properties in
the context of atypical actions studied here. In a separate section, we recall the result of Smith
concerning homological structure of fixed point sets for p-groups. The last section of the third
chapter introduces the Riemannian structure on manifolds and uses it to prove that if a G-action
on a manifold M with a fixed point p is effective, then the G-action on TpM determined by its
RG-module structure, becomes effective as well.

The second part of the thesis deals with studying the dimensions of spheres admitting
one fixed point actions of groups. The first chapter is a survey on groups admitting one fixed
actions on spheres. In the first section, we present an algebraic characterization of Oliver groups
and show examples of classes of groups which have this property. Next, we say some words about
the history of answering of the question which groups admit one fixed point actions on spheres.
We mention here the final result on this problem that a group G admits such an action if and
only if G is an Oliver group. In the second part of this section, we give an overview of the results
on dimensions of spheres admitting such exoticism for several Oliver groups. In the next chapter,
we present a strategy of excluding of one fixed point actions on spheres. We present here an
algorithm for excluding of one fixed point actions for a given Oliver group G and dimension
n ≥ 0. The algorithm uses three types of conditions sufficient for nonexistence of one fixed point
actions on spheres. The first one comes from the study of the Euler characteristic of fixed point
sets for certain subgroups. This restriction becomes effective, once we assume that particular
fixed point sets are finite. In the next section, we formulate the second restriction condition. It
utilizes the link between intersection form and the intersection number mentioned in the first
part of the thesis. The third restriction is the generalization of results obtained by Morimoto
and Tamura [41] for the cases of the symmetric and alternating groups on five letters, and the
group SL(2, 5). This restriction is essentially based on examination of subgroups of index two.
In the another section, we focus on the additional restriction, once we assume that the action
is effective. We use here the result that, in such a case, the tangent space at the fixed point is
a faithful group module. We collect the restrictions to derive an algorithm for excluding of one
fixed point actions on spheres. Finally, in a separate section, we present new results. By applying
of the already mentioned exclusion algorithm, we show how to exclude one fixed point actions of
Oliver groups on spheres of certain dimensions.

The last part of this thesis concerns the Smith question. In the first chapter, we provide
the reader with an overview of the most important results concerning answering this question.
We mention here classes of groups for which the answer to the Smith question is affirmative
(respectively negative). We give here also definitions of algebraic concepts related to Smith
sets. These ideas include, among others, the primary group and the reduced primary group. In
favorable cases of groups, the reduced primary group turns out to be the subset of the Smith set,
or even more, turns out to be equal to the Smith set. This allows us to establish lower bounds
for the dimensions of spheres admitting exotic actions, as described in the Smith question. On
the other hand, if we take for example G = C2n , the cyclic group of order 2n (which is a group
providing a negative to the Smith question), then the result of Bredon [7, Theorem II] states that
there exists an integer Br(n) ≥ 0 such that for all k ≥ Br(n), there does not exist an exotic action
on Sk, as in the Smith question. This shows how the discussed answers may differ and that they
depend strongly on the acting group structure itself. The last chapter contains the main results
of this part of the thesis. We present here our latest result on the Laitinen Conjecture which
predicts negative answer to the Smith question for Oliver groups satisfying certain algebraic
properties. We indicate a new family of Oliver groups satisfying this conjecture (cf. Theorem 1.5
and Theorem 7.3). We also refer the reader to our article containing these results [32].
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The Framework
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Chapter 2

Preliminaries

In this chapter we collect results on representation theory of groups and intersection
theory. We describe how to determine the real irreducible representations from complex ones. We
remind the formula for fixed point dimensions and the characters of the induced representations.
The main result from intersection theory mentioned here is the equality between the intersection
number of two submanifolds (which is defined in a geometric manner) and the intersection
product of cohomology classes determined by such submanifolds.

2.1 Representation theory

Here we recall some classical results from representation theory which will be useful for
our purposes. In the first part, we present how characters determine representations for fields of
characteristic zero. Then, we show, how to read off real irreducible group modules from complex
ones.

Throughout this section, unless stated otherwise, let G be a group and F a field.

2.1.1 Characters over fields of characteristic zero

A very useful invariant of FG-modules constitute their characters. We recall here the
proof of the theorem, that if F is of characteristic zero, then the characters determine FG-modules
up to isomorphism. The proof of this fact can be found in classical books from representation
theory, see for example [15]. Nevertheless, we present it here as well.

Let us remind the necessary facts for the proof of the theorem. First of them is the
theorem of Maschke, see [27, 8.1. Theorem] – the version presented there assumes F = R,C but
the theorem works in a slightly more general version for fields of characteristic not dividing the
group order.

Theorem 2.1. Assume F is of characteristic not dividing |G|. Let V be an FG-module and U
its submodule. Then, there exists a submodule W ≤ V such that V = U ⊕W .

The proof remains the same, since the only point where the assumption about F comes
into play is the fact that 1

|G|
∑

g∈G u = u for any u ∈ U (if we didn’t assume this, then char(F )

could divide |G| and, in such a case the sum on the left hand side would cancel out). In particular,
we get the following corollary from the theorem of Maschke,

7
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Corollary 2.2. Let F be a field of characteristic zero and let V be an FG-module. Then, we
can express V as the direct sum of irreducible FG-modules in the following way, which is unique
up to isomorphism of FG-modules,

V ∼= a1V1 ⊕ ...⊕ akVk,

where V1, ..., Vk are irreducible FG-modules, a1, ..., ak are non-negative integers and mW denotes
the m-fold direct sum of an FG-module W .

Now, let us denote by g1, ..., gk ∈ G the representatives of all the distinct conjugacy
classes of G. Let

χ1 = (χ1(g1), ..., χ1(gk)), ..., χk = (χk(g1), ..., χk(gk)),

that is χ1, ..., χk are the vectors given by the characters of irreducible representations of G over
F (we identify the characters with the vector of their values on conjugacy classes). Then, the
folllowing holds.

Theorem 2.3. [15, (30.12) Theorem] If char(F ) = 0, then the vectors χ1, ..., χk are linearly
independent in F k.

As a corollary from the above theorem, we get the desired result that characters determine
FG-modules. It is obvious from the definitions of characters that they are additive with respect
to direct sums.

Corollary 2.4. [15, (30.14) Corollary] Let U and V be two FG-modules, where F has charac-
teristic zero. Denote by χU and χV the characters of U and V respectively. Then

U ∼= V ⇔ χU = χV .

The assumption concerning the characteristic of F cannot be omitted. It can be illustrated
with the following example.

Example 2.5. Let F = Fp = 〈a〉, the field on p letters for some prime p. Consider the
representations ρ and τ given by ρ(a) = I(mp) and τ(a) = I(np), where m 6= n ∈ Z+ and
I(k) denotes the k × k identity matrix. Obviously, ρ and τ are not equivalent and define thus
non-isomorphic FG-modules. On the other hand, their traces are equal to zero, since we are in
characteristic p.

2.1.2 Determining real irreducible representations from complex ones

By the previous subsection, we know that, for F with char(F ) = 0, FG-modules can
be determined up to isomorphism by their characters. Therefore, instead of describing explicitly
of irreducible real representations of G, it is sufficient for us to consider their characters. Here
we recall, how to compute the characters of irreducible RG-modules, once the irreducible CG-
modules are known. This is of great importance for us, since we have to work just with RG-
modules.

Let V be an irreducible CG-module with character χ. There are three mutually exclusive
possibilities (see [61, Proposition 38]).

(1) There is no nonzero invariant bilinear form on V . In this case χ(g) is not real for some g ∈ G.
Moreover, the character 2 Re(χ) = χ+ χ is the character of an irreducible RG-module.

8
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(2) There is a nonzero symmetric invariant bilinear form on V . Then χ is realizable over R, that
is, the RG-module V is isomorphic (as CG-module) to some RG-module.

(3) There exists a nonzero skew-symmetric invariant bilinear form on V – in such a case, χ is
real but not realizable over R and 2χ is the character of some irreducible RG-module.

Furthermore, every irreducible RG-module can be obtained in one of the three ways described
above, see [61, pp. 108].

It turns out that for the determination of irreducible RG-modules, the concept of Frobenius-
Schur indicator is very useful. It is defined below.

Definition 2.6. [61] The Frobenius-Schur indicator of a CG-module V with character χ is
defined to be

ι(χ) =
1

|G|
∑
g∈G

χ(g2).

For irreducible CG-modules, the Frobenius-Schur indicator can take one of the three values: 0,
1 or −1, see [61, pp. 109, Proposition 39]. The following theorem allows us to deduce existence
of appropriate bilinear forms on irreducible CG-modules with the help of the Frobenius-Schur
indicator.

Theorem 2.7. [27, 23.16 Theorem] Let V be an irreducible CG-module with character χ. Then,
the following statements hold.

(1) ι(χ) = 0 if and only if there is no nonzero invariant bilinear form on V ,

(2) ι(χ) = 1 if and only if there exists a nonzero symmetric bilinear form on V ,

(3) ι(χ) = −1 if and only if there is a nonzero skew-symmetric bilinear form on V .

Thus, we may determine characters of irreducible RG-modules from complex ones as
follows. We look at all irreducible complex characters χ and compute their Frobenius-Schur
indicators ι(χ). These indicators contain information about which one of the characters from
χ, 2 Re(χ) is a character of an irreducible RG-module. The set of so obtained characters (we omit
repetitions – the characters of the form 2 Re(χ) appear twice – once for the irreducible complex
character χ and second for χ which is irreducible as well) is the complete list of characters of
real irreducible representations.

2.1.3 Three useful formulas

This subsection is a collection of results which have much utility for us and they involve
characters of group representations. We recall here the formula for the dimension of fixed point
sets for actions of subgroups of G on RG-modules V . We mention also the easy to check character
criterion for a module to be faithful. The last theorem we quote here concerns computation of
the induced characters.

Let V be an RG-module and H ≤ G be a subgroup of G. We would like to compute
the dimension of the fixed point subspace V H . Since V can be considered in a natural way as a
CG-module, the real dimension of V H considered as a vector space over R is equal to the complex
dimension of V H considered as a vector space over C. The latter is given by the following.

9
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Theorem 2.8. [15,18] The dimension of the fixed point set of the action of H on a CG-module
V is given by the formula

dimV H =
1

|H|
∑
h∈H

χV (h),

where χV denotes the character of V .

The next result gives the necessary and sufficient condition for a CG-module to be faith-
ful. Obviously, this applies for RG-modules as well, since we can consider them as CG-modules
too.

Theorem 2.9. [27, 13.11 Theorem] Let V be a CG-module with character χ. Then V is faithful
if and only if the only element g ∈ G with χ(g) = χ(1) is g = 1.

Since we will be considering induced representations, let us introduce the definition of
induced modules. Suppose H ≤ G is a subgroup of a group G. Let F be a field and V an FH-
module. Having an FH-module structure on a vector space V over F is the same as defining a
linear action of H on V . We define a linear action of G on a vector space W which is a [G : H]-
fold cartesian product of V in the following way. Assume a1, ..., ak are representatives of the left
cosets of H in G. Take g ∈ G and w = (v1, ..., vk) ∈ V k = V [G:H]. Then, for any i = 1, ..., k,
gai = aσ(i)hi for uniquely determined hi ∈ H and a permutation σ ∈ Sk. The action of the
element g ∈ G on w ∈W is defined as follows.

gw = g(v1, ..., vk) = (hσ−1(1)vσ−1(1), ..., hσ−1(k)vσ−1(k)).

The vector space W together with this linear action of G constitute the induced FG-module
of V from H to G. We donote this FG-module by IndGH(V ). If χ is the character of V (in case
F = R,C), then we denote by IndGH(χ) the character of IndGH(V ).

Below we cite the theorem on how to compute the characters from the ones we induce
from.

Theorem 2.10. [27, 21.23 Proposition] Let H ≤ G and χ be a character of a CH-module V .
Suppose g ∈ G and denote by (g) its conjugacy class. Then, we have two possibilities.

(1) If H ∩ (g) = ∅, then IndGH(χ)(g) = 0.

(2) If H ∩ (g) 6= ∅, then

IndGH(χ)(g) = |CG(g)|
( χ(h1)

|CH(h1)|
+ . . .+

χ(hm)

|CH(hm)|

)
,

where CK(x) denotes the centralizer in K of x and h1, . . . , hm are the representatives of all the
distinct conjugacy classes in H of the elements of the set H ∩ (g).

2.2 Intersection theory

In this section, we recall the concept of an intersection number of two submanifolds
and its relationship to their (co)homological properties (this relationship involves the Kronecker
pairing). As such, the intersection number turns out to be a homotopy invariant – homotopic
configurations yield equal intersection numbers. In the first part we introduce the setup. Next,
we focus on the case when the manifolds are oriented and then we formulate the relationship for
the general case. We illustrate the theory with explicit computations.
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2.2.1 The setup

We proceed in the spirit of [16]. Manifolds to be considered may have boundary and are
assumed to be connected and compact unless stated otherwise.

Assume M is a manifold of dimension m and A,B ⊆ M its submanifolds – B without
boundary and A possibly with boundary contained in the boundary of M . Let a, b be the dimen-
sions of A and B respectively and suppose that A and B are of complementary dimensions, that
is, a+ b = m. Moreover, assume that A and B are transverse in M , i.e. for any point x ∈ A∩B,
we have

span({TxA, TxB}) ∼= TxM.

2.2.2 The oriented case

Assume that A, B and M are oriented. Let us define the intersection number of A and
B in M .

Take any x ∈ A ∩ B. Since A, B and M are oriented, this means that the equivalence
classes of bases of TxA, TxB and TxM are chosen (two bases with the positive determinant
of the change-of-base matrix between them are called equivalent). Let Bx,A, Bx,B and Bx,M be
representatives of these equivalence classes of bases of TxA, TxB and TxM respectively. Denote
by κ(x) the sign of the change-of-base matrix from the ordered basis {Bx,A,Bx,B} to Bx,M .

Definition 2.11. We define the oriented intersection number of A and B in M as

A ·B =
∑

x∈A∩B
κ(x).

Since A and B are oriented, we have the fundamental classes [A, ∂A] ∈ Ha(A, ∂A) and [B] ∈
Hb(B). They induce elements [A, ∂A]M = (iA)∗([A, ∂A]) ∈ Ha(M,∂M) and [B]M = (iB)∗([B]) ∈
Hb(M), where iA : (A, ∂A) ⊆ (M,∂M) and iB : B ⊆M are the inclusions. Denote by α ∈ Hb(M)
and β ∈ Ha(M,∂M) the Poincaré duals to [A, ∂A]M and [B]M respectively.

Theorem 2.12. [16, Theorem 10.32] The oriented intersection number of A and B in M can
be expressed via the Kronecker pairing in the following way,

A ·B = 〈α ∪ β, [M,∂M ]〉,

where [M,∂M ] ∈ Hm(M,∂M) is the fundamental class of M .

Remark 2.13. For any k = 0, ...,m the bilinear form

λ : Hk(M)×Hm−k(M,∂M)
∪−→ Hm(M,∂M) ∼= Z

determined by the cup product is called the oriented intersection product on M .

2.2.3 The general case

Let us now turn to the general case, when we do not know whether A, B and M are
orientable. We would like to obtain a similar relation to that from Theorem 2.12. It is possible
to get an analogous correspondence if one considers homology and cohomology groups with
coefficients in Z2.

11
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Definition 2.14. We define unoriented intersection number of A and B in M as

A ·B = |A ∩B| (mod 2).

Analogously as in the oriented case, we can consider the fundamental classes [A, ∂A] ∈ Ha(A, ∂A;Z2)
and [B] ∈ Hb(B;Z2). These classes induce elements [A, ∂A]M = (iA)∗([A, ∂A]) ∈ Ha(M,∂M ;Z2)
and [B]M = (iB)∗([B]) ∈ Hb(M ;Z2). Let α ∈ Hb(M ;Z2) and β ∈ Ha(M,∂M ;Z2) be the
Poincaré duals to [A, ∂A]M and [B]M respectively. The link between unoriented intersection
number and (co)homological properties of A, B and M can be stated in the following way.

Theorem 2.15. [16, Exercise 180]

A ·B = 〈α ∪ β, [M,∂M ]〉

where [M,∂M ] ∈ Hm(M,∂M ;Z2) denotes the fundamental class of M and 〈·, ·〉 denotes the
Kronecker pairing of cohomology and homology with coefficients in Z2.

Remark 2.16. Analogously as in Remark 2.13, we have for any k = 0, ...,m the bilinear form

λ : Hk(M ;Z2)×Hm−k(M,∂M ;Z2)
∪−→ Hm(M,∂M ;Z2) ∼= Z2.

We call the form above the unoriented intersection product on M .

The rest of this subsection is devoted to the proof of Theorem 2.15. The proof borrows
substantially from the proof of Theorem 2.12 which can be found in [16].

We will need the Thom isomorphism theorem.

Theorem 2.17. [16, Theorem 10.28] Let n ≥ 1 and

Rn ↪→ E → B

be a real vector bundle with E0 ⊂ E being the complement of the zero section B → E, b 7→ 0 ∈ Eb,
where Eb denotes the fiber over b ∈ B.

Then, there is a unique class u ∈ Hn(E,E0;Z2) such that the inclusion of pairs,
i : (Eb, (E0)b) ↪→ (E,E0) ((E0)b denotes the fiber over b of the fiber bundle E0 → B), induces a
map

Hn(E,E0;Z2)→ Hn(Eb, (E0)b;Z2) ∼= Z2

which takes u to the unique non-zero element. Moreover, u has the property that the cup product
map

Hm(B;Z2)→ Hn+m(E,E0;Z2), a 7→ a ∪ u

is an isomorphism for all m ≥ 0.

If we assume that E → B is orientable, then we can say even more. Namely, there exists
a unique (up to sign) class u ∈ Hk(E,E0;Z) such that the inclusion i induces the homomorphism

Hn(E,E0;Z)→ Hn(Eb, (E0)b;Z) ∼= Z

which takes u to the generator. Moreover, u has the property that the cup product map

Hm(B;Z)→ Hn+m(E,E0;Z), a 7→ a ∪ u

12
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is an isomorphism for all m ≥ 0.

Proof of Theorem 2.15. Since all homology and cohomology groups which appear in the proof
have coefficients in Z2, we omit the coefficient group.

Let E → B be the normal bundle to B in M . We know by the tubular neihgbourhood
theorem [24] that E can be embedded as a neighbourhood of B inM , where B itself corresponds
to the zero section. Give E a metric. Using the tubular neighbourhood theorem [24] and the fact
that A and B are transverse in M , we can find ε > 0 small enough such that the disk bundle
D(E) of radius ε intersects A in precisely |A ∩B| disks Dp, one for each p ∈ A ∩B. Each Dp is
isotopic in D(E) to the fiber D(E)p. Making ε small enough if necessary, we can find an isotopy
from tp∈A∩BDp to tp∈A∩BD(E)p.

D(E)p1

Dp1

Dp2

•
p1

•
p2

In this case two isotopies, of Dp1 to D(E)p1 and of Dp2 to D(E)p2 in-

terfere – we have to shrink D(E).

Let us remind the isotopy extension theorem.

Theorem 2.18. [24, p. 180, 1.3. Theorem] Let X ⊆ Y be a compact submanifold of a manifold
Y and H : X×I → Y an isotopy (i.e. H restricted to {X}×{t} is an embedding for any t ∈ I). If
H(X×I) ⊆ Y \∂Y , then H extends to a diffeotopy Y ×I → Y (i.e. isotopy being diffeomorphism
when restricted to {Y } × {t} for any t ∈ I).

Using this theorem, we can extend the isotopy from tp∈A∩BDp to tp∈A∩BD(E)p to a
diffeotopy M × I → M . Notice that all the operations we performed to that moment did not
affect the Kronecker pairing 〈α∪β, [M,∂M ]〉. Moreover, these perturbations did not change A ·B
as well. Therefore, we may assume that A intersects D(E) precisely in the union of fibers over
intersection points p ∈ A ∩B,

A ∩D(E) = tp∈A∩BD(E)p.

Put D = D(E) from now on. By the Thom isomorphism theorem 2.17, we can find a unique
Thom class u ∈ Ha(D, ∂D) such that

∪u : Hk(B)→ Hk+a(D, ∂D)

is an isomorphism for all k so that the restriction of u to the fiber Dp satisfies u|Dp = [Dp, ∂Dp]
∗,

where [Dp, ∂Dp]
∗ is the Poincaré dual in the cohomology of (Dp, ∂Dp) to the unique non-zero

element [Dp, ∂Dp] ∈ Ha(Dp, ∂Dp) ∼= Z2, that is

〈u|Dp , [Dp, ∂Dp]〉 = 1.

Let [B]∗D ∈ Ha(D) be the Poincaré dual (in D) to [B]D = i∗([B]) ∈ Hb(D) (i : B ⊆ D denotes the
inclusion). From 2.2.3 we conclude that [B]∗D ∪u generates Hm(D, ∂D), so [B]∗D ∪u = [D, ∂D]∗.
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Using the properties of ∪ and ∩-products and Kronecker pairing, we have

1 = 〈[D, ∂D]∗, [D, ∂D]〉 = 〈[B]∗D ∪ u, [D, ∂D]〉
= ([B]∗D ∪ u) ∩ [D, ∂D] = [B]∗D ∩ (u ∩ [D, ∂D])

= 〈[B]∗D, u ∩ [D, ∂D]〉,

so u ∩ [D, ∂D] = [B]D ∈ Hb(D).

Let us now prove the auxiliary

Proposition 2.19. The inclusion i1 : (D, ∂D) ⊆ (M,M \ Int(D)) induces isomorphisms in
homology and cohomology.

Proof. Let r be the radius of the disk bundle D of E. Take r′ > r such that the disk bundle D′

of E with radius r′ does not have any self-intersection points inM . Hence, the inclusion D′ ⊆M
is an embedding. Moreover, the inclusions i : (D, ∂D) ⊆ (D′, ∂D) and ∂D ⊆ D′ \ Int(D) are
homotopy equivalences. Therefore, the inclusion

i′ : (D′, ∂D) ⊆ (D′, D′ \ Int(D))

induces isomorphisms in (co)homology. We show that the inclusion

i′′ : (D′, D′ \ Int(D)) ⊆ (M,M \ Int(D))

comes from an excision and thus induces isomorphisms in (co)homology. It would mean that i1,
being the composition i′′ ◦ i′ ◦ i induces such isomorphisms as well.

Set X = M , A = M \ Int(D) and Z = M \D′. Then D′ \ Int(D) = A\Z and D′ = X \Z,
the closure Z = M \ (D′) ⊆M \D = Int(A) and the inclusion i′′ : (X \Z,A \Z) ⊆ (X,A) is an
excision. Hence (i′′)∗ : Hn(X \ Z,A \ Z)→ Hn(X,A) and (i′′)∗ : Hn(X,A)→ Hn(X \ Z,A \ Z)
are isomorphisms.

It follows from the proposition above that the inclusion

i1 : (D, ∂D) ⊆ (M,M \ Int(D))

induces isomorphisms in (co)homology. Hence, Hn(M,M \ IntD) ∼= Z2. Moreover, the inclu-
sions (M,∂M) ↪→ (M,M \ {p}) and (M,M \ IntD) ↪→ (M,M \ {p}) induce isomorphisms in
(co)homology. Thus, the inclusion

i2 : (M,∂M) ⊆ (M,M \ Int(D))

induces the isomorphism

(i2)∗ : Hn(M,∂M)→ Hn(M,M \ Int(D)).

Hence (since we do not have to bother with signs as the coefficient field is Z2),

(i1)∗([D, ∂D]) = [M,M \ Int(D)] = (i2)∗([M,∂M ]).

Cap product is natural – in the sense that for any map of pairs f : (X,C)→ (Y,D), the following
diagram commutes
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Hk(X,C)×Hm(X,C) Hm−k(X)

Hk(Y,D)×Hm(Y,D) Hm−k(Y )

f∗ f∗ f∗

∩

∩

(here the homomorphism f∗ : Hm−k(X)→ Hm−k(Y ) is induced from the map f with forgetting
the information about C and D, that is from the map X → Y , x 7→ f(x)). Fixing c ∈ Hm(X,C),
we get a commutative diagram

Hk(X,C) Hm−k(X)

Hk(Y,D) Hm−k(Y ).

f∗ f∗

∩c

∩f∗(c)

Hence, by the equality 〈u|Dp , [Dp, ∂Dp]〉 = 1, we get a commutative diagram

Hk(D, ∂D) Hm−k(D)

Hk(M,M \ Int(D)) Hm−k(M)

Hk(M,∂M) Hm−k(M),

i∗1 (iD)∗

i∗2 id

∩[D, ∂D]

∩[M,M \ Int(D)]

∩[M,∂M ]

where iD : D ⊆ M is the inclusion. Let j∗ = i∗2 ◦ (i∗1)−1 : Hk(M,∂M) → Hk(D, ∂D). Take
x ∈ Hk(D, ∂D). It follows from the diagram above that

(iD)∗(x ∩ [D, ∂D]) = j∗(x) ∩ [M,∂M ].

Hence, evaluating j∗ on the Thom class, we o obtain

j∗(u) ∩ [M,∂M ] = (iD)∗(u ∩ [D, ∂D]) =

= (iD)∗([B]D) = (iB)∗([B]) ∈ Hb(M),

where iB : B ⊆ M denotes the inclusion. Therefore, the Poincaré dual β to (iB)∗([B]) in M is
equal to j∗(u).

We can think of j∗ as being induced by the quotient map j : M/∂M → D/∂D (we use
identifications Hn(X,C) ∼= Hn(X/C) and Hn(X,C) ∼= Hn(X/C), so we have a corresponding
homomorphism j∗ : Hk(M,∂M)→ Hk(D, ∂D). Recall that A is a submanifold ofM of dimension
a and the union of the disks Dp is the intersection of A with the disk bundle D(E) . If [A, ∂A]M ∈
Ha(M,∂M) is the image of the fundamental class [A, ∂A] ∈ Ha(A, ∂A) in Ha(M,∂M), then

j∗([A, ∂A]M ) =
∑

p∈A∩B
[Dp, ∂Dp].
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Hence,

〈α ∪ β, [M,∂M ]〉 = 〈α ∪ j∗(u), [M,∂M ]〉 = (j∗(u) ∪ α) ∩ [M,∂M ]

= j∗(u) ∩ (α ∩ [M,∂M ]) = j∗(u) ∩ [A, ∂A]M

= 〈j∗(u), [A, ∂A]M 〉 = 〈u, j∗([A, ∂A]M )〉
=

∑
p∈A∩B

〈u, [Dp, ∂Dp]〉.

The latter expression is equal, by the equality 〈u|Dp , [Dp, ∂Dp]〉 = 1, to the value

∑
p∈A∩B

1 = A ·B

and the proof is finished.

2.2.4 Examples of calculating of intersection numbers

This paragraph contains examples of calculations of intersection numbers. We will see,
in particular, that every integer can be realized as the intersection number of some manifolds.

We use the notations from the previous subsections. In all examples to be considered the
submanifolds are one-dimensional (either interval or circle). Let us mark the first submanifold
(denoted by A) with blue color and the second one (denoted by B) with green color. When
oriented intersection number is considered, we introduce the following two possible crossing
types of such submanifolds.

type (1) type (2)

The convention we use to calculate intersection numbers is that we add one when we encounter
a crossing of type (1) and subtract one by crossings of type (2). We use the same symbols as
introduced in subsections 2.2.2 and 2.2.3 (in particular, this concerns the Poincaré duals α, β
and α, β). We can arrange orientations to be consistent with that convention in any of examples
below.

Example 2.20. Take M = D2, A = D1 and B = S1. Let A,B and M be arranged as follows.
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M = D2

A = D1

B = S1

Figure 2.1: Calculating intersection number of D1 and S1 in D2.

Then A ·B = 3 − 3 = 0. In fact, there is no other possibility – the first cohomology
groups, H1(D2, ∂D2) ∼= H1(S2) and H1(D2) are rivial, so the Poincaré duals, α and β are zero
and

A ·B = 〈α ∪ β, [M,∂M ]〉 = 〈0 ∪ 0, [M,∂M ]〉 = 0

no matter how we choose the orientations.

Example 2.21. In this example we consider configurations of two circles in the torus with
arbitrary intersection numbers.

To obtain intersection number 0, it just suffices to embed two non-intersecting copies of
S1 in the torus. Let us deal with the cases when intersection numbers are non-zero. PutM = T 2,
the two-dimensional torus and A = S1, B = S1 be two circles embedded in it. We show how to
embed A and B in M to obtain any integer n as their intersection number. Let us first consider
the case when n = 2. Let A and B be embedded as in the following picture.

A = S1
B = S1

Figure 2.2: Calculating the intersection number of two circles in a torus (visualization).

In this situation the blue curve winded two times around the torus. This circle intersected
twice with the green one in crossing of type (1) yielding the intersection number n = 2. Before
we generalize this to any integer n 6= 0, let us look at the plane model of the situation from
Figure 2.2.
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Figure 2.3: Calculating the intersection number of two circles in a torus (plane model).

• • •
(|n| − 1) times(|n| − 1) times

• • •

Figure 2.4: Obtaining non-zero integers as the intersection number of two circles in a torus.

We can generalize the case n = 2 by winding the blue curve |n| times around the green
and potentially changing the orientation on the green curve to obtain negative integer numbers.

Example 2.22. Let us see an example of the unoriented case. TakeM = RP 2, the real projective
plane, and A = S1 and B = S1.

Since there is no choice for orientations in this case, we have have to consider the un-
oriented intersection number. If A and B are two non-intersecting circles in M , then their in-
tersection number is 0. On the other hand, if A and B intersect in precisely one point, their
intersection number is 1.
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Chapter 3

Group actions on manifolds

This chapter contains a review of results on group actions on manifolds. We include here
some classical theorems such as the tubular neighbourhood theorem in the equivariant setting
and the Slice Theorem [2]. The chapter is concluded with the proof of the well-known fact that
effective actions on manifolds induce faithful group module structures on tangent spaces at fixed
points.

3.1 Basic properties

In this section we recall well-known properties of group actions on manifolds. The aim
of the first paragraph is to show that the fixed point set has the structure of a manifold. In
case of an isolated fixed point, using the Slice Theorem, we conclude that there is an equivariant
diffeomorphism between a neighbourhood of the fixed point and the tangent space at this point.
As a corollary, linear actions on spheres which have two isolated fixed points must have isomorphic
representations on tangent spaces at the fixed points. Thus, the actions from the introduction,
i.e. the actions with one fixed point on spheres and with two fixed points on spheres and non-
equivalent group module structures at the tangent spaces at the fixed points, cannot be equivalent
to linear actions. Therefore we justify the name exotic attributed to them.

3.1.1 Fixed point sets

Assume G acts on a manifold M (we denote it by GyM). Let us comment on the fact
that MG, the fixed point set of the action of G on M , is a submanifold of M . The main tool we
use for this purpose is the following equivariant version of the tubular neighbourhood theorem.

Theorem 3.1. [8, 2.2. Theorem, p. 306] If A is a closed invariant submanifold of M , then there
exists a real G-vector bundle E → A and a G-equivariant diffeomorphism f : E → U , where U
is some open neighbourhood of A in M .

Corollary 3.2. The fixed point set MG is a submanifold of M .

To prove the corollary above, we apply Theorem 3.1 to the real vector bundle over a
single point and then use the fact that the fixed point sets of group actions on vector spaces are
their subspaces.

Let us introduce the following definition of the dimension of the fixed point set.
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3. Group actions on manifolds

Definition 3.3. The dimension of the fixed point set MG (denoted by dim(MG)) is the maxi-
mum from the dimensions of connected components of MG.

If we assume further that M is compact, this will imply compactness of MG. Indeed, if
we take any g ∈ G, then the fixed point set M 〈g〉 is closed (by our implicit assumption on the
smoothness of the action). Since MG is the intersection of such fixed point sets over all g ∈ G,
we conclude that MG is closed. As a closed subset of a compact space, it has to be compact as
well.

3.1.2 Tangent spaces at fixed points

In this subsection we define the action on tangent spaces at fixed points induced from
the action on the manifold. Since the action on the tangent space is given by the differential, it
turns out to be a linear action and hence defines a real group module structure on the tangent
space. Using the Slice Theorem, we can translate the local behaviour of actions on manifolds
around fixed points to the induced actions on tangent spaces at these points.

Let G be a group acting on a manifoldM , where each g ∈ G acts by some diffeomorphism
θg : M → M . Assume that x ∈ M is fixed by all θg. In this case, the differentials D(θg)x are
linear automorphisms of TxM , and we can define the operation ∗ on the tangent space as follows.

∗ : G× TxM −→ TxM

(g, v) 7→ g ∗ v = D(θg)x(v).

Since the differential is a linear map such that the differential of the composition is the composi-
tion of differentials, and the differential of the identity is the identity map on the tangent space,
it follows ∗ defines a linear action of G on TxM and thus an RG-module structure on TxM . With
this, we can formulate the Slice Theorem now. It is a corollary from the equivariant tubular
neighbourhood theorem (see Theorem 3.1) applied for the case when a G-invariant submanifold
is a single point.

Theorem 3.4 (Slice Theorem). [2, Theorem I.2.1] There exists a G-invariant neighbourhood
U of x in M and a G-diffeomorphism f : U → TxM , where the action of G on TxM is given by
∗.
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•

•
x
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TxM

U ∼= TxM

f

Figure 3.1: An illustration of the Slice Theorem. The equivariant diffeomorphism is given by the
exponential map (this map is defined in section 3.3).

3.1.3 Linear actions on disks and spheres

Linear actions on disks and spheres behave in a more rigid manner than the general
smooth actions. This rigidity prevents linear actions with one fixed point on spheres, fixed point
free actions on disks and actions on spheres with exactly two fixed points and non-isomorphic
tangent module structures at the fixed points. We explain this phenomenon in this subsection.
Before we do this, we bring the definition of linear actions on disks and spheres and their prop-
erties.

Definition 3.5. We say that a group G acts linearly on a disk D with n = dimD if there
exists a real vector space VD of dimension n with a linear action of G on this space such that
D = D(VD) is the unit disk of VD and this disk is the G-invariant subspace of VD.

Definition 3.6. We say that a group G acts linearly on a sphere S with n = dimS if there
exists a real vector space VS of dimension n+ 1 with a linear action of G on this space such that
S = S(VS) is the unit sphere of VS and this sphere is the G-invariant subspace of VS.

In the definitions above, given a G-vector space V , D(V ) and S(V ) mean the representation
disk and the representation sphere respectively. Moreover, both VD and VS are considered as
G-manifolds with manifold structures given by the standard dot product.

Proposition 3.7. Assume M is either a disk or a sphere. If G acts linearly on M with the fixed
point set finite, then MG consists of two points for M being a sphere and of a single point if M
is a disk.

Proof. Racall first the general property of fixed point sets of invariant subspaces.

Fact 3.8. If X is a topological G-space and A ⊆ X its invariant subspace, then AG = A ∩XG.

Going back to the proof of Proposition 3.7, assume G acts linearly on M for some n ≥ 0. We
may identify M with its embedding into some real vector space V of dimension m + 1 where
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3. Group actions on manifolds

m = dimM . It follows from Fact 3.8 the fixed point set MG is the intersection of M with
some vector subspace W ≤ V since the fixed point sets of linear actions on vector spaces are
their subspaces. The Proposition 3.7 follows now because the intersections of spheres and disks
embedded in real vector spaces are also spheres and disks respectively – if MG is finite, then it
has to consist of two points in case M = Sn and of one point when M = Dn.

We see therefore that linear actions on spheres with exactly one fixed point are not
possible. This justifies the exoticism of such actions for the more general smooth case.

Let us now pay attention to linear actions on spheres with exactly two fixed points. We
show that linearity forces the tangent modules at the fixed points to be isomorphic. Assume
G acts linearly on S = Sn for some n ≥ 0. This means that S = S(V ) for some real vector
space V endowed with a linear G-action. Note that V = VG ⊕ V G, where VG is the orthogonal
complement to the fixed point subspace V G. Suppose that G acts on S with two fixed points
x, y ∈ S ⊆ V . It follows from Fact 3.8 that {x, y} = SG = S ∩ V G. Since S is a sphere, the only
possibility to obtain two point set as SG is when V G is a one dimensional subspace – it intersects
then the sphere in two points. Hence V = VG ⊕ 1G and S = S(V ) = S(VG ⊕ 1G), where 1G is
the trivial RG-module. Note that the RG-module structures at tangent spaces TxS(VG⊕R) and
TyS(VG ⊕ R) are isomorphic.

Summarizing, we can formulate the corollary below.

Corollary 3.9. If G acts linearly on a sphere Σ with exactly two fixed points x and y, then the
tangent spaces TxΣ and TyΣ are isomorphic as RG-modules.

3.2 Homological structure of fixed point sets for p-groups

Assume G is a group of order which is a power of a prime number p. Let us note first
that if G is of prime power order, then it is not possible to obtain empty fixed point set. This
follows from the Smith theory (see [62–64]). Smith proved that fixed point sets of prime power
order groups on Zp-homology spheres and disks have rigid homological properties.

Theorem 3.10. [62–64] If X is a topological G-space then the following statements hold.

(1) If X is has mod-p homology of a point, then so has XG. In particular, XG is nonempty.

(2) If XG has mod-p homology of a sphere, then either so has XG or XG is empty.

3.3 Effective actions and Riemannian manifolds

We recall here that effective actions on manifolds induce faithful group module structures
on tangent spaces at fixed points. This can be proved using the existence of invariant Riemannian
metric on equivariant manifolds.

Assume that G y M is a group action on a compact manifold M . Then, the action
G y M is properly discontinuous, that is the set AK = {g ∈ G|gK ∩K 6= ∅} is finite for any
compact K ⊆ M , since G is finite. Therefore we can find a G-invariant Riemannian metric on
M .

Let p ∈ MG and suppose that the action of G on M is effective. Endow M with a
G-invariant Riemannian metric. Denoting by expp : TpM → M the exponential map (sending
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3. Group actions on manifolds

v ∈ TpM to γv(1), where γv is the unique (maximal) geodesic with γv(0) = p and γ′(0) = v) we
have the following result.

Proposition 3.11. expp : TpM →M is G-equivariant.

Proof. Pick g ∈ G. From the definition of GyM , for any x ∈M , we have gx = θg(x) for some
diffeomorphism θg. Moreover, our metric is G-invariant, so θg preserves distance. By [52, p.143,
Proposition 21. (2)] we have a commutative diagram

TpM fsfsfTθg(p)M = TpM

M M.

expp expθg(p) = expp

Dθg,p

θg

Summing up, from the commutativity of the diagram above, we get for any v ∈ TpM

g expp(v) = (θg ◦ expp)(v) = (expp ◦Dθg,p)(v) = expp(gv),

and expp is G-equivariant.

Now, we are ready to prove the announced result.

Proposition 3.12. The RG-module structure induced on TpM is faithful.

Proof. We know that the structure of an RG-module is induced on TpM by differentials, gv =
Dθg,p(v) for any v ∈ TpM , g ∈ G, where GyM is given by a monomorphism θ : G→ Diff(M),
g 7→ θg.

Let us choose a G-invariant metric on M . Assume for the converse that gv = v for some
1 6= g ∈ G and any v ∈ TpM . Since M is compact, it follows that it has to be geodesically
complete [52, p. 118, Lemma 8.]. Then, the corollary from the proof of the Hopf-Rinow theorem
[56, pp. 137-138, Theorem 16.] tells us that for any q ∈ M there exists v ∈ TpM such that
expp(v) = q. Thus, expp : TpM → M is surjective. It follows by Proposition 3.11 that expp is
G-equivariant.

Take any x ∈M . Then, by the surjectivity of expp, we infer that there exists vx ∈ TpM
for which expp(vx) = x. The G-equivariance of expp tells us in this case that

x = expp(vx) = expp(gvx) = g expp(vx) = gx.

Hence, g acts on M in a trivial way as well which contradicts the assumption on effectiveness of
GyM .

Thus, it is not possible to exist 1 6= g ∈ G with gv = v for any v ∈ TpM what had to be
proved.
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One fixed point actions on spheres
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Chapter 4

Groups admitting one fixed point
actions on spheres

We cover here the topic of groups admitting one fixed point actions on spheres. We recall
briefly the history of finding the groups acting in that way. We finish with the theorem of Laitinen
and Morimoto which characterizes groups admitting one fixed point actions on spheres. These
groups turn out to be the Oliver groups. We end this chapter with a survey of results concerning
the dimensions of spheres admitting one fixed point actions.

4.1 Oliver groups

Using the results of Oliver, Laitinen and Morimoto [28, 44, 45], we can introduce the
following definition.

Definition 4.1. A group G is an Oliver group if it admits fixed point free action on a disk.

We provide an algebraic characterization of Oliver groups (see [44, 46–48]) and give ex-
amples of them.

The following theorem provides an algebraic necessary and sufficient condition for G to
be Oliver.

Theorem 4.2. [44, 46–48] G is an Oliver group if and only if G does not contain a sequence
of subgroups P E H E G such that P and G/H are of prime power order groups and H/P is a
cyclic group.

From the theorem above, we see that the first subclass of Oliver groups are nonsolvable
groups. This class contains the smallest Oliver group which is A5, the alternating group on 5
letters (this group has 60 elements), see [48]. Concerning solvable groups, the smallest such groups
are of order 72. These groups are A4×S3 and S4×C3, the direct products of alternating groups on
4 letters with symmetric group on 3 letters and of symmetric group on 4 letters with cyclic group
of order 3 respectively. Important subclass of solvable groups are abelian groups. Using Theorem
4.2 we conclude that an abelian group is Oliver if and only if it contains at least three noncyclic
Sylow subgroups. Thus, the smallest commutative Oliver group is C2

2 ×C2
3 ×C2

5
∼= C30 ×C30 of

order 900.

The class of Oliver groups is closed under the operation of taking overgroups. This follows
from the definition of Oliver groups. Assume H ≤ G is an Oliver subgroup of G and Dn, n ≥ 0,
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4. Groups admitting one fixed point actions on spheres

be an H-disk without fixed points. Inducing the action from H to G, we get a G-action on the
[G : H]-fold Cartesian product Dn× ...×Dn which is G-equivalent to the action of G on the disk
D = D[G:H]n. Since the induction preserves the fixed point sets, the G-action on D is without
fixed points as well showing that G is an Oliver group.

4.2 Historical overview

We recall in this place the chronological development of results on groups admitting one
fixed point actions on spheres. The research has been already completed in 1998 – the groups
admitting such actions are precisely Oliver groups.

Before we begin with reminding the results, let us comment that every group G admitting
one fixed point action on a sphere is an Oliver group. This follows directly from the Slice Theorem
(see Theorem 3.4): cutting out a G-invariant neighbourhood of the fixed point from the sphere,
we obtain a fixed point free G-action on a disk. Therefore, the whole effort came for the proof of
the converse statement, that is every Oliver group admits one fixed point action on a sphere.

In 1946, Montgomery and Samelson [34] conjectured that it was unlikely for a group to
act with one fixed point on a sphere. The first result denying this conjecture were actions of
SL(2, 5) × Cn on S7 for n such that gcd(120, n) = 1. In particular, SL(2, 5) can act with one
fixed point on seven-dimensional sphere. In 1977, constructions of these actions were obtained
by Stein [66]. Next important conclusion was due to Petrie [56] in 1982. He showed that any
abelian Oliver group of odd order admits one fixed point action on some sphere.

The final answer on determining the groups which can act with one fixed point on spheres
was established in ’90s by three mathematicians: Laitinen, Morimoto and Pawałowski. They
showed in their joint article [29] from 1995 that every nonsolvable group has a one fixed point
action on some sphere. Eventually, this was generalized in 1998 to any Oliver group by Laitinen
and Morimoto [28], yielding the following theorem.

Theorem 4.3. (Laitinen-Morimoto, [28]) A group G can act with exactly one fixed point on a
sphere if and only if G is an Oliver group.

4.2.1 Dimensions of spheres

This paragraph contains a survey of results on establishing dimensions of spheres admit-
ting one fixed point actions for given Oliver groups.

Let us focus first on the following question.

Question 4.4. What is the lowest dimension dmin of a sphere on which there exists a one fixed
point action of some Oliver group G?

Obviously, one should not forget about the already mentioned result of Stein who con-
structed actions of SL(2, 5) × Cn on S7 for n coprime to 120. This showed that the lowest
dimension (dmin) of a sphere admitting such actions could be 7. Ten years later, in 1987, Mori-
moto proved [35] that the smallest Oliver group, that is A5, can act on S6 with one fixed point
and thus lowered dmin to be at most 6. In 1989, Furuta [22] determined there nonexistence of one
fixed point actions of groups on homotopy 4-spheres which preserved orientation. Independently,
a similar result was obtained in the same year by De Michelis [17]. The paper of Morimoto [35]
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4. Groups admitting one fixed point actions on spheres

from 1987 showed that, once we have the exclusion result for 4-dimensional spheres, we can con-
clude that dmin 6= 4. The combined effort of Furuta, De Michelis and Morimoto limited dmin to
be 5 or 6. The final answer to the Question 4.4 was given in 1990 – it was proved that dmin = 6.
This ultimate step was done by Buchdahl, Kwasik and Schultz [9] who additionally were able to
exclude 5 from the candidates for dmin.

The general question about dimensions of spheres admitting one fixed point actions of
given Oliver groups remains, however, still unsolved. We have to our disposal partial results for
certain Oliver groups or even some subclasses of them. Nevertheless, the complete answer seems
to be quite far away since the admissible dimensions of spheres depend strongly on acting groups.
The effort goes for establishing dimension lists for particular Oliver groups for one fixed point
actions on spheres.

Lest us note the case of A5. This is the only case of Oliver group with the complete list of
dimensions of spheres determined. In the view of the fact that lowest possible dimension is 6, this
group turns out to admit all possible dimensions n, that is n ≥ 6. This conclusion was obtained by
Bak and Morimoto in a sequence of papers on equivariant surgery. First, Morimoto [36] showed
in 1987 that A5 can act on Sn with one fixed point whenever n = 12, 15, 16 or n ≥ 18. The joint
work of Bak and Morimoto [3] from 1990 proved that A5 admits one fixed point action on S7.
Further, the second author showed one year later that n = 4k + 6 or n = 9 + 4k, k ≥ 0, are
dimensions of spheres such actions, see [37]. This left us with dimension 8 to check – all other
dimensions were positively verified. In 2005, the final step was done by Bak and Morimoto [4].
They confirmed existence of one fixed point A5-action on S8 and formulated the following.

Theorem 4.5. (Bak-Morimoto, [4]) A5 admits one fixed point action on Sn whenever n ≥ 6.

For a more general situation, the case of nonsolvable groups, the genaral construction of
Laitinen, Morimoto and Pawałowski [29] called the "Deleting-inseting theorem" (which we shall
consider in more details in the third park of this thesis) allowed to indicate admissible dimensions
of spheres depending on a given nonsolvable group itself. Denoting by Gsol the smallest normal
subgroup of a nonsolvable group G for which G/Gsol is solvable, they showed existence of one
fixed point actions of G on spheres of dimensions l(|G| − |G/Gsol|) for any l ≥ 6.

It turned out that for many Oliver groups the lists of admissible dimensions are more
modest than for A5. In 2018, Morimoto and Tamura excluded one fixed point actions on spheres
for S5 and SL(2, 5) and dimensions 7, 8, 9, 13 and 6, 8, 9 respectively. Earlier there were obtained
exclusions of effective one fixed point actions. In 2016, Borowiecka showed that SL(2, 5) can-
not act in that way on S8. This result was generalized two years later in a joint article of
Borowiecka with the author [6]. Using GAP [23] computations applied to the generalized exclu-
sion method described in this thesis, we were able to exclude new dimensions varying within the
set {6, 7, 8, 9, 10} for most of Oliver groups of order up to 126.
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Chapter 5

Exclusion algorithm

We present in this chapter a strategy of excluding of one fixed point actions on spheres.
Assume we are given a group G and an RG-module V . We would like to extract conditions from
which we can deduce that there is no one fixed point action of G on Sn with n = dimV such
that the RG-module structure induced on the tangent space at at the fixed point is isomorphic
to V .

The exclusion method can be divided into three stages. The first two stages are con-
cerned with restricting the action to the family of certain subgroups. The first stage constitute
restrictions coming from looking at finite fixed point sets for actions of certain subgroups. We
make a remark how these restrictions simplify in the case of exclusions of group actions on
disks with positive even number of fixed points. The second constraints are due to intersection
properties of analogous higher-dimensional fixed point sets. These restrictions were developed by
Agnieszka Borowiecka and the author in [5] and [6]. The third stage is the examination of index
two subgroups and their fixed point properties. This method was developed first by Morimoto
and Tamura in their joint paper from 2018, see [41]. They used it for exclusions of group actions
on spheres with odd number of fixed points for the case of S5 and SL(2, 5). In this thesis we
try, for the first time, to combine the aforementioned obstructions for one fixed point actions on
spheres to increase efficiency of excluding of such exoticism. Using GAP [23] computations we
were able to obtain new exclusion results.

5.1 Discrete fixed point set restriction

This section describes the first strategy which we shall use to exclude the existence of
one fixed point actions on spheres. In fact, this strategy works for the exclusions of the more
general case of actions with odd number of fixed points. For an Oliver group G acting on a
homology sphere Σ, we try to find two non-Oliver subgroups which generate a given Oliver
group under consideration. Once such subgroups H,K are found and there exists a prime power
order subgroup P ≤ H ∩K such that ΣP is finite, we can exclude the case that the considered
action has odd number of fixed points.

After [41], let us introduce the following notation (variables denoted by p and q in the
definitions below are primes or equal to 1).

• Gqp – the class of groups G for which there exists a sequence of subgroups P E H E G such
that P is a p-group, G/H is a q-group and H/P is cyclic (apart from p and q prime we
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allow them to be one – in these cases H/P or G/H are the trivial groups).

• Gq =
⋃
p G

q
p .

• G =
⋃
p,q G

q
p .

• Gqp(G) – the intersection of Gqp with the set of all subgroups of G.

• Gq(G) – the intersection of Gq with the set of all subgroups of G.

• G(G) – the intersection of G with the set of all subgroups of G.

Remark 5.1. Note that a group G is an Oliver if and only if it does not belong to G.

We will need a result of Morimoto and Tamura concering Euler characteristics of fixed point sets
for certain subgroups.

Proposition 5.2. (Morimoto-Tamura, [41, Proposition 2.4.]) If Σ is a homology sphere with an
action of a group G and x0 ∈ ΣG, then the following hold.

(1) χ(ΣH) = 1 + (−1)dimTx0 (ΣH) for any H ∈ G1(G),

(2) χ(ΣH) ≡ 1 + (−1)dimTx0 (ΣH) (mod q) for any H ∈ Gq(G).

Using the proposition above, we can formulate now the main theorem allowing one to
exclude the existence of one fixed point actions on spheres by the examination of fixed point sets
of certain subgroups.

Theorem 5.3. (cf. Theorem 1.1) Assume a group G acts on a homology sphere Σ. Suppose there
exist non-Oliver subgroups H1, H2 ≤ G which generate G and that there is a prime power order
subgroup P ≤ H1 ∩H2. If there exists x ∈ ΣG with dimTx(ΣP ) = 0, then ΣG is a two point set.

Proof. Since P is a p-group, we deduce from the Smith theory that ΣP is a Zp-homology sphere
(see Theorem 3.10). Since ΣP is finite, it consists of exactly two points. Thus, ΣH1 and ΣH2 are
also finite and have Euler characteristics equal to their cardinalities.

Assume ΣG = {x}. Therefore, the Euler charcteristics of ΣH1 and ΣH2 are at least 1.
It follows then by Proposition 5.2 that χ(ΣHi) = 2 for i = 1, 2. Since G = 〈H1, H2〉, we have
ΣG = ΣH1 ∩ ΣH2 = ΣP , which contradicts the assumption that ΣG consists of one point.

Remark 5.4. We can apply the Smith Theory to the case of the actions on homology disks.
More precisely, there is an almost straightforward sufficient condition to exclude the existence of
actions of a group G on a homology disk ∆ with positive even number of fixed points. Namely,
if x ∈ ∆G and there exists a subgroup P ≤ G of prime power order such that dimTx∆P = 0,
then ∆G is a one point set. Indeed, from the Smith Theory, we know that ∆P is a homology
disk. Therefore ∆P is a one point set, for dimTx∆P = 0. Since ∅ 6= ∆G ⊆ ∆P , we conclude that
∆G = ∆P and ∆G contains a single point. Note that, in comparison to the case of actions on
homology spheres described in Theorem 5.3, we do not need the subgroups H1 and H2 of G.
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5.2 Intersection number restriction

Let us focus here on the second type of obstructions to one fixed point actions on spheres.
We look here for subgroups which satisfy similar algebraic properties as for the first exclusion
technique (we do not need here to assume that they are not Oliver subgroups). The dimension
conditions look, however, a bit different here – we are particularly interested in fixed point sets
of positive dimensions which are transverse to each other. We show that this does not allow one
fixed point actions on spheres.

In the second part of this section, we provide analogous results for the exclusions of
actions on spheres with odd number of fixed points with the usage of intersection number.

5.2.1 One fixed point actions

Before we proceed, let us introduce some notation. Assume a group G acts on a manifold
M with the connected fixed point set. For a subgroup H ≤ G, we denote by C(H) the connected
component of MH containing MG. The following lemma (from the joint paper with Borowiecka
[6]) gives the sufficient conditions for the transversality of the fixed point sets for subgroups.

Lemma 5.5. [6, Lemma 3.1.] Assume that G acts on a manifold M with the connected fixed
point set. Suppose there exist subgroups H1, H2 ≤ G and H ≤ H1 ∩H2 such that

(1) 〈H1, H2〉 = G,

(2) dimC(H1) + dimC(H2)− dimMG = dimC(H).

Then MH1 and MH2 are transverse in MH .

Another ingredient of the exclusion theorem is the orientability of Zp-homology spheres
for any prime p.

Lemma 5.6. Any Zp-homology sphere is orientable.

Proof. Suppose Σ is a Zp-homology sphere which is not orientable, i.e. Hn(Σ;Z) = 0 for n =
dim Σ. By the Universal Coefficient Theorem the following sequence is exact for k = 1, . . . , n

0→ Hk(Σ;Z)⊗ Zp → Hk(Σ;Zp)→ Tor(Hk−1(Σ;Z),Zp)→ 0.

Since Hk(Σ;Zp) vanish for 0 < k < n, we have

Hk(Σ;Z)⊗ Zp ∼= Tor(Hk−1(Σ;Z),Zp) = 0

and consequently
Hk(Σ;Z) ∼= Zqk,1 ⊕ . . .⊕ Zqk,lk ,

where gcd(qk,i, p) = 1.

For k = n, we have Hn(Σ;Z) = 0 by our assumption. Hence, by the exactness of the
sequence

0 −→ Hn(Σ;Zp) −→ Tor(Hn−1(Σ;Z),Zp) −→ 0,

we conclude that
Tor(Hn−1(Σ;Z),Zp) ∼= Zp.
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On the other hand,

Tor(Hn−1(Σ;Z),Zp) ∼= Tor(Zqn−1,1 ⊕ . . .⊕ Zqn−1,ln−1
,Zp)

∼= Tor(Zqn−1,1 ,Zp)⊕ . . .⊕ Tor(Zqn−1,ln−1
,Zp) = 0.

Corollary 5.7. Assume Σp is a Zp-homology sphere for some prime number p. Let α ∈ Ha(Σp;Z)
and β ∈ Hb(Σp;Z) be such that a, b > 0 and a + b = dim Σp. Then the cup product α ∪ β ∈
Hdim Σp(Σp;Z) is zero. The same holds if p = 2 and we substitute the coefficient ring by Z2.

Proof. Suppose Σp is a Zp-homology sphere for some prime number p and α, β are as in the
statement of the corollary. It follows from the proof of Lemma 5.6 that both Ha(Σp;Z) and
Hb(Σp;Z) are finite. Thus, α and β are of finite orders and α∪β ∈ Hdim Σp(Σp;Z) is zero for Σp

is orientable by Lemma 5.6 which means Hdim Σp(Σp;Z) ∼= Z.

In the case p = 2 and the coefficient ring Z2 the situation becomes trivial asHa(Σp;Z2) =
Hb(Σp;Z2) = 0.

We can prove now the main theorem of this section. This is an improvement of [6,
Theorem 3.2.].

Theorem 5.8. (cf. Theorem 1.2) Let G be a group acting on a homology sphere Σ with the
connected fixed point set. Suppose there exist subgroups H1, H2 ≤ G with 〈H1, H2〉 = G such
that the submanifold C(Hi) is of positive dimension for i = 1, 2. Moreover, assume there is a
p-subgroup P ≤ H1 ∩H2 for some prime p such that 1

dimC(H1) + dimC(H2) = dim ΣP

Suppose further that at least one of the following conditions hold.

(1) P is of order which is a power of 2.

(2) The orders of H1 and H2 are odd.

(3) P is normal in H1 and H2, and the orders of H1/P and H2/P are odd.

Then ΣG cannot consist of a single point.

Proof. Suppose ΣG is a one point set. Then, since the subgroups H1 and H2 generate G, ΣG =
ΣH1 ∩ ΣH2 = C(H1) ∩ C(H2). Notice by Lemma 5.5 that ΣH1 and ΣH2 are transverse in ΣP .

Assume that P is a 2-group. Since C(H1) and C(H2) are of complementary dimensions
in ΣP , it follows then that we have a well-defined unoriented intersection number of C(H1) and
C(H2) in ΣP . For i = 1, 2 denote by [C(Hi)] ∈ HdimC(Hi)(C(Hi);Z2) the fundamental class.
Consider the natural inclusions C(Hi) ↪→ ΣP and identify these fundamental classes with their
images in HdimC(Hi)(Σ

P ;Z2) induced from these inclusions. Let c1 and c2 be the corresponding
classes under the Poincaré duality. Then, we get by Theorem 2.15

C(H1) · C(H2) = 〈c1 ∪ c2, [Σ
P ]〉. (1)

1dim ΣP is well-defined for from the Smith theory, we know that ΣP is connected as a Zp-homology sphere.
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We know by Corollary 5.7 that the cup product c1 ∪ c2 is the zero element in Hd(ΣP ;Z2). Thus,
by (1), we get C(H1) · C(H2) = 0 which is a contradiction.

Now, suppose the second or the third case from the assumptions of the Theorem holds.
We shall prove the statement in these cases using the oriented intersection numbers in a similar
way as the first case. The matter of proper definition of these numbers becomes a little bit
more subtle, however. We have to ensure orientability of ΣH1 and ΣH2 . We know from the Smith
Theory that ΣP is a Zp-homology sphere. Hence, by Lemma 5.6, ΣP is orientable. If the orders of
H1 and H2 are odd, we conclude from [8, p. 175, 2.1 Theorem] that ΣH1 and ΣH2 are orientable.
In the case when P is normal in H1 and H2 and the orders of H1/P and H2/P are odd, we
notice that for i = 1, 2

ΣHi = (ΣP )Hi/P ,

and, since ΣP is orientable, it suffices to apply the same argument as in the previous case to
state the orientability of ΣH1 and ΣH2 . Therefore we have a well-defined intersection number
of C(H1) and C(H2) in ΣP . Analogously as in the Z2-case, for i = 1, 2, denote by [C(Hi)] ∈
HdimC(Hi)(C(Hi);Z) the fundamental class and identify these fundamental classes with their im-
ages in HdimC(Hi)(Σ

P ;Z) induced from the natural inclusions. Let c1 and c2 be the corresponding
classes under the Poincaré duality. It follows by Corollary 5.7 that c1∪ c2 ∈ Hdim ΣP

(ΣP ) is zero.
Hence, from Theorem 2.12 we have

C(H1) · C(H2) = 〈c1 ∪ c2, [Σ
P ]〉 = 〈0, [ΣP ]〉 = 0.

On the other hand, since |ΣG| = 1, we have C(H1) · C(H2) = ±1. A contradiction.

5.2.2 Actions with odd number of fixed points

If we want to exclude the existence of actions with odd number of fixed points, we need
a slight generalization of Lemma 5.5.

Lemma 5.9. Assume G acts on a smooth manifold M with MG decomposing into the connected
components C1, ..., Ck. Suppose there exist subgroups H1, H2 ≤ G and H ≤ H1 ∩ H2 such that
for any connected component Cj, j = 1, ..., k, the following holds

(1) 〈H1 ∪H2〉 = G,

(2) dimCj(H1) + dimCj(H2)− dimCj = dimC(H),

where, for a given K ≤ G, Cj(K) stands for the connected component of MK containing Cj.
Then MH1 and MH2 are transverse in MH .

Proof. Since H1 and H2 generate G, we haveMH1∩MH2 = MG. Choose x ∈MH1∩MH2 = MG.
We must show

dimTxM
H1 + dimTxM

H2 − dim(TxM
H1 ∩ TxMH2) = dimTxM

H . (1)

Let Cj(H1) and Cj(H2) be the connected components of MH1 and MH2 respectively which
contain x. The following equality holds from the dimension assumption applied to Cj(H1) and
Cj(H2).

dimTxM
H1 + dimTxM

H2 − dim(TxM
H1 ∩ TxMH2) = dimTxM

H .
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Therefore, it suffices to prove

Tx(MH1 ∩MH2) = TxM
H1 ∩ TxMH2

to get (1). The proof of the equality above is the same as presented in the proof of [6, Lemma
3.1.] and we refer the reader to it.

Now, we are ready to prove an analogue of Theorem 5.8 concerning actions on spheres
with odd number of fixed points.

Theorem 5.10. (cf. Theorem 1.3) Let G be a group acting on a homology sphere Σ with
nonempty ΣG decomposing into the connected components C1, ..., Ck. Suppose there exist sub-
groups H1, H2 ≤ G with 〈H1, H2〉 = G such that for any connected component Cj, j = 1, ..., k,
the submanifold Cj(Hi) which is the connected component of ΣHi containing Cj, is of positive
dimension for i = 1, 2. Moreover, assume there is a p-subgroup P ≤ H1 ∩H2 for some prime p
such that for any j = 1, ..., k

dimCj(H1) + dimCj(H2) = dim ΣP .

Suppose further that at least one of the following conditions hold.

(1) P is of order which is a power of 2.

(2) The orders of H1 and H2 are odd.

(3) P is normal in H1 and H2, and the orders of H1/P and H2/P are odd.

Then ΣG cannot consist of odd number of points.

Proof. Since the subgroups H1 and H2 generate G, we have ΣG = ΣH1 ∩ΣH2 . Writing this with
the usage of connected components, Cj(Hi), we get

ΣG =
⋃

j1,j2=1,...,k

Cj1(H1) ∩ Cj2(H2) =
⊔

m=1,...,l

Cjm(H1) ∩ Cjm(H2). (1)

Assume ΣG consists of odd number of points. It follows then by (1) that for some j ∈ {1, ..., k},
the intersection Cj(H1) ∩ Cj(H2) contains odd number of points. By Lemma 5.9, we conclude
that ΣH1 and ΣH2 are transverse in ΣP . Introducing the notation C(H1) = Cj(H1) and C(H2) =
Cj(H2), we can repeat then the arguments from the proof of Theorem 5.8 – the only difference
is that instead of getting ±1 as the appropriate intersection number of C(H1) and C(H2) in ΣP ,
we can infer that this number is odd – the proof still holds since the corresponding Kronecker
pairings vanish exactly as in the proof of Theorem 5.8.

Remark 5.11. In order to exclude the existence of one fixed point G-actions on spheres or
G-actions on spheres with odd number of fixed points, it suffices to find subgroups H1, H2 ≤ G
satisfying the assumptions of Theorem 5.8 or Theorem 5.10 respectively. In the case of one fixed
point actions, this is because when ΣG is disconnected, then it cannot consist of a single point,
and, in the case of the actions with odd number of fixed points – when ΣG is an empty set, then
it cannot consist of odd number of points.
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Verifying the dimension conditions from Theorem 5.10 for every connected component
Cj(Hi) may be quite troublesome. However, in favorable cases, we can infer that all Cj(Hi)’s have
the same dimension. This involves examination of fixed point dimension properties for actions
of p-subgroups where p can be any prime number.

Let G be a group and P1, ..., Pk be representatives of conjugacy classes of subgroups
of G which contain subgroup of prime power order. Let L = (V1, ..., Vl) be a list of mutually
non-isomorphic irreducible RG-modules and put

DL(G) =


d1,1 d1,2 . . . d1,l

d2,1 d2,2 . . . d2,l

. . . . . . . . .
dk,1 dk,2 . . . dk,l

 ,

where di,j = dimV Pi
j . Assume G acts on a Z-homology sphere Σ and suppose that for any

x ∈ ΣG, the tangential representation at x decomposes into the direct sum of irreducible RG-
modules from the set {V1, ..., Vl}.

Proposition 5.12. If rank(DL(G)) = l, then for any x, y ∈ ΣG, the tangent spaces TxΣ and
TyΣ are isomorphic as RG-modules.

Proof. Assume rank(DL(G)) = l and take any x, y ∈ ΣG. By assumption, we can express the
RG-module structures at the tangent spaces at x and y as follows.

TxΣ ∼= a1V1 ⊕ ...⊕ alVl

and
TyΣ ∼= b1V1 ⊕ ...⊕ blVl

for some non-negative integers a1, ..., al and b1, ..., bl (recall that for an RG-module V , mV
denotes the m-fold direct sum of V ). We must show that the above decompositions of tangent
spaces are identical, that is ai = bi for i = 1, ..., l.

By the Smith theory we know that ΣPi is a Zpi-homology sphere, where |Pi| is a power
of a prime number pi. Thus, ΣPi ’s are connected or are two point sets. Thus, the dimension of
ΣPi is equal to the fixed point dimensions (TxΣ)Pi and (TyΣ)Pi , since either both x and y lie in
ΣPi and dim(TxΣ)Pi = dim(TyΣ)Pi or dim(TxΣ)Pi = dim(TyΣ)Pi = 0. Since di,j = dimV Pi

j , we
can rewrite the equality dim(TxΣ)Pi = dim(TyΣ)Pi in terms of the coefficients al, bl and di,j in
the following way.

di,1a1 + . . .+ di,lal = di,1b1 + . . .+ di,lbl.

Therefore, we get the following homogeneous equation system
d1,1(a1 − b1) + . . .+ d1,l(al − bl) = 0

sakfgsfsfd· · · · · · · · ·
dk,1(a1 − b1) + . . .+ dk,l(al − bl) = 0.

Since rank(DL(G)) = l, it follows from that the homogeneous system above has a unique solution
aj − bj = 0 that is aj = bj for all 1 ≤ j ≤ l.

In particular, we get.

Corollary 5.13. If rank(DL(G)) = l, then for any x, y ∈ ΣG and H ≤ G the dimensions of
tangent spaces TxΣH and TyΣH are equal.
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Thus, if the assumptions of the corollary above are satisfied and L is the list of all
nontrivial real irreducible RG-modules, then it suffices to check the dimension condition for only
one arbitrary chosen connected component Cj(Hi) in Theorem 5.10 in order to state that ΣG

cannot consist of odd number of points.

Notation. In the case when L is the list of all irreducible RG-modules, we put DG = DL(G).
Moreover, we denote by rG the number of real irreducible representations of G diminished by
one (since the trivial module cannot be the summand of a group module structure occuring at
the tangent space at the unique fixed point for postulated one fixed point actions on spheres).

5.3 Index two restriction

In this section, we recall briefly the results of Morimoto and Tamura [41] which are based
on the examination of index two subgroups and their fixed point sets. These results allow us to
exclude group actions on spheres with one and odd number of fixed points.

Let G be a group and H its subgroup equal to the intersection of all subgroups of G of
index at most two. The first restriction tells us that a group G cannot act with one fixed point
on a sphere with positive-dimensional tangent space to the fixed point set of H at the fixed point
of the G-action.

Lemma 5.14. (Morimoto, [38, Lemma 2.1]) Let Σ be a Z-homology sphere with a G-action. If
ΣG consists of a single point x0, then dimTx0ΣH = 0.

The second result asserts that index two subgroups satisfying certain algebraic conditions
inherit the property of admitting actions on spheres with odd number of fixed points from the
bigger group. This result goes back to [41, Proposition 2.10].

Lemma 5.15. Let K be an index two subgroup of G satisfying the following conditions.

(1) Every element of K is of prime power order.

(2) There is no element of K of order divisible by 8.

Then, if ΣG is finite and contains odd number of points, the same holds for ΣK .

Proof. The same as in [41].

5.4 Effective one fixed point actions on spheres

Problem 5.16. For a given Oliver group G determine the dimensions of spheres which admit
effective one fixed point actions of G.

It is known that the list of groups admitting one fixed point actions on spheres and
the analogous list of groups admitting effective actions are the same – both lists contain Oliver
groups (see the paper of Laitinen and Morimoto [28]). Therefore, the problem of determining the
dimensions of spheres on which a given Oliver group can act with one fixed point can be phrased
in an effective and non-effective way. To author’s knowledge, these problems may potentially
differ. In particular, we do not know in general that if an Oliver group G acts with one fixed
point on Sn, then it can act effectively in such a way on Sn as well.
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Consider a specific dimension n ≥ 6 on which we would like to exclude effective one fixed
point action of a given Oliver group G. It follows from Proposition 3.12 that if such a G-action
exists, then the RG-module structure of the tangent space at the fixed point is faithful. If one
is interested only in effective one fixed point actions, we may restrict our attention to faithful
RG-modules – it is important, however, to do this at the appropriate moment (we comment on
this in the subsequent chapter, see Remark 5.27).

We can use the information about groups for which we could exclude effective one fixed
point actions on spheres, to exclude the noneffective ones too. Assume G is (an Oliver) group
and consider an RG-module V of dimension n, which we would like to exclude as a candidate
for the tangent module structure at the postulated fixed point of G-action on Sn. Denote by
Ker(V ) the kernel of V , that is the normal subgroup of G consisting of those elements g ∈ G
which act trivially on V . Note, that in case G acts with exactly one fixed point x0 on Sn with
tangent module, Tx0Sn, isomorphic to V , then the quotient G/Ker(V ) acts effectively on Sn

and (Sn)G/Ker(V ) = {x0} and the G/Ker(V )-action on V is faithful (V can be considered as
well as a faithful R(G/Ker(V ))-module). Therefore, if we know that the group G/Ker(V ) is not
an Oliver group, or if it is not the case, then at least we could exclude faithful one fixed point
actions of G/Ker(V ) on Sn, then we can exclude the situation in which V occurs as the tangent
module Tx0Sn. Hence, we can refine our exclusion strategy in the general (non-faithful) case by
such a consideration of kernels of modules for which we could not exclude one fixed point actions
to this point.

5.5 Exclusion algorithm

In this section we present an algorithm for the exclusion of one fixed point actions of
Oliver groups on spheres. Given an Oliver group G and a dimension n ≥ 6, the algorithm checks
sufficient conditions to exclude the existence of one fixed point action of G on Sn. The strategy
is to consider every n-dimensional RG-module V as a candidate for the RG-module structure on
tangent space to Sn at the postulated single fixed point x0. We check the conditions from the
restriction strategies from sections 5.1, 5.2 and 5.3 – any of those are satisfied, we know that
V cannot occur as the RG-module structure on Tx0Sn. More precisely, our algorithm provides
us with a list of RG-modules which can potentially occur at Tx0Sn (that is which could not be
excluded).

Let n ≥ 6 andm be integers. We would like to apply the exclusion strategies for all Oliver
groups of order up to m concerning actions on Sn. We divide the algorithm into two parts. The
first is responsible for verifying the conditions for actions with odd number of fixed points. For a
given group G (not necessarily an Oliver group), we consider all n-dimensional RG-modules and
establishMNodd(n,G), the list of those n-dimensional RG-modules for which we were not able to
exclude the existence of actions on Sn with odd number of fixed points and the tangent space at
one of the fixed points isomorphic to such modules. We computeMNodd(n,G) for a certain list of
groups G derived from the list of all Oliver groups of order up to m. An important aspect of this
procedure is that when computingMNodd(n,G) we base already on the contents ofMNodd(n,H)
for certain index two subgroups H of G. It is therefore important to start with the groups of the
smallest orders. The second part utilizes the exclusion results of the first part (the contents of
MNodd(n,G) for all Oliver groups G of order up to m) and checks additionally the conditions
applying exclusively to one fixed point actions. As a result, for every Oliver group of order up
to m we obtain the list MNone(n,G) containing the RG-modules which could not be excluded
by either of the restriction strategies. Optionally, once we are interested in the faithful case, we
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compute at the end the lists MNFone(n,G) ⊆MNone(n,G) containing those RG-modules from
MNone(n,G) which are faithful.

We can summarize the whole process in the following simplified schema.

Part I fafa

Input:

• n ≥ 6 – an integer being the dimension of spheres to consider,
• m ≥ 0 – an integer which is the maximum order of Oliver groups to consider.

Output:

• MNodd(n,G)’s for G varying within the range of Oliver groups of order up to m.

Part II afaf

Input:

• n ≥ 6 – an integer being the dimension of spheres to consider,
• m ≥ 0 – an integer which is the maximum order of Oliver groups to consider,
• MNodd(n,G)’s for G varying within the range of Oliver groups of order up to m.

Output:

• MNone(n,G)’s for G varying within the range of Oliver groups of order up to m,
• (optionally) MNFone(n,G)’s for G varying within the range of Oliver groups of

order up to m.

For all Oliver groups G of order up to m, we iterate over all n-dimensional RG-
modules which are contained in MNodd(n,G) and check the conditions for every of
the considered restriction strategies. If these conditions are not satisfied for any of the
strategies, then we add the considered RG-modules to MNone(n,G).

Notation. For the convenience, let us denote by MTone(n,G) the list of n-dimensional RG-
modules which occur at the tangent space to Sn at the fixed point of some one fixed point
action on Sn. Analogously, let MTodd(n,G) be the list of n-dimensional RG-modules which
occur at the tangent spaces to Sn at one of the points of some action on Sn with odd num-
ber of fixed points. Of course, MTone(n,G) ⊆ MNone(n,G), MTodd(n,G) ⊆ MNodd(n,G) and
MTone(n,G) ⊆MTodd(n,G). The list containing all RG-modules of dimension n will be denoted
by M(n,G).

To express our results more efficiently, we introduce further the following definitions.
Throughout, we assume that G is a group.

Definition 5.17. We call a triple ((P ), (H1), (H2)) of conjugacy classes of subgrops of G a good
triple of type A if H1, H2 are non-Oliver subgroups of G, 〈H1, H2〉 = G and P is a prime
power order subgroup of H1 ∩H2.

Definition 5.18. A triple ((P ), (H1), (H2)) of conjugacy classes of subgrops of G is called a
good triple of type B if H1, H2 are any subgroups of G, 〈H1, H2〉 = G and P is a prime power
order subgroup of H1 ∩H2 and at least one of the following conditions hold.

(1) P is of order which is a power of 2.
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(2) The orders of H1 and H2 are odd.

(3) P is normal in H1 and H2, and the orders of H1/P and H2/P are odd.

Let us denote byA(G) and B(G) the subsets of good triples of types A and B respectively.
Moreover, we denote by I2(G) the subgroup being the intersection of all subgroups of index
at most two of G and by I2(G) the subset of all subgroups of G of index two satisfying the
assumptions of Lemma 5.15.

5.5.1 The first part

We give here the pseudocodes of functions excluding the existence of actions on spheres
with odd number of fixed points. Before we do that, we formulate the corollaries from exclusion
strategies described earlier. This corollaries refer directly to group modules and translate the
conditions of group actions on spheres to conditions concerning the group modules. Given a
group G and an RG-module V , we would like to establish conditions which would allow us to
exclude V from MTodd(n,G).

Assume G is an Oliver group and V is an n-dimensional RG-module we would like to
exclude from MTodd(n,G).

Let us begin with the discrete fixed point set restriction. As a corollary from the Smith
theory, we know that the fixed points sets of the actions of groups of prime power order on ho-
mology spheres are connected or finite. Thus their dimension can be expressed as the appropriate
fixed point dimension of V .

Corollary 5.19. Let ((P ), (H1), (H2)) be a good subgroup triple of type A of a group G. Suppose
that dimV P = 0. Then V 6∈MTodd(n,G).

Proof. For the converse, assume V ∈MTodd(n,G). Then there exists an action of G on Sn with
odd number of fixed points. Moreover, for one of the fixed points, say x0, we have Tx0Sn ∼= V as
RG-modules. Since dimV P = 0, we conclude that dimTx0S

n = 0. Thus, we get a contradiction
by Theorem 5.3.

Now, let us consider the intersection number restriction. Put L = (V1, ..., Vl) be the
complete list of nontrivial irreducible RG-modules (in this case l = rG and DL(G) = DG – see
the definitions on pages 37 and 38). If it turns out that rank(DG) = rG, then we can formulate
the restriction condition for V to be contained in MTodd(n,G).

Corollary 5.20. Assume rank(DG) = rG and suppose there exists ((P ), (H1), (H2)), a good
triple of type B, such that dimV H1 and dimV H2 are positive and

dimV H1 + dimV H2 = dimV P .

Then V 6∈MTodd(n,G).

Proof. Assume that there exists an action of G on Sn with odd number of fixed points and
the fixed point x0 for which Tx0Sn is isomorphic as RG-module to V . Since rank(DG) = rG, it
follows by Corollary 5.13 that (Sn)H1 , as well as (Sn)H2 , has equal dimensions of its connected
components. Thus, it follows that the assumptions of Theorem 5.10 are satisfied for the considered
action of G on Sn. We conclude from this theorem that this action cannot have odd number of
fixed points. A contradiction.
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In order to exclude an action of G on Sn with odd number of fixed points, we have
to show that every n-dimensional RG-module V does not belong to MTodd(n,G). Checking
the assumptions of the two corollaries above can be made more efficient. It suffices to look at
subgroup triples being the representatives of different good triples of both types. Indeed, the
following holds.

Proposition 5.21. If V is an RG-module and H and H ′ are conjugate subgroups of G, then

dimV H′ = dimV H .

Proof. Since H ′ and H are conjugate, there exists an element g ∈ G such that H ′ = gHg−1.
This means that any h′ ∈ H ′ can be expressed in as h′ = ghg−1 for the unique h ∈ H. On the
other hand, by Theorem 2.8, we have

dimV H′ =
1

|H ′|
∑
h′∈H′

χV (h′) =
1

|H|
∑
h′∈H′

χV (h′),

where χV denotes the character of V . Since for any h′ ∈ H ′ we have h′ = ghg−1 for the unique
h, it follows then from the equality above that

dimV H′ =
1

|H|
∑
h∈H

χV (ghg−1).

Characters are conjugate invariant functions from G to R, so χV (ghg−1) = χV (h) for any h ∈ H.
From this and Theorem 2.8 applied once again, we conclude that

dimV H′ =
1

|H|
∑
h∈H

χV (ghg−1) =
1

|H|
∑
h∈H

χV (h) = dimV H .

Index two subgroups restriction provides us also with an exclusion corollary involving only
the group G. More precisely, as an application of Lemma 5.15 we get the following corollary.

Corollary 5.22. Assume G contains a subgroup H such that [G : H] = 2, MNodd(n,H) = ∅
and the following conditions hold.

(1) Every element of H is of prime power order.

(2) There is no element of H of order divisible by 8.

Then MNodd(n,G) = ∅.

Below, we present the pseudocode of the function which computes MNodd(n,G) for
a given dimension n and an Oliver group G. Apart from n and G, this function requires an
additional parameter L which is a list of groups, intended to be the groups for which we excluded
actions on Sn with odd number of fixed points.
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function ModulesNotExcludedOdd(n, G, L)
for H ∈ I2(G) do

if H ∈ L then
return ∅

MNodd(n,G)←M(n,G)
for V ∈M(n,G) do

for ((P ), (H1), (H2)) ∈ A(G) do
if dimV P = 0 then

MNodd(n,G)←MNodd(n,G) \ {V }
if rank(DG) = rG then

for ((P ), (H1), (H2)) ∈ B(G) do
if dimV H1 + dimV H2 = dimV P and

dasfasfaffffsffffff dimV H1 · dimV H2 > 0 then
MNodd(n,G)←MNodd(n,G) \ {V }

return MNodd(n,G)

We would like to calculate MNodd(n,G) for all Oliver groups G of order up to a fixed
integer m. We achieve this by computing MNodd(n,G) for Oliver groups G starting from those
with the smallest orders. The following function computes the lists MNodd(n,G) for given n ≥ 6
and all Oliver groups of order up to m (we denote this list by oliverGroupsUpToOrderM and
assume it is already sorted according to the order).

function ModulesNotExcludedOddUpToOrder(n, m)
result← ∅
groupsExcludedOdd← ∅
for G ∈ oliverGroupsUpToOrderM do

result[G]←ModulesNotExcludedOdd(n,G, groupsExcludedOdd)
if result[G] = ∅ then

groupsExcludedOdd← groupsExcludedOdd ∪ {G}
return result

Remark 5.23. In the procedure above we can in fact iterate over all groups G up to a given
order (not necessarily Oliver groups) – the strategy works in the general setup. We present this
version of pseudocode, however, since the computations involving all groups up to a given order
become time consuming. One can define an arbitrary subsets of subgroups (up to a given order)
to iterate over. This can give potentially better results.

5.5.2 The second part

We present here pseudocodes of functions concerning exclusions of one fixed point actions
on spheres. As in the case of actions with odd number of fixed points, we formulate first the
necessary corollaries from all the considered strategies in order to be able to exclude group
modules fromMNone(n,G) for a given dimension n and an Oliver group G. We use the computed
lists MNodd(n,G) from the first part.

In order to be able to obtain additional exclusion results different from those obtained
from the first part, we need to look at restrictions applying exclusively to one fixed point actions.
Such restrictions are provided by Theorem 5.8 and Lemma 5.14. The following two corollaries
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from these two results allow us to exclude an RG-module V from MTone(n,G) for a given
dimension n and an Oliver group G.

Corollary 5.24. Suppose there exists good triple of type B, ((P ), (H1), (H2)), such that dimV H1

and dimV H2 are positive and

dimV H1 + dimV H2 = dimV P .

Then V 6∈MTone(n,G).

Proof. A direct application of Theorem 5.8.

Remark 5.25. It makes sense to use the theorem above only in the case when rank(DG) < rG
since then we cannot apply Corollary 5.20.

Corollary 5.26. If dimV I2(G) > 0, then V 6∈MTone(n,G).

Proof. A direct application of Lemma 5.14.

Having this, we are able to establish the main exclusion function. For all Oliver groups G
of order up to a fixed integer m, this function checks the assumptions of the corollaries above and
excludes RG-modules from MNone(n,G) if these assumptions are satisfied for such modules. We
use here the results from the first part – we can restrict our attention to RG-modules belonging
to MNodd(n,G). The pseudocode of the function is presented below.

function ModulesNotExcludedOneUpToOrder(n, m)
MNodd ←ModulesNotExcludedOddUpToOrder(n,m)
result←ModulesNotExcludedOddUpToOrder(n,m)
for G ∈ oliverGroupsUpToOrderM do

for V ∈MNodd[G] do
for ((P ), (H1), (H2)) ∈ B(G) do

if dimV H1 + dimV H2 = dimV P and
daskkkfasfafhhf dimV H1 · dimV H2 > 0 then

result[G]← result[G] \ {V }
if dimV I2(G) > 0 then

result[G]← result[G] \ {V }
MNFone[G]← ∅
for V ∈ result[G] do

if V is faithful then
MNFone[G]←MNFone[G] ∪ {V }

Step1MNone ← result
for G ∈ oliverGroupsUpToOrderM do

for V ∈ Step1MNone[G] do
if G/(Ker(V )) is not an Oliver group or, otherwise, MNFone[G] is empty then

result[G]← result[G] \ {V }
return result

Algorithm 5.1: The exclusion algorithm – the function above computes the list of group modules
for which we were not able to exclude the existence of one fixed point action. This list is computed
for all Oliver groups G up to order m.
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Remark 5.27. Note that in the function ModulesNotExcludedOddUpToOrder(n,m) we ap-
ply the result of Morimoto and Tamura (see Lemma 5.15). Using this result, we can infer the
nonexistence of actions of a group G on spheres with odd number of fixed points, once we know
that there are no such actions for a suitable index two subgroup of G. This assumption, however,
does not necessarily concern effective actions, therefore we can work with the result of Morimoto
and Tamura in the general (possibly non-faithful) case only. Thus, when considering the faithful
case, we can restrict our attention to faithful modules, but we have to do it in the appropriate
moment, that is after iterating over all RG-modules from MNodd[G].

Remark 5.28. In the the exclusion algorithm (Algorithm 5.1) we used also the excluded faithful
one fixed point actions in order to exclude the general (non-faithful) case – this part begins from
the line "Step1MNone ← result". The explanation of this restrictions was described in the last
paragraph of Section 5.4.

The implementation of the exclusion algorithm described in this section is available
at [33].

5.6 Exclusion results

We collect here the results obtained from the application of the exclusion algorithm for
certain Oliver groups. Next, we illustrate the work of exclusion algorithm on the example of S5.

Theorem 5.29. The following tables present the exclusion results for the first 8 Oliver groups*
for dimensions of spheres varying from 6 to 10. The green color indicates that we could exclude
a given odd or one fixed point action.

• dimension n = 6

G |M(n,G)| |MNodd(n,G)| |MNone(n,G)| |MNFone(n,G)|
C3 × S4 37 12 0 0

C3 o S4 49 9 0 0

S3 ×A4 36 12 0 0

SL(2, 5) 3 3 3 0

S5 6 1 1 1

C2 ×A5 19 11 7 4

C3 o F7 27 8 0 0

• dimension n = 7

G |M(n,G)| |MNodd(n,G)| |MNone(n,G)| |MNFone(n,G)|
C3 × S4 51 36 1 1

C3 o S4 69 17 0 0

S3 ×A4 50 36 0 0

SL(2, 5) 6 6 6 4

S5 6 1 0 0

C2 ×A5 27 17 4 2

C3 o F7 27 23 0 0
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• dimension n = 8

G |M(n,G)| |MNodd(n,G)| |MNone(n,G)| |MNFone(n,G)|
C3 × S4 88 42 0 0

C3 o S4 120 18 0 0

S3 ×A4 84 42 0 0

SL(2, 5) 9 5 2 0

S5 9 1 0 0

C2 ×A5 38 25 4 2

C3 o F7 58 26 0 0

• dimension n = 9

G |M(n,G)| |MNodd(n,G)| |MNone(n,G)| |MNFone(n,G)|
C3 × S4 122 91 4 4

C3 o S4 166 45 4 4

S3 ×A4 116 89 4 4

SL(2, 5) 7 7 4 0

S5 13 1 0 0

C2 ×A5 62 44 16 12

C3 o F7 58 53 0 0

• dimension n = 10

G |M(n,G)| |MNodd(n,G)| |MNone(n,G)| |MNFone(n,G)|
C3 × S4 191 109 2 2

C3 o S4 262 46 0 0

S3 ×A4 178 107 0 0

SL(2, 5) 10 10 9 6

S5 18 3 2 2

C2 ×A5 85 63 14 11

C3 o F7 113 60 1 1

* The list includes the following groups (we add also their idies from the GAP [23] SmallGroup
Library – the id is presented in brackets [, ]): C3×S4−−[72, 42], C3oS4−[72, 43], S3×A4−[72, 44],
SL(2, 5) − [120, 5], S5 − [120, 34], C2 × A5 − [120, 35], C3 o F7 = [126, 9], where Fq, q – prime
power, denotes the Frobenius group Fq o F×q . We exclude A5 from the list since, by the work of
Morimoto, we know that this group admits one fixed point actions on spheres of dimension n
whenever n ≥ 6.

5.6.1 Example – the case of S5

Consider the case G = S5 = SmallGroup(120, 34) and n = 7. We show how the exclusion
algorithms work in the general case when there is no restriction on the action to be faithful. It
will turn out that MNodd(n,G) is non-zero but MNone(n,G) is zero. Thus, G does not admit
one fixed point action on Sn if n = 7. Those results were obtained by GAP computations (see
author’s implementation [33]).

In general, the cojugacy classes of symmetric group Sn are determined by their cycle
lengths. That is, each sequance of integers (k1, ..., km) such that k1 ≥ ... ≥ km and k1 + ... +
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km = n determines the conjugacy class of Sn consisting of permutations wihch decompose into
compositions of m cyclces of length k1, ..., km respectively. Thus, G has the following conjugacy
classes.

• c1 =
(

id
)
consisting of the identity element,

• c2,1 =
( (

1 2
) )

which contains 10 elements elements of order 2,

• c2,2 =
( (

1 2
) (

3 4
) )

which contains 15 elements of order 2,

• c3 =
( (

1 2 3
) )

which contains 20 elements of order 3,

• c4 =
( (

1 2 3 4
) )

which contains 30 elements of order 4,

• c5 =
( (

1 2 3 4 5
) )

which contains 24 elements of order 5,

• c6 =
( (

1 2 3
) (

4 5
) )

which contains 20 elements of order 6.

We compute the real nontrivial irreducible characters of G.

c1 c2,1 c2,2 c3 c4 c5 c6

X1 1 -1 1 1 -1 1 -1
X4,1 4 -2 0 1 0 -1 1
X4,2 4 2 0 1 0 -1 1
X5,1 5 1 1 -1 -1 0 1
X5,2 5 -1 1 -1 1 0 -1
X6 6 0 -2 0 0 1 0

G has 19 conjugacy classes of subgroups.

• d1 which unique representative is isomorphic to the trivial group,

• d2,1 with representative 〈
(
1 2

)
〉 isomorphic to C2,

• d2,2 with representative 〈
(
1 2

) (
3 4

)
〉 isomorphic to C2,

• d3 with representative 〈
(
1 2 3

)
〉 isomorphic to C3,

• d4,1 with representative 〈
(
1 3

) (
2 4

)
,
(
1 4

) (
2 3

)
〉 isomorphic to C2 × C2,

• d4,2 with representative 〈
(
1 2 4 3

)
〉 isomorphic to C4,

• d4,3 with representative 〈
(
1 4

)
,
(
2 3

)
〉 isomorphic to C2 × C2,

• d5 with representative 〈
(
1 2 3 4 5

)
〉 isomorphic to C5,

• d6,1 with representative 〈
(
1 2

)
,
(
1 2 3

)
〉 isomorphic to S3,

• d6,2 with representative 〈
(
1 3

) (
4 5

)
,
(
1 2 3

)
〉 isomorphic to S3,

• d6,3 with representative 〈
(
1 4

) (
2 5 3

)
〉 isomorphic to C6,

• d8 with representative 〈
(
3 4

)
,
(
1 4

) (
2 3

)
〉 isomorphic to D8,

• d10 with representative 〈
(
1 3

) (
2 4

)
,
(
1 2 5 4 3

)
〉 isomorphic to D10,
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• d12,1 with representative 〈
(
1 2 3

)
,
(
1 4

) (
2 3

)
〉 isomorphic to A4,

• d12,2 with representative 〈
(
1 2

)
,
(
3 5 4

)
,
(
4 5

)
〉 isomorphic to D12,

• d20 with representative 〈
(
1 3

) (
4 5

)
,
(
1 2 4 3

)
〉 isomorphic to F5, the Frobenius

group of order 20,

• d24 with representative 〈
(
1 3 2

)
,
(
2 5 4

)
,
(
1 2 4 3

)
〉 isomorphic to S4,

• d60 with representative 〈
(
1 4

) (
2 3

)
,
(
2 5 4

)
〉 isomorphic A5,

• d120 with the only representative isomorphic to G.

Note that there is only one subgroup H of G of index 2 which is isomorphic to A5 and constitutes
the class d60 (hence I2(G) = H). The following table shows the fixed point dimensions of the
nontrivial irreducible characters for all subgroups of G.

d1 d2,1 d2,2 d3 d4,1 d4,2 d4,3 d5 d6,1 d6,2

X1 1 0 1 1 1 0 0 1 0 1
X4,1 4 1 2 2 1 1 0 0 0 1
X4,2 4 3 2 2 1 1 2 0 2 1
X5,1 5 3 3 1 2 1 2 1 1 1
X5,2 5 2 3 1 2 2 1 1 0 1
X6 6 3 2 2 0 1 1 2 1 0

d6,3 d8 d10 d12,1 d12,2 d20 d24 d60 d120

X1 0 0 1 1 0 0 0 1 0
X4,1 1 0 0 0 1 0 0 0 0
X4,2 1 1 0 1 1 0 1 0 0
X5,1 1 1 1 0 1 0 0 0 0
X5,2 0 1 1 0 0 1 0 0 0
X6 1 0 0 0 0 0 0 0 0

Put L = {X1, X4,1, X4,2, X5,1, X5,2, X6}. The conjugacy classes of subgroups of G containing
p-subgroups are: d1, d2,1, d2,2, d3, d4,1, d4,2, d4,3, d5 and d8. Therefore

DL(G) =



1 0 1 1 1 0 0 1 0
4 1 2 2 0 1 1 2 1
4 3 2 2 1 1 2 0 1
5 3 3 1 2 1 2 1 1
5 2 3 1 2 2 1 1 1
6 3 2 2 0 1 1 2 0

 ,

and rank(DL(G)) = 6 which is equal to the number of nontrivial real irreducible characters of
G.

Let us analyze now all possible characters X which can occur as characters of tangent
module to Sn at the fixed point (denoted by V ) and exclude the corresponding postulated one
fixed point actions. There are 6 such characters.
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• X = 7X1; take

H1 = 〈
(
2 3

)
,
(
1 4

)
〉 ∈ d4,3,

H2 = 〈
(
2 3

)
,
(
2 4

) (
3 5

)
〉 ∈ d8,

P = 〈
(
2 3

)
〉 ∈ d2,1.

Then 〈H1, H2〉 = G and dimV P = 0 and, by Corollary 5.19, we conclude that V /∈
MNodd(G).

• X = 3X1 +X4,1; take

H1 = 〈
(
2 3

)
,
(
2 4

) (
3 5

)
〉 ∈ d8,

H2 = 〈
(
4 5

)
,
(
1 2 3

)
,
(
1 2

)
〉 ∈ d12,

P = 〈
(
4 5

)
,
(
2 3

)
〉 ∈ d4,3.

As in the previous case, 〈H1, H2〉 = G and dimV P = 0, and V /∈MNodd(G).

• X = 3X1 +X4,2; take

H1 = 〈
(
1 2

)
〉 ∈ d2,1,

H2 = 〈
(
2 5

) (
3 4

)
,
(
2 4

) (
3 5

)
〉 ∈ d4,1,

P = 〈id〉 ∈ d1.

Then 〈H1, H2〉 = G and dimV H1 + dimV H2 = 3 + 4 = 7 = dimV P . Therefore, V /∈
MNodd(G) by Corollary 5.20.

• X = 2X1+X5,1; takeH1,H2 and P from the previous case. Similarly, dimV H1+dimV H2 =
3 + 4 = 7 = dimV P , and V /∈MNodd(G).

• X = 2X1 +X5,2; take

H1 = 〈
(
2 4

) (
3 5

)
〉 ∈ d2,2,

H2 = 〈
(
1 2 3 4

)
〉 ∈ d4,2,

P = 〈id〉 ∈ d1.

Then 〈H1, H2〉 = G and dimV H1 + dimV H2 = 5 + 2 = 7 = dimV P and, again, V /∈
MNodd(G) by Corollary 5.20.

• X = X1 + X6; then dimV I2(G) = 1 and V /∈ MNone(G) by Corollary 5.26. However, we
cannot state that V /∈MNodd(G), since Corollary 5.26 concerns exclusively one fixed point
actions on spheres.
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Chapter 6

Answering the Smith question

This chapter contains a survey of results concerning the question formulated by Smith
in 1960.

Question 6.1. [65, footnote on p. 406] Assume a group G acts with two fixed points x and y
on a sphere Sn, n ≥ 0. Are the tangent spaces TxSn and TySn isomorphic as RG-modules?

First we present the cases of actions when the answer to the question is affirmative.
Further, we describe negative answers to the question between year 1978 and 1992. Since more
recent results are connected to two fixed point actions on disks, we cover this topic in a separate
section. Afterwards, we return to the Smith problem and describe some aspects concerning
computations of Smith sets which are fundamental concept of the modern theory. This part of
the thesis is based on the recent survey of Pawałowski [51].

For convenience, an action of a group G on a homotopy sphere Σ of dimension n with
exactly two fixed points and non-isomorphic tangent module structures at the two fixed points
will be refered as Smith exotic (G,n)-action. We may shorten it to just Smith exotic G-action
or even Smith exotic action if a group G and dimension n can be inferred from the context. We
also call Σ a Smith exotic G-sphere.

6.1 Affirmative answers

In this section we present the cases of groups for which the affirmative answer to the
Smith question is known, in chronological order.

One of the first answers was given by Atiyah and Bott in 1968 [1]. They excluded the
existence of Smith exotic actions of cyclic groups of odd prime orders. Two years earlier Milnor [31]
provided an affirmative answer for all groups in the special case of semi-free actions (that is,
actions with isotropy subgroups being trivial or the whole group). In 1969 an interesting property
was discovered by Bredon [7, Theorem II, p. 518] for cyclic groups of order being the power of
2. We obtain the following corollaries from the result of Bredon.

Theorem 6.2. [51, Theorem 1.3.1] Assume G is a cyclic 2-group G acting on a homotopy sphere
Σ of dimension n. Then, for any two points x, y ∈ ΣG, the difference TxΣ− TyΣ is divisible by
2f(n) for some unbounded increasing function f : N→ N.

Corollary 6.3. [51, Corollary 1.3.2] Assume G is a cyclic group of order 2k with k ≥ 1. Then,
there exists an integer Br(k) with the property that for any G-action on a homotopy sphere Σ of
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dimension at least Br(k) and arbitrary fixed points x, y ∈ ΣG, the tangent spaces TxΣ and TyΣ
are isomorphic as RG-modules.

From the corollary above, we conclude that there does not exists Smith exotic C2k -spheres
of dimensions greater or equal Br(k).

Using the results of Atiyah and Bott [1], Sanchez [60] was able to obtain a result con-
cerning actions of odd order groups satisfying some restrictions for fixed point sets of the actions
of subgroups.

Theorem 6.4. (Sanchez, 1976, [60, Theorem 4.10]) Assume a group G of odd order acts on
a homology sphere Σ with two fixed points x and y. Suppose that for any H ≤ G we have
ΣH = {x, y} or ΣH is connected. Then TxΣ and TyΣ are isomorphic as RG-modules.

We can prove the following.

Corollary 6.5. [51, Corollary 1.4.2] Assume that every element of a group G is of odd prime
power order. If G acts on a homology sphere with ΣG = x, y, then TxΣ and TyΣ are isomorphic
as RG-modules.

For the next affirmative result, let us recall that a group G acts pseudofreely on a manifold
M if for any g ∈ G the fixed point set M 〈g〉 is a discrete subset of M .

Theorem 6.6. (Illman, 1982, [26]) There are no pseudofree Smith exotic (G,n)-actions for any
group G and n ≥ 5.

A similar statement concerning Smith exotic C2n-actions on odd-dimensional spheres for
odd n was proved in 1988 by Suh.

Theorem 6.7. (Suh, 1988, [68, Corollary B]) For any odd positive integers n and k there does
not exist Smith exotic (C2n, 2k + 1)-actions.

6.2 Negative answers

In the years 1978-1985 Dovermann, Petrie and Randall developed the equivariant surgery
programme with the aim to construct group actions on manifolds with prescribed homotopy type
(see [20,21,53–59] for the details). Their methods allowed to obtain the following negative results

Theorem 6.8. (Petrie-Randall, 1985, [58, Theorem A’]) If G is an abelian group of odd order
with at least four noncyclic Sylow subgroups, then there is a Smith exotic G-action.

In the meantime, between 1980 and 1982, Cappell and Shaneson [10,11] were condutcing
rearearch concerning Smith problem for cyclic groups.

Theorem 6.9. (Cappell-Shaneson, 1980, [10, Theorem 2]) If G = C4k where k ≥ 2, then there
exist Smith exotic (G, 9)-actions.

Theorem 6.10. (Cappell-Shaneson, 1980, [10, Corollary 1A]) Let G = Cn, where n 6= 4 is
divisible by 4 and by at least one odd number greater than 1. There exist Smith exotic (G, 2l+ 1)-
actions for any l ≥ 4.
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Theorem 6.9 provides an exotic Smith action of C8 on S9. It can be proved using character
theory arguments that C8 is the group admitting Smith exotic actions of minimal order. Moreover,
it belongs to the folklore knowledge that 9 is the minimal dimension of the Smith exotic sphere.

Further results of Dovermann, Cho, Suh and Washington from the period 1984 − 1989
showed that for certain cyclic, dihedral and quaternion groups, there exist Smith exotic actions
on homotopy spheres, see [12–14, 19, 67]. The following results were obtained by the induction
procedure for appropriate group modules developed by Cho [14].

Theorem 6.11. (Cho, 1985, [12]) The generalized quaternion group of order 2k+1, Qk = 〈a, b|b2 =

a2k−1
, a2k = 1, bab−1 = a−1〉, admits Smith exotic actions provided k ≥ 19.

Theorem 6.12. (Cho, 1988, [13, Theorem A]) There exists a Smith exotic action of the dihedral
group of order 2m, for a sufficiently large m.

6.3 Two fixed point actions on disks

Smith exotic actions are closely related to two fixed point actions on disks with non-
isomorphic group module structures on the tangent spaces at the fixed points. Since there shall
be no confusion, we call these actions just exotic two fixed point actions on disks. In this section,
we recall a few results concerning such actions. Throughout the following two sections, we assume
that G is a group.

Definition 6.13. [51, Definition 2.4.2] We call two RG-modules U and V Oliver-equivalent
if there exists an exotic two fixed action on a disk with tangent spaces at the two fixed points
isomorphic to U and V respectively.

Let us denote by RO(G) the real representation group of a group G, that is the abelian
group which is the result of applying the Grothendieck construcion to the semigroup of all RG-
modules with the operation of direct sum. For a given subgroup H ≤ G and an RG-module
V , let us denote by ResGH(V ) the module V considered as the RH-module, that is the restric-
tion of the G-action on V to the H-action on V . This induces the restriction homomorphism,
ResGH : RO(G)→ RO(G), U − V 7→ ResGH(U)− ResGH(V ).

Definition 6.14. The primary group of G, denoted by PO(G), is the subgroup of all elements
U − V ∈ RO(G) such that ResGP (U) ∼= ResGP (V ) for any subgroup P ≤ G of prime power order.
The reduced primary group of G, denoted by P̃O(G), is the subgroup of PO(G) consisting of
all elements U − V ∈ PO(G) such that UG = V G = {0}.

It follows from the Smith theory that for any Oliver-equivalent RG-modules U and V we have
U − V ∈ P̃O(G). The second article of Oliver provides also the converse result.

Theorem 6.15. (Oliver, [43, Theorem 0.4]) If U −V ∈ P̃O(G) for some RG-modules U and V ,
then there exists an RG-module W such that U ⊕W and V ⊕W are Oliver-equivalent.

Corollary 6.16. [51, Theorem 2.4.3] An element of RO(G) is of the form U − V for some
Oliver-equivalent RG-modules U and V if and only if U − V ∈ P̃O(G).

It turns out that the rank of the reduced primary group can be expressed in terms of Laitinen
number. Before we do that, let us recall the definition of a real conjugacy class and of the Laitinen
number.
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Definition 6.17. The real conjugacy class of an element g ∈ G is the union of conjugacy
classes (g)± = (g) ∪ (g−1). The Laitinen number of G, denoted by λ(G), is the number of
distinct real conjugacy classes of G whose representatives are not of prime power order.

The result concerning the rank of primary groups reads as follows.

Theorem 6.18. (Laitinen-Pawałowski, [30, Lemma 2.1]) The following holds.

(1) If λ(G) = 0, then PO(G) = 0.

(2) If λ(G) ≥ 1, then rank(PO(G)) = λ(G) and rank(P̃O(G)) = λ(G)− 1.

6.4 Smith sets

The central object related to the modern approaches to the Smith question is the (pri-
mary) Smith set.

Definition 6.19. The Smith set of a group G, denoted Sm(G), is the set of elements U − V ∈
RO(G) such that there exists a two fixed point action on some homotopy sphere with the RG-
modules structures at the tangent spaces at the two fixed points isomorphic to U ⊕W and V ⊕W
respectively for some RG-module W .

Definition 6.20. The primary Smith set of G is the intersection of Sm(G) and P̃O(G). We
denote it by PSm(G).

The following theorem provides sufficient conditions for a group to have equal ordinary and
primary Smith sets.

Theorem 6.21. [30, p. 304] [49, p. 853] [50, Definition 2.4] If G has no element of order 8
or, otherwise, if for any element g ∈ G of order 2k, k ≥ 3, then Sm(G) = PSm(G). Moreover,
Sm(G) = PSm(G) if at least one of the following conditions hold.

(1) g or g−1 is conjugate to an odd power of g.

(2) dimW 〈g〉 > 0 for every irreducible RG-module W .

On the other hand, if G is a perfect group, then the primary Smith set of G equals the reduced
primary group, P̃O(G), see [51, Corollary 4.1.6].

Corollary 6.22. If G is a perfect group satisfying the assumptions of Theorem 6.21, then
Sm(G) = P̃O(G).

For a perfect group G, the Smith set, Sm(G), is trivial (consists of one element) whenever
λ(G) ∈ {0, 1} and it is infinite if λ(G) ≥ 2. Therefore there exists Smith exotic G-action if and
only if λ(G) ≥ 2.

Remark 6.23. In the case a group G satisfies the assumptions of the corollary above, we have
a natural lower bound for dimension of spheres admitting Smith exotic actions of G. This lower
bound is the number min{dimU |U − V ∈ P̃O(G)}.

For more detailed survey on results concerning the Smith sets, we refer the reader to [51].
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Chapter 7

New family of groups satisfying the
Laitinen Conjecture

In this chapter we study the Laitinen Conjecture which proposes negative answers to the
Smith question. We present the result concerning a new infinite family of groups which satisfy
this conjecture. The contents of this chapter is also contained in our latest publication [32]. Let
us provide the reader with the necessary background now.

Assume G is a group. Let us call two RG-modules U and V Smith equivalent if U ∼= Tx(Σ)
and V ∼= Ty(Σ) as RG-modules, for a smooth action of G on a homotopy sphere Σ with exactly
two fixed points x and y. We say that the Laitinen Condition is satisfied for G acting smoothly
on a homotopy sphere Σ with ΣG = {x, y}, if Σg is connected for any g ∈ G of order 2k, where
k ≥ 3.

The Laitinen Conjecture proposes negative answers to the Smith question concerning
actions on homotopy spheres. The conjecture reads as follows.

Conjecture 7.1. [30, Appendix] If G is an Oliver group with λ(G) ≥ 2, then there exist
non-isomorphic RG-modules U and V which are Smith equivalent and the action of G on the
homotopy sphere in question satisfies the Laitinen Condition.

The converse conclusion is always true [30] and Conjecture 7.1 is known to be true in
the following cases, [51].

(1) G is of odd order (and thus, by the Feit-Thompson Theorem, G is solvable).

(2) G has a cyclic quotient of odd composite order (for example, G is a nilpotent group with
three or more noncyclic Sylow subgroups).

(3) G is a nonsolvable group not isomorphic to Aut(A6) (in the case where G = Aut(A6), the
Laitinen Conjecture is false by [38]).

(4) G satisfies the Sumi Gnil-condition (the condition is defined below).

For a prime p, let us use the notation Op(G) for the smallest normal subgroup of G with G/Op(G)
a p-group. A subgroupH of a groupG is called large ifOp(G) ≤ H for some prime p. We denote by
L(G) the family of all large subgroups ofG. Let us callG a gap group if there exists an RG-module
V such that for any P < H ≤ G with P of prime power order, we have dimV P > 2 dimV H

and for any L ∈ L(G), dimV L = 0 holds. Denote by Gnil the smallest normal subgroup of G
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such that G/Gnil is nilpotent. We say that G satisfies the Sumi Gnil-condition if there exist two
elements a, b ∈ G of composite order which are not real conjugate in G, the equality aGnil = bGnil

holds and at least one of the following statements holds.

• |a| and |b| are even and the involutions of the cyclic subgroups 〈a〉 and 〈b〉 are conjugate
in G.

• a and b belong to the same gap subgroup of G.

Therefore, in checking the Laitinen Conjecture, we shall focus on finite solvable Oliver
groupsG of even order, such that each cyclic quotient ofG is either of even or of prime power order
and G does not satisfy the Sumi Gnil-condition. We refer to such a group G as a special Oliver
group. In general, however, Conjecture 7.1 is not true. It fails for example for G = Aut(A6) [38]
or G = S3 ×A4 (see [50] for more counterexamples).

We say that two RG-modules U and V are P-matched if for any subgroup P ≤ G of
prime power order, the restrictions ResGP (U) and ResGP (V ) are isomorphic as P -modules. In other
words, U and V are P-matched if and only if U − V ∈ PO(G).

In 2018, Pawałowski [51] proposed the following problem.

Problem 7.2. For which special Oliver groups G with λ(G) ≥ 2, there exist pairs of P-matched
and Smith equivalent RG-modules which are not isomorphic to each other?

Some examples of special Oliver groups G with λ(G) ≥ 2 such that no RG-modules in
question exist were already given in [50]. We present here a certain infinite family of special
Oliver groups with primary numbers at least 2, possessing pairs of P-matched Smith equivalent
RG-modules which are not isomorphic.

Suppose p and q are odd prime numbers such that q|(p − 1). Let D2pq be the dihedral
group of order 2pq and Cq be the cyclic group of order q. These groups have the following
presentations.

D2pq = 〈a, b|apq = b2 = 1, bab = a−1〉 and Cq = 〈c|cq = 1〉.

Let v be a primitive root modulo p which is not divisible by q (in case q|v, just take p+v instead
of v which is also a primitive root modulo p). Let ω be the remainder of v(p−1)(q−1)/q modulo
pq. Note that ω ≡ 1 (mod q) and the order of ω modulo p is q. Therefore ω 6≡ 1 (mod pq)
and ωq ≡ 1 (mod pq) by the Chinese Reminder Theorem. Consider the automorphism τ of
D2pq given by τ(a) = aω and τ(b) = b. The order of τ is q. Thus, we have a homomorphism
ϕ : Cq → Aut(D2pq), c 7→ τ . Define Gp,q as the following semidirect product.

Gp,q = D2pq oϕ Cq

The main theorem of this chapter can be stated as follows.

Theorem 7.3. (cf. Theorem 1.5) For any two odd primes p and q such that q|(p − 1), Gp,q is
a special Oliver group with λ(Gp,q) ≥ 2, possessing pairs of non-isomorphic P-matched Smith
equivalent RGp,q-modules.

Remark 7.4. Note that the theorem above confirms the Laitinen Conjecture for Gp,q’s since
the Laitinen Condition is naturally satisfied due to the lack of elements of order divisible by 8
in Gp,q’s.
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Remark 7.5. In the case where q = 2, N = {(aqs, 1)|s = 0, ..., p − 1} is a normal subgroup of
Gp,q isomorphic to the cyclic group of order p, such that the quotient Gp,q/N is a 2-group. Thus,
Gp,q is not an Oliver group. Moreover, any nontrivial element of Gp,q is of order 2, 4, or p, where
p is an odd prime. Therefore, by elementary character theory arguments and the result of Atiyah
and Bott [1, Thm. 7.15], any two Smith equivalent RGp,q-modules are isomorphic.

Fix odd primes p and q such that q|(p− 1). For a better presentation of the material, let
us introduce additionally the following symbols and concepts (G denotes a finite group).

• An RG-module V is said to satisfy the weak gap condition if for any P < H ≤ G such that
P is of prime power order, we have dimV P ≥ 2 dimV H .

• POLw(G) – the subgroup of PO(G) containing elements which can be written as U − V for
some RG-modules U and V satisfying the weak gap condition and such that dimWL = 0
for any L ∈ L(G) and W = U, V .

• Npq2 – the unique subgroup of Gp,q of index 2.

• IndGH : PO(H)→ PO(G) – the induction homomorphism defined for any subgroup H ≤ G
by the formula U − V 7→ IndGH(U) − IndGH(V ), where IndGH(W ) denotes the induced RG-
module from the RH-moduleW . This is a well-defined map since, if U and V are P-matched
RH-modules, then so are IndGH(U)− IndGH(V ) as RG-modules (we comment on this fact in
the subsequent part).

The chapter is organized as follows. First, we show that POLw(Npq2) 6= 0. In the next section, we
prove that Gp,q is a special Oliver group with λ(Gp,q) ≥ 2. The third section provides, for any
finite groups H ≤ G, the necessary and sufficient condition for IndGH : PO(H)→ PO(G) to be a
monomorphism. Finally, we prove Theorem 7.3 using the properties of the induction from Npq2

to Gp,q.

7.1 Nontriviality of a specific primary group

Note that Npq2 = {(al, cm)|l = 0, ..., pq − 1,m = 0, ..., q − 1}. Recall that Gp,q is the
semidirect product of D2pq and Cq defined by the homomorphism ϕ : Cq → Aut(D2pq) which
sends the generator c of Cq to the automorphism τ of D2pq such that τ(a) = aω and τ(b) = b,
where ω is so chosen number from the set {1, ..., pq−1} that ω 6≡ 1 (mod pq) and ωq ≡ 1 (mod pq).
Thus, we have

(1, c)(a, 1)(1, c)−1 = (1, c)(a, 1)(1, c−1) = (1, c)(a, c−1) = (aω, 1).

Thus, under the identifications a↔ (a, 1) and c↔ (1, c), Npq2 can be presented as

Npq2 = 〈a, c|apq = cq = 1, cac−1 = aω〉.

Let
N ′pq2 = 〈α, β, γ|αq = βp = γq = 1, γβγ−1 = βω, αβ = βα, αγ = γα〉.

Then N ′pq2 is isomorphic to the direct product of Cq = 〈α|αq = 1〉 with the Frobenius group Fp,q
generated by β and γ.

Lemma 7.6. Let f : N ′pq2 → Npq2 be given by f(α) = ap, f(β) = aq and f(γ) = c. Then f is a
group isomorphism.
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Proof. Note that f is a well-defined group homomorphism. Indeed, f(αq) = apq = 1, f(βp) =
apq = 1, f(γq) = cq = 1, f(γβγ−1) = caqc−1 = (cac−1)q = aωq = f(βω), f(αβ) = ap+q = aq+p =
f(βα), f(γαγ−1) = capc−1 = apω = ap = f(α). The equality apω = ap follows from the fact that
pq|p(ω − 1) since ω ≡ 1 (mod q).

Take any alcm ∈ Npq2 . Since p and q are different primes, we can find x, y ∈ Z such that
1 = xp+ yq and

f(αlxβlyγm) = aplxaqlycm = al(xp+yq)cm = alcm.

Hence f is surjective. Let us prove that it is injective as well. Suppose f(αxβycm) = 1. Then
apx+qycm = 1 which is the case only if pq|(px+ qy) and m is divisible by q. Since p|px and q|qy,
it follows that p|qy and q|px and this means p|y and q|x. As a consequence, αxβyγm = 1 and f
has the trivial kernel.

Put u ≡ ω (mod p) and, according to our assumptions, let p−1 = qr. Assume v1, ..., vr are
the representatives of the cosets of 〈u〉 in the multiplicative group Z∗p. Let (βvj ) = {βvjs|s ∈ 〈u〉}
and (γn) = {βmγn|0 ≤ m ≤ p − 1} for all 1 ≤ j ≤ r and 1 ≤ n ≤ q − 1. Following [27, 25.10
Theorem] the conjugacy classes of Fp,q are as follows.

class (1) (βvj ) (γn)

representative order 1 p q

size 1 q p

# of classes of a given type 1 r q − 1

Table 7.1: Conjugacy classes of Fp,q.

Let σt,x =
∑

s∈〈u〉 ζ
vtxs
p for x = 0, ..., p − 1, t = 1, ..., r, where ζp = e2πi. We have r

nonlinear irreducible characters of Fp,q given by χt(βx) = σt,x and χt(γn) = 0 for x = 0, ..., p−1,
t = 1, ..., r and n = 1, ..., q − 1. They are presented in the table below.

(1) (βvj ) (γn)

χ1 q σ1,vj 0
...

...
...

...
χr q σr,vj 0

Table 7.2: Nonlinear irreducible characters of Fp,q.

The following table contains the nonlinear irreducible characters of Npq2
∼= Cq × Fp,q.

g (1, 1) (1, βvj ) (1, γn) (αl, βvj ) (αl, γn) (αl, 1)

|g| 1 p q pq q q
|(g)| 1 q p q p 1
# (g) 1 r q − 1 (q − 1)r (q − 1)2 q − 1

ψs,t = ρs × χt q σt,vj 0 ζ lsq σt,vj 0 qζ lsq

Table 7.3: Nonlinear irreducible characters of Npq2 .
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Let Np = {(1, βs)|s = 0, ..., p−1}. Obviously, Np is a normal subgroup of Npq2 isomorphic
to Cp.

Lemma 7.7. Oq(Npq2) = Np and Op(Npq2) = Npq2 . As a result, all L ∈ L(Npq2) contain Np as
a subgroup.

Proof. It is obvious that Oq(Npq2) = Np. We show that there is no normal subgroup of Npq2 of
order q2 which would conclude the proof.

Suppose for the converse that N is a normal subgroup of Npq2 of order q2. There exists
g ∈ N of order q. Since N E Npq2 , we have (g) ⊆ N . We know by Table 7.3 that g belongs
to one of the following conjugacy classes: ((1, γn)), ((αl, γn)) or ((αl, 1)). Suppose g ∈ ((1, γn0))
for some n0 ∈ {1, ..., q − 1}. Since {(1, γn)|n = 0, ..., q − 1} = 〈(1, γn0)〉 ≤ N , it follows that
each class ((1, γn)) is contained in N . This yields at least p(q − 1) > q2 elements in N . A
contradiction. Let g ∈ ((αl0 , γn0)) for some l0, n0 ∈ {1, ..., q − 1}. Then, similarly as before,
considering 〈(αl0 , γn0)〉 ≤ N yields at least p(q− 1) > q2 elements in N and we can exclude this
case as well. Thus, all elements of order q of N belong to one of the classes ((αl, 1)). From Table
7.3 follows that there are q − 1 elements in these classes altogether. Moreover, every element of
N different from the identity is of order q. This yields |N | = q which is also a contradiction.

Since characters of any group G determine FG-modules up to isomorphism for F = R,C,
we shall use the same symbols for the characters and the FG-modules determined by them.
Moreover, if χ is the character of G determined by some FG-module, then by dimχH we mean
the fixed point dimension over F for a subgroup H acting on this FG-module. Note that in case
χ is a character of some RG-module then all such fixed point dimensions over R are equal as
considered over C – we can treat χ as a character of a CG-module as well.

Lemma 7.8. Let s 6= 0 and H be a subgroup of Npq2 of order p or q2. Then dimψHs,t = 0 for
any t = 1, ..., r.

Proof. Suppose |H| = p. Then H = Np and it follows from Table 7.3 that

dimψHs,t =
1

|H|
∑
h∈H

ψs,t(h) =
1

p

(
q +

p−1∑
x=1

σt,x

)
=

1

p

(
q +

p−1∑
x=1

∑
s∈〈u〉

e2πivtxs/p
)

=
1

p

(
q +

∑
s∈〈u〉

p−1∑
x=1

e2πivtxs/p
)

=
1

p

(
q +

∑
s∈〈u〉

(−1)
)

= 0.

(The last equality holds since there are q elements in 〈u〉 by the definition of u).

If |H| = q2, then, since the only nonzero values of ψs,t on elements of order q are taken
for the classes (αl, 1), it follows that

dimψHs,t <
1

q2

(
q +

q−1∑
l=1

|qζ lsq |
)

=
1

q2
(q + q(q − 1)) = 1

and dimψHs,t = 0.

Corollary 7.9. If s 6= 0, then 2 Reψs,t is an RNpq2-module satisfying the weak gap condition
and such that dim(2 Reψs,t)

L = 0 for any L ∈ L(Npq2).
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Proof. From the properties of real and complex irreducible representations, we know that 2 Reψs,t
is the character of a real irreducible Npq2-module since ψs,t is not real-valued. Take any L ∈
L(Npq2). We know by Lemma 7.7 that Np ≤ L. Thus, by Lemma 7.8, we get

dim(2 Reψs,t)
L = dim(ψs,t + ψs,t)

L = 2 dimψLs,t ≤ 2 dimψ
Np

s,t = 0.

It remains to show that 2 Reψs,t satisfies the weak gap condition. By means of Lemma 7.8, this
boils down to proving that

dim(2 Reψs,t) ≥ 2 dim(2 Reψs,t)
H

for any subgroup H ≤ Npq2 of order q. Then there exists h ∈ H which has one of the forms: h =
(1, γn), h = (αl, γn) or h = (αl, 1) for some l, n ∈ {1, ..., q−1}. Since ψs,t(1, γn) = ψs,t(α

l, γn) = 0
by Table 7.3, we have in the first and in the second case

2 dim(2 Reψs,t)
H = 2 · 2 · dimψHs,t = 4 · 1

q
· q = 4.

In the second case, since ψs,t(αl, 1) = qζ lsq and s 6= 0, it follows that

2 dim(2 Reψs,t)
H = 2 · 2 · dimψHs,t = 4 · 1

q
(q + q

q−1∑
l=1

ζ lsq ) = 4 · 1

q
(q + q · (−1)) = 0.

Thus, we get
dim(2 Reψs,t) = 2q > 4 ≥ 2 dim(2 Reψs,t)

H .

Lemma 7.10. Let s 6= 0. Then, for any t = 1, ..., r, the RG-modules U = 2 Reψs,t and V =
2 Reψq−s,t are not isomorphic and P-matched.

Proof. It follows from Table 7.3 that U and V are P-matched. Note that U = ρs × χt and
V = ρs × χt. By the similar computation as in the proof of Lemma 7.8, we establish ι(χt), the
Frobenius-Schur indicator of character χt.

ι(χt) =
1

|Fp,q|
∑
g∈Fp,q

χt(g
2) =

1

pq

(
q +

∑
|g|=p

χt(g
2)
)

=
1

pq

(
q +

∑
|g|=p

χt(g)
)

=
1

pq

(
q +

p−1∑
x=1

σt,x

)
= 0

for from the proof of Lemma 7.8 we know that
∑p−1

x=1 σt,x = −q. Thus, χt is not real-valued
and we can take x = 0, ..., p − 1 such that Im(χt(β

x)) 6= 0. Now, take l = 1, ..., q − 1 and put
g = (αl, βx). Clearly, g is an element of order pq. Then, U(g), the character of U evaluated on g
is equal to the number

U(g) = 2 Reψs,t(g) = 2 Re(ρs(α
l)χt(β

x))

= 2(Re(ρs(α
l)) Re(χt(β

x))− Im(ρs(α
l)) Im(χt(β

x))).

Analogously, V (g), the character of V evaluated on g is equal to

V (g) = 2 Reψq−s,t(g) = 2 Re(ρs(αl)χt(β
x))

= 2(Re(ρs(α
l)) Re(χt(β

x)) + Im(ρs(α
l)) Im(χt(β

x)))

6= U(g).

Corollary 7.11. POLw(Npq2) is nonzero.
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7.2 Gp,q is a special Oliver group with λ(Gp,q) ≥ 2

We divide the material contained in this section into three parts. In the first, we determine
conjugacy classes of Gp,q. Using this, we show that λ(Gp,q) ≥ 2. In the next part, we establish all
normal subgroups of Gp,q and infer the necessary information concerning the quotients of Gp,q.
Finally, we use the performed computations to prove that Gp,q is an example of a special Oliver
group.

7.2.1 Conjugacy classes of Gp,q

Any element of Gp,q is either of the form x1 = (bal, cm) or x2 = (al, cm) for some
l = 0, ..., pq − 1 and m = 0, ..., q − 1. In the first case, its inverse x−1

1 = (balω
−m
, c−m), while in

the second x−1
2 = (a−lω

−m
, c−m).

Let g ∈ Gp,q. We have the following possibilities.

(1) g = (bal0 , cm0). Then

x1gx
−1
1 = (bal(1+ωm0 )−l0ωm

, cm0) and x2gx
−1
2 = (ba−l(1+ωm0 )+l0ωm

, cm0).

Note that the expression l(1 + ωm0) − l0ωm can take any remainder modulo pq. Since ω ≡
1 (mod q), it follows that l(1 + ωm0)− l0ωm ≡ 2l − l0 (mod q) and substituting subsequent
values for l = 0, ..., pq − 1, we can obtain any pair of remainders of l(1 + ωm0) − l0 modulo
p and q (this follows since 1 + ωm0 cannot be divisible by p for ωm0 6≡ 1 (mod p) because
ωm0 ≡ 1 (mod p) holds if and only if m0 is divisible by (p − 1)/2 which is not possible if
m0 ∈ {1, ..., q − 1}). We conclude then from the Chinese Remainder Theorem, that for any
l′ = 0, ..., pq− 1, there exist l = 0, ..., pq− 1 such that l(1 + ωm0)− l0ω0 = l(1 + ωm0)− l0 ≡
l′ (mod pq). Therefore

(g) = {(bal, cm0)|l = 0, ..., pq − 1}.

Note that (b, cm0)n = (bn, cnm0). Hence |g| = 2q if m0 6= 0 and |g| = 2 if m0 = 0.

(2) g = (al0 , cm0), where m0 6= 0. Then

x1gx
−1
1 = (al(ω

m0−1)−l0ωm
, cm0) and x2gx

−1
2 = (a−l(ω

m0−1)+l0ωm
, cm0).

We have l(ωm0 − 1)− l0ωm ≡ −l0 (mod q) and substituting subsequent values for l, we can
achieve all remainders modulo p of l(ωm0 − 1) − l0ωm (ωm0 6≡ 1 (mod p) since otherwise
m0 had to be divisible by p − 1 which is not possible in the considered case). If r0 is the
remainder modulo q of l0, it follows then that

(g) = {(ar0+lq, cm0), (a−r0+lq, cm0)|l = 0, ..., p− 1}.

For any n ≥ 0

gn = (al0(1+ωm0+...+ω(n−1)m0 ), cm0) = (a
l0· 1−ωnm0

1−ωm0 , cnm0).

Thus q||g|. On the other hand p|1−ωqm0

1−ωm0 since 1 − ωqm0 is divisible by pq and p - 1 − ωm0 .
Moreover, 1 + ωm0 + ...+ ω(q−1)m0 ≡ q ≡ 0 (mod q), so pq|1−ωqm0

1−ωm0 and thus gq = (1, 1) from
which we conclude |g| = q.
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(3) g = (al0 , 1). The computations of conjugacy class elements reduce then to

x1gx
−1
1 = (a−l0ω

m
, 1) and x2gx

−1
2 = (al0ω

m
, 1).

If p - l0, then all the numbers from the set Sl0 = {±l0ωm|m = 0, ..., q − 1} give distinct
remainders modulo p – this follows from the definition of ω. Thus, we have (p − 1)/2 such
conjugacy classes, each with 2q elements and

(g) = {(al0ωm
, 1), (a−l0ω

m
, 1)|m = 0, ..., q − 1}

Moreover, for any n ≥ 0, gn = (anl0 , 1), so |g| = pq if q - l0 and |g| = p if q|l0.
If p|l0 and q - l0, then the set Sl0 reduces to two elements, (al0 , 1) and (a−l0 , 1). We have
(q − 1)/2 such classes and

(g) = {(al0 , 1), (a−l0 , 1)} and |g| = q.

Finally, the last class left is the class of the identity element, (g) = {(1, 1)}.

The following table summarizes the information about the conjugacy classes of Gp,q and orders
of its elements (recall that r = (p− 1)/q).

g (1, 1) B Es Cm Ds,m Fs Bm Al
|g| 1 2 p q q q 2q pq
|(g)| 1 pq 2q p 2p 2 pq 2q
# (g) 1 1 1

2r q − 1 1
2(q − 1)2 1

2(q − 1) q − 1 1
2(q − 1)r

Table 7.4: Conjugacy classes of Gp,q.

where

B = (b, 1), Es = (aqs, 1), s = 1, ..., p− 1,
Cm = (1, cm),m = 1, ..., q − 1, Ds,m = (as, cm),m = 1, ..., q − 1, q - s,
Fs = (aps, 1), s = 1, ..., q − 1, Bm = (b, cm),m = 1, ..., q − 1,

Al = (al, 1), p, q - l.

Lemma 7.12. λ(Gp,q) = 1
2(q − 1)(r + 1). Thus λ(Gp,q) ≥ 2.

Proof. We establish first the real conjugacy classes of Gp,q whose elements are not of prime power
order. Let g ∈ G be such an element. Obviously, we can consider only those g which are the
distinguished representatives of conjugacy classes. It follows from Table 7.4 that g ∈ (Bm) or
g ∈ (Al) for some m = 1, ..., q − 1 and l not divisible by p and q. In the first case, g = (b, cm)
and g−1 = (b, c−m), so (g) 6= (g−1). This yields (q − 1)/2 real conjugacy classes of the form
(Bm)± = (Bm) ∪ (Bq−m) for any m = 1, ..., (q − 1)/2. In case g ∈ (Al), we have g = (al, 1) and
g−1 = (a−l, 1) and g is conjugate to g−1,

(b, 1)(al, 1)(b, 1)−1 = (a−l, 1).

Thus, each of the classes (Al) constitute the real conjugacy class. Therefore

λ(Gp,q) =
1

2
(q − 1) +

1

2
(q − 1)r =

1

2
(q − 1)(r + 1).
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7.2.2 Normal subgroups and quotients of Gp,q

Lemma 7.13. If N E Gp,q, then |N | ∈ {1, p, q, pq, 2pq, pq2, 2pq2}.

Proof. |G| has the following set of divisors

{1, 2, p, q, 2p, 2q, pq, q2, 2pq, 2q2, pq2, 2pq2}.

We show that |N | /∈ {2, 2p, 2q, q2, 2q2}. Assume 2||N |. Then there is some element of order 2
in N . Since N is a normal subgroup of Gp,q, it follows from Table 7.4 that (B) ⊆ N and thus
|N | ≥ pq. Observe that pq > 2, 2p, 2q, 2q2. Hence |N | /∈ {2, 2p, 2q, 2q2}.

Now, suppose |N | = q2. We conclude from Table 7.4 that N E Npq2 . However, this
possibility was already excluded in the proof of Lemma 7.7.

Consider the following subgroups of Gp,q.

N2pq = {(bεal, 1)|ε = 0, 1, l = 0, ..., pq − 1} Np = {(aqs, 1)|s = 0, ..., p− 1}
Nq = {(aps, 1)|s = 0, ..., q − 1} N1

pq = {(al, 1)|l = 0, ..., pq − 1}

and
N2
pq = {(aqs, cm)|s = 0, ..., p− 1,m = 0, ..., q − 1}.

Lemma 7.14. Npq2 , N2pq, N
1
pq, N

2
pq, Np and Nq are the only proper normal subgroups of Gp,q.

Moreover, N2pq
∼= D2pq, N1

pq
∼= Cpq, N2

pq
∼= Fp,q, Np

∼= Cp and Nq
∼= Cq.

Proof. It follows from Table 7.4 that all the subgroups mentioned in the Lemma consist of the
whole conjugacy classes and thus are normal. Clearly, N2pq

∼= D2pq, N1
pq
∼= Cpq, N2

pq
∼= Fp,q (since

N2
pq is not abelian and the unique nonabelian group of order pq is Fp,q), Np

∼= Cp and Nq
∼= Cq.

We show that there are no other proper normal subgroups in Gp,q.

Assume for the converse that there exists a proper normal subgroup N of Gp,q such that
N /∈ {Np, Nq, N

1
pq, N

2
pq, N2pq, Npq2}. From Lemma 7.13, we have

|N | ∈ {p, q, pq, 2pq, pq2}.

If |N | = pq2, then the only possibility is N = Npq2 which is a contradiction.

Suppose |N | = 2pq. Then there exists an element of order 2 contained in N . Thus,
(B) ⊆ N . Since N 6= N2pq, it follows that g = (x, cm) ∈ N for some x ∈ D2pq and m 6= 0. Since
(1, 1) ∈ N , (B) ⊆ N and |{(1, 1)} ∪ (B)| = pq + 1, it follows that |(g)| < pq. We conclude then
from Table 7.4 that g ∈ (Cm) or g ∈ (Ds,m) for some s not divisible by q. Thus Cm ∈ N or
Ds,m ∈ N . Suppose Ds,m ∈ N . Then, for n ≥ 1,

Dn
s,m = (as(1+ωm+...+ω(n−1)m), cnm)

and Dn
s,m = Dsn,(nm (mod q)) for any n = 1, ..., q−1, where sn 6= 0 and (nm (mod q)) denotes the

remainder of nm modulo q. Hence S = (Ds,m)∪(Ds2,(2m (mod q)))∪ ...∪(Dsq−1,((q−1)m (mod q))) ⊆
N . However, |S| = 2p(q − 1) > pq. A contradiction. This means that Cm ∈ N . Therefore
〈Cm〉 ≤ N and thus, for anym = 1, ..., q−1, (Cm) ⊆ N . On the other hand, |(C1)∪ ...∪(Cq−1)| =
p(q − 1) < pq − 1 which means that Ds,m ∈ N for some m 6= 0 and q - s which we have already
excluded.
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Assume |N | = pq. Then N has no element of order 2 and, since N 6= N1
pq, Cm ∈ N or

Ds,m ∈ N for some m 6= 0 and q - s. The latter case implies |N | > pq. Thus Cm ∈ N . Suppose
that one of the elements Al or Fs is contained in N for some p, q - l and s = 1, ..., q − 1. If
Al ∈ N , we obtain a contradiction for this leads to |N | > pq (for 〈Al〉 = N1

pq). If Fs ∈ N , then
(F1) ∪ ... ∪ (Fq−1) ⊆ N . On the other hand, there exist an element of order p in N and we
conclude from Table 7.4 that (E1) ∪ ... ∪ (Ep−1) ⊆ N . Thus,

|N | ≥ |{(1, 1)} ∪
q−1⋃
r=1

(Cr) ∪
q−1⋃
s=1

(Fs) ∪
p−1⋃
t=1

(Et)|

= 1 + p(q − 1) + 2 · 1

2
(q − 1) + 2q · 1

2
r = pq + q − 1 > pq.

Thus, we obtain a contradiction. Hence

N = {(1, 1)} ∪ (C1) ∪ ... ∪ (Cq−1) ∪ (E1) ∪ ... ∪ (Ep−1) = N2
p,q

which contradicts our assumption.

Let |N | = q and g ∈ N be an element of order q. If g ∈ (Cm) or g ∈ (Ds,m) for some
m 6= 0 and q - s, we conclude from Table 7.4 that this implies |N | > q. Thus, g ∈ (Fs) which
means that it is impossible that N 6= Nq.

If |N | = p, Table 7.4 leads immediately to a contradiction.

Corollary 7.15. Op(Gp,q) = Gp,q, Oq(Gp,q) = N2pq and O2(Gp,q) = Npq2. Therefore, we have
L(Gp,q) = {N2pq, Npq2 , Gp,q}.

Since Gp,q is the semidirect product of D2pq and Cq, it can be presented as follows.

Gp,q = 〈a, b, c|apq = b2 = 1, bab−1 = a−1, cq, cac−1 = aω, cbc−1 = b〉

Thus, we can identify a with (a, 1), b with (b, 1) and c with (1, c).

Lemma 7.16. Gp,q/N1
pq
∼= C2q, Gp,q/N2

pq
∼= D2q, Gp,q/Np

∼= Cq ×D2q and Gp,q/Nq is a group
not of prime power order which is not nilpotent.

Proof. Define ϕ1
pq : Gp,q → C2q = 〈d|d2q = 1〉 by ϕ1

pq(a) = 1, ϕ1
pq(b) = dq, ϕ1

pq(c) = d2. Obviously

ϕ1
pq(a

pq) = ϕ1
pq(b

2) = ϕ(cq) = ϕ1
pq(baba) = 1

and
ϕ1
pq(cac

−1) = ϕ1
pq(a

ω) = ϕ1
pq(cbc

−1b−1) = 1

and ϕ1
pq is a well-defined group homomorphism. It is easy to observe that Kerϕ1

pq = N1
pq and

that ϕ1
pq is surjective. Thus Gp,q/N1

p,q
∼= C2q.

Let ϕ2
pq : Gp,q → D2q = 〈d, e|dq = e2 = 1, ede = d−1〉 be given by ϕ2

pq(a) = d, ϕ2
pq(b) = e

and ϕ2
pq(c) = 1. We have

ϕ2
pq(a

pq) = ϕ2
pq(b

2) = ϕ(cq) = ϕ2
pq(baba) = ϕ2

pq(cbc
−1b−1) = 1

and
ϕ2
pq(cac

−1) = d = dω = ϕ2
pq(a

ω).
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Thus ϕ2
pq is a well-defined epimorphism. Moreover,

bεalcm ∈ Kerϕ2
pq ⇔ eεdl = 1⇔ ε = 0, q|l,m = 0, ..., q − 1

and Kerϕ2
pq = {(aqs, cm)|s = 0, ..., p− 1,m = 0, ..., q − 1} = N2

pq.

Put ϕp : Gp,q → Cq ×D2q = 〈d|dq = 1〉 × 〈e, f |eq = f2 = 1, fef = e−1〉, ϕp(a) = (1, e),
ϕp(b) = (1, f) and ϕp(c) = (d, 1). Obviously,

ϕp(a
pq) = ϕp(b

2) = ϕp(c
q) = ϕp(baba) = ϕp(cbc

−1b−1) = (1, 1).

Moreover, ϕp(cac−1) = (1, e) = (1, eω) = ϕp(a
ω) since i ≡ 1 (mod q). Since ω ≡ 1 (mod q),

it follows that (1, eω) = (1, e). Hence ϕp is a well-defined homomorphism. Obviously, ϕp is
surjective and bεalcm ∈ Ker(ϕp) if and only if l and m are divisible by q and ε = 0. Therefore
Ker(ϕp) = {aqs|s = 0, ..., p− 1} = Np.

Since the order of Gp,q/Nq equals 2pq, Gp,q/Nq is not of prime power order. Suppose
for the converse that Gp,q/Nq is nilpotent. This means that Gp,q/Nq is the direct product of its
Sylows and, since |Gp,q/Nq| is the product of three distinct primes, we conclude that Gp,q/Nq

has to be cyclic. Let dNq be the generator of Gp,q/Nq. If d = (bal, cm) for some l = 0, ..., pq − 1
and m = 0, ..., q − 1, then |d| ≤ 2q and it follows that (dNq)

2q = 1 in Gp,q/Nq. This contradicts
that Gp,q/Nq is of order pq. Thus, d = (al, cm). If m 6= 0, then dq = (1, 1) and we obtain a
contradiction. Hence, d = (al, 1). In this case, however, dp = (apl, 1) ∈ Nq which leads, again, to
a contradiction.

7.2.3 Gp,q is a special Oliver group

We will need the following results of Sumi.

Theorem 7.17. [71, Theorem 1.2] Let G be a group with no large subgroup of prime power
order. Moreover, suppose that [G : O2(G)] = 2 and Op0(G) 6= G for a unique odd prime p0 and
that G does not have an element of order divisible by 4 and there is an element g ∈ G of order
2 not belonging to O2(G) such that 2|O2(CG(g))| ≥ |CG(g)| and O2(CG(g)) is a p0-group. Then
G is not a gap group.

Lemma 7.18. [70, p.35, first paragraph] If G is a group which has a large subgroup of prime
power order, then G is not a gap group.

Lemma 7.19. [69, pp. 982,984] For any n ≥ 3, the dihedral group D2n is not a gap group.

Now, we can prove the following.

Lemma 7.20. N1
pq, N2pq, Npq2 and Gp,q are not gap groups.

Proof. Let us prove that Gp,q is not a gap group by means of Theorem 7.17. By Corollary 7.15
and the fact that Gp,q does not have an element of order divisible by 4, it suffices to show
that there exists an element g ∈ Gp,q of order 2 not belonging to O2(Gp,q) = Npq2 such that
2|O2(CGp,q(g))| ≥ |CGp,q(g)| andO2(CGp,q(g)) is a q-group. We show that this holds for g = (b, 1).
We have

(bεal, cm)(b, 1) = (b, 1)(bεal, cm)⇔ (bεalb, cm) = (b1+εal, cm)
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which holds if and only if l = 0. Thus CGp,q(g) = {(bε, cm)|ε = 0, 1,m = 0, ..., q − 1} ∼= C2q.
Obviously O2(C2q) ∼= Cq is a q-group and the inequality 2|O2(CGp,q(g))| ≥ |CGp,q(g)| holds.
Hence Gp,q is not a gap group.

Note that both N1
pq and Npq2 contain Np as a normal subgroup (since Np E Gp,q). Thus

Oq(N1
pq) = Oq(Npq2) = Np and Np is a large subgroup for both N1

pq and Npq2 . Hence, we get
from Lemma 7.18 that N1

pq and Npq2 are not gap groups.

The statement for N2pq is the direct corollary from Lemma 7.19.

Lemma 7.21. Gp,q has no cyclic quotient of odd composite order and Gp,q does not satisfy the
Sumi Gnil

p,q-condition.

Proof. It follows by Lemma 7.14 and Lemma 7.16 that Gp,q has no cyclic quotient of odd com-
posite order. It follows by Lemma 7.16 that Gnil

p,q = N1
pq. Assume xN1

pq = yN1
pq for some ele-

ments x, y ∈ Gp,q of even order. This means that x = (bal, cm) and y = (bal
′
, cm

′
) for some

l, l′ = 0, ..., pq − 1 and m,m′ = 0, ..., q − 1 and

xy−1 = (al
′ωm−m′−l, cm−m

′
) ∈ N1

pq.

Thus m′ = m and (x) = (y) by Table 7.4.

Suppose there exist x′, y′ ∈ Gp,q of composite order such that one of them, say x′, is of
odd order. Then x′ ∈ N1

pq by Table 7.4. Thus, the only subgroups of Gp,q which can contain both
x′ and y′ must have N1

pq as a subgroup. These subgroups are precisely N1
pq, N2pq, Npq2 and Gp,q.

We showed in Lemma 7.20 that they are not gap groups. This shows that Gp,q does not satisfy
the Sumi Gnil

p,q-condition.

Lemma 7.22. Npq2 has no normal subgroup P of prime power order such that the quotient
Npq2/P is cyclic. The same statement holds for N2pq.

Proof. Suppose that P E Npq2 and Npq2/P is cyclic. Then |P | ∈ {1, p, q, q2}. If |P | = 1, then
Npq2/P ∼= Npq2 and we obtain a contradiction. The case |P | = q2 is not possible by the proof of
Lemma 7.7.

Let |P | = q and Npq2/P = 〈gP 〉 for some g ∈ Npq2 . If g 6∈ (Al) for any l not divisible by p
and q, then, by Table 7.4, |g| ≤ p which is a contradiction since |Npq2/P | = pq. Suppose g ∈ (Al)
for some l not divisible by p and q. It follows by Table 7.4 that precisely one of the elements C1,
F1 or Ds,m, for some s and m not divisible by q, is the generator of P . It follows by Table 7.3
that C1 cannot be the generator of P . Indeed, by Lemma 7.6, C1 corresponds in N ′pq2 to (1, γ),
which yields at least p(q − 1) elements in P (P contains the whole conjugacy classes) which is
a contradiction. In the case F1 = (ap, 1) generates P , notice that gn ∈ 〈F1〉 = P if and only if
p|n which yields |Npq2/P | = p and a contradiction. Thus P = 〈Ds,m〉. Since Ds,m corresponds
in Npq2 to (αl, γm) for some l ∈ {1, ..., q − 1}, it follows from Table 7.3 that |P | > q which is a
contradiction.

Suppose |P | = p. In this case, however, it follows from Lemma 7.6 and Table 7.3 that
P = Np. Suppose Npq2/P = 〈(al, cm)P 〉. As before, |Npq2/P | ≤ q in case m 6= 0, which is not
possible. If Npq2/P = 〈(al, 1)P 〉, then (al, 1)q = (aql, 1) ∈ Np and, again, |Npq2/P | ≤ q.

Assume that there exists P E N2pq of prime power order such that N2pq/P is cyclic.
Then |P | ∈ {1, 2, p, q}. Obviously, P cannot be the trivial subgroup and, since there is no normal
subgroup of order 2 in N2pq, it follows that |P | ∈ {p, q}. This means that P is a subgroup of N1

pq.
If |P | = p, then P = {(aqs, 1)|s = 0, ..., p−1}. Since |(bal, 1)| = 2 for any l = 0, ..., pq−1, it follows

68



7. New family of groups satisfying the Laitinen Conjecture

that N2pq/P = 〈(al, 1)P 〉. Suppose (al, 1)nP = (bal
′
, 1)P for some n ≥ 0 and l′ = 0, ..., pq − 1.

This means that (bal
′−nl, 1) = (bal

′
, 1)(al, 1)−n ∈ P . A contradiction which implies that N2pq/P

is not cyclic. The case |P | = q is analogous.

Lemma 7.23. Gp,q is a special Oliver group.

Proof. Obviously, Gp,q is not of odd order. Since D2pq and Cq are solvable groups, it follows
that Gp,q, as the semidirect product of D2pq and Cq, is solvable as well. Moreover, by Lemma
7.21, we know that Gp,q has no cyclic quotient of odd composite order and does not satisfy the
Sumi Gnil

p,q-condition. Thus, we only have to show that Gp,q is an Oliver group. Suppose for the
converse that this is not true. Then, there exist subgroups P E H E Gp,q such that Gp,q/H and
P are of prime power orders and H/P is cyclic. Then, by Lemma 7.13, |H| ∈ {2pq, pq2, 2pq2}
and thus, by Lemma 7.14, H ∈ {N2pq, Npq2 , Gp,q}. However, by Lemmas 7.14, 7.16 and 7.22, it
follows that neither of the groups N2pq, Npq2 and Gp,q has a normal subgroup of prime power
order such that the quotient by it is cyclic. This concludes the proof.

7.3 Injectivity of the induction for primary groups

Assume H is a subgroup of a group G and consider the induction homomorphism

IndGH : RO(H)→ RO(G), U − V 7→ IndGH(U)− IndGH(V )

and its restriction to PO(H), that is

IndGH : PO(H)→ PO(G).

Let s denote the number of real conjugacy classes of G which have nonzero intersection with H
and whose elements are not of prime power order. Put t = λ(H) = rank(PO(H)) and let m be
the number of real conjugacy classes of G. Obviously, s ≤ t.

Consider the image Im(IndGH : PO(H) → PO(G)). Clearly, it is a torsion-free subgroup
of PO(G) and let r be its rank. Thus, IndGH : PO(H)→ PO(G) is a monomorphism if and only
if r = t.

If A is a matrix with entries in the field K, then we denote by rankK(A) the rank of A
over K.

Lemma 7.24. Assume A ∈ GL(n,C) is of finite order. Then tr(A−1) = tr(A).

Lemma 7.25. The rank of Im(IndGH : PO(H)→ PO(G)) is at most s, that is r ≤ s.

Proof. Pick the bases ε = {ε1, ..., εt} and ε′ = {ε′1, ..., ε′t′} of PO(H) and PO(G) respectively
(t′ = λ(G)). We use the column convention for elements from PO(H) and PO(G) – we represent
them as t× 1 and t′ × 1 vectors respectively, where the coordinates are given by the bases ε and
ε′ accordingly. The induction map is a linear map and denote by M its matrix form in bases ε
and ε′.

Let (g1)±, ..., (gt′)
± be the ordered list of all real conjugacy classes of G whose elements

are not of prime power order and let χ be the map which evaluates the characters of the elements
of PO(G) on the classes (gi)

± for i = 1, ..., t′. Note by Lemma 7.24 that χ is well-defined and

χ : PO(G)→ Rt
′
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ε′j 7→

ε
′
j(g1)
...

ε′j(gt′)

 .

Let X = (χij)1≤i,j≤t′ be the matrix of χ, that is χij = ε′j(gi). Clearly, rankR(X) = t′. Consider
the composition

χ ◦ IndGH : PO(H)
IndG

H−−−→ PO(G)
χ−→ Rt

′
.

The matrix of χ ◦ IndGH is a t′ × t matrix A = (aij)1≤i≤t′,1≤j≤t given by A = XM . Thus,
aij = IndGH(εj)(gi) for 1 ≤ i ≤ t′ and 1 ≤ j ≤ t. It follows from Theorem 2.10 that rankR(A) ≤ s.
On the other hand, since rankR(X) = t′, it follows that rankR(M) = rankR(A). Therefore
rankR(M) ≤ s.

Now, since M is an integer matrix and R is an extension of Q, we conclude that the real
rank of M equals its rational rank, that is rankR(M) = rankQ(M) = r′. We show that r = r′

which would mean that r ≤ s and would complete the proof.

Obviously, r ≥ r′. Let V = 〈ε′1, ..., ε′t′〉. Take any r′ + 1 elements v1, ..., vr′+1 from
Im(IndGH : PO(H) → PO(G)). They can be considered as vectors from V . Note that they are
linearly dependent (over Q), since the dimension of Im(IndGH : PO(H)→ PO(G)) considered as
a subspace of V equals r′. Let

α1v1 + ...+ αr′+1vr′+1 = 0 (1)

be a nontrivial combination. Suppose {αi1 , ..., αik} is the set of all nonzero coefficients and
αij = pj/qj , where pj , qj ∈ Z \ {0} for 1 ≤ j ≤ k. Multiplying both sides of equality (1) by
q1...qk, we get a nontrivial integer combination of vj ’s. Thus r ≤ r′ and, as a result, r = r′.

Lemma 7.26. IndGH : PO(H)→ PO(G) is a monomorphism if and only if (h)±G ∩H = (h)±H for
any h ∈ H not of prime power order.

Proof. Suppose that for any h ∈ H not of prime power order we have (h)±G ∩H = (h)±H . Let x1

and x2 be two different elements of PO(H). We must show that IndGH(x1) 6= IndGH(x2). There
exists h ∈ H not of prime power order with x1(h) 6= x2(h). We have two possibilities. The first
one is when (h)H = (h−1)H = (h)±G ∩H. Thus

(h)G ∩H = (h−1)G ∩H = (h)±G ∩H = (h)±H = (h)H

and it follows by Theorem 2.10 that

IndGH(x1)(h) = |CG(h)|
|CH(h)|x1(h) and IndGH(x2)(h) = |CG(h)|

|CH(h)|x2(h).

Therefore IndGH(x1)(h) 6= IndGH(x2)(h) since x1(h) 6= x2(h). In the second possibility, we have
(h)H 6= (h−1)H . If (h)G ∩ H = (h)H , we have already proved the assertion. Assume (h)H (
(h)G ∩H. Note that

((h)G ∩H) ∪ ((h−1)G ∩H) = (h)±G ∩H = (h)H ∪ (h−1)H .

Clearly (h−1)H ⊆ (h−1)G ∩ H, which in connection with (h)H ( (h)G ∩ H gives from the
equalities above (h)G∩H = (h−1)G∩H = (h)H ∪ (h−1)H . Note that |CH(h)| = |CH(h−1)|. Thus
by Theorem 2.10 and Lemma 7.24, we get

IndGH(x1)(h) = 2 |CG(h)|
|CH(h)|x1(h) and IndGH(x2)(h) = 2 |CG(h)|

|CH(h)|x2(h).
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Thus IndGH(x1)(h) 6= IndGH(x2)(h).

We prove now the converse. Suppose IndGH : PO(H) → PO(G) is a monomorphism.
Assume for the contrary that there exists h ∈ H not of prime power order with (h)±G ∩ H 6=
(h)±H . Then (h)±H ( (h)±G ∩ H and thus s < t. Hence, it follows by Lemma 7.25 that we have
rank(Im(IndGH : PO(H)→ PO(G))) < t and IndGH : PO(H)→ PO(G) is not injective which is a
contradiction with our assumption.

Corollary 7.27. Assume N is a normal subgroup of G. Then IndGN : PO(N) → PO(G) is a
monomorphism if and only if (n)±G = (n)±N for any n ∈ N not of prime power order.

Corollary 7.28. Ind
Gp,q

Npq2
: PO(Npq2)→ PO(Gp,q) is a monomorphism.

Proof. By Corollary 7.27, it suffices to show that for any n ∈ Npq2 not of prime power order, we
have (n)±Gp,q

= (n)±Npq2
. We know by Table 7.4 that n has to be of order pq and n = (al, 1) for

some l not divisible by p and q. From the proof of Lemma 7.12, we know that n−1 = (a−l, 1) and
n are conjugate in Gp,q. Thus (n)±Gp,q

= (n)Gp,q . On the other hand n and n−1 are not conjugate
in Npq2 . Otherwise, there would exists (al

′
, cm

′
) such that

(al
′
, cm

′
)(al, 1)(al

′
, cm

′
)−1 = (a−l, 1).

Thus (ali
m′
, 1) = (a−l, 1) which cannot be true since lim′ ≡ l 6≡ −l (mod q) for q - l. Therefore

(n−1)Npq2
6= (n)Npq2

and it follows by Table 7.3 that |(n±)Npq2
| = 2q. On the other hand,

|(n)±Gp,q
| = |(n)Gp,q | = 2q, and the assertion follows.

7.4 Proof of Theorem 7.3

Let H ≤ G be a subgroup of a group G. Assume that U and V are two RH-modules
satisfying the weak gap condition and such that dimWL = 0 for any L ∈ L(H) and W = U, V .
Then, by [40, Lemma 1.2, Lemma 1.7], the RG-modules IndGH(U) and IndGH(V ) satisfy the weak
gap condition and dimW ′L = 0 for any L ∈ L(G) and W ′ = IndGH(U), IndGH(V ). In particular,
we have

IndGH(POLw(H)) ⊆ POLw(G).

Let us recall the following result which is a corollary from [39, Theorem 1.6].

Theorem 7.29. Let G be an Oliver group and U and V two P-matched RG-modules satisfying
the weak gap condition and such that dimUL = dimV L = 0 for any L ∈ L(G). Then there exists
an RG-module W such that U ⊕W and V ⊕W are Smith equivalent.

Hence, as a corollary from the discussion above, we get the following theorem.

Theorem 7.30. Let H be a subgroup of an Oliver group G. Any element of POLw(H) is repre-
sentable as the difference U − V in RO(H) of P-matched RH-modules U and V satisfying the
weak gap condition and the condition that dimUL = dimV L = 0 for any L ∈ L(H). For these
RH-modules U and V , there exists an RG-module W such that the RG-modules IndGH(U) ⊕W
and IndGH(V )⊕W are Smith equivalent.

We can prove now the main theorem of this section.
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Proof of Theorem 7.3. Lemmas 7.12 and 7.23 tell us that Gp,q is a special Oliver group with
primary number at least 2. By Corollary 7.11, there exist non-isomorphic RGp,q-modules U
and V with U − V ∈ POLw(Npq2). Thus, by Corollary 7.28, Ind

Gp,q

Npq2
(U) and Ind

Gp,q

Npq2
(V ) are not

isomorphic RGp,q-modules. Clearly, U and V can be chosen to satisfy the weak gap condition
and such that dimUL = dimV L = 0 for any L ∈ L(Npq2). Therefore, by Theorem 7.30, it follows
that there exists an RGp,q-module W such that Ind

Gp,q

Npq2
(U)⊕W and Ind

Gp,q

Npq2
(V )⊕W are Smith

equivalent. Obviously, these modules are not isomorphic.
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Notation

• Algebraic topology:

– ∂M – the boundary of a manifold M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.11

– Hk(X,A;R),Hk(X,A;R) – homology and cohomology of the pair (X,A) with
coefficients in R, when A = ∅, we omit A and if R = Z, we omit R . . . . . . . . . . . . . p.11

– [M ],[M,∂M ] – fundamental class of a manifold M – without and with
boundary respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.11

– α ∪ β – the cup product of cohomology classes α and β . . . . . . . . . . . . . . . . . . . . . . . . p.11

– 〈·, ·〉 – the Kronecker pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.11

– λ – the oriented intersection product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.11

– λ – the unoriented intersection product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.12

– Int(X) – the interior of the topological space X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.14

• Geometry and group actions:

– XG – the fixed point set of the G-action on X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.9

– TxM – the tangent space at point x to the manifold M . . . . . . . . . . . . . . . . . . . . . . . . p.11

– κ(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.11

– A ·B – oriented intersection number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.11

– A ·B – unoriented intersection number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.12

– D(E) – disk bundle of the bundle E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.13

– GyM – the action of a group G on a manifold M . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.19

– D(θ) – differential of the transformation θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.20

– expp – exponential map at point p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.22

– C(H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.33

• Abstract and linear algebra:

– mW – m-fold direct sum of W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.8

– char(F ) – characteristic of the field F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.8

– dimV H – the dimension of the fixed point space V H . . . . . . . . . . . . . . . . . . . . . . . . . . . p.10

– span(A) – the linear span of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.11

– Tor(A,B) – the Tor functor applied to he pair (A,B) . . . . . . . . . . . . . . . . . . . . . . . . . . p.33

– DL(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.37

– DG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.38
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– tr(A) – the trace of the matrix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.69

• Representation theory:

– χ – the conjugate of the character χ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.8

– Re(χ) – the real part of the character χ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.8

– ι(χ) – the Frobenius-Schur indicator of the character χ . . . . . . . . . . . . . . . . . . . . . . . . . . p.9

– IndGH(V ) – the induced module of V from H to G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.10

– Ker(V ) – the kernel of module V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.39

– RO(G) – the representation group of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.55

– ResGH – the restriction homomorphism from G to H . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.55

– PO(G) – the primary group of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.55

– P̃O(G) – the reduced primary group of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.55

– POLw(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.59

– ζn = e2πi/n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.60

– σt,x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.60

– ψs,t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.60

• Group theory:

– H ≤ G – H is a subgroup of the group G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.9

– [G : H] – the index of the subgroup H in G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.10

– CK(x) – the centralizer in K of x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.10

– H E G – H is a normal subgroup of the group G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.27

– Gsol – the smallest normal subgroup of G such that G/Gsol is solvable . . . . . . . . . . p.29

– Gqp ,Gq,G,Gqp(G),Gq(G),G(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . pp.31,32

– 〈H1, H2〉 – the subgroup generated by the subgroups H1 and H2 . . . . . . . . . . . . . . . p.32

– rG – the number of real irreducible representations of G diminished by 1 . . . . . . .p. 38

– A(G),B(G) – good subgroup triples of G of type A and B respectively . . . . . . . . . p.41

– I2(G) – the intersection subgroups of G of index at most 2 . . . . . . . . . . . . . . . . . . . . p. 41

– SmallGroup(n, k) – the group of order n and id k from the
GAP SmallGroup library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.46

– (g)± = (g) ∪ (g−1) – the real conjugacy class of g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.56

– λ(G) – the Laitinen number of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.56

– Gnil – the smallest normal subgroup of G such that G/Gnil is nilpotent . . . . . . . . . p.57

– Op(G) – the smallest normal subgroup of G such that G/Op(G) is a p-group . . . p.57

– L(G) – the family of large subgroups of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.57

– N oϕ H – the semidirect product of N and H defined by the homomorphism
ϕ : H → Aut(N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.58

– Gp,q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.58

• Algorithms:

– MNodd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p.39
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– MNone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.39

– MNFone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.40

– MTone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.40

– M(n,G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.40

• Smith problem:

– Sm(G) – the Smith set of the group G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.56

– PSm(G) – the primary Smith set of the group G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.56

– Br(k) – the Bredon number of k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p.54
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