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Abstract. We construct for each 0 < p ≤ 1 an infinite collection
of subspaces of ℓp that extend the example of Lindenstrauss from
[21] of a subspace of ℓ1 with no unconditional basis. The struc-
ture of this new class of p-Banach spaces is analyzed and some
applications to the general theory of Lp-spaces for 0 < p < 1 are
provided. The introduction of these spaces serves the purpose to
develop the theory of conditional quasi-greedy bases in p-Banach
spaces for p < 1. Among the topics we consider are the existence of
infinitely many conditional quasi-greedy bases in the spaces ℓp for
p ≤ 1 and the careful examination of the conditionality constants
of the “natural basis” of these spaces.

1. Introduction

The subject of finding estimates for the rate of approximation of a
function by means of essentially nonlinear algorithms with respect to
biorthogonal systems and, in particular, the greedy approximation al-
gorithm using bases, has attracted much attention for the last twenty
years, on the one hand from researchers interested in the applied nature
of non-linear approximation and, on the other hand from researchers
with a more classical Banach space theory background. Although the
basic idea behind the concept of a greedy basis had been around for
some time, the formal development of a theory of greedy bases was
initiated in 1999 by Konyagin and Temlyakov in the important paper
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[20]. Subsequently, the theory of greedy bases and its derivates devel-
oped very fast as many fundamental results were discovered, and new
ramifications branched out. As a result, this is an area with a fruitful
interplay between abstract methods from classical Banach space theory
and other, more concrete techniques, from approximation theory. The
reader interested in approximation theory and/or numerical algorithms
may consult the paper [29] or the book [30].

In this article we will concentrate on the functional analytic aspects
of this theory, where, rather unexpectedly, the theory of greedy bases
has links to old classical results and also to some open problems. See
[6, Chapter 10]) for an introductory approach to the subject from this
angle.

To set the mood let us start by recalling the main concepts we will re-
quire from approximation theory in the general setting of quasi-Banach
spaces. Let Y be a quasi-Banach space and assume that B = (yn)∞n=1 is
a semi-normalized fundamental M-bounded Markushevich basis in Y,
that is, B generates the whole space Y and there is a sequence (y∗

n)∞n=1

in the dual space Y∗ such that (yn,y
∗
n)∞n=1 is a biorthogonal system

with infn ‖yn‖ > 0 and supn ‖y
∗
n‖ < ∞. From now on we will refer to

any such B simply as a basis. A basic sequence will be a sequence in
Y which is a basis of its closed linear span. Note that semi-normalized
Schauder bases are a particular case of bases. Given A ⊆ N finite,
SA = SA[B,Y] : Y → Y will denote the coordinate projection on A
with respect to the basis B,

SA(f) =
∑

n∈A

y∗
n(f)yn, f ∈ Y.

For f ∈ Y and m ∈ N we define

Gm(f) = SA(f),

where A ⊆ N is a set of cardinality m such that |y∗
n(f)| ≥ |y∗

k(f)|
whenever n ∈ A and k 6∈ A. The set A depends on f and may not
be unique; if this happens we take any such set. Thus, the operator
Gm is well-defined, but is not linear nor continuous. The biorthogonal
system (yn,y

∗
n)∞n=1 (or the basis B) is said to be quasi-greedy provided

that there is a constant C ≥ 1 so that for every f ∈ Y and for every
m ∈ N we have

‖Gm(f)‖ ≤ C‖f‖.

Equivalently, by [32, Theorem 1], (yn,y
∗
n)∞n=1 is a quasi-greedy system

if

lim
m→∞

Gm(f) = f for each f ∈ X.



ON CERTAIN SUBSPACES OF ℓp FOR 0 < p ≤ 1 3

Of course, unconditional bases are quasi-greedy, but the converse does
not hold in general. Konyagin and Telmyakov provided in [20] the first
examples of conditional (i.e., not unconditional) quasi-greedy bases.
Subsequently, Wojtaszczyk proved in [32] that, for 1 < p < ∞, the
space ℓp has a conditional quasi-greedy basis, and Dilworth and Mitra
constructed in [11] a conditional quasi-greedy basis of ℓ1. These papers
were the forerunners of an industry devoted to studying the existence of
conditional quasi-greedy bases in Banach spaces. The reader will find
in the articles [2,5,7,9,12,14–16,24,32] some of the main achievements
in this direction of research. It is important to point out here that
not all Banach spaces have a quasi-greedy basis. Indeed, this is the
case, for instance, with C([0, 1]) since, by a result of Dilworth et al.
[9] the only L∞-space with a quasi-greedy basis is c0. (The Banach
space old-timers will have made the connection with a classical result
of Lindenstrauss and Pe lczyński [22] stating that the canonical c0-basis
is, up to equivalence, the only unconditional basis of an L∞-space.)

From the general point of view of approximation theory, and more
specifically the practical implementation of the greedy algorithm for
general biorthogonal systems, it is very natural to ask about the ex-
istence of conditional quasi-greedy bases in the context of nonlocally
convex quasi-Banach spaces. Since Lp([0, 1]) for 0 < p < 1 has trivial
dual (making it therefore impossible for Lp to have a basis), the first
nonlocally convex spaces that come to mind as objects of study for hav-
ing conditional quasi-greedy bases are the spaces ℓp for 0 < p < 1 (see
[1, Problem 12.8]). However, the tools that have been developed for
building conditional quasi-greedy bases in Banach spaces break down
when local convexity is lifted. For instance, the Dilworth-Kalton-
Kutzarova method, DKK-method for short, for constructing condi-
tional quasi-greedy bases in a Banach space X ([9], cf. [2]) relies on
the existence of a complemented subspace S of X with a symmetric
basis. A careful inspection of the method reveals that the boundedness
of the averaging projection with respect to the symmetric basis of S

is a key ingredient in the recipe, hence it stops working when S is not
locally convex. Since ℓp for p < 1 is prime [28], it is hopeless to to try
to build a quasi-greedy basis in ℓp by means of the DKK-method.

These initial drawbacks in making headway create a breeding ground
for guesswork. Since quasi-greedy bases in quasi-Banach spaces are not
too far from being unconditional (they are unconditional for constant
coefficients, see [1, Theorems 3.8 and 3.10]) and the standard unit vec-
tor system is the unique, up to equivalence, normalized unconditional
basis of ℓp [18], one could be tempted to speculate that it will be the
unique quasi-greedy basis in ℓp, which would disprove the existence of
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conditional quasi-greedy bases in the space. In this paper we refute
this conjecture and show that indeed such bases of ℓp for p < 1 exist.
In fact, the conditional bases we find belong to the more demanding
class of almost greedy bases.

The existence of a conditional quasi-greedy basis of ℓp shows in par-
ticular that ℓp does not have a unique quasi-greedy basis, so we discuss
the question of how many mutually non-equivalent quasi-greedy basis
there are in ℓp, 0 < p < 1.

Our construction of conditional almost greedy bases in ℓp for 0 < p <
1, is inspired and at the same time extends the example of Dilworth
and Mitra from [11] of a conditional almost greedy basis in ℓ1. Their
example was derived in turn from the basic sequence constructed by
Lindenstrauss [21] of a monotone, conditional, basic sequence in ℓ1
whose closed linear span is a L1-space which is not isomorphic to ℓ1
and therefore has no unconditional basis. Adapting this script to our
context, in Section 3 we manufacture for each 0 < p < 1 and each
sequence of integers δ = (dn)∞n=1 contained in the interval [2,∞), a
Lp-space denoted Xp(δ) which is not isomorphic to ℓp; in particular,
Xp(δ) does not have an unconditional basis. The spaces Xp(δ) do have,
however, a Schauder basis Xp(δ) whose features are studied in Section 4.
We prove that for each 0 < p ≤ 1 and each sequence δ, the basis Xp(δ)
is quasi-greedy and superdemocratic, hence almost greedy. As a by-
product of our work we identify the q-Banach envelope of the spaces
Xp, 0 < p < q ≤ 1, as being ℓq.

To quantify the conditionality of a quasi-greedy basis B in a quasi-
Banach space Y, in Section 5 we study the growth of the constants

km = km[B,Y] := sup
|A|≤m

‖SA[B,Y]‖, m = 1, 2. . . .

It follows from a result of Dilworth et al. [9, Lemma 8.2] that quasi-
greedy bases in Banach spaces cannot be “too conditional” in the sense
that they satisfy the estimate

km = O(logm). (1.1)

Moreover, there are examples of quasi-greedy bases in certain Banach
spaces for which the logarithmic growth is actually attained (see [13,
§6]). More recently, it was noticed in [4] that there is a entire class of
spaces, namely super-reflexive Banach spaces, on which (1.1) can be
improved to

km = O((logm)1−ǫ)

for some 0 < ǫ < 1. Taking into consideration the role played by
the convexity of the space in the proof of inequality (1.1), it is not
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surprising that the conditionality constants of quasi-greedy bases in
general p-Banach spaces satisfy the estimate

km = O((logm)1/p). (1.2)

We will see this in Corollary 5.4 after we set in motion the machinery
specific to nonlocally convex spaces to prove it. Next, the optimality of
(1.2) within p-Banach spaces is established by proving that the reverse
inequality, (logm)1/p = O(km), is attained in ℓp for some conditional
quasi-greedy basis. These discussions naturally lead to attempts to
construct a conditional quasi-greedy basis B with prescribed growth of
km. In Section 6 we develop new techniques to produce such bases in ℓp
and Xp (see Theorem 6.9). Since, roughly speaking, the growth of the
sequence (km)∞m=1 is stable under (permutative) equivalence of bases,
i.e., B1 ∼ B2 implies km[B1] ≈ km[B2], our result yields the existence of
uncountably many (permutatively) non-equivalent quasi-greedy basis
in ℓp and Xp (Corollary 6.11). The novelty in our approach has to
be seen also in that our techniques are valid for the limit case p = 1.
This nicely complements the main result from [8], where Dilworth et
al. showed that if 1 ≤ p <∞ then ℓp has a continuum of permutatively
non-equivalent almost greedy bases.

We close in Section 7 with a qualitative and quantitative study of
dual Lindenstrauss bases that gives continuity to the results on the
subject by Berná et al. [7].

Notation and Terminology. Throughout this paper we use stan-
dard facts and notation from Banach spaces and approximation theory
(see e.g. [6]). The reader will find the required specialized background
and notation on greedy-like bases in quasi-Banach spaces in the recent
article [1]; however a few remarks are in order.

We write F for the real or complex scalar field. As is customary, we
put δk,n = 1 if k = n and δk,n = 0 otherwise. The unit vector system
of FN will be denoted by (en)∞n=1, i.e., en = (δk,n)∞k=1. For N ∈ N, we
shall use Sm(x) for the projection of x = (x(n))∞n=1 ∈ FN onto its first
N coordinates, i.e.,

Sm(x) =
m∑

n=1

x(n)en.

and supp(x) will be the set {n ∈ N : x(n) 6= 0}. We will denote by 〈·, ·〉
the natural pairing in FN × FN, that is, we put

〈(an)∞n=1, (bn)∞n=1〉 =
∞∑

n=1

anbn
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whenever the series
∑∞

n=1 anbn converges.
Given a quasi-Banach space Y and A ⊆ Y, [A] denotes the smallest

closed subspace of Y containing A. Given a Markushevich basis B =
(yn)∞n=1 of Y and N ∈ N we put

Y
(N)[B] = [yn : 1 ≤ n ≤ N ] and B(N) = (yn)Nn=1.

If A ⊆ N is finite and ε = (εn)n∈A are signs, we put

1ε,A = 1ε,A[B,Y] =
∑

n∈A

εnyn.

If εn = 1 for all n ∈ A we denote 1ε,A simply by 1A. The same symbol
1A will be used as well to denote the indicator function of a measurable
set A ⊆ [0, 1].

If (Bn)∞n=1 are Markushevich bases in quasi-Banach spaces (Yn)∞n=1

and 0 < q < ∞, (
⊕∞

n=1 Bn)q denotes the obvious Markushevich basis

in the quasi-Banach space (
⊕∞

n=1Yn)p. If Bn = B for every n ∈ N, we

put ℓq(B) = (
⊕∞

n=1 Bn)
q
.

We say that two Markushevich bases B1 = (yj)
∞
j=1 and B2 = (zj)

∞
j=1

are equivalent if there is and isomorphism T from [B1] onto [B2] such
that T (yj) = zj for all j ∈ N. We say that the Markushevich bases B1

and B2 are permutatively equivalent, and we write B1 ∼ B2, if there is
a bijection π : N → N such that (yπ(j))

∞
j=1 and B2 are equivalent.

The quasi-norm of a linear operator T between two quasi-Banach
spaces X and Y will be denoted by ‖T‖X→Y. If X and Y are clear from
context, we simply write ‖T‖ = ‖T‖X→Y. Note that if Y is a p-Banach
space, 0 < p ≤ 1, then

‖T‖ℓp→Y = sup
n∈N

‖T (en)‖Y. (1.3)

Other more specific notation will be introduced when needed.

2. Preliminaries on Lp-spaces for 0 < p < 1

Lp-spaces (1 ≤ p ≤ ∞) were introduced in [22] by Lindenstrauss and
Pe lczyński as Banach spaces whose local structure resembles that of the
spaces ℓp. Thus a Banach space X is an Lp-space if there is a constant
λ such that for every finite dimensional subspace V of X there is a
finite dimensional subspace W containing V and a linear isomorphism
T : W → ℓnp with ‖T‖‖T−1‖ ≤ λ.

For 0 < p < 1, the theory of Lp-spaces was developed in [19] by
Kalton, who gave an alternative definition more suitable for p-Banach
spaces based on the notion of local complementability. Kalton de-
fined a closed subspace Y of a quasi-Banach space X as being locally
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complemented in X if there is a constant λ such that for every finite-
dimensional subspace V of X and every ε > 0 there is a linear operator
T : V → Y with ‖T‖ ≤ λ and ‖T |V∩Y − IdV∩Y‖ ≤ ε. Then he went on
and defined a quasi Banach space to be an Lp-space for 0 < p < 1 if
it is isomorphic to a locally complemented subspace of Lp(µ) for some
measure µ. One of the advantages of working with this definition ver-
sus adopting the one from the case p ≥ 1 was that it guarantees that
the spaces Lp([0, 1]) for p < 1 are Lp-spaces.

Let us briefly summarize the relation, depending on the value of p,
between the classical definition by Lindenstrauss and Pe lczyński of Lp-
spaces and that of Kalton’s. For p = 1 both definitions are equivalent.
For 1 < p <∞ the difference is that, with Kalton’s definition, Hilbert
spaces turn out to be Lp-spaces. For 0 < p < 1 its is unknown whether
Kalton’s definition implies the classical one (see the introductory para-
graph of [19, Section 6]). Nevertheless, the converse in trivially true.
Hence, If a p-Banach space Y (0 < p < 1) possesses an increasing net
(Vi)i∈I of finite-dimensional subspaces such that ∪i∈IVi = Y and Vi is

uniformly isomorphic to ℓ
dim(Vi)
p , then Y is a Lp-space.

Since Kalton’s paper there has been little effort at a systematic treat-
ment of Lp-spaces for 0 < p < 1. It is the authors’ opinion, however,
that these spaces are of interest and therefore deserve such a treatment.
The reasons for bringing up Lp-spaces for 0 < p < 1 here are twofold.
Firstly, they provide a very natural general framework for the new p-
Banach spaces that we will introduce below. Secondly, we will extend
to p < 1 the classical Lindenstrauss-Pe lczyński result on unconditional
bases in L1-spaces [22, Theorem 6.1] asserting that the only L1-space
with an unconditional basis is ℓ1.

The proof of Theorem 2.2 relies on the concept of pseudo-dual spaces.
Following [19], a quasi-Banach space Y is said to be a pseudo-dual if
there is a Hausdorff vector topology on Y for which the unit ball is
relatively compact. By the Banach-Alaoglu theorem, every dual space
is a pseudo-dual.

Remark 2.1. For every 0 < p < ∞, ℓp is a separable pseudo-dual
space. In fact, every quasi-Banach space Y with a boundedly complete
basis B = (yn)∞n=1 is a pseudo-dual space. To see this, without loss of
generality we can assume that B is monotone. Then BY is compact
with respect to the topology of the coordinate convergence.

Theorem 2.2. Suppose Y is an Lp-space (0 < p ≤ 1) with an uncon-
ditional basis. Then Y is isomorphic to ℓp.
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Proof. Assume by contradiction that B is an unconditional basis of Y
and that Y is not isomorphic to ℓp. Then, by [19, Theorem 6.4], Y is
isomorphic to a locally complemented subspace of ℓp which cannot be
complemented in ℓp because ℓp is prime [28]. By [19, Theorem 4.4], Y
is not a pseudo-dual space, and so by Remark 2.1, the basis B is not
boundedly complete. We deduce the existence of an element f in Y

and of pairwise disjoint sets (An)∞n=1 such that

inf
n
‖SAn

[B,Y](f)‖ > 0.

By unconditionality it follows that (SAn
[B,Y](f))∞n=1 is equivalent to

the canonical basis of c0 and so c0 would be isomorphic to a subspace
of ℓp, which is an absurdity by Stiles’ structural results on ℓp from
[28]. �

3. A new family of subspaces of ℓp, 0 < p ≤ 1.

In 1964, Lindenstrauss [21] proved the existence of a subspace of ℓ1,
namely ker(Q), where Q is any bounded linear map from ℓ1 onto
L1([0, 1]), which is not isomorphic to a dual space. This space pro-
vided the first example of a Banach space with a basis but with no
unconditional basis, despite being a subspace of a space having an un-
conditional basis. This section is devoted to generalizing Lindenstrauss
example to the range 0 < p < 1. Moreover we will rig our construction
in such a way that we produce at once, for every p < 1, an infinite
collection of p-spaces fulfilling the desired properties.

The natural way to construct the quotient Qp from ℓp onto Lp[0, 1]
is to start with finite dimensional spaces (Vj)

∞
j=1 of Lp[0, 1] such that

⋃∞
j=1Vj is dense in Lp[0, 1] and each Vj is isometric to a space ℓ

n(j)
p .

Then we identify ℓp with (
⊕∞

j=1Vj)p and for v = (vj)
∞
j=1 we define

Qp(v) =
∑∞

j=1 vj ∈ Lp[0, 1].
To control the properties of Qp, in particular to be able to handle

kerQp we must be more specific. We start our construction with a
sequence of integers δ = (dn)∞n=1 in the interval [2,∞). Using δ we will
construct a suitable sequence (hj)

∞
j=1 in BLp[0,1] so that Qp(ej) = hj for

j ∈ N. The map constructed starting with δ will be denoted Qp(δ).
Before we get started, some terminology is in order. Given an in-

creasing map σ : [a,∞)∩Z → Z there is a unique non-decreasing map
ρ : [σ(a),∞) → [a,∞) such that ρ(σ(j)) = j for every n ∈ [a,∞) and
ρ(k) ≤ j whenever k < σ(j). In fact, ρ can be defined by

ρ(k) = max{n ∈ [a,∞) : σ(n) ≤ k} = min{n ∈ [a,∞) : k < σ(n + 1)}.
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We will refer to ρ as to the left inverse of σ. Note also that ρ(k) = j if
and only if k ∈ [σ(j), σ(j+ 1)). It is straightforward to check that if ρi
is the left inverse of σi, i = 1, 2, then ρ1 ◦ρ2 is the left inverse of σ2 ◦σ1.
Given n ∈ N, and a map σ : A ⊆ N → N, we will denote by σ(n) the nth
iteration of σ, and we will use the convention σ(0) = IdN. The domain
of σ(n) decreases as n increases. Now we start our construction. For a
sequence δ = (dn)∞n=1 with dn ≥ 2 for n = 1, 2, . . . we set

σ(k) = 2 +
k−1∑

j=1

dj, k ∈ N, (3.1)

and for A ⊆ N put

Σ(A) =
⋃

k∈A

[σ(k), σ(k + 1)). (3.2)

Since (σ(k))∞k=1 is increasing and σ(1) = 2 > 1, the sequence

Λ(n) = σ(n)(1), n ∈ N ∪ {0}.

is increasing as well. We will also consider the left inverse of σ,

ρ : [2,∞) → N,

and the left inverse of Λ,

Γ: N → N ∪ {0}.

We have Λ(0) = 1 and Λ(1) = 2. Therefore, Γ(1) = 0 and Γ(2) = 1.
Let us define a partition (Jn)∞n=0 of N by

Jn = [Λ(n),Λ(n+ 1)), n ≥ 0. (3.3)

Our construction of the sequence of functions (hj)
∞
j=1 begins here

with h1 = 1[0,1). Note that {1} = J0 so the first step produces Λ(1)− 1
functions. Our second step will consist in defining hj for j ∈ J1 =

[2, 2 + d1). Let (Ij)
1+d1
j=2 be the obvious partition of the unit interval

[0, 1) into intervals of length d−1
1 . Set λj = d

−1/p
1 for j ∈ [2, 2 + d1) and

define
hj = λj1Ij , j = 2, . . . , 1 + d1,

thus in the first two steps we defined Λ(2) − 1 functions.
Let us explain the general recursive process. Assume that hj, Ij and

λj with λpj |Ij| = 1 have been defined for j < Λ(n). Given j ∈ Jn,
i.e., n = Γ(j), there is unique k ∈ Jn−1 such that j ∈ [σ(k), σ(k + 1)),

that is k = ρ(j). Let (Ij)
σ(k)+dk−1
j=σ(k) be the obvious partition of Ik into

intervals of length d−1
k |Ik|. Define

λj = d
−1/p
k λk = d

−1/p
ρ(j) λρ(j),
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and, for j = σ(k), . . . , σ(k) + dk − 1 and k = Λ(n), . . . ,Λ(n+ 1) − 1,

hj = λj1Ij .

Now, for k ∈ N we put

rk = rk(δ) = −d
−1/p
k

σ(k+1)−1∑

j=σ(k)

ej ,

and

xk = xk(δ) = ek − rk. (3.4)

Let us summarize some properties of this construction and of Qp(δ)
that will be used below and that can be directly deduced from the
definition.

Fact 3.1. For each n ∈ N ∪ {0}, In = (Ij)j∈Jn is a partition on [0, 1)
into intervals. Moreover In+1 refines In and

diam(In) = max{|Ij| : j ∈ Jn} ≤ 2−n.

Hence, limn diam(In) = 0.

Fact 3.2. ‖Qp‖ = 1.

Fact 3.3. For each n ∈ N∪{0}, Qp is an isometry from [ej : j ∈ Jn] onto

the subspace L
(n)
p of Lp consisting of all functions which are constant

in each interval of the partition In.

Fact 3.4. Qp(xk) = 0 for every k ∈ N.

Fact 3.5. For every k ∈ N, supp(rk) = [σ(k), σ(k + 1)) ⊆ [k + 1,∞),
and ‖rk‖ = 1.

Fact 3.6. For every k ∈ N, supp(xk) = {k}∪ [σ(k), σ(k+1)) ⊆ [k,∞),
and ‖xk‖ = 21/p, so from (3.2) we get supp(

∑
k∈A akxk) ⊆ A ∪ Σ(A)

for A ⊂ N, finite.

Fact 3.7. Since ([σ(k), σ(k+ 1)))∞k=1 is a partition of [2,∞), if A1 and
A2 are disjoint subsets of N, then Σ(A1) and Σ(A2) also are disjoint.

Fact 3.8. For each coordinate j ≥ 2 there are exactly two vectors xk

with xk(j) 6= 0. To be precise, xj(j) = 1, xρ(j)(j) = −d
−1/p
ρ(j) < 0, and

xk(j) = 0 otherwise.

Fact 3.9. From Fact 3.8 we easily see that for a linear combination

x =
∑∞

k=1 akxk we have x(1) = a1 and x(j) = aj − aρ(j)d
−1/p
ρ(j) for j ≥ 2.
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Fact 3.10. From Fact 3.5 we deduce that, if supp(x) ⊆ [1, σ(k)), in
particular if x ∈ [xj : 1 ≤ j < k], then

‖x+ λxk‖
p = ‖x‖p + |x(k) + λ|p + |λ|p − |x(k)|p

for any scalar λ.

Fact 3.11. In particular, Fact 3.5 yields that, if supp(x) ⊆ [1, σ(k)),
then ‖x‖ = ‖x− x(k)xk‖.

Next, we define a sequence of functionals (x∗
j)

∞
j=1 in FN. Given j ∈ N,

let m ∈ N ∪ {0} be such that j ∈ Jm = [Λ(m),Λ(m + 1)), that is,
m = Γ(j). Then ρ(n)(j) is defined for 0 ≤ n ≤ m, and we have
ρ(n)(j) ∈ Jm−n. In particular, ρ(m)(j) = 1. Set

x∗
j = x∗

j (δ) = ej +
m∑

n=1

(
n∏

r=1

d
−1/p

ρ(r)(j)

)
eρ(n)(j) =

m∑

n=0

(
n∏

r=1

d
−1/p

ρ(r)(j)

)
eρ(n)(j),

(3.5)
where, by convention, we put

∑0
j=1 λj = 0 and

∏0
j=1 λj = 1 for every

family (λj). Let us next record some elementary properties of (x∗
j )

∞
j=1.

For k ∈ N and n ∈ N ∪ {0} put

Jk,n = [σ(n)(k), σ(n)(k + 1)). (3.6)

Fact 3.12. Since σ(1) = 2 we have that J1,n = Jn for every n ∈ N and
so (J1,n)∞n=0 is a partition of N. For a general k ∈ N, since k+ 1 ≤ σ(k)
we have Jk,n < Jk,n+1 for every n ≥ 0. In particular, (Jk,n)∞n=0 are
pairwise disjoint integer intervals.

Fact 3.13. x∗
j(k) ≥ 0 for every j and k ∈ N.

Fact 3.14. x∗
j(j) = 1 for every j ∈ N.

Fact 3.15. ‖x∗
j‖∞ = 1 for every j ∈ N.

Fact 3.16. supp(x∗
j) = {ρ(n)(j) : 0 ≤ n ≤ Γ(j)} ⊆ [1, j] for every

j ∈ N.

Fact 3.17. (x∗
j )
N
j=1 is a basis of {x ∈ F

N : supp(x) ⊆ [1, N ]}. Hence,
the linear span of (x∗

j)
∞
j=1 is c00.

Fact 3.18. We infer from Fact 3.16 that, for every j ∈ N,

supp(x∗
j) \ σ(supp(x∗

j )) = {1}.

Fact 3.19. If we regard (x∗
j )

∞
j=1 as an infinite matrix, the “column”

(x∗
j(k))∞j=1 satisfies

x∗
j(k) =

n∏

r=1

d
−1/p

ρ(r)(j)
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if j ∈ Jk,n for some n ≥ 0, and x∗
j(k) = 0 if j /∈ ∪∞

n=0Jk,n.

Fact 3.20. We infer from Fact 3.19 that x∗
j (σ(k)) = d

−1/p
k x∗

j (k).

Fact 3.21. Also from Fact 3.19, if j ∈ Jk,n then |x∗
j(k)| ≤ 2−n/p.

For 0 < p ≤ 1 and δ a sequence of integers in [2,∞), throughout this
paper we will use the following notation

Xp = Xp(δ) = [xk : k ∈ N] ⊂ ℓp,

Xp = Xp(δ) = (xk)
∞
k=1,

and
X ∗
p = X ∗

p (δ) = (x∗
k)

∞
k=1,

where xk is as in (3.4) and x∗
k is as in (3.5).

We will also consider finite-dimensional spaces and finite sequences

associated to Xp(δ). With the convention that X
(0)
p (δ) = {0}, for n ∈ N

we define
X (n)
p = X (n)

p (δ) = (xk)
n
k=1.

and
X

(n)
p = X

(n)
p (δ) = X

(n)
p [Xp(δ)] = [xk : 1 ≤ k ≤ n],

We will denote by X
∗
p = X

∗
p(δ) the dual space of Xp(δ).

Remark 3.22. The only precedent in the literature for the spaces Xp(δ)
and the sequences Xp(δ) is the case when p = 1 and dn = 2 for n ∈ N.
The resulting space for those values is indeed the Lindesntrauss space
from [21] to which we referred at the beginning of the section. For
other sources alluding to this relevant example, see e.g. [27, Proof of
Theorem 15.5], [22, Example 8.1], and [17].

Proposition 3.23. For every 0 < p ≤ 1 and every sequence δ of
integers in [2,∞), the pair (Xp,X

∗
p ) is a biorthogonal system in ℓp, i.e.,

〈x∗
j ,xk〉 = δj,k for (j, k) ∈ N× N.

Proof. By Facts 3.6, 3.8, 3.16 and 3.14, it suffices to consider the case
when k < j. Set n = Γ(j).

Assume that k /∈ supp(x∗
j ). Since σ(k) 6= 1, we infer from Fact 3.18

that σ(k) /∈ supp(x∗
j ). Then, by Facts 3.16 and 3.7, [σ(k), σ(k+1)) and

supp(x∗
j) are disjoint. Therefore, supp(xk) and supp(x∗

j) are disjoint
so that 〈x∗

j ,xk〉 = 0. Thus we can also assume that k ∈ supp(x∗
j), i.e.,

k = ρ(m)(j) for some 1 ≤ m ≤ n. This assumption gives supp(x∗
j ) ∩

supp(xk) = {ρ(m)(j), ρ(m−1)(j)}. Therefore

〈x∗
j ,xk〉 =

m∏

i=1

d
−1/p

ρ(i)(j)
−

(
m−1∏

i=1

d
−1/p

ρ(i)(j)

)
d
−1/p

ρ(m)(j)
= 0. �
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Lemma 3.24. Let 0 < p ≤ 1 and δ be a sequence of integers in [2,∞).

For all positive integers j and N with j ≤ N , there exists x ∈ X
(N)
p

with ‖x‖ = 21/p such that SN (x) = ej.

Proof. We proceed by induction on N . If N = j, put x = xj . Assume
that the vector x fulfils the desired conditions for some N ≥ j. Then,
by Fact 3.11, y = x−SN+1(x)xN+1 satisfies the condition for N+1. �

Lemma 3.25. Let 0 < p ≤ 1 and δ be a sequence of integers in [2,∞).

For each y ∈ ℓp and N ∈ N there is x ∈ X
(N)
p such that SN(y) = SN(x).

Proof. It is straightforward from Lemma 3.24. �

Theorem 3.26. Let 0 < p ≤ 1 and let δ be a sequence of integers
in [2,∞). Then Qp(δ) is a quotient map from ℓp onto Lp with kernel
Xp(δ).

Proof. Let us first prove that Qp = Qp(δ) is onto. Let f ∈ BLp
and

ε > 0. By Fact 3.1, ∪∞
n=0L

(n)
p is dense in Lp and so there is n ∈ N

and g ∈ L
(n)
p with ‖f − g‖ ≤ ε. By Fact 3.3 there is x ∈ ℓp such

that ‖x‖ = ‖g‖ and Qp(x) = g. Consequently ‖f − Qp(x)‖ ≤ ε and
‖x‖ ≤ (1 + εp)1/p. We infer that

BLp
⊆ CQp(Bℓp)

for every C > 1. By the Open Mapping theorem Qp is onto, hence a
quotient map. In fact, the map from ℓp/Ker(Qp) onto Lp induced by
Qp is an isometry.

By Fact 3.4, Xp = Xp(δ) ⊆ Ker(Qp). Let us prove the reverse inclu-
sion. Let x ∈ ℓp with Qp(x) = 0 and fix ε > 0. There is n ∈ N such
that

‖x− SΛ(n)−1(x)‖ ≤ 2−1/pε.

By Lemma 3.25 there is y ∈ [xk : 1 ≤ k < Λ(n)] such that

z := SΛ(n)−1(y) = SΛ(n)−1(x).

Taking into account that

supp(y − SΛ(n)−1(y)) ⊆ [Λ(n),Λ(n+ 1) − 1) = Jn

and using Facts 3.3, 3.4 and 3.2 we obtain

‖z − y‖ = ‖Qp(z − y)‖ = ‖Qp(z)‖ = ‖Qp(z − x)‖,

so that

‖x− y‖p ≤ ‖x− z‖p + ‖z − y‖p ≤ 2‖x− z‖p = εp. �
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Proposition 3.27. For every 0 < p ≤ 1 and every sequence δ of
integers in [2,∞) there is a subspace of Xp(δ) isometric to ℓp and 21/p-
complemented in ℓp.

Proof. There is a subsequence (xkn)∞n=1 of Xp(δ) which is a block basic
sequence with respect to the unit vector system of ℓp. Indeed, it suffices
to choose kn = Λ(n) for every n ∈ N. Let us define maps J , P : ℓp → ℓp
by

J(x) = 2−1/p
∞∑

k=1

x(k)xnk
,

and

P (x) = 21/p

∞∑

k=1

〈x∗
kn, SAkn

(x)〉ek,

where Ak = supp(xk) By Fact 3.5, J is an isometry. Combining
Fact 3.15 with the elementary inequality

∣∣∣∣∣
∑

i∈I

αi

∣∣∣∣∣ ≤
(
∑

i∈I

|αi|
q

)1/q

, ai ∈ F, q ≤ 1, (3.7)

we have

‖P (x)‖p ≤ 2

∞∑

k=1

∑

j∈Ank

|x∗
nk

(j)|p|x(j)|p ≤ 2

∞∑

k=1

∑

j∈Ank

|x(j)|p ≤ 2‖x‖p

for all x ∈ ℓp. We observe that J(ej) = xnj
and P (xnj

) = ej for all
j ∈ N. Hence, P ◦ J = Idℓp. �

The following theorem gathers some structural properties of Xp-
spaces.

Theorem 3.28. Let 0 < p ≤ 1 and δ be a sequence of integers in
[2,∞). Then:

(a) The isomorphic class of Xp(δ) does not depend on the particular
choice of δ.

(b) Xp(δ) is locally complemented in ℓp.
(c) Xp(δ) is not complemented if ℓp.
(d) Xp(δ) is an Lp-space.
(e) Xp(δ) is not a pseudo-dual space.
(f) Xp(δ) is not isomorphic to ℓp.
(g) Xp(δ) does not have an unconditional basis.
(h) Xp(δ) has a Schauder basis.
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Proof. (a) follows from Proposition 3.27 and [19, Theorem 2.2]. Since
Lp is an Lp-space, (b) follows from [19, Theorem 6.1.(5)]. If Xp(δ) were
a complemented subspace in ℓp we would have ℓp ≃ Xp⊕Y for some Y

so

Y ≃ ℓp/Xp ≃ Lp.

Since Lp is not a complemented subspace of ℓp (in fact, Lp is not a
subspace of ℓp) we reach a contradiction, thus (c) holds. Since ℓp is an
Lp-space as well, (d) holds. (e) follows from (b) and [19, Theorem 4.4].
We deduce (f) from (e) and Remark 2.1. (g) is now a consequence of
Theorem 2.2. Finally, (h) is a consequence of [19, Theorem 6.4]. �

Remark 3.29. It is not too difficult to come up with examples of non-
locally convex spaces with a Schauder basis but without an uncondi-
tional basis. Indeed, the space L1

⊕
ℓp, 0 < p < 1, for instance, verifies

both conditions. This can be deduced simply by noticing that L1 does
not embed in any quasi-Banach space with an unconditional basis. In-
deed, the proof for Banach spaces (see, e.g., [6, Theorem 6.3.3]) remains
valid for quasi-Banach spaces. However, one can argue that adding a lo-
cally convex component to a nonlocally convex space is cheating. Thus,
the question gains interest if we only accept examples within the class
of hereditably non-locally convex spaces. Recall that a quasi-Banach
space Y is hereditably non-locally convex if every infinite-dimensional
subspace of Y is non-locally convex, and that a quasi-Banach space Y

is said to be W-saturated if every infinite-dimensional subspace of Y
contains a further subspace isomorphic to W. Since ℓp is ℓp-saturated
(see [28]), every Lp-space with the bounded approximation property,
(BAP) for short, is also ℓp-saturated by [19, Theorem 6.4], hence hered-
itably non-locally convex. Therefore any Lp-space with (BAP) which
is not isomorphic to ℓp (for instance, the space Xp for p < 1) is an
example of a hereditably non-locally convex quasi-Banach space with a
Schauder basis but without an unconditional basis. To the best of our
knowledge, these are the first-known examples of quasi-Banach spaces
with these properties.

4. Bases in the spaces Xp

This section focusses on the sequences Xp(δ) constructed in the previous
section for p ∈ (0, 1] and for any integers δ = (dn)∞n=1 in the interval
[2,∞). Thanks to Theorem 3.28 we know that the space Xp(δ) has a
Schauder basis. As a matter of fact, the sequence Xp(δ) is a Schauder
basis of Xp(δ) as we will next prove. Thus, we will rightfully say that
Xp(δ) is the Lindenstrauss p-basis of Xp(δ).
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Proposition 4.1. Given 0 < p ≤ 1 and a sequence δ = (dn)∞n=1 of
integers in [2,∞), Xp(δ) is a bi-monotone Schauder basis of Xp(δ).

Proof. In order to prove that Xp(δ) is monotone if suffices to see that

‖x‖ ≤ ‖x+axn‖ whenever n ∈ N and x ∈ X
(n−1)
p (δ). Let y = x+axn.

From Fact 3.5 and Fact 3.6 we have x(j) = y(j) unless j = n, in which
case y(j) = x(j) = a, or j ∈ [σ(n), σ(n + 1)), in which case x(j) = 0

and y(j) = ad
−1/p
n . Therefore

‖y‖p − ‖x‖p = |a + x(j)|p + |a|p − |x(j)|p,

which combined with inequality (3.7) yields ‖x‖ ≤ ‖y‖.
Now, to finish the proof we need only show that ‖x‖ ≤ ‖x + axn‖

whenever supp(x) ⊆ [n+1,∞). But if y is as before, a similar argument
gives

‖y‖p − ‖x‖p = |a|p +

σ(n+1)−1∑

j=σ(n)

|(x(j) − ad−1/p
n |p −

σ(n+1)−1∑

j=σ(n)

|x(j)|p

=

σ(n+1)−1∑

j=σ(n)

∣∣ad−1/p
n

∣∣p + |(x(j) − ad−1/p
n |p − |x(j)|p ≥ 0.�

Remark 4.2. By Proposition 3.23, the sequence X ∗
p = X ∗

p (δ) = (x∗
k)

∞
k=1

regarded inside X∗
p = X∗

p(δ) via the natural pairing, is the dual basis of
Xp. Note that Proposition 4.1 yields, in particular,

‖xk‖‖x
∗
k‖ ≤ 1, k ∈ N,

which combined with Fact 3.6, gives

‖x∗
k‖X∗

p
= 2−1/p, k ∈ N.

Also thanks to Theorem 3.28 we know that the spaces Xp are Lp-
spaces for 0 < p ≤ 1. In hindsight this can be deduced from Proposi-
tion 4.3.

Proposition 4.3. Let 0 < p ≤ 1 and δ be a sequence of integers in

[2,∞). For every n ∈ N, the Banach-Mazur distance from X
(n)
p (δ) to

ℓnp is not larger than 21/p.

Proof. For each n ∈ N we will recursively construct vectors (xk,n)nk=1

in X
(n)
p such that, if rk,n = xk,n−ek, then ‖rk,n‖p = 1 and supp(rk,n) ⊆

[n+ 1, σ(n+ 1)) for k = 1, . . . , n.
For n = 1 put x1,1 = x1. Let n ∈ N and asume that (xk,n)nk=1 has

been constructed. We set xk,n+1 = xk,n−xk,n(n+1)xn+1 and xn+1,n+1 =
xn+1. By Fact 3.11, (xk,n+1)

n+1
k=1 fulfills the desired properties.
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We easily infer that the vectors (xk,n)nk=1 satisfy
∥∥∥∥∥

n∑

k=1

ak xk,n

∥∥∥∥∥

p

=

∥∥∥∥∥

n∑

j=1

ak ek

∥∥∥∥∥

p

+

∥∥∥∥∥

n∑

k=1

ak rk,n

∥∥∥∥∥

p

for every α = (ak)
n
k=1 ∈ Fn. Hence,

‖α‖ ≤

∥∥∥∥∥

n∑

k=1

ak xk,n

∥∥∥∥∥ ≤ 21/p‖α‖,

which proves the proposition. �

Our construction of conditional almost greedy bases in ℓp will rely
on the following isomorphism.

Corollary 4.4. Let 0 < p ≤ 1 and δ be a sequence of integers in
[2,∞). Then for any sequence of positive integers (nk)

∞
k=1, the space(⊕∞

k=1X
(nk)
p (δ)

)

p
is 21/p-isomorphic to ℓp.

Proof. By Proposition 4.3, the infinite direct sum
(⊕∞

k=1X
(nk)
p (δ)

)
p

is

21/p-isomorphic to
(⊕∞

k=1 ℓ
nk
p

)
p
, which, in turn, is isometric to ℓp. �

4.1. Quasi-greediness of Lindenstrauss p-bases, 0 < p < 1. Our
aim in this section is to extend to Lindenstrauss p-bases the main
result from [11], where it is proved that the Lindenstrauss basis of the
space X1(δ), for δ the constant sequence dn = 2, in our notation, is
conditional and quasi-greedy.

We use Gm = Gm[p, δ](x) for the mth greedy projection of x ∈ Xp(δ)
with respect to the basis Xp(δ).

Theorem 4.5. For any 0 < p ≤ 1 and any sequence δ = (dn)∞n=1

of integers in [2,∞), the Lindenstrauss p-basis Xp(δ) is a quasi-greedy
basis of Xp(δ). Quantitatively, for x ∈ Xp(δ) and m ∈ N,

‖x− Gm[p, δ](x)‖ ≤ 21/p‖x‖,

and

‖Gm[p, δ](x)‖ ≤ min

{
31/p,

22/p

21/p − 1

}
‖x‖.

For p = 1, we get the same estimate as in [11]. Note that when p
goes to zero the estimate grows as 21/p. Before we tackle the proof of
this result, we prove a couple of auxiliary lemmas.
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Lemma 4.6. Let 0 < p ≤ 1 and (Ω,Σ, µ) be a measure space. Suppose
f , g ∈ Lp(µ) are such that ‖f‖ = ‖g‖. Then, if A = {ω ∈ Ω: f(x) 6=
0},

‖f + g‖ ≤ 21/p‖(f + g)1A‖.

Proof. Since

‖(f + g)1Ω\A‖
p = ‖g1Ω\A‖

p

= ‖g‖p − ‖g1A‖
p

= ‖f‖p − ‖g1A‖
p

≤ ‖(f + g)1A‖
p + ‖g1A‖

p − ‖g1A‖
p,

applying inequality (3.7) we obtain

‖f + g‖p = ‖(f + g)1A‖
p + ‖(f + g)1Ω\A‖

p ≤ 2‖(f + g)1A‖
p. �

Lemma 4.7. Let 0 < p ≤ 1 and δ = (dn)∞n=1 be a sequence of integers
in [2,∞). For every A ⊆ N finite and every x ∈ [xk : k ∈ A] we have
‖x‖ ≤ 21/p‖SA(x)‖ and ‖x‖ ≤ 21/p‖SΣ(A)(x)‖.

Proof. Set x =
∑

k∈A ak xk. Let y =
∑

k∈A ak ek and z =
∑

k∈A ak rk,
so that x = y + z. Since ‖y‖ = ‖z‖ < ∞, y is supported on A, and z
is supported on Σ(A), Lemma 4.6 yields the desired result. �

Proof of Theorem 4.5. For k ∈ N put ak = 〈x∗
k, x〉. Let A be the mth

greedy set of x, so that y := Gm(x) =
∑

k∈A ak xk and, if B = N \ A,

|ak| ≤ |aj |, k ∈ B, j ∈ A.

Let z = x− y =
∑

k∈B ak xk. By Lemma 4.7, it suffices to prove that

|y(j)| ≤
21/p

21/p − 1
|x(j)| for every j ∈ A (4.1)

and that

|z(j)| ≤ |x(j)| for every j ∈ Σ(B). (4.2)

We split this into three cases:

• If j ∈ A \Σ(B) = A \ (B ∪ Σ(B)) (use Fact 3.7), then z(j) = 0
and, hence, y(j) = x(j).

• If j ∈ Σ(B) \ A = Σ(B) \ (A ∪ Σ(A)) (use Fact 3.7), then
y(j) = 0 and, hence, z(j) = x(j).

• If j ∈ A ∩ Σ(B) = A ∩ (B ∪ Σ(B)) = Σ(B) ∩ (A ∪ Σ(A)),
(use Fact 3.7), then from (3.2) there is k ∈ B such that j ∈
[σ(k), σ(k + 1)), that is k = ρ(j).

This implies (4.1) and (4.2). �
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4.2. Democracy properties of Lindenstrauss p-bases. The con-
cepts of democratic and super-democratic bases are by now fairly stan-
dard in greedy approximation theory. They have a verbatim translation
into the setting of quasi-Banach spaces (see [1, §4])). To quantify the
democracy of a basis B in a quasi-Banach space Y, we consider the
lower and upper democracy functions of B, given by

Φl
m[B,Y] = inf

|A|≥m
‖1A[B,Y]‖, m ∈ N,

and
Φu
m[B,Y] = sup

|A|≤m

‖1A[B,Y]‖, m ∈ N,

respectively. Thus, B is democratic if and only if

∆[B,Y] = sup
m

Φu
m[B,Y]

Φl
m[B,Y]

<∞.

Similarly, the super-democracy of a basis B in a quasi-Banach space Y

can be quantified by means of the lower and upper super-democracy
functions of B, which are respectively defined by

Φl,s
m [B,Y] = inf{‖1γ,A[B,Y]‖ : |A| ≥ m, γ signs}, m ∈ N,

and

Φu,s
m [B,Y] = sup{‖1γ,A[B,Y]‖ : |A| ≤ m, γ signs}, m ∈ N.

The basis B is then super-democratic if and only if

∆s[B,Y] = sup
m

Φu,s
m [B,Y]

Φl,s
m [B,Y]

<∞.

We have Φu,s
m [B,Y] ≈ Φu

m[B,Y] for m ∈ N (see [1, Equation (7.3)]), and
it is obvious that if Y is a p-Banach space and B is semi-normalized
then Φu,s

m [B,Y] . m1/p for every m ∈ N. As we next show, in the case
when Y = ℓp a reverse inequality holds.

Proposition 4.8. Let 0 < p < ∞, let (Yj)
∞
j=1 be a sequence of finite-

dimensional quasi-Banach spaces, and let B = (yn)∞n=1 be a basic se-
quence in the quasi-Banach space Y = (

⊕∞
j=1Yj)p. Then

Φu
m[B,Y] & m1/p, m ∈ N.

Proof. Given f = (fj)
∞
j=1 ∈ Y we will refer to fj as the jth coordinate

of f . Combining the compactness of each BYj
with Cantor’s diagonal

technique yields φ : N → N increasing such that (yφ(k))
∞
k=1 converges

coordinate-wise. Then (yφ(2k−1) − yφ(2k))
∞
k=1 is a null sequence. A

gliding-hump argument yields an increasing sequence ψ : N → N such
that B′ = (yψ(2k−1) − yψ(2k))

∞
k=1 is equivalent to a disjointly supported
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sequence (with respect the coordinates). Therefore, B′ is equivalent to
the unit vector system of ℓp. By [1, Equation (7.1)], for m ∈ N we have

Φu
m[B,X] ≈ Φu

2m[B,X] ≈ Φu,s
2m[B,X] ≥

∥∥∥∥∥

m∑

k=1

yψ(2k−1) − yψ(2k)

∥∥∥∥∥ ≈ m1/p.

�

Proposition 4.9. Let 0 < p ≤ 1 and δ = (dn)∞n=1 be a sequence of
integers in [2,∞). Then the Lindenstrauss p-basis Xp = Xp(δ) is a
super-democratic basis of Xp = Xp(δ). Quantitatively, for m ∈ N:

(i) (1 − 2−1/p)m1/p ≤ Φl,s
m [Xp,Xp], and

(ii) Φu,s
m [Xp,Xp] ≤ 2m1/p.

Proof. Let A be a finite subset of N and let γ be a sequence of signs.
Since dk ≥ 2 for every k ∈ N, Fact 3.9 yields

|1γ,A[Xp,Xp](j)| ≥ 1 − 2−1/p, j ∈ A,

and so,

‖1γ,A[Xp,Xp]‖ ≥

(
∑

j∈A

|1γ,A[Xp,Xp](j)|
p

)1/p

≥ (1 − 2−1/p)|A|1/p.

This establishes (i). Inequality (ii) is clear. �

Remark 4.10. It is known that all quasi-greedy bases in ℓ1 and ℓ2 are
democratic (see [15, Theorem 4.2] and [32, Theorem 3], respectively)
and that if p ∈ (1, 2) ∪ (2,∞) there are quasi-greedy (even, uncondi-
tional) bases of ℓp that are not democratic (see [25]). We emphasize
that the techniques developed to settle the question for ℓ1 do not trans-
fer to ℓp for 0 < p < 1, and that all the known examples of quasi-greedy
bases in ℓp are democratic. Thus, the following question seems to be
open:

Question 4.11. Is every quasi-greedy basis in ℓp for 0 < p < 1 demo-
cratic?

Corollary 4.12. Let 0 < p ≤ 1 and δ = (dn)∞n=1 be a sequence of
integers in [2,∞). Then:

(a) Xp(δ) is an almost greedy basis of Xp(δ).
(b) There is a constant C such that for f ∈ Xp(δ),

‖(〈x∗
k, f〉)

∞
k=1‖ℓp,∞ ≤ C‖f‖.

Proof. (a) follows by combining [1, Theorem 5.3] (which extends to
quasi-Banach spaces the characterization of almost greedy bases in
Banach spaces from [10]) with Theorem 4.5 and Proposition 4.9. (b)
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follows by [1, Theorems 3.13 and 8.12] in combination with Proposi-
tion 4.9. �

4.3. Banach envelopes of Lindenstrauss Xp spaces and bases.

When dealing with a quasi-Banach space Y it is often convenient to
know what the “smallest” Banach space containing Y is (if there is
any), or even what the smallest q-Banach space containing Y is. We
refer the reader to [1, Section 9] for rigorous definitions and related
properties involving these concepts. Our first result in this section
exemplifies how tools from (nonlinear) greedy approximation theory
can be efficiently used to deduce functional analytic (linear) properties
of bases. Indeed, Proposition 4.9 in combination with [1, Proposition
9.12] immediately yield the following result.

Proposition 4.13. Given 0 < p < q ≤ 1, the q-Banach envelope of the
basis Xp(δ) is equivalent to the canonical basis of ℓq. In other words,
the q-Banach envelope of Xp(δ) is isomorphic to ℓq under the coefficient
transform F : Xp(δ) → FN with respect to the basis Xp(δ).

Going further, in this section we will show the following.

Theorem 4.14. Let 0 < p < q ≤ 1 and δ = (dn)∞n=1 be a sequence of
integers in [2,∞). Then the q-Banach envelope of Xp(δ) is isomorphic
to ℓq under the inclusion map. In particular, Xp(δ) is dense in ℓq.

To tackle the proof of this result, we need a couple of lemmas.

Lemma 4.15. Let 0 < p ≤ 1 and δ = (dn)∞n=1 be a sequence of integers
in [2,∞). Then, for every k ∈ N, and every Jk,n as in (3.6),

(a)
∞∑

n=0

sup
j∈Jk,n

|x∗j(k)|q ≤
1

1 − 2−q/p
, for every 0 < q <∞,

(b)
∑

j∈Jk,n

|x∗
j(k)|p = 1 for every n ≥ 0.

Proof. (a) is a straightforward consequence of Fact 3.21. We will prove
(b) by induction on n. If n = 0, Jk,n = {k} and, then, the result follows
from Fact 3.14. Assume that n ∈ N and that the result holds for n−1.
Since {σ(Ji,n−1) : i ∈ [σ(k), σ(k + 1))} is a partition of Jk,n, applying
Fact 3.20 we obtain

∑

j∈Jk,n

|x∗
j(k)|p =

σ(k+1)−1∑

i=σ(k)

∑

k∈Ji,n−1

|x∗
j(σ(k))|p

=

σ(k+1)−1∑

i=σ(k)

d−1
k

∑

k∈Ji,n−1

|x∗
j (k)|p
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=

σ(k+1)−1∑

i=σ(k)

d−1
k = 1. �

Lemma 4.16. Let 0 < p < q ≤ 1 and δ = (dn)∞n=1 be a sequence of inte-
gers in [2,∞). Then there is a constant C such that ‖(x∗

j(k))∞j=1‖q ≤ C
for every “column” k ∈ N.

Proof. Using Lemma 4.15 (a) and (b) gives
∞∑

j=1

|x∗
j (k)|q =

∞∑

n=0

∑

j∈Jk,n

|x∗
j(k)|q

≤
∞∑

n=0

sup
j∈Jk,n

|x∗
j(k)|q−p

∑

j∈Jk,n

|x∗
j(k)|p

≤
1

1 − 2(p−q)/p
. �

Proof of Theorem 4.14. Define T : FN → FN by T (x) = (〈x∗
j , x〉)

∞
j=1.

Combining inequality (3.7), Fubini’s theorem, and Lemma 4.16 yields

‖T (x)‖qq ≤

∞∑

j=1

∞∑

k=1

|x∗
j (k)x(k)|q =

∞∑

k=1

|x(k)|q
∞∑

j=1

|x∗
j (k)|q ≤ Cq‖x‖qq,

for all x ∈ FN and some constant C. That is, T : ℓq → ℓq is a bounded
linear operator that extends the coefficient transform F : Xp → FN

with respect to the basis Xp(δ) of Xp = Xp(δ). Therefore, by Proposi-
tion 4.13, there is S : ℓq → ℓq such that S ◦F is the inclusion map J of
Xp into ℓq. Pictorially, the diagram

ℓq
S

//

ℓq
T

oo

Xp

F

OO

J

??
⑧
⑧
⑧
⑧
⑧
⑧
⑧
⑧

is commutative. We infer that T ◦ S = Idℓq . Since T is one-to-one
by Fact 3.17, T and S are inverse isomorphisms of one another. Con-
sequently, ℓq is isomorphic to the Banach envelope of Xp under the
mapping S ◦ F = J . �

We close this section with an easy consequence of Theorem 4.14.

Corollary 4.17. Let 0 < p < q ≤ 1 and δ = (dn)∞n=1 be a sequence of
integers in [2,∞). Then, for y ∈ FN,

‖y‖∞ = sup{|〈y, x〉| : ‖x‖q ≤ 1} ≈ sup{|〈y, x〉| : ‖x‖Xp
≤ 1}.
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That is, BXp
is a norming set for the supremum norm.

Proof. Just notice that, by Theorem 4.14, the dual map J∗ of the in-
clusion map J of Xp(δ) into ℓq is an isomorphism. �

Question 4.18. Suppose 0 < p < q ≤ 1. Is the q-envelope of a Lp-space
a Lq-space?

5. Conditionality estimates of quasi-greedy bases in

quasi-Banach spaces

5.1. Upper bounds for km: the general case. This section will be
devoted to proving that “near unconditional” bases (including quasi-
greedy bases) of p-Banach spaces satisfy the estimate

km = O((logm)1/p).

Borrowing the terminology from [1] we say that a basis B of a quasi-
Banach space Y is suppression unconditional for constants coefficients
(SUCC for short) if there is a constant C such that

‖1γ,B[B,Y]‖ ≤ C‖1γ,A[B,Y]‖

whenever B ⊆ A and γ is a family of signs.
A crucial ingredient in the study of the vestiges of unconditional-

ity enjoyed by quasi-greedy bases in the setting of nonlocally convex
quasi-Banach spaces has been the introduction for m ∈ N of the mth
restricted truncation operator Um : Y → Y, defined by

Um(f) = Um[B,Y](f) = min
j∈A

|y∗
j (f)|

∑

j∈A(m,f)

sign(y∗
j (f))yj,

where A(m, f) is the mth greedy set of f (see [1, §3.1]).

Lemma 5.1. If supn ‖Um‖ <∞ the basis B is SUCC.

Proof. Given A, B subsets of N with B ⊆ A, and γ a family of signs,
for 0 < ǫ < 1 we have

Um(1γ,A + ǫ1γ,A\B) = 1γ,B,

where m is the cardinality of B. This implies that

‖1γ,B‖ ≤ ‖Um‖‖1γ,A‖. �

Lemma 5.2. Let B = (yj)
∞
j=1 be a basis of a quasi-Banach space Y for

which the restricted truncation operators are uniformly bounded. Then
there is a constant C such that∥∥∥∥∥

∑

j∈B

bj yj

∥∥∥∥∥ ≤ C‖f‖
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whenever B ⊆ N is finite and |bj| ≤ |y∗
k(f)| for every j, k ∈ B.

Proof. Assume without loss of generality that y =
∑

j∈B bj yj 6= 0, i.e.,

λ = maxj∈B |bj | > 0. Let

A = {k ∈ N : |y∗
k(f)| ≥ λ}.

Since B is SUCC by Lemma 5.1, and B ⊆ A, [1, Lemma 2.2] yields

‖y‖ ≤ Cλ

∥∥∥∥∥
∑

j∈A

sign(y∗
j (f))yj

∥∥∥∥∥

for some constant C that only depends on B. If |B| = m, B is the mth
greedy set of f . Since λ ≤ mink∈B |y∗

k(f)|, ‖y‖ ≤ C‖Um(f)‖. �

Theorem 5.3. Let 0 < p ≤ 1 and B be a basis of a p-Banach space
X for which the restricted truncation operators are uniformly bounded.
Then

km[B,X] . log1/p(m), m ≥ 2. (5.1)

Proof. Let c = supj ‖y
∗
j‖ <∞ and d = supj ‖yj‖ <∞. For f ∈ Y put

Bn = {j ∈ N : |y∗
j (f)| ≤ c‖f‖2−n/p}, n ∈ {0} ∪ N.

Of course, B0 = N. Let m ∈ N and pick N ∈ N ∪ {0} such that
2N ≤ m < 2N+1. For A ⊆ N with |A| ≤ m we consider the partition
(An)Nn=0 of A given by

An = A ∩ (Bn \Bn+1) if n = 0, . . . , N − 1, and AN = A ∩BN .

Note that if j, k ∈ An for some n ≤ N − 1, then

|y∗
j (f)| ≤ c‖f‖2−n/p ≤ 21/p|y∗

k(f)| = |y∗
k(2

1/pf)|.

By Lemma 5.2,

‖SAn
[B,Y](f)‖ ≤ 21/p C‖f‖, n = 0, . . . , N − 1.

As for the set AN , we have |AN | ≤ |A| ≤ m < 2N+1 and

‖y∗
j (f)yj‖ ≤ cd2−N/p, j ∈ AN .

Using p-convexity we obtain

‖SA[B,Y](f)‖p ≤ (cpdp|AN |2
−N +NCp)‖f‖p < (2cpdp + 2NCp)‖f‖p.

Hence,
km[B,Y] ≤ 21/p(cpdp + Cp log2(m))1/p. �

Corollary 5.4. If B is a quasi-greedy basis of a p-Banach space X,
then km[B,X] . log1/p(m) for m ≥ 2.

Proof. It is straightforward from [1, Theorem 3.13] and Theorem 5.3.
�
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5.2. An upper bound for km[Xp,Xp], 0 < p < 1. Now we concentrate
in the case when the sequence δ = (dn)∞n=1 involved in the construction
of Xp(δ) and Xp(δ)

∗ is non-decreasing, so that the function σ defined
in (3.1) is convex, i.e., (σ(n + 1) − σ(n))∞n=1 is non-decreasing. Notice
that any convex function σ : N → N satisfies the inequality

σ(k) − σ(j)

k − j
≤
σ(k′) − σ(j′)

k′ − j′
, j < k, j′ < k′, k ≤ k′, j ≤ j′. (5.2)

Hence, σ is convex and non-decreasing if and only if

0 ≤ σ(k) − σ(k′) ≤ σ(k′′) − σ(k), 0 ≤ k − k′ ≤ k′′ − k.

Iterating this formula yields that if σ1 and σ2 are convex and non-
decreasing so is σ1 ◦ σ2.

We start by proving some additional properties of the integer inter-
vals Jk,n = [σ(n)(k), σ(n)(k + 1)) defined in (3.6).

Lemma 5.5. Let 0 < p ≤ 1 and δ = (dn)∞n=1 be a non-decreasing
sequence of integers in [2,∞). For every k ≥ 1 and every n ∈ N \ {0}
we have:

(a) (x∗j (k))j∈Jk,n is non-increasing;

(b) min{|x∗j(k)| : j ∈ Jk,n} ≥ 21/p max{|x∗j(k)| : j ∈ Jk,n+1};
(c) |Jk,n| ≤ |Jk+1,n| for every n ≥ 0.

Proof. (a) follows from Fact 3.19 taking into account that ρ is non-
decreasing. In order prove (b) we pick j ∈ Ik,n and i ∈ Ik+1,n. Since
j < i by Fact 3.12, the same argument yields

x∗
i (k) =

n+1∏

r=1

d
−1/p

ρ(r)(i)
≤ 2−1/p

n∏

r=1

d
−1/p

ρ(r)(i)
≤ 2−1/p

n∏

r=1

d
−1/p

ρ(r)(j)
= 2−1/px∗

j(k).

(c) follows from the fact that σ(n) is convex. �

Given A ⊆ N finite, let us consider the linear map PA : FN → F
N

defined by

PA(f) =
∑

k∈A

〈x∗
k, f〉xk.

The restriction of PA to Xp is the coordinate projection SA[Xp,Xp] on
the set A with respect to the basis Xp. Let us also consider the auxiliary
linear operator TA : FN → FN given by

TA(f) =
∑

k∈A

〈x∗
k, f〉 ek.
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Lemma 5.6. Let 0 < p ≤ 1 and δ = (dn)∞n=1 be a sequence of integers
in [2,∞). For any finite set A ⊆ N we have

‖SA[Xp,Xp]‖ ≤ ‖PA‖ℓp→ℓp ≤ 21/p‖TA‖ℓp→ℓp.

Proof. The left hand-side inequality is obvious. As for the inequality
on the right, it suffices to note that PA = R ◦TA where R : ℓp → ℓp is a
linear operator such that R(ek) = xk for every k ∈ N. Fact 3.6 implies
that ‖R‖ = 21/p. �

Lemma 5.7. Let 0 < p ≤ 1 and δ = (dn)∞n=1 be a non-decreasing
sequence of integers in [2,∞). Then,

(i)
∑

j∈A |x
∗
j (k)|p ≤ 1 + Γ(m) for every A ⊆ N with |A| ≤ m.

(ii)
∑m

j=1 |x
∗
j(1)|p > Γ(m) for every m ∈ N.

Proof. Let N = N(k,m) be the smallest positive integer such that

m ≤
∑N

n=0 |Jk,n|. Using Fact 3.12, Lemma 5.5, and Lemma 4.15(a), if
A′ = ∪Nn=0Jk,n,

∑

j∈A

|x∗
j(k)|p ≤

∑

j∈A′

|x∗
j(k)|p =

N∑

n=0

∑

j∈Jk,n

|x∗
j(k)|p = 1 +N.

By Lemma 5.5(c), N ≤ N(1, m). Moreover, by Fact 3.12,

N(1, m) = min{n ∈ N : m < Λ(n+ 1)} = Γ(m).

Finally, we note that the arguments we have used also give

m∑

j=1

|x∗
j (1)|p >

N(1,m)−1∑

n=0

∑

j∈J1,n

|x∗
j(k)|p = N(1, m). �

Proposition 5.8. Let 0 < p ≤ 1 and δ = (dn)∞n=1 be a non-decreasing
sequence of integers in [2,∞). Then,

km[Xp,Xp] ≤ 21/p(1 + Γ(m))1/p, m ∈ N.

Proof. In light of Lemma 5.6 and equation (1.3), it suffices to prove
that ‖TA(ek)‖ ≤ (1 + Γ(m))1/p whenever k ∈ N and |A| ≤ m. Since

‖TA(ek)‖
p =

∑

j∈A

|x∗
j(k)|p,

Lemma 5.7 provides the desired estimate. �
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5.3. Optimality of the upper bound for km[Xp,Xp], 0 < p < 1.
Our next task is to show that the estimate provided by Proposition 5.8
is optimal. Like in [5] we will consider the alternative conditionality
constants of a basis B = (yn)∞n=1 of a quasi-Banach space Y, defined
for m ∈ N by

k̃m[B,Y] = sup{‖SA[B,Y](f)‖ : A ⊆ N, f ∈ Y
(m)[B], ‖f‖ ≤ 1}.

These constants depend on the particular ordering we choose for the

basis, while km[B,Y] do not. It is obvious that k̃m[B,Y] ≤ km[B,Y] for
every m ∈ N.

Proposition 5.9. Let 0 < p ≤ 1 and δ = (dn)∞n=1 be a sequence of
integers in [2,∞). Then,

2−2/p(1 + Γ(m))1/p ≤ k̃m[Xp,Xp], m ∈ N.

Proof. We recursively define (uk)
∞
k=1 and (vk)

∞
k=1 in Xp. We start with

u1 = v1 = x1. Assuming that uk and vk have been constructed for
k ∈ N, we define

uk+1 = uk − uk(k + 1)xk+1,

vk+1 = vk − sign(vk(k + 1)) uk(k + 1)xk+1.

Using Fact 3.5, by induction on k ∈ N we obtain that

(i) uk and vk are linear combinations of X
(k)
p with real scalars,

(ii) supp(uk) ⊆ {1} ∪ [k + 1, σ(k + 1)), and
(iii) uk(1) = 1

Whence, by Proposition 3.23,

(iv) 〈x∗
k+1, uk+1〉 = −uk(k + 1) for every k ∈ N, and

(v) |〈x∗
s, uk〉| = |〈x∗

s, vk〉| for every k, s ∈ N.

From Fact 3.11 we get ‖uk‖ = 21/p for every k ∈ N. Now we aim at
estimating ‖vk‖ from below. By Fact 3.16 and (ii), (iii) and (iv), for
every k ∈ N we have

uk(k + 1) = −〈x∗
k+1, uk+1〉 = −x∗

k+1(1) uk+1(1) = −x∗
k+1(1).

Therefore, by Fact 3.13, uk(k + 1) ≤ 0. Then, applying Fact 3.10, for
k ∈ N we get

‖vk+1‖
p − ‖vk‖

p = (|vk(k + 1)| + |uk(k + 1)|)p + |uk(k + 1)|p − |vk(k + 1)|p

≥ |uk(k + 1)|p = |x∗
k+1(1)|p.

Combining this inequality with Lemma 5.7 yields

‖vm‖
p = ‖v1‖

p +
m∑

k=2

‖vk‖
p − ‖vk−1‖

p
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≥ 2 +
m∑

k=2

|x∗
k(1)|p

= 1 +
m∑

k=1

|x∗
k(1)|p

> 1 + Γ(m),

for every m ∈ N. Finally, by (i) and (v),

k̃m[Xp,Xp] ≥ 2−1/p ‖vk‖

‖uk‖
≥ 2−2/p(1 + Γ(m))1/p. �

Putting together Propositions 5.8 and 5.9 we can state the following
theorem.

Theorem 5.10. Let 0 < p ≤ 1 and δ = (dn)∞n=1 be a non-decreasing
sequence of integers in [2,∞). Then,

km[Xp,Xp] ≈ k̃m[Xp,Xp] ≈ Γ1/p(m), m ≥ 2.

5.4. Lebesgue constant estimates for Lindenstrauss p-bases.
We close this section with an estimate for the performance of the greedy
algorithm implemented in the space Xp(δ) with respect to the Linden-
strauss p-basis Xp(δ). To put this small addition in context, we recall
that for m ∈ N, the best m-term approximation error of f ∈ Y with
respect to B is given by

σm(f) = σm(f ;B,Y) := inf {‖f − z‖} ,

the infimum being taken over all m-term linear combinations z of vec-
tors from B. A relevant question in the literature raised by Temlyakov
at the turn of the century, is to compare the error in the approxima-
tion of f by Gm(f), measured by ‖f −Gm(f)‖, with σm(f). For a fixed
basis B in Y and m ∈ N, the mth Lebesgue constant, Lm[B,Y], is the
smallest constant C such that

‖f − Gm(f)‖ ≤ Lm[B,Y]σm(f),

for all f ∈ Y. This is sometimes referred to as a Lebesgue-type inequality
for the greedy algorithm.

The growth of the Lebesgue constants as m increases has been stud-
ied in [7, 13] in the framework of Banach spaces. As for non-locally
convex quasi-Banach spaces, let us point out that, if we put

kcm[B,Y] = sup
|A|≤m

‖IdY − SA[B,Y]‖, m ∈ N,
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the proof of [1, Theorem 6.2] yields that for a super-democratic basis
B of a p-Banach space Y we have

kcm[B,Y] ≤ Lm[B,Y] ≤

(
1 +

∆p
s[B,Y]

(2p − 1)2

)1/p

kcm[B,Y] (5.3)

for every m ∈ N. Note also that kcm[B,Y] ≈ km[B,Y] for m ∈ N.

Corollary 5.11. Let 0 < p ≤ 1 and δ be a non-decreasing sequence of
integers in [2,∞). Then

Lm[Xp(δ),Xp(δ)] ≈ Γ1/p(m), m ≥ 2.

Proof. Just combine (5.3) with Theorem 5.10 and Proposition 4.9. �

6. Non-equivalent almost-greedy bases in ℓp and Xp,

0 < p ≤ 1.

In this section we give a neat application to the structure of the spaces
ℓp, 0 < p ≤ 1, in that they contain an uncountable set of mutually
non-equivalent (conditional) almost greedy bases. In fact, these bases
are not even permutatively equivalent. We will construct each of these
bases in a space isomorphic to ℓp instead of in ℓp itself.

Let 0 < p ≤ 1. Given a sequence of integers δ in [2,∞) and an
unbounded sequence of positive integers η = (Nk)

∞
k=1 we consider the

following direct sum of finite-dimensional Lindenstrauss p-bases:

Yp[δ, η] =

(
∞⊕

k=1

X (Nk)
p (δ)

)

p

.

Lemma 6.1. Let δ be a sequence of integers in [2,∞). Then the se-
quence Γ is doubling. To be precise, it satisfies

Γ(2m) ≤ Γ(m) + 1 ≤ 2Γ(m), m ≥ 2.

Proof. It is clear by definition that 2k ≤ σ(k) for every k ∈ N. Then,
if n = Γ(m) we have 2m < 2Λ(n + 1) ≤ Λ(n + 2) so that Γ(2m) ≤
n+ 1. �

Theorem 6.2. Let 0 < p ≤ 1, δ be a non-decreasing sequence of
integers in [2,∞) and η an unbounded sequence of positive integers.
Then Yp[δ, η] is an almost greedy Schauder basis of a space isomorphic
to ℓp. Moreover

Lm[Yp[δ, η], ℓp] ≈ km[Yp[δ, η], ℓp] ≈ Γ1/p(m), m ≥ 2.

In the case when
∑k

j=1Nk . Nk+1 for k ∈ N, we also have

k̃m[Yp[δ, η], ℓp] ≈ Γ1/p(m), m ≥ 2.
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Proof. Combine Lemma 6.1, [2, Lemma 2.3], Proposition 4.1, Corol-
lary 4.4, Theorem 4.5, Proposition 4.9 and Theorem 5.10 (see also [1, §
10.2]). �

We emphasize that, as we next show, the sequence η chosen for build-
ing the direct sum plays no significant role. We say that a subbasis
of a Markushevich basis is complemented if the coordinate projection
onto the subspace generated by the subbasis is bounded. Of course, in
the lack of unconditionality, there are subbases that are not comple-
mented so it seems hopeless trying to extend to Markushevich bases the
Schröder-Bernstein theorem for unconditional bases (see [31, Proposi-
tion 2.11]). In this situation the decomposition method comes to our
aid.

The proof of the decomposition method for Markushevich bases in
quasi-Banach spaces stated in Lemma 6.3 is similar to the proof of
Pe lczyński’s decomposition method for Banach spaces (see [26] or [6,
Theorem 2.2.3]) so we omit it. If B1 is permutatively equivalent to a
complemented subbasis of B2, we write B1 .c B2.

Lemma 6.3. Let B1 and B2 be Markushevich bases of quasi-Banach
spaces. Assume that B1 .c B2, that B2 .c B1 and that, for some
0 < q ≤ ∞, ℓq(B1) ∼ B1 (we replace ℓq with c0 if q = ∞).Then
B1 ∼ B2.

Proposition 6.4. Let 0 < p ≤ 1, δ be a non-decreasing sequence of
integers in [2,∞), and η and η′ be unbounded sequences of positive
integers. Then Yp[δ, η] ∼ Yp[δ, η

′].

Proof. It suffices to prove the statement in the case when η = (nk)
∞
k=1

is “universal”, i.e.,

|{k ∈ N : nk = m}| = ∞

for every m ∈ N. Then we have Yp[δ, η
′] .c Yp[δ, η] and ℓp(Yp[δ, η]) ∼

Yp[δ, η]. Since η′ is unbounded, there is a subsequence η′′ = (n′′
k)

∞
k=1

of η′ such that nk ≤ n′′
k for every k ∈ N. Then, since Xp(δ) is a

Schauder basis, Yp[δ, η] .c Yp[δ, η
′′]. In turn, Yp[δ, η

′′] .c Yp[δ, η
′]

and so Yp[δ, η] .c Yp[δ, η
′]. An appeal to Lemma 6.3 completes the

proof. �

We plan to use Theorem 6.2 for showing the existence of permuta-
tively non-equivalent almost greedy (Schauder) bases of ℓp. To that end
we need to find sequences δ whose associated functions Γ have different
ratios of growth. Let us start with some examples.
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Example 6.5. In the classical case dn = 2 for all n ∈ N, we have
Λ(m) = 2n−1 for every m ∈ N. Consequently,

⌊log2(m)⌋ ≤ Γ(m) ≤ ⌈log2(m)⌉, m ∈ N.

This way, in light of Theorem 6.2 and Corollary 5.4, we obtain a quasi-
greedy basis of ℓp “as conditional as possible.”

Example 6.6. Assume there is a > 0 such that that dn ≈ na for n ∈ N.
Then σ(n) ≈ n1+a for n ∈ N. We infer that there are n0 ∈ N and

0 < C1 ≤ C2 < ∞ such that R = σ(n0) > C
1/a
2 and C1n

1+a ≤ σ(n) ≤
C2n

1+a for every n ≥ N. Then, for n ≥ n0,

C
∑n−n0−1

j=0 (1+a)j

1 R(1+a)n−n0 ≤ Λ(n) ≤ C
∑n−n0−1

j=0 (1+a)j

2 R(1+a)n−n0 .

Since
n−n0−1∑

j=0

(1 + a)j ≈
(1 + a)n−n0 − 1

a
,

we infer that

logR(Λ(n)) ≈ (1 + a)n, n ≥ 0.

Hence for m large enough,

Γ(m) ≈ log1+a(logR(m)) ≈ log(log(m)).

The above example hints at the difficulty of estimating the function Γ
associated to a given sequence δ. Our strategy here will be to start from
where we want to arrive, i.e., we will see that under a mild condition
on Γ, there is a sequence δ whose associated function is (equivalent to)
Γ.

Proposition 6.7. Let (Mn)∞n=0 be an increasing sequence of integers
such that M0 = 1, M1 = 2, M2 ≥ 4, and for n ∈ N,

⌈
Mn+1 −Mn

Mn −Mn−1

⌉
≤

⌊
Mn+2 −Mn+1

Mn+1 −Mn

⌋
. (6.1)

Then there exists a non-decreasing sequence δ of integers in [2,∞)
whose associated sequence Λ is given by Λ(n) = Mn for every n ∈
N ∪ {0}.

Proof. For n ∈ N and t ∈ R, put fn(t) = Mn + ⌊An⌋(t −Mn−1) and
gn(t) = Mn+1 − ⌈An⌉(Mn − t), where

An =
Mn+1 −Mn

Mn −Mn−1
.
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We have gn(Mn−1) ≤ Mn = fn(Mn−1) and fn(Mn) ≤ Mn+1 = gn(Mn).
Hence, there is h : [1,∞) → R such that for n ∈ N and Mn−1 ≤ t ≤Mn,

h(t) = max{fn(t), gn(t)},

and h(Mn−1) = Mn for every n ∈ N. Since ⌈An⌉ ≤ ⌊An+1⌋ for every
n ∈ N, h is convex. Therefore, since h(1) = h(M0) = M1 = 2, h(2) =
h(M1) = M2 ≥ 4, and h(n) ∈ Z for every n ∈ N, the sequence δ =
(h(n+ 1) − h(n))∞n=1 satisfies the desired property. �

Proposition 6.8. Let φ : [0,∞) → [0,∞) be an increasing concave
function with φ(0) = 0. Then there exists a non-decreasing sequence
δ of integers in [2,∞) whose associated function Γ satisfies Γ(m) ≈
φ(log(m)) for m ≥ 2.

Proof. If φ(x) ≈ x for x ≥ 0, the result follows from Example 6.5. So,
we assume that limx→∞ ψ(x)/x = ∞, where ψ = φ−1 is the inverse of
φ. Then, since ψ is convex,

lim
x→∞

ψ(x + 1) − ψ(x) = ∞.

Consequently,

F (x) := eψ(x+1) − eψ(x) = eψ(x+1)(1 − eψ(x)−ψ(x+1)) ∼ eψ(x+1), x→ ∞.

Let M(x) = ⌊eψ(x)⌋, x ≥ 0. We have

|M(x + 1) −M(x) − F (x)| ≤ 1, x ≥ 0.

We infer that M(x + 1) −M(x) ∼ eψ(x+1) as x goes to ∞. Therefore

H(x) :=
M(x + 2) −M(x + 1)

M(x + 1) −M(x)
∼ F (x+ 1) ∼ eψ(x+2), x→ ∞.

Iterating the argument we obtain

H(x+ 1)

H(x)
∼ F (x + 2) ∼ eψ(x+3), x→ ∞.

We infer that limx→∞H(x + 1) − H(x) = ∞. Consequently, there is
a ∈ N such that 2 ≤M(a + 1) −M(a) and

5 ≤

⌈
M(x + 2) −M(x + 1)

M(x + 1) −M(x)

⌉
≤

⌊
M(x + 3) −M(x + 2)

M(x + 2) −M(x + 1)

⌋
, x ≥ a.

Let b ∈ N be such that 2b ≤M(a + 1) −M(a) < 2b+1. Define

Mn =

{
2n if 0 ≤ n ≤ b,

Mn = M(n− b+ a) −M(a) + 2b if b ≤ n.

It is routine to check that M2 ≥ 4 and that the sequence (Mk)
∞
k=1

satisfies (6.1). Then, by Proposition 6.7 there exists a non-decreasing
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sequence δ of integers in [2,∞) whose associated function Γ is the left
inverse of (Mk)

∞
k=1. If m ≥ 2b and Γ(m) = n we have

b−a−1+φ(log(m+M(a)−2b+1)) < n < b−a+φ(log(m+M(a)−2b+1)).

Since the function φ ◦ log is doubling on the interval [2,∞), we infer
that Γ(m) ≈ φ(log(m)) for m ≥ 2. �

Theorem 6.9. Let Y be either the space Xp or the space ℓp, 0 < p ≤ 1.
For every concave increasing function φ : [0,∞) → [0,∞) with φ(0) = 0
there exists an almost greedy Schauder basis B for Y with km[B,Y] ≈
φ1/p(logm) for m ≥ 2.

Proof. For Xp it follows from Proposition 6.8 and and Theorem 5.10
and for ℓp from Proposition 6.8 and Theorem 6.2. �

Corollary 6.10. Suppose 0 < p ≤ 1. For every 0 < a ≤ 1/p the spaces
Xp and ℓp contain an almost greedy basis with conditionality constants
km ≈ (logm)a for m ≥ 2.

Proof. Just apply Theorem 6.9 with φ(x) = xc, 0 < c ≤ 1. �

The following was result was proved for the case ℓ1 in [8] using com-
pletly different techniques.

Corollary 6.11. Both the spaces Xp and ℓp for 0 < p ≤ 1 contain
a continuum of mutually permutatively non-equivalent almost greedy
bases.

Proof. It is immediate from Corollary 6.10. �

7. Lindenstrauss dual bases

By Proposition 4.1, the sequence X ∗
p (δ) is a Schauder basis of its closed

linear span [X ∗
p (δ)] in X∗

p(δ). We will write

X
∗
p,0(δ) := [X ∗

p (δ)].

If 0 < p < 1 there is not much to say about this basis apart from that,
by Proposition 4.13, it is equivalent to the unit vector system of c0.
If p = 1, since X1(δ) is a conditional basis, so is X ∗

1 (δ). In fact, by
[6, Proposition 3.2.3] and Proposition 4.1, we have

km[X ∗
1 (δ),X∗

1,0(δ)] = km[X1(δ),X1(δ)] ≈ Γ(m), m ≥ 2.

In this section, we will discuss the basis X ∗
1 (δ) and extend the results

from [7], where the authors deal with the classical case dn = 2.
First, we focus on the Banach space X∗

1,0(δ). Note that, since X1(δ)
is a L1-space, X∗

1(δ) is isomorphic to ℓ∞ [23]. Note also that if p < 1, by
Corollary 4.17 and Fact 3.17, the dual map J∗ : ℓ∞ → X∗

p(δ) restricts
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to an isomorphism from c0 onto X∗
p,0(δ). Next, we show that this result

holds even for p = 1.

Proposition 7.1. For fixed 0 < p ≤ 1, let Xp = Xp(δ), where δ =
(dn)∞n=1 is a sequence of integers in [2,∞). For every y ∈ c0 we have

‖y‖X∗

p
= sup{|〈y, x〉| : x ∈ BXp

} ≤ ‖y‖∞ ≤ 21/p‖y‖X∗

p
.

That is, BXp
is a norming set for (c0, ‖ · ‖∞), and the map y 7→ 〈y, ·〉

is an isomorphism from c0 onto X∗
p,0(δ).

Proof. Given ε > 0 and j ∈ N, pick N ∈ N such that ‖y − SN (y)‖∞ ≤
ε. Let 1 ≤ j ≤ N . Use Lemma 3.24 to choose x ∈ Xp such that
SN(x) = 2−1/pej and ‖x‖ = 1. Then

|y(j)| = 21/p|〈y, SN(x)〉|

= 21/p|〈SN(y), x〉|

≤ 21/p|〈y, x〉| + 21/p|〈y − SN(y), x〉|

≤ 21/p‖y‖X∗
p

+ 21/pε.

Since ε is arbitrary, taking the supremum on j we obtain the desired
inequality. �

Note that, as a consequence of Proposition 7.1, the basis X ∗
1 (δ) is nei-

ther quasi-greedy [10, Corollary 8.6], nor super-democratic [2, Propo-
sition 4.20]. Next, we carry out a quantitive study of this basis.
From now on, as no confusion is possible, we will write X1 = X1(δ),
X ∗

1 = X ∗
1 (δ), X1 = X1(δ), and X∗

1,0 = X∗
1,0(δ). We start by estimat-

ing the democracy functions and quasi-greedy constants of X ∗
1 . The

mth Lebesgue (quasi-greedy) constant Lqm[B,Y] of a basis B of a quasi-
Banach space Y will be the smallest constant C such that

max{‖Gm(f)‖, ‖f − Gm(f)‖} ≤ C‖f‖, f ∈ Y.

Lemma 7.2. Let δ be a non-decreasing sequence of integers in [2,∞).
Then X ∗

1 is not SUCC, therefore it is neither quasi-greedy nor su-
perdemocratic. Quantitatively, for every m ∈ N:

(i) Φl,s
m [X ∗

1 ,X
∗
1,0] ≤ 2,

(ii) Φu
m[X ∗

1 ,X
∗
1,0] > Γ(m), and

(iii) Lqm[X ∗
1 ,X

∗
1,0] ≥

1
8
Γ(m).

Proof. Let xm =
∑m

j=1 x
∗
j and ym =

∑m
j=1(−1)jx∗

j . By Proposition 7.1,
Lemma 5.7, and Fact 3.13,

‖xm‖ ≥
1

2
‖xm‖∞ ≥

1

2

m∑

j=1

x∗j (1) >
1

2
Γ(m).
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Let k ∈ N. By Fact 3.13 the sequence ((−1)jx∗
j (k))∞j=1 is alternating.

Since

Jk,n,m = Jk,n ∩ {1, . . . , m}, k,m ∈ N, n ∈ N ∪ {0}

is an integer interval, taking also into account Lemma 5.5(a), we obtain
∣∣∣∣∣∣

∑

j∈Jk,n,m

(−1)jx∗
j (k)

∣∣∣∣∣∣
≤ Ak,n := sup

j∈Jk,n

|x∗
j (k)|.

Since (Jk,n,m)∞n=1 are pairwise disjoint by Fact 3.12, Lemma 4.15 (a)
yields

‖ym‖ ≤ ‖ym‖∞ = sup
k

∣∣∣∣∣∣

∞∑

n=0

∑

j∈Jk,n,m

(−1)jx∗
j(k)

∣∣∣∣∣∣
≤ sup

k

∞∑

n=0

Ak,n ≤ 2.

We infer that X ∗
1 is not SUCC and that, if Cm = Lqm[X ∗

1 ,X1,0],

Γ(m) ≤ 2‖xm‖ ≤ 4Cm‖ym‖ ≤ 8Cm. �

We also provide an estimate for the lower democracy function.

Lemma 7.3. Let δ be a non-decreasing sequence of integers in [2,∞).
Then,

Φl
m[X ∗

1 ,X
∗
1,0] ≤ 2, m ∈ N.

Proof. Let B = {Λ(n) : n ≥ 0}. It is clear that, for every k ∈ N and
n ≥ 0, Jk,n ∩ B is either empty or a singleton. By Lemma 4.15(a),

∑

j∈B

|x∗
j (k)| ≤ 2, k ∈ N,

whence ∥∥∥∥∥
∑

n∈A

x∗
j

∥∥∥∥∥ ≤

∥∥∥∥∥
∑

n∈A

x∗
j

∥∥∥∥∥
∞

≤ 2

for every A ⊆ B finite. �

We close our study of the democracy functions of the dual bases of
Lindenstrauss bases with an upper bound for the upper superdemoc-
racy constant.

Lemma 7.4. Let δ be a non-decreasing sequence of integers in [2,∞).
Then,

Φu,s
m [X ∗

1 ,X
∗
1,0] ≤ 1 + Γ(m), m ∈ N.
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Proof. Let A ⊆ N with |A| ≤ m and let γ be a sequence of signs.
Applying Lemma 5.7 we obtain

‖1γ,A[X ∗
1 ,X

∗
1,0]‖ ≤ ‖1γ,A[X ∗

1 ,X
∗
1,0]‖∞ ≤ sup

k

∑

j∈A

|x∗
j (k)| ≤ 1 + Γ(m). �

Given a basis B of a quasi-Banach space Y and m ∈ N, the mth
Lebesgue (almost greedy) constant Lam[B,Y] is the optimal constant C
such that

‖f − Gm[B,Y](f)‖ ≤ C‖f − SA[B,Y](f)‖

for every A ⊆ N with |A| = m. It is clear that

(−1 + (Lqm[B,Y])p)1/p ≤ Lam[B,Y] ≤ Lm[B,Y].

Theorem 7.5. Let δ be a non-decreasing sequence of integers in [2,∞).
Then for m ≥ 2,

Φu
m[X ∗

1 ,X
∗
1,0] ≈ Φs,u

m [X ∗
1 ,X

∗
1,0] ≈ Lqm[X ∗

1 ,X
∗
1,0] ≈ Lam[X ∗

1 ,X
∗
1,0]

≈ Lm[X ∗
1 ,X

∗
1,0] ≈ km[X ∗

1 ,X
∗
1,0] ≈ Γ(m)

and

Φl
m[X ∗

1 ,X
∗
1,0] ≈ Φl,s

m [X ∗
1 ,X

∗
1,0] ≈ 1.

Proof. We only need to prove that Lm := Lm[X ∗
1 ,X

∗
1,0] . Γ(m) for

m ≥ 2. PutDm = Φu,s
m [X1,X1], D

∗
m = Φu,s

m [X ∗
1 ,X

∗
1,0] and Em = 1+Γ(m)

for m ∈ N, and use the convention D∗
0 = E0 = 0. Since Dm ≤ 2m by

Proposition 4.9 and D∗
m ≤ Em by Lemma 7.4, for every N ∈ N we have

N∑

m=1

Dm(D∗
m −D∗

m−1)

m
≤ 2

N∑

m=1

D∗
m −D∗

m−1 = 2D∗
N ≤ 2EN .

Hence, by [7, Theorem 1.1], Lm ≤ 1 + 3Em for all m ∈ N, i.e.,

Lm ≤ 4 + 3Γ(m), m ∈ N. �
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