

University of North Dakota
UND Scholarly Commons

Theses and Dissertations

Theses, Dissertations, and Senior Projects

5-1-1971

# The Psammon of Bars and Beaches in Two Small Northwestern Minnesota Streams

Richard D. Urban

Follow this and additional works at: https://commons.und.edu/theses

# **Recommended Citation**

Urban, Richard D., "The Psammon of Bars and Beaches in Two Small Northwestern Minnesota Streams" (1971). *Theses and Dissertations*. 3679. https://commons.und.edu/theses/3679

This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

# THE PSAMMON OF BARS AND BEACHES

# IN TWO SMALL NORTHWESTERN

#### MINNESOTA STREAMS

by Richard D. Urban

Bachelor of Arts, Blackburn College, 1965 Master of Science, New Mexico Highlands University, 1967

A Dissertation

Submitted to the Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Grand Forks, North Dakota

May 1971 This Dissertation submitted by Richard D. Urban in partial fulfillment of the requirements for the Degree of Doctor of Philosophy from the University of North Dakota is hereby approved by the Faculty Advisory Committee under whom the work has been done.

Get A. The

(Chairman)

m lanancare al.

John B. aven

The Jace

Thomas C. Queun

allillion

Dean of the Graduate School

#### Permission

| Title    | THE PSAMMON OF BARS AND BEACHES IN TWO SMALL NORTHWESTERN |
|----------|-----------------------------------------------------------|
|          | MINNESOTA STREAMS                                         |
| Departme | ent Department of Biology                                 |
| Degree   | Doctor of Philosophy                                      |

In presenting this dissertation in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the Library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my dissertation work or, in his absence, by the Chairman of the Department or the Dean of the Graduate School. It is understood that any copying or publication or other use of this dissertation or part thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of North Dakota in any scholarly use which may be made of any material in my dissertation.

Signature Richard D. Ulban Date February 23, 1971

iii

#### ACKNOWLEDGEMENTS

This research was supported during the summers of 1967, 1968, and 1969 by NSF Grant GB-6158, Support of Summer Biological Research. I am indebted to: Professor Joe K. Neel, under whose direction this work was conducted; Dr. William H. Marshall, Director, University of Minnesota Lake Itasca Forestry and Biology Station, for use of station facilities and assistance in securing the NSF grant; Vernon Blackert, Jr., for materials and assistance in construction of field kits; the members of my graduate committee, Drs. Vera Facey, John B. Owen, Alan M. Cvancara, and Thomas C. Owens, for assistance and criticism; and my wife, Kristen W. Urban, for patience, assistance, and encouragement.

#### TABLE OF CONTENTS

| ACKNOWLEDGMENTS                                                                                                                                                                                                                                                                                                                      | iv                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| TABLE OF CONTENTS                                                                                                                                                                                                                                                                                                                    | v                                            |
| LIST OF TABLES                                                                                                                                                                                                                                                                                                                       | vii                                          |
| LIST OF ILLUSTRATIONS                                                                                                                                                                                                                                                                                                                | ix                                           |
| ABSTRACT                                                                                                                                                                                                                                                                                                                             | xi                                           |
| INTRODUCTION                                                                                                                                                                                                                                                                                                                         | l                                            |
| STUDY AREAS                                                                                                                                                                                                                                                                                                                          | 3                                            |
| Mississippi River                                                                                                                                                                                                                                                                                                                    | 33                                           |
| MATERIALS AND METHODS                                                                                                                                                                                                                                                                                                                | 12                                           |
| Physical Features<br>Chemical Features<br>Biological Features                                                                                                                                                                                                                                                                        | 12<br>13<br>13                               |
| RESULTS                                                                                                                                                                                                                                                                                                                              | 21                                           |
| Physical Features<br>Temperature<br>Sand analysis<br>Capillarity<br>Organic content<br>Water level fluctuation<br>Pore space<br>Chemical Features of the Mississippi River<br>Oxygen<br>Hydrogen ion concentration<br>Alkalinity<br>Total hardness, calcium, and magnesium<br>Orthophosphate, nitrite-nitrogen, and ammonia-nitrogen | 2121214544788888555522                       |
| Oxygen<br>Hydrogen ion concentration<br>Alkalinity<br>Total hardness, calcium, and magnesium<br>Orthophosphate, nitrite-nitrogen, and ammonia-nitrogen<br>Biological Features                                                                                                                                                        | 52<br>52<br>52<br>52<br>52<br>53<br>53<br>53 |

| Quantitative aspects<br>Mississippi River<br>Wild Rice River<br>Effects of deposition on population dynamics                                                                                                                                                                                                                                                                                       | 53<br>54<br>121<br>127                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| DISCUSSION                                                                                                                                                                                                                                                                                                                                                                                         | 131                                                                                     |
| <pre>Physical Features<br/>Sand<br/>Temperature<br/>Organic matter<br/>Chemical Features of Interstitial Water<br/>Hydrogen ion concentration<br/>Alkalinity<br/>Total hardness, calcium, and magnesium<br/>Phosphate and ammonia-nitrogen<br/>Black layer<br/>Biological Features<br/>Potamopsammon compared to lake psammon<br/>Minnesota rivers compared to European rivers<br/>Migration</pre> | 131<br>132<br>132<br>133<br>134<br>135<br>135<br>136<br>136<br>136<br>137<br>144<br>147 |
| SUMMARY                                                                                                                                                                                                                                                                                                                                                                                            | 149                                                                                     |
| LITERATURE CITED                                                                                                                                                                                                                                                                                                                                                                                   | 151                                                                                     |

# LIST OF TABLES

| Table |                                                                                                                                                                    | Page |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.    | Temperature Readings for the Mississippi and Wild<br>Rice Rivers (°C), June - November, 1968                                                                       | 22   |
| 2.    | Equivalents for Sediment Analyses as Used in<br>Figures and Text                                                                                                   | 29   |
| 3.    | Capillarity for Mississippi River as Determined<br>from June 13, 1968 Transect                                                                                     | 45   |
| 4.    | Capillarity for Wild Rice River as Determined<br>from June 13, 1968 Transect                                                                                       | 46   |
| 5.    | Vertical Variation in Organic Content of the<br>Mississippi and Wild Rice River Psammon,<br>October 18, 1969; Milligrams per 10 Cubic<br>Centimeters of Sand       | 47   |
| 6.    | Chemical Features of Interstitial and Stream<br>Water, Except for pH, Values are Milligrams<br>per Liter                                                           | 49   |
| 7.    | Vertical and Horizontal Distribution of Psammon<br>Organisms for the Mississippi River, Numbers<br>Are per Cubic Centimeter of Sand                                | 71   |
| 8.    | Vertical and Horizontal Distribution of Psammon<br>Organisms for the Wild Rice River, Numbers Are<br>per Cubic Centimeter of Sand                                  | 92   |
| 9.    | Dominant Genera in Cores for the Mississippi<br>River - June through November, 1968                                                                                | 110  |
| 10.   | Dominant Genera in Cores for the Wild Rice<br>River - June through November, 1968;<br>Distances Relative to Waterline Which Differ<br>from Heading in Parenthesis. | 122  |
| 11.   | Vertical Dist ibution of Organisms in a Newly<br>Formed Sand Bar at Station 2 on the<br>Mississippi River; Numbers are per Cubic<br>Centimeter of Sand.            | 128  |

#### Table

12. Vertical Distribution of Organisms in Sand of Station 2 on the Mississippi River Before Being Covered with Sand Bar Referred to in Table 11; Numbers are per Cubic Centimeter 129 . . 13. Summary of the Range of Quantitative Data for the First Centimeter of the Sand for Douglas Lake, Michigan: Number of Psammon Organisms 138 per Cubic Centimeter of Sand. . . . . . . 14. Summary of the Horizontal and Numerical Distribution of the Microfauna of Several Wisconsin Lakes and an Austrian Lake: Number of Organisms per Cubic Centimeter 140 . . . .

Page

# LIST OF ILLUSTRATIONS

| Figure |                                                                                                                                                                               | P | age |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
| 1.     | The Upper Mississippi and Wild Rice River Basins,<br>= Study Areas                                                                                                            | • | 5   |
| 2.     | The Mississippi River Study Area in Autumn 1970.<br>Transect 2 Extended Across Stream Just Beyond<br>the Stranded Log. Sand Was Usually Exposed<br>Near Stream Margin to Left | • | 7   |
| 3.     | Mississippi River Station Details                                                                                                                                             | • | 8   |
| 4.     | The Wild Rice River Station as Seen from<br>The Left Bank. The Transect Location is<br>Shown by a Black Line                                                                  |   | 10  |
| 5.     | Wild Rice River Station Details,                                                                                                                                              | • | 11  |
| 6.     | Fluctuation in Water Level, Mississippi River.<br>June 13 - June 16, 1968 Indicate Transect 1,<br>Other Dates Are for Transect 2. Circles<br>Indicate Sampling Sites.         |   | 15  |
| 7.     | Fluctuations in Water Level, Wild Rice River.<br>Circles Indicate Sampling Sites                                                                                              | • | 18  |
| 8.     | Horizontal Variation in Grade of the Upper 6<br>Centimeters of Sand, Transect 1, Mississippi<br>River, June 13, 1968                                                          | • | 24  |
| 9.     | Horizontal Variation in Grade of the Upper 6<br>Centimeters of Sand, Transect 2, Mississippi<br>River, August 14, 1968                                                        | • | 26  |
| 10.    | Horizontal Variation in Grade of the Upper 6<br>Centimeters of Sand, Transect 2, Mississippi<br>River, November 3, 1968                                                       | • | 28  |
| 11.    | Vertical Variation in Sand Grade, Station 2,<br>Transect 2, Mississippi River, November 3,<br>1968. The Upper 3 Centimeters Were Newly<br>Deposited Sand.                     |   | 31. |
| 12.    |                                                                                                                                                                               |   | 33  |

Page

# Figure

| 13. | Horizontal Variation in Grade of the Upper 6<br>Centimeters of Sand, Wild Rice River,<br>June 13, 1968     | 34 |
|-----|------------------------------------------------------------------------------------------------------------|----|
| 14. | Current Pattern Variation with Changing<br>Water Level, Wild Rice River, 1968.<br>Transects 4 Meters Long. | 38 |
| 15. | Horizontal Variation in Grade of the Upper 6<br>Centimeters of Sand, Wild Rice River,<br>August 14, 1968   | 40 |
| 16. | Horizontal Variation in Grade of the Upper 6<br>Centimeters of Sand, Wild Rice River,<br>November 3, 1968  | 42 |
| 17. | Vertical Variation in Sand Grade, Wild<br>Rice River, September 21, 1968                                   | 44 |

Page

#### ABSTRACT

Sand bars and beaches of the Mississippi (MR) and Wild Rice (WRR) Rivers, Minnesota, were sampled to allow determination of sand texture, capillarity, pore space, organic content, temperature, chemistry (pH,  $O_2$ ,  $CO_3$  and HCO<sub>3</sub> alkalinity, total hardness, Ca, Mg, PO<sub>4</sub>, NH<sub>3</sub>-N, and  $NO_2$ -N) of interstitial water, and composition and concentration of psammo-organisms, all in relation to current influences, distance above and below waterline, and depth into the sand.

Minimum and maximum values for capillary rise were 36-80 mm in the MR and 118-191 mm in the WRR; organic content was 217.4 mg/10cc sand for the MR and 377.1 mg/10cc sand for the WRR; and pore space comprised 22-25%, and 35-37% of the total sand volume for the MR and WRR, respectively. Submerged sand was frequently moved by stream currents.

Oxygen was absent from water 6-9 cm deep in exposed sand of both streams and in submerged sand of the WRR, but occasionally occurred in submerged sand in the MR (maximum 4.4mgl); pH decreased progressively from stream to submerged to exposed sand (exemplified as follows for the MR, 8.25, 7.15, and 6.95, respectively; and for the WRR by 7.6, 6.7, and 6.4, respectively) as decomposition became more localized. Carbonate alkalinity was not observed in interstitial water of either river. Bicarbonate alkalinity (range 114-252 mgl for the MR and 158-552 mgl for the WRR), total hardness (142-274 mgl MR and 189-693 mgl WRR), calcium (54-199 mgl MR and 99-395 mgl WRR), and magnesium (46-132 mgl MR and 24-287 mgl WRR) increased in the same order as pH, seemingly

xi

because of ground water seepage, decomposition, and evaporation. Ammonia-nitrogen (0.0-5.0 mgl) and ortho-phosphate (0.0-5.84 mgl) were contributed to the psammon of the WRR by local surface drainage. Lower levels (0.0-2.0 mgl and 0.0-2.6 mgl, respectively) occurred in MR sand.

Composition and concentration of psammo-organisms were related to distance above and below waterline and to depth in the sand. Three hundred twenty-six (326) kinds of organisms were found in 700 samples. Potamopsammon organisms in descending numerical order were: diatoms (maximum number 2,181,824/cc sand MR and 441,470/cc sand WRR), bluegreen algae (62,038 MR, 210,624 WRR), green algae (19,757 MR, 4,186 WRR), testaceous rhizopods (4,408 MR, 1,152 WRR), euglenophytes (2,480 MR, 2,160 WRR), rotifers (452 MR, 32 WRR), nematodes (216 MR, 184 WRR), tardigrades (188 MR, 8 WRR), dinoflagellates (112 MR, 0 WRR), oligochaetes (76 MR, 12 WRR), gastrotrichs (72 MR, 0 WRR), ciliates (56 MR, 4 WRR), dipteran larvae (56 MR, 30 WRR), ostracods (40 MR, 16 WRR), and hydrachnid larvae (40 MR, 0 WRR).

Potamopsammon organisms were most numerous in stable submerged sand. They were next most abundant in exposed sand within 70 cm of the waterline, newlyformed sand bars under water, eroded portions of submerged sand, exposed sand 70+ cm above the waterline, and at the waterline, in that order.

The major portion of the population was usually located in the upper two centimeters of stable sand, but organisms penetrated to a depth of six centimeters. Concentration at any point or depth in submerged sand was subject to depletion or augmentation by current action. Organisms were most numerous at a depth of three or more centimeters in newlyformed submerged bars, partly from burial of established surface sand

xii

populations, and partly from loss of organisms from newly deposited sand.

Potamopsammon as exemplified by these study areas differs from lake psammon in the following respects: oxygen was absent in the interstitial water of exposed sand, a black layer was absent from the sand, fewer species of rotifers were present, harpactacoid copepods were absent, a more diverse blue-green algal flora was noted, algae were found in greater abundance, and organisms were found to exist at greater depths in potamopsammon than in lake psammon.

xiii

### INTPODUCTION

Studies in the 1920's and 1930's demonstrated that sand beaches and shoals of lakes and streams possessed a wealth of microscopic life in water between sand grains. Sassuchin noted this interstitial population in moist beaches of the Oka River in 1926, and in 1927 Sassuchin, Kabanov, and Neiswestnova described this environment in some detail, suggesting that this living realm be designated "psammon". Sassuchin studied subsurface populations in air-borne steppe sands of Kirghiz in 1930, and in 1931 described conditions of life in water-accumulated sands of rivers and shifting sands of deserts. Microfauna differences in Oka River sand from midstream to banks were detailed by Neiwestnova-Shadina (1935).

Wiszniewski (1932, 1934 a, b, 1935, 1936, 1937, as cited in Neel, 1948) dealt primarily with rotifers inhabiting the sand of several Polish lakes and Varga (1938 as cited in Neel, 1948) reported on a preliminary study of psammon rotifers in Lake Balaton, Hungary. Some chemical and physical parameters and quantitative features of psammon organisms in an Austrian lake were described by Ruttner-Kolisko (1956). Availability of oxygen and its importance to animal distribution in some Swedish lake beaches was reported by Enckell (1968).

In the United States, two New Jersey lake beaches were the source of psammon rotifers described by Myers (1936). Pennak (1939a, b, 1940) reported on physical and chemical features of the psammon of several Wisconsin lakes, and described distribution of rotifers, copepods, and tardigrades. Physical, chemical, and biological features, and their

relationships to shoal and shoreline dynamics, were studied by Neel (1948) in Douglas Lake, Michigan.

Works closely related to lake psammon were those of Moore (1939), dealing with the microscopic benthic fauna of Douglas Lake, Michigan; Cole (1955), who studied the microscopic benthic fauna of Lake Itasca and Crystal Lake, Minnesota; Round (1957 a, b, c, 1960, 1961, 1965), Round and Eaton (1966), Round and Happey (1965); and Harper (1969), who were concerned with freshwater epipelic microflora associations.

Aside from the Oka River studies of Sassuchin (1926, 1931), Sassuchin et al. (1927), and Neiwestnova-Shadina (1935), only Ruttner-Kolisko's 1961 study of the microfauna of the exposed banks of the Ybbs and Donau Rivers in Austria is concerned with stream psammon. Works closely related to potamopsammon have been those of Butcher (1932) and Douglas (1958) who studied the benthic algae of some English streams.

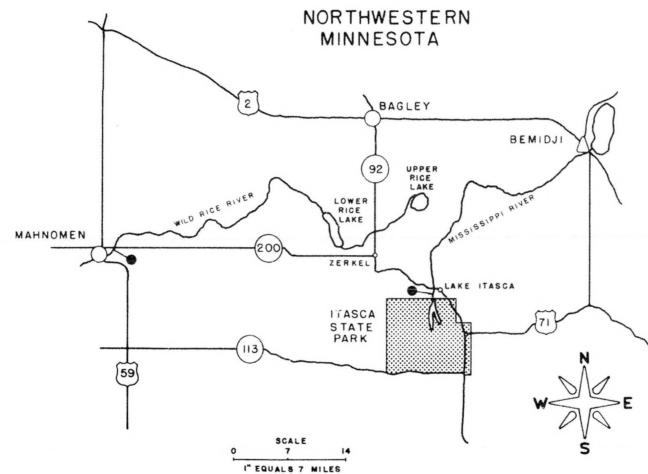
This study was undertaken to learn more detailed responses of the psammon to the stream environment than has previously been attempted, to compare stream dynamics to those operative in lakes as described primarily by Neel, and to determine any unique features of the potamopsammon environment and population.

#### STUDY AREAS

Study sites were established on the Mississippi River one-half mile below its "headwaters" in Lake Itasca, and on the Wild Rice River one mile east of Mahnomen, Minnesota (Figure 1). Headwaters of the two rivers lie only fourteen miles apart; both begin in a bog-forest successional community, but the Wild Rice River enters the prairie croplands of the glacial Lake Agassiz Basin above Mahnomen.

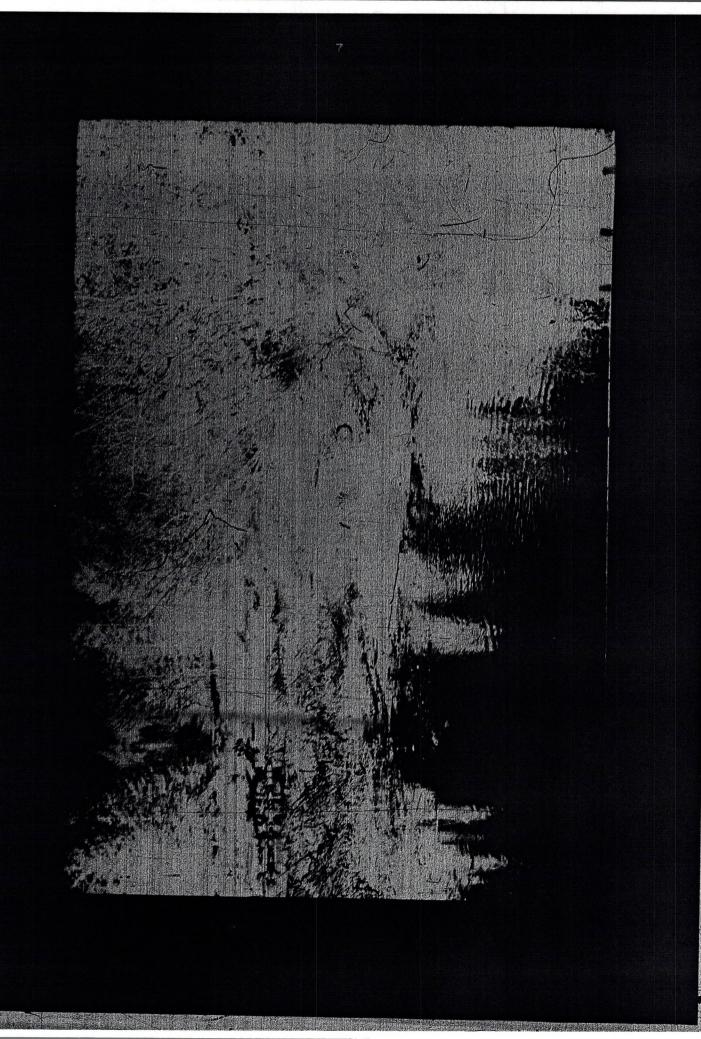
# Station Details

#### Mississippi River


Details of this station appear in Figure 2. The transect was first located on the upstream end of a small sandbar (Figure 3), but as water level declined, it was moved a few feet downstream in order to cross the sandbar point. Annual discharge at the station ranged between approximately 12 and 100 cfs. The bar became overgrown with <u>Scirpus fluviatilis</u> (Torr.) Gray and <u>Gluceria grandis</u> Wats..

# Wild Rice River

This transect, established on the downstream end of a small island, was always above water except during floods (Figures 4 and 5). Annual discharge at the station ranged between approximately 17 and 200 cfs. <u>Populus deltoides Marsh., Cornus stolonifera Michx., Salix interior</u> Rowlee, and <u>S. fragilis</u> L. formed a vegetative cover on the island. Cattle pastures were situated on both stream banks, and a cattle feed lot was located 200 yards upstream.


Fig. 1.---The upper Mississippi and Wild Rice River basins.  $\P$  = study areas.

....



CR

Fig. 2.--The Mississippi River study area in autumn 1970. Transect 2 extended across stream just beyond the stranded log. Sand was usually exposed near stream margin to left.



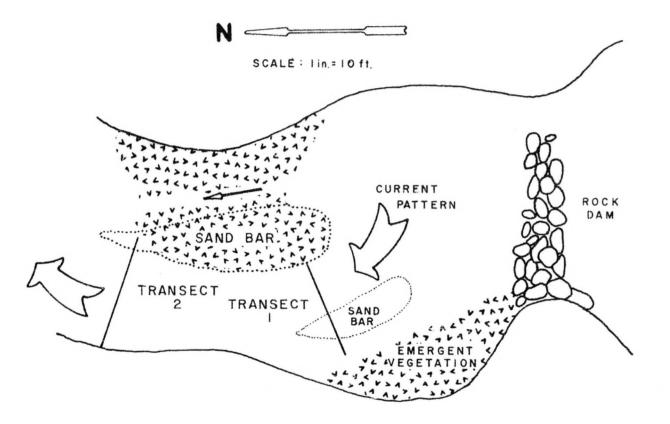
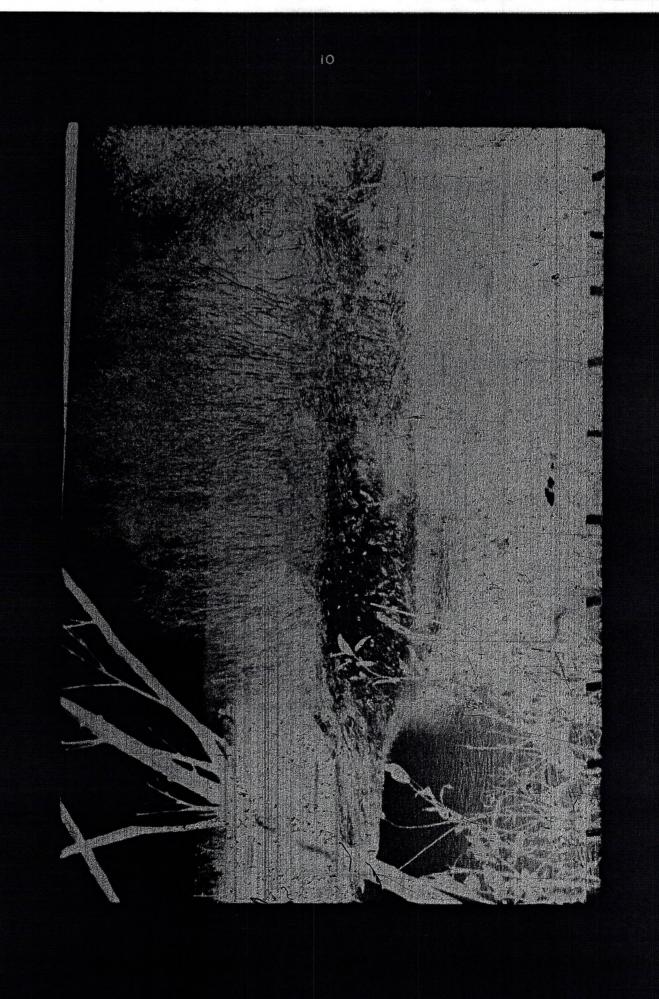




Fig. 3.--Mississippi River station details

 $\infty$ 

Fig. 4.--The Wild Rice River station as seen from the left bank. The transect location is shown by a black line.



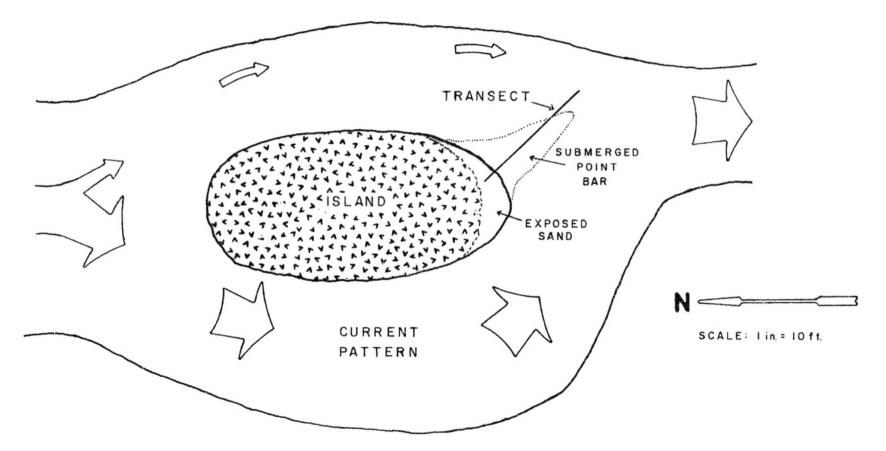



Fig. 5.-Wild Rice River station details

#### MATERIALS AND METHODS

Physical Features

#### Temperature

Temperature was taken at a depth of 5 cm in the sand, 6-7 cm above the bottom in water, and in shaded areas in the air, with a standardized laboratory thermometer.

## Sand Grade Analysis

Samples obtained by thrusting brass tubes (with internal crosssectional areas of 10 square centimeters) 6 cm into the sand, were shaken through a series of U. S. Standard Sieves of 4.76 mm (-2.25 phi), 0.149 mm (-1.00 phi), 0.595 mm (0.75 phi), 0.280 mm (2.00 phi), 0.149 mm (2.75 phi), and 0.074 mm (3.75 phi) mesh sizes. Horizontal patterns were generally based upon the entire 6 cm core and vertical ones upon onecentimeter core sections.

#### Miscellaneous

Capillarity was determined by measuring the height of water rise in dried, unsieved sand of the study area contained in glass tubes of 1.0. and 1.7 cm internal diameter.

Organic content was measured by ashing one-centimeter core sections at 450°C for 24 hours.

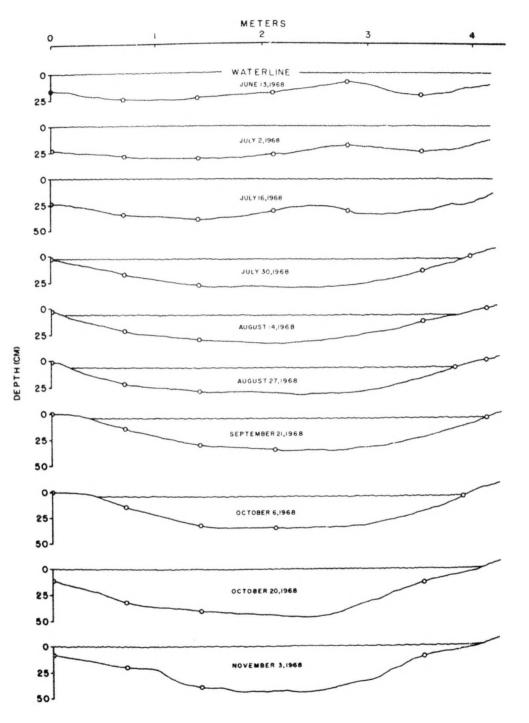
Pore space was determined by methods described by Pennak (1940).

#### Chemical Features

#### Sample Collection

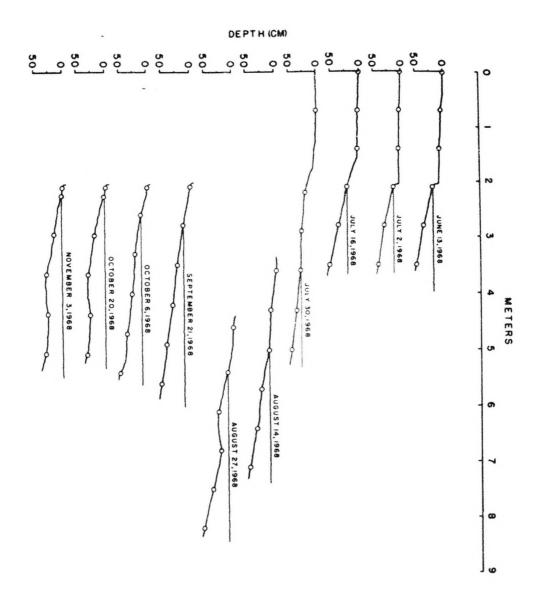
Interstitial water was sampled with a device similar to that described by Neel (1948). Water was drawn into two bottles connected in series to the sampler. The smaller (60 ml), first bottle was used for oxygen, and the second (300 ml) for other analyses.

Samples above waterline were taken at depths ranging from 6 to 9 cm in the sand, while those from submerged sand were 4 to 6 cm dee. Stream water samples were taken from the surface.


#### Chemical Analyses

Oxygen, pH, alkalinity (carbonate and bicarbonate), total hardness, calcium, magnesium, orthophosphate, nitrite-nitrogen, and ammonia-nitrogen were determined according to the 12th edition of <u>Standard Methods for the</u> <u>Examination of Water, Sewage, and Wast water</u> (American Public Health, et al., 1965). All analyses were performed in the field soon after collection.

#### Biological Features


#### Sampling Method

Sand samples for organismal study were taken along transects which were established so as to cross a variety of conditions existing in exposed and submerged sand. Sampling density was determined by these conditions. With regard to the Mississippi River: (1) all collections from Transect 1 represent the same relative positions (Figure 6); (2) Stations 1, 2, and 3 of Transect 2 were situated in the same area; Fig. 6.--Fluctuations in water level, Mississippi River. June 13 - July 16, 1968 indicate Transect 1, other dates are for Transect 2. Circles indicate sampling sites.



but (3) positioning of Stations 4 and 5 on Transect 2 was dependent upon the location of materials small enough to allow coring among coarser deposits along the left bank (Figure 6); and (4) the first three stations on both transects were in the same relative positions with respect to the sand bar, except that Transect 2 was approximately 3 m downstream. All sampling on the Wild Rice River was along the same transect, but stations were moved as dictated by conditions associated with falling water level. The water line served as a point of reference. Stations at it are called "0 cm", those above it are indicated by a "+" before the distance in centimeters, and those below it, by a "-" before the distance. Stations were usually spaced at 70 centimeter intervals, but there were some exceptions. On October 6 and 19, and November 3, stations were 50, 18, and 15 centimeters, respectively, from the waterline. With decreased discharge, the stations of June 13 were abandoned because of enroachment by vegetation. Movement of the sampled reach is shown in Figure 7. The sampling method used was similar to that described by Neel (1948). The brass core sampler was thrust into the sand, its upper end stoppered, the sampler with the core removed, and its lower end stoppered. Over-lying water was carefully pipetted off cores taken under water to minimize distrubance to upper sand layers. Cores were pushed to the tops of the tubes with a plunger and successive onecentimeter lengths cut off with a spatula. These sections were placed in small jars containing a saturated methol solution in which they remained 12 to 15 hours. Samples were then transferred to evaporating dishes where organisms were washed from the sand by stirring with an air jet. Three changes of water were normally used, and organisms were concentrated by centrifuging each wash. They were then preserved with

Fig. 7.--Fluctuations in water level, Wild Rice River. Circles indicate sampling sites.



5% formalin in a 40% glycerol solution.

Large quantities of silt and clay in Wild Rice samples and organic debris in Mississippi samples required reduction for accurate counts. This was accomplished with a separation technique: two milliliters of a well-mixed sample were diluted with distilled water and then gently placed atop a 25% glycerine solution contained in a separatory funnel. After about two hours, two fractions, one from the top and one from the bottom of the glycerine solution, were drawn off, centrifuged, and resuspended in water. Samples were diluted according to amounts of debris still remaining prior to counting.

### Counting Methods

Organisms were counted in a Sedgwick-Rafter cell at a magnification of 100 diameters. Three methods were employed: (1) the grid method, for groups exceeding 10,000 per counting cell; (2) the strip method, for those between 100 and 10,000 per cell; and (3) counts of the entire cell for groups containing less than 100 per cell. Concentration is expressed as number per cubic centimeter of sand. Thin mounts were made for identifications requiring higher magnification.

Live material was examined by a method described by F. E. Round of the University of Bristol, England (1970 oral personal communication). A one-centimeter core section was placed into a petri dish containing water, and covered for 24 hours with a cover slip. Organisms adhering could thus be examined microscopically. Identifications were according to: Leidy (1879), Hustedt (1930), Edmondson (1959), Prescott (1962), and Patrick and Reimer (1966).

Samples were collected weekly from June 13, 1968 through

September 3, 1968, and bimonthly from September 21, 1968 through November 3, 1968 (about the time of freeze-up). A total of 700 samples were analyzed, which provided a bimonthly frequency.

#### RESULTS

Physical Features

#### Temperature

Temperature changes in exposed and submerged sand lagged behind those of stream and air (Table 1). Response to rain is shown by July 30 data for the Wild Rice River, and effects of air temperature drop may be noted in Mississippi River records of August 14, which followed four nights with temperatures of 10°C or below.

# Sand Analysis

Mississippi River

Terminology referring to grades of sand and other materials appears in Table 2. Grade composition of the upper six centimeters of sand (Figures 8, 9, and 10) shows that: (1) the sand of the original sampling transact was eroded by currents at the second and third stations, and received deposition at areas represented by the first, fourth, fifth, and sixth stations; (2) erosion occurred to some degree at all sites except at Station 1 on the second transect, as water level declined; and (3) increased discharge maintained erosion except at Station 2 on November 3 when deposition occurred. Erosion was indicated by coarser grudes of sand and gravel, and deposition by finer grades.

Station 2 showed a bi-modal occurrence of coarse and medium sand

# TABLE 1

# TEMPERATURE READINGS FOR THE MISSISSIPPI AND WILD RICE RIVERS (°C), JUNE - NOVEMBER, 1968

| River       | Region | Sampling Date |      |      |      |      |      |      |      |      |      |      |     |      |      |       |      |
|-------------|--------|---------------|------|------|------|------|------|------|------|------|------|------|-----|------|------|-------|------|
|             |        | 6/13          | 6/24 | 7/2  | 7/8  | 7/16 | 7/23 | 7/30 | 8/6  | 8/14 | 8/20 | 8/27 | 9/3 | 9/22 | 10/6 | 10/20 | 11/2 |
|             | Air    | 12*           | 17   | 25*  | 21.5 | 25   | 22   | 19*  | 30.5 | 11   | 23.5 | 22   | 15* | 14*  | 18   | 11    | 10   |
| ippi        | Str.   | 18            | 20   | 18.5 | 24   | 26   | 24.5 | 20.5 | 27   | 17   | 23.5 | 20   | 17  | 17   | 12   | 10    | 6    |
| Mississippi | S.S.   | 17            | 19   | 17.5 | 23   | 25   | 24   | 20.5 | 25   | 1.8  | 22   | 19   | 17  | 16   | 12   | 9     | 6    |
|             | E.S.   | -             | -    | -    | -    | -    | -    | 20   | 29   | 12   | 21   | 19   | 16  | 15   | 11   | -     | -    |
|             | Air    | 1.7*          | 19   | 12.5 | 17*  | 25*  | 20   | 18*  | 23   | 15   | 17   | 18   | 15* | 18*  | 9    | 4.5   | 9    |
| Wild Rice   | Str.   | 1.6           | 19   | 14   | 22   | 24   | 20.5 | 18   | 23   | 1?   | 17   | 15   | 15  | 16.5 | 7    | 5     | 4    |
|             | S.S.   | 1.6           | 18   | 13   | 21   | 23   | 20.5 | 18   | 23   | 17   | 17   | 16   | 16  | 16   | 7.5  | 5     | 4    |
| M           | E.S.   | 1.5           | 17   | 13   | 20.5 | 22   | 19   | 18   | 22   | 24   | 15   | 13.5 | 15  | 19   | 8.5  | 5     | 5    |

Notes: Str. = Stream

S.S. = Submerged Sand E. S.= Exposed Sand \* = Rain

Fig. 8.--Horizontal variation in grade of the upper 6 centimeters of sand, Transect 1, Mississippi River, June 13, 1968.

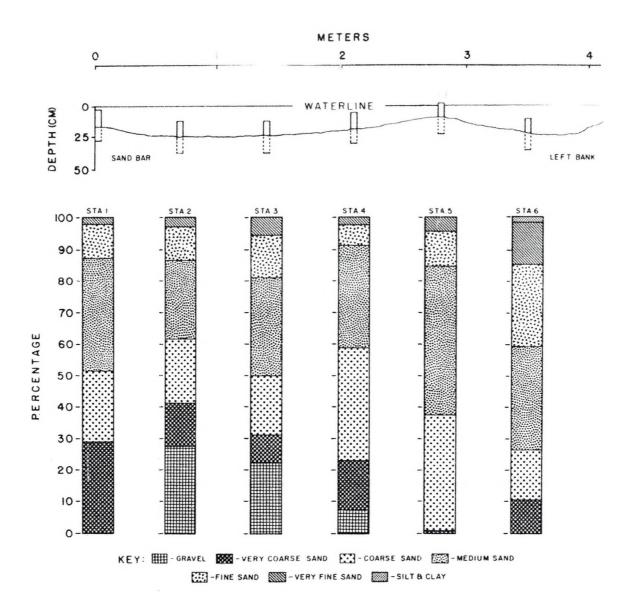



Fig. 9.--Horizontal variation in grade of the upper 6 centimeters of sand, Transect 2, Mississippi River, August 14, 1968.

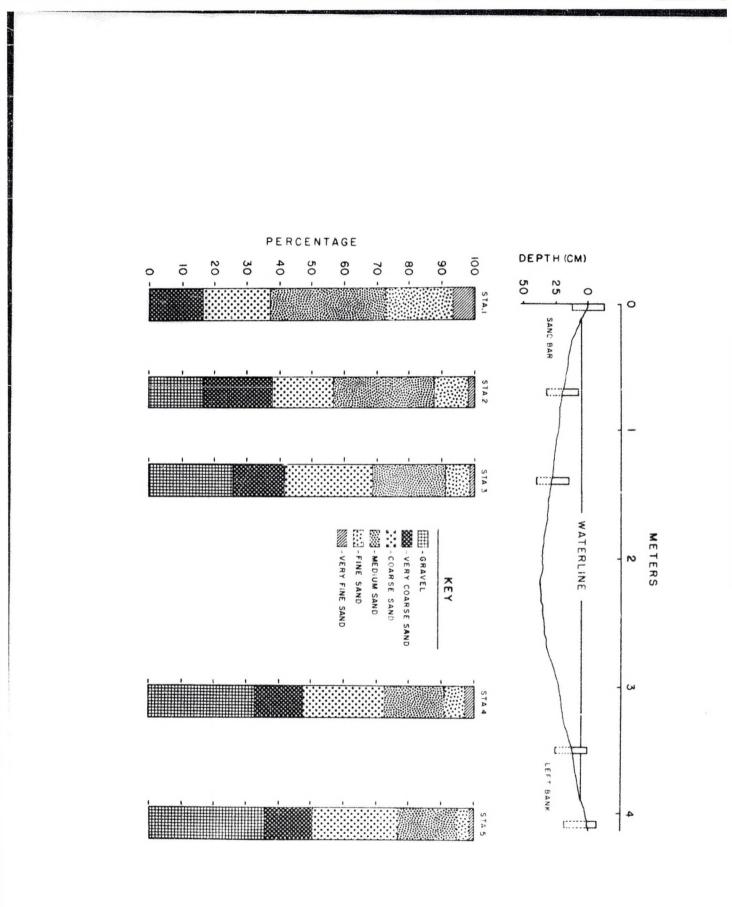
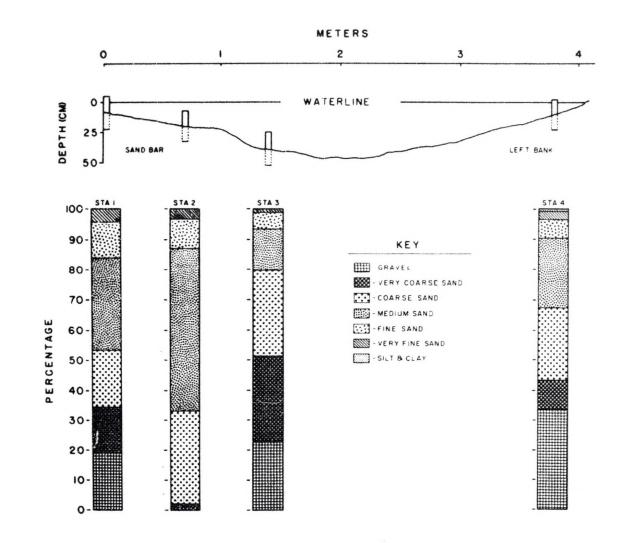
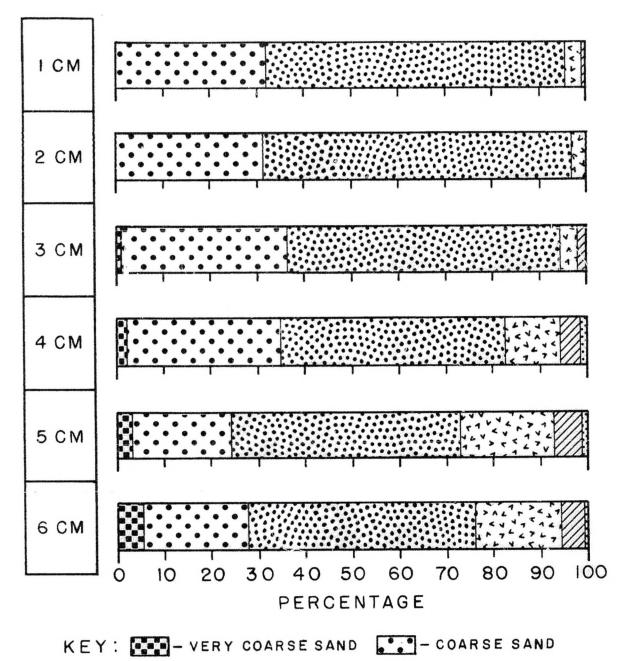




Fig. 10.--Horizontal variation in grade of the upper 6 centimeters of sand, Transect 2, Mississippi Rivor, November 3, 1968.

Contraction of



## TABLE 2


| EQUIV | ALENTS | FO | R SEDI | MENT  | ANALYSES |
|-------|--------|----|--------|-------|----------|
| AS    | USED   | IN | FIGURE | S AND | TEXT     |

| Common Term      | Material Retained on<br>U. S. Standard Sieve<br>(in mm)             | phi Equivalent |
|------------------|---------------------------------------------------------------------|----------------|
| Gravel           | 4.76                                                                | -2.25          |
| Very Coarse Sand | 2.0                                                                 | -1             |
| Coarse Sand      | 0.595                                                               | 0.75           |
| Medium Sand      | 0.280                                                               | 2.0            |
| Fine Sand        | 0.149                                                               | 2.75           |
| Very Fine Sand   | 0.074                                                               | 3.75           |
| Silt and Clay    | Pan                                                                 | 3.75           |
|                  | 11 - 1990 w 2018 10 p 2010 v 10 10 10 10 10 10 10 10 10 10 10 10 10 |                |

in the upper three centimeters (Figure 11). The fourth centimeter represented the former first centimeter of sand, which still retained effects of the lower flow regime having higher percentages of fine sand. Sand generally became finer with depth (Figure 12). At Stations 4 and 5 current removed finer materials and left increased percentages of gravel and coarse sand in the upper layers.

## Wild Rice River

On June 13, fine and very fine sands were the most abundant materials above and below waterline (Figure 13). Medium sand was the coarsest grade found, and silt was a noticeable component of each core. Weak currents determined the position of deposition and erosion of the Fig. 11.--Vertical variation in sand grade, station 2, Transect 2, Mississippi River, November 3, 1968. The upper 3 centimeters were newly deposited sand.



- MEDIUM SAND - FINE SAND

Fig. 12.--Vertical variation in sand grade, Transect 2, Mississippi River, September 21, 1968.

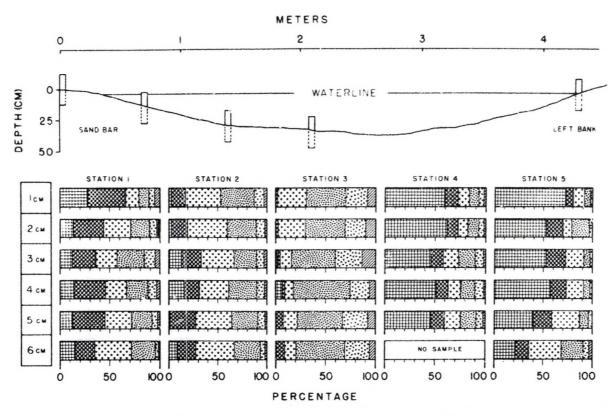
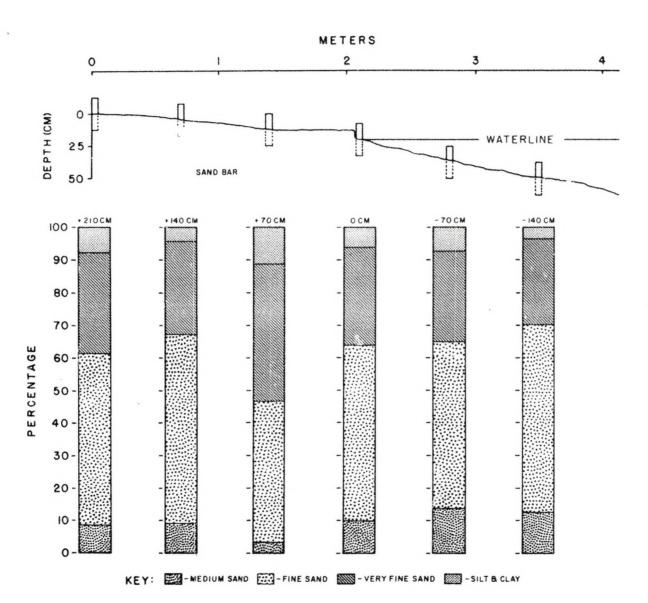






Fig. 13.--Horizontal variation in grade of the upper 6 centimeters of sand, Wild Rice River, June 13, 1968.



submerged portion of the transect (Figure 14a).

By August 14, water level decline had exposed an additional 2.8 m of beach. The sampling site that had been 140 cm below the waterline on June 13 was now 140 cm above it. Decreased discharge and downbeach movement of the waterline resulted in an increase of medium and coarse sands (Figure 15). The upper beach was composed mainly of fine and very fine sand, but medium sand increased and silt decreased toward the waterline. Erosion removed finer grades at the waterline. Erosion was also indicated by coarser grades at 70 and 210 cm below the waterline. Higher percentages of finer grades suggested that deposition occurred 140 cm below waterline. This grade variation in submerged sand was the result of current patterns noted on August 14 (Figure 14b). The major current along the right bank produced eddies toward the point of the island, which induced erosion at -70 and -210 cm stations, and deposition at the -140 station.

Increased discharge in autumn raised the water level to within 15 centimeters of its June 13 position, and the grade distribution of sand then was similar to that of June 13, with fine and very fine sand predominating (Figure 16). Greater amounts of coarser grades evidently arose from small currents arising in the left channel. (Figure 14c)

Sand became coarser with depth except for the +70 cm and the -210 cm stations (Figure 17). The other stations on September 21 indicate that deposition was occurring, by increased percentages of the finer grades in the upper layers. The increased percentage of finer grades with depth in the 70 cm and -210 cm stations gives insight into past deposition.

Fig. 14.---Current pattern variation with changing water level, Wild Rice River, 1968. Transects 4 meters long.

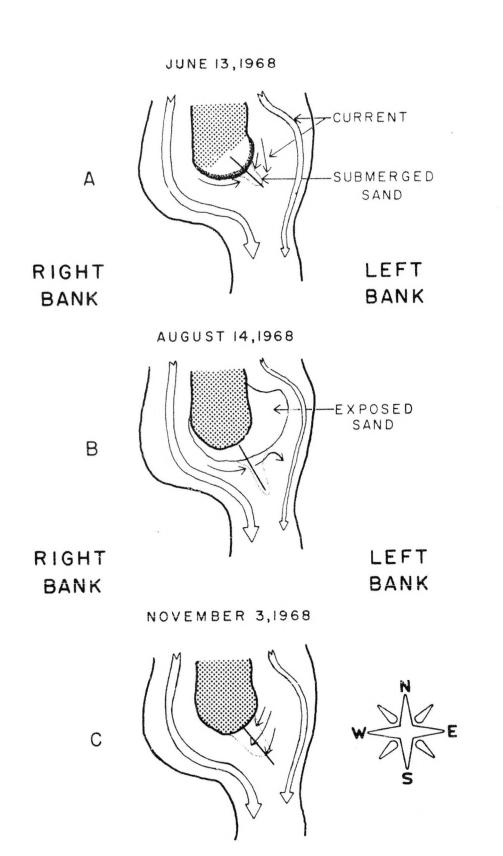




Fig. 15.--Horizontal variation in grade of the upper 6 centimeters of sand, Wild Rice River, August 14, 1968.



NAME OF TAXABLE PARTY O

Fig. 16.--Horizontal variation in grade of the upper 6 centimeters of sand, Wild Rice River, November 3, 1968.

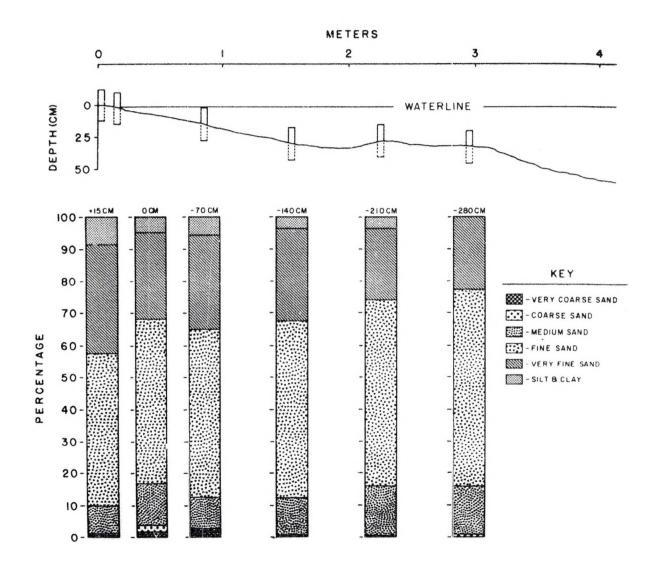
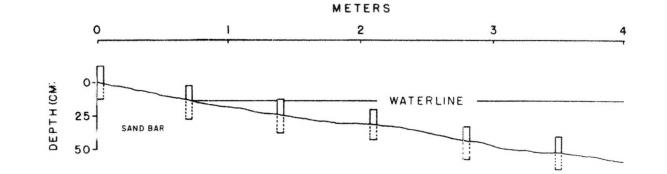
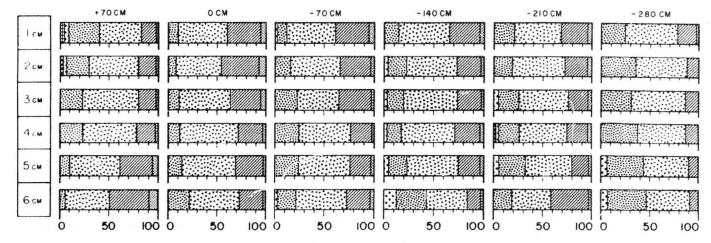





Fig. 17.--Vertical variation in sand grade, Wild Rice River, September 21, 1968.







KEY: ## - GRAVEL A - VERY COAPSE SAND - COARSE SAND . - MEDIUM SAND

## Capillarity

Mississippi River

Height to which water rose in beaches above the waterline was a function of capillarity (Table 3 and Figure 9). Finer sands and

| Core | Location of Core<br>From Edge of<br>Submerged sandbar<br>(cm) | Height Water<br>Ascended in<br>Column (mm) |
|------|---------------------------------------------------------------|--------------------------------------------|
| 1    | 0                                                             | 36                                         |
| 2    | 70                                                            | 48                                         |
| 3    | 140                                                           | 45                                         |
| 4    | 210                                                           | 47                                         |
| 5    | 280                                                           | 54                                         |
| 6    | 350                                                           | 80                                         |

TABLE 3

## CAPILLARITY FOR MISSISSIPPI RIVER AS DETERMINED FROM JUNE 13, 1968 TRANSECT

organic debris at Station 6 supported a capillary rise of 80 mm, whereas coarser materials at Station 1 gave only a 36 mm rise. Intermediate sand types gave intermediate values.

Wild Rice River

Finer sediments here gave a capillary rise of 191 mm (Figure 13 and Table 4), and the lowest value obtained (118 mm) surpassed the highest values for the Mississippi River area.

#### TABLE 4

#### CAPILLARITY FOR WILD RICE RIVER AS DETERMINED FROM JUNE 13, 1968 TRANSECT

| Core | Location of Core<br>From Waterline<br>(cm) | Height Water<br>Ascended in<br>Column (mm) |  |
|------|--------------------------------------------|--------------------------------------------|--|
| 1    | +210                                       | 167                                        |  |
| 2    | +140                                       | 188                                        |  |
| 3    | + 70                                       | 191                                        |  |
| 4    | 0                                          | 182                                        |  |
| 5    | <b>~</b> 70                                | 167                                        |  |
| 6    | -140                                       | 118                                        |  |

## Organic Content

Mississippi River

Organic determinations of 1969 samples (Table 5) showed highest content in the surface layers of the sand (217.4 mg/lOcc sand).

Wild Rice River

Organic determinations of exposed and submerged sand samples showed both having highest content in the surface layers: 191.0 mg/10 cc and 377.1 mg/10 cc of sand, respectively (Table 5). Stabilized conditions existing with exposed sand allowed reduction of organic materials to occur with depth. Fluctuation between deposition and erosion of the submerged sand accounts for the variation in depth distribution of

#### TABLE 5

## VERTICAL VARIATION IN ORGANIC CONTENT OF THE MISSISSIPPI AND WILD RICE RIVER PSAMMON, OCTOBER 18, 1969; MILLIGRAMS PER 10 CUBIC CENTIMETERS OF SAND

| Depth | Mississippi River | Wild Rice River wit      | h Reference to Waterline   |  |  |
|-------|-------------------|--------------------------|----------------------------|--|--|
| (cm)  | Submerged Sand    | Exposed Sand<br>(+70 cm) | Submerged Sand<br>(-70 cm) |  |  |
| 1     | 217.4             | 191.0                    | 377.1                      |  |  |
| 2     | 165.8             | 182.0                    | 187.2                      |  |  |
| 3     | 138.0             | 149.4                    | 157.0                      |  |  |
| 4     | 144.9             | 163.3                    | 216.1                      |  |  |
| 5     | 187.7             | 159.4                    | 165.9                      |  |  |
| 6     | 105.5             | 94.5                     | 225.2                      |  |  |

organic matter.

## Water Level Fluctuation

# Mississippi River

Seasonal fluctuations in water level are presented in Figure 6. Circles along the stream profiles represent positions of cores on these dates. Profiles from June 13 through July 16 represent changes that occurred at Transect 1, whereas remaining profiles illustrate Transect 2 (Figure 3). The move was made because sand was emerging from water on the point bar and left bank as discharge decreased. Two inches of rain from October 16 through October 18 again submerged the exposed regions.

Wild Rice River

Changes in waterline, transect profile, and core placement appear in Figure 7. Profiles are situated so as to represent their location and change with respect to the conditions found on June 13. Sampling was moved down the slope after vegetation covered older areas of exposed beach.

# Pore Space

Ungraded sand samples yielded the following percentage pore space: 22% to 25% for the Mississippi River, and 35% to 37% for the Wild Rice River.

#### Chemical Features

#### Mississippi River

#### Oxygen

Oxygen was present in submerged sand during the first weeks of study (Table 6a). Exposed sand contained oxygen on two days only: during a rain on July 30, and early on the morning of August 14, which was preceded by several days of cool temperatures.

## Hydrogen Ion Concentration

Submerged and exposed sand were consistently lower in pH than the stream, and exposed sand was lower than that under water on all dates (Table 6a).

#### TABLE 6 CHEMICAL FEATURES OF INTERSTITIAL AND STREAM WATER EXCEPT FOR PN, VALUES ARE MILLIGRAMS PER LITER

| Chemical Determinations |              |              |             |                 |             |             |             |            |                          |          |      |
|-------------------------|--------------|--------------|-------------|-----------------|-------------|-------------|-------------|------------|--------------------------|----------|------|
| Date                    | Position     | рĦ           | 02          | <sup>co</sup> 3 | нсоз        | т.н.        | Ca          | ×e         | P04                      | Kit 4 -N | NO2- |
|                         | Str.         | 7.9          | 8.6         | 18              | 135         | 187         | 99          | 86         |                          |          |      |
| une 13                  | S.S.         | 6.6          | 0.0         | 0.0             | 220         | 235         | 176         | 99         |                          |          |      |
|                         | <b>E.</b> S. | N.S.         | N.S.        | N.S.            | N.S.        | N.S.        | N.S.        | ¥.3.       | • •                      | • •      | • •  |
|                         | Str.         | 7.85         | 8.8         | 20              | 134         | 165         | 88          | 77         |                          |          |      |
| une 24                  | S.S.<br>E.S. | 7.2<br>N.S.  | 4.4<br>N.S. | 0.0<br>N.S.     | 166<br>N.S. | 187         | 94<br>N.S.  | 93<br>N.S. |                          | • •      |      |
|                         |              | #+J.         | N.J.        | п.э.            | M.S.        | N.S.        | N.J.        | B.J.       | •••                      | • •      | • •  |
|                         | Str.         | 7.8          | 8.8         | 28              | 134         | 187         | 99          | 86         |                          |          |      |
| aly 2                   | S.S.<br>E.S. | 6.7<br>N.S.  | 1.2<br>N.S. | 0.0<br>N.S.     | 192<br>N.S. | 242<br>N.S. | 121<br>N.S. | 121        | • •                      | : :      | : :  |
|                         |              |              |             |                 |             |             | A           | P 1-2 1    | •••                      | •••      |      |
|                         | Str.         | 8.0          | 10.4        | 16              | 144         | 165         | 55          | 110        |                          |          |      |
| aly 8                   | S.S.<br>E.S. | 6.8<br>N.S.  | 1.6<br>N.S. | 0.0<br>N.S.     | 210<br>N.S. | 220<br>X.S. | 88<br>N.S.  | 132        | • •                      | • •      | ::   |
|                         |              |              |             |                 |             | A.J.        |             | a          |                          | • •      |      |
|                         | Str.         | 7.85         | 7.6         | 20              | 126         | 143         | 55<br>77    | 86         |                          |          |      |
| uly 16                  | S.S.<br>E.S. | 6.75<br>N.S. | 2.4<br>N.S. | 0.0<br>N.S.     | 156<br>N.S. | 198<br>N.S. | 77<br>N.S.  | 121        |                          | • •      |      |
|                         |              | a.s.         | N.J.        | N.J.            | N.J.        | a.ə.        | a.s.        | N.J.       | • •                      | • •      | • •  |
|                         | Str.         | 8.0          | 8.8         | 32              | 114         | 143         | 60          | 83         |                          |          |      |
| uly 23                  | S.S.         | 6.75         | 2.4         | 0.0             | 141         | 204         | 77          | 127        |                          |          |      |
|                         | E.S.         | N.S.         | N.S.        | N.S.            | N.S.        | N.S.        | N.S.        | ¥.3.       | •••                      | • •      | • •  |
|                         | Str.         | 7.45         | 6.0         | 16              | 138         | 165         | 94          | 71         |                          |          |      |
| July 30                 | S.S.         | 6.8          | 3.0         | 0.0             | 163         | 176         | 110         | 66         |                          | • •      |      |
|                         | E.S.         | 6.65         | 0.6         | 0.0             | 150         | 160         | 88          | 72         | • •                      | • •      | • •  |
|                         | Str.         | 8.25         | 8.0         | 36              | 108         | 154         | 77          | 77         |                          |          |      |
| g. 6                    | S.S.         | 7.1          | 0.0         | 0.0             | 150         | 154         | 99<br>88    | 55<br>66   |                          |          |      |
|                         | E.S.         | 7.0          | 0.0         | 0.0             | 154         | 154         | 88          | 66         | • •                      | • •      |      |
|                         | Str.         | 7.5          | 6.4         | 16              | 126         | 143         | 77          | 66         | N.S.                     | N.S.     | N.S. |
| g. 14                   | S.S.         | 7.1          | 1.5         | 0.0             | 154         | 148         | 82          | 66         | 0.25                     | 0.7      | 0.0  |
|                         | E.S.         | 6.9          | 1.6         | 0.0             | 152         | 143         | 77          | 66         | 1.62                     | 0.45     | 0.0  |
|                         | Str.         | 8.25         | 8.0         | 20              | 119         | 154         | 77          | 77         | N.S.                     | N.S.     | N.S. |
| g. 20                   | S.S.<br>B.S. | 7.25         | 2.0         | 0.0             | 1.52        | 154         | 77          | 77         | 0.92                     | 0.6      | 0.0  |
|                         | B.J.         | 7.0          | 0.0         | 0.0             | 152         | 165         | 77          | 86         | 1.62                     | 0.6      | 0.0  |
|                         | Str.         | 8.25         | 8.0         | 20              | 132         | 154         | 88          | 56         |                          |          |      |
| 48. 27                  | S.S.         | 7.15         | 0.0         | 0.0             | 196         | 198         | 132         | 66         |                          |          |      |
|                         | E.S.         | 6.95         | 0.0         | 0.0             | 210         | 242         | 143         | 99         | • •                      | • •      | • •  |
|                         | Str.         | 7.4          | 6.5         | 12              | 138         | 165         | 88          | 77         |                          |          |      |
| pt. 3                   | S.S.         | 7.0          | 0.0         | 0.0             | 214         | 220         | 120         | 100        |                          |          |      |
|                         | E.S.         | 7.1          | 0.0         | 0.0             | 222         | 242         | 143         | 99         | • •                      | • •      | • •  |
|                         | Str.         | 7.55         | 7.2         | 12              | 144         | 187         | 88          | 99         | 0.0                      | 1.0      | 0.0  |
| pt. 21                  | S.S.         | 7.15         | 0.0         | 0.0             | 68          | 231         | 99          | 132        | 0.0                      | 2.0      | 0.0  |
|                         | E.S.         | 7.0          | 0.0         | 0.0             | 2.12        | 275         | 198         | 77         | 0.32                     | 0.45     | 0.0  |
|                         | Str.         | 7.9          | 9.2         | 12              | 146         | 187         | 99          | 88         | 0.0                      | 0.0      | 0.0  |
| t. 6                    | S.S.<br>E.S. | 7.05         | 0.0         | 0.0             | 224         | 242         | 154<br>176  | 88         | 0.97                     | 0.7      | 0.0  |
|                         | 5.0.         | 6.9          | 0.0         | 0.0             | 240         | 275         | 176         | 99         | 0.0                      | 0.0      | 0.0  |
|                         | Str.         | 8.0          | 11.2        | 8               | 150         | 165         | 88          | 77         | 0.0                      | 0.3      | 0.0  |
| t. 19                   | S.S.         | 7.3          | 0.0         | 0.0             | 234         | 286         | 143         | 143        | 0.97                     | 1.1      | 0.0  |
|                         | E.S.         | N.S.         | N.S.        | N.S.            | N.S.        | N.S.        | N.S.        | ¥.5.       | N.S.                     | N.S.     | N.S. |
|                         | Str.         | 8.1          | 11.2        | 16              | 140         | 165         | 88          | 77         | 0.97                     | 0.0      | 0.0  |
| w. 3                    | S.S.         | 7.4          | 0.0         | 0.0             | 201.        | 231         | 154         | 77<br>77   | 2.6                      | 0.5      | 0.0  |
|                         | E.S.         | N.S.         | N.S.        | N.S.            | N.3.        | N.S.        | N.S.        | N.S.       | N.S.                     | ĸ.s.     | N.S. |
|                         |              |              |             |                 | B. Wild     | Hice River  |             |            | A CONTRACTOR OF CONTRACT |          |      |
|                         |              |              |             |                 |             |             |             |            |                          |          |      |
|                         | Str.         | 7.4          | 6.8         | 24              | 188         | 275         | 165         | 110        |                          |          |      |

Spanning Art

.

-

|          |              |             |             |            | 0           | heat cal De | terminatio  | and         |      |       |       |
|----------|--------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|------|-------|-------|
| Date     | Position     | pH          | 02          | C03        | HOOJ        | T.H.        | Ca          | He          | PO4  | NH4-M | 102-d |
|          | CA.          |             |             | -          |             | 201         | 244         | 110         |      |       |       |
| une 13   | Str.<br>S.S. | 7.4<br>N.S. | 6.8<br>N.S. | 24<br>N.S. | 188<br>M.S. | 275<br>X.S. | 165<br>N.S. | 110<br>H.S. | ::   | ::    | ::    |
|          | 8.S.         | 6.5         | A.E.        | 0.0        | 270         | 330         | 187         | 143         | • •  | • •   | • •   |
|          | Str.         | 7.7         | 6.8         | 1,2        | 174         | 220         | 121         | 99          |      | • •   |       |
| June 24  | S.S.<br>S.S. | 6.9<br>7.1  | 0.0         | 0.0        | 250<br>546  | 275         | 176         | 99<br>187   | ::   | ::    | ::    |
|          | Str.         | 8.0         | 8.0         | 20         | 166         | 220         | 121         | 99          |      |       |       |
| July 2   | S.S.         | 7.0         | 0.0         | 0.0        | 186         | A.E.        | 143         | A.E.        |      | • •   |       |
|          | E.S.         | 6.85        | 0.0         | 0.0        | 574         | 682         | 396         | 286         | • •  | • •   | • •   |
|          | Str.         | 7.6         | 6.0         | 20         | 166         | 220         | 121         | 99          | • •  |       |       |
| July 8   | S.S.<br>E.S. | 6.55        | 0.0         | 0.0        | 315<br>324  | 402         | 209<br>198  | 191 209     | • •  | • •   | • •   |
|          | B.J.         | 6.6         | 0.0         | 0.0        | 344         | 407         | 130         | 209         | ••   | • •   |       |
| July 16  | Str.         | 7.3         | 6.0         | 20         | 158         | 198         | 99<br>143   | 99<br>88    |      |       |       |
| 1013 10  | S.S.<br>E.S. | 6.55        | 0.0         | 0.0        | 394         | 231 473     | 280         | 193         | ::   | ::    | ::    |
|          | Str.         | 7.6         | 6.0         | 16         | 176         | 189         | 99          | 90          |      |       |       |
| July 23  | S.S.         | 6.6         | 0.0         | 0.0        | 230         | 242         | 132         | 110         |      |       | • •   |
|          | E.S.         | 6.5         | 0.0         | 0.0        | 310         | 330         | 187         | 143         | • •  | • •   | • •   |
|          | Str.         | 7.6         | 7.0         | 24         | 164         | 200         | 127         | 73          |      |       |       |
| July 30  | S.S.<br>E.S. | 6.7         | 0.0         | 0.0        | 260<br>260  | 264 253     | 165<br>176  | 99<br>77    | • •  | • •   | • •   |
|          | 4.0.         | 0.4         | 0.0         | 0.0        | 200         | - >>        | 170         | 11          | • •  | • •   |       |
| Aug. 6   | Str.<br>S.S. | 7.7         | 6.0         | 22         | 162<br>326  | 204 275     | 116 209     | 88<br>66    |      | • •   | • •   |
| ×44. 0   | E.S.         | 6.65        | 0.0         | 0.0        | 264         | 231         | 176         | 55          | ::   | ::    | ::    |
|          | Str.         | 8.2         | 8.8         | 32         | 160         | 209         | 121         | 88          | N.S. | N.S.  | x.s.  |
| Aug. 14  | S.S.         | 7.2         | 0.0         | 0.0        | 230         | 231         | 192         | 39          | 0.0  | 3.5   | 0.0   |
|          | E.S.         | 7.1         | 0.0         | 0.0        | 264         | 264         | 154         | 110         | 0.0  | 3.5   | 0.0   |
|          | Str.         | 7.55        | 5.6         | 20         | 166         | 220         | 110         | 110         | N.S. | N.S.  | x.s.  |
| Aug. 20  | S.S.         | 6.9         | 0.0         | 0.0        | 268         | 253         | 187         | 66          | 5.84 | 4.0   | 0.0   |
|          | E.S.         | 6.85        | 0.0         | 0.0        | 270         | 297         | 154         | 143         | 4.54 | 4.0   | 0.0   |
| Aug. 27  | Str.         | 7.6         | 8.0         | 20         | 170         | 220         | 121         | 99<br>144   |      |       |       |
| Aug. 27  | S.S.<br>E.S. | 6.9<br>6.6  | 0.0         | 0.0        | 248<br>296  | 309<br>264  | 165<br>176  | 88          | ::   | ::    | ::    |
|          | Str.         | 7.85        | 8.0         | 20         | 168         | 220         | 121         | 90          |      |       |       |
| Sept. 3  | S.S.         | 6.95        | 0.0         | 0.0        | 252         | 209         | 165         | 99          | ::   | ::    | ::    |
|          | E.S.         | 6.85        | 0.0         | 0.0        | 292         | 242         | 176         | 66          | • •  | • •   | • •   |
| S        | Str.         | 8.65        | 7.6         | 16         | 176         | 210         | 121         | 89          | 0.64 | 0.45  | 0.0   |
| Sept. 21 | S.S.<br>E.S. | 7.1 6.85    | 0.0         | 0.0        | 224         | 319<br>330  | 132<br>220  | 187         | 2.27 | 3.0   | 0.0   |
|          | Str.         | 7.9         | 11.6        | 14         | 165         | 220         | 100         |             |      |       |       |
| Get. 6   | S.S.         | 7.0         | 0.0         | 0.0        | 268         | 242         | 132<br>154  | 88<br>88    | 2.9  | 0.0   | 0.0   |
|          | E.S.         | 6.85        | 0.0         | 0.0        | 280         | 264         | 187         | 77          | 4.85 | 2.5   | 0.0   |
|          | Str.         | 7.6         | 10.4        | 12         | 190         | 253         | 154         | 99          | 0.65 | 0,2   | 0.0   |
| Oct. 19  | S.S.         | 7.1         | 0.0         | 0.0        | 246         | 231         | 143         | 88          | 2.9  | 2.5   | 0.0   |
|          | E.S.         | 6.9         | 0.0         | 0.0        | 406         | 407         | 253         | 154         | B.S. | B.S.  | B.S.  |
|          | Str.         | 7.8         | 11.2        | 28         | 186         | 231         | 154         | 77          | 1.98 | 0.0   | 0.0   |
| Nov. 3   | S.S.         | 7.05        | 0.0         | 0.0        | 260         | 231         | 209         | 22          | 2.6  | 2.5   | 0.0   |

TABLE 6 - Continued

Notes: Str. - Stream S.S. - Submerged Sand E.S. - Exposed Sand

T.H. - Total Hardness A.E. - Analytical Error B.S. - Broken Sample

### Alkalinity

Bicarbonate alkalinity varied from 108 to 150 mgl in the stream (Table 6a). Somewhat greater fluctuation (104 to 224 mgl) was noted for submerged sand, and greater variation (150 to 252 mgl) with passage of time following exposure to air. Carbonate alkalinity (8 to 36 mgl) occurred only in stream water.

#### Total Hardness, Calcium, and Magnesium

Hardness fluctuation in stream water was from 142 to 188 mgl total hardness, 54 to 99 mgl calcium, and 46 to 110 mgl magnesium (Table 6a). Higher values and greater variation were noted in submerged sand where total hardness ranged from 148 to 152 mgl, calcium from 76 to 176 mgl, and magnesium from 55 to 132 mgl.

Exposed sand built up greater concentrations (144 to 274 mgl total hardness, 76 to 199 mgl calcium, and 66 to 100 mgl magnesium) as time passed following emergence from water. The calcium-magnesium ratio changed from 1.2:1.0 on July 30 to 2.6:1.0 on September 21.

Orthophosphate, Nitrite-Nitrogen, and Ammonia-Nitrogen

A limited number of samples were analyzed (Table 6a). Orthophosphate was present in all but one sample from exposed and submerged sands, but appeared only once in the stream. Nitrite-nitrogen never occurred but ammonia-nitrogen existed at all times in submerged sand, and most of the time in the stream and exposed sand.

#### Wild Rice River

Oxygen

Oxygen was conspicuous by its absence in both submerged and exposed sand regions (Table 6a).

#### Hydrogen Ion Concentration

Submerged and exposed sand exhibited lower pH readings than stream water (Table 6b), and exposed sand had values below those of sand under water.

## Alkalinity

No carbonate alkalinity was noted in sand (Table 6b), and bicarbonate was greater in sand than in water and also more concentrated in exposed than in submerged sand. The stream exhibited carbonate alkalinity values between 2.5 and 32.0 mgl.

## Total Hardness, Calcium, and Magnesium

Fluctuations in stream water were from 189 to 271 mgl total hardness, 99 to 167 mgl calcium, and 71 to 110 mgl magnesium (Table 6b). In submerged sand total hardness ranged from 208 to 400 mgl, calcium from 132 to 212 mgl, and magnesium from 24 to 191 mgl. Exposed sand exhibited greatest concentration and variation (231 to 693 mgl total hardness, 154 to 395 mgl calcium, and 56 to 287 mgl magnesium).

Calcium-magnesium ratios were as follows: the stream varied from 1.0:1.0 to 2.0:1.0; submerged sand, 1.0:1.4 at the beginning to 9.5:1.0 near the end of sampling; and exposed sand, 1.0:1.0 changing

to 3.2:1.0.

Orthophosphate, Nitrite-Nitrogen, and Ammonia-Nitrogen

Orthophosphate generally showed an increase from water to submerged sand to exposed sand (Table 6b), but on two occasions, it was most concentrated in submerged sands. Nitrite-nitrogen was not found, but ammonia-nitrogen was highly concentrated in both submerged and exposed sands.

#### Biological Features

## Qualitative Features

Organisms found in sand in the Mississippi and Wild Rice Rivers are listed below, with indication of their occurrence in either or both rivers.

Bacillariophyceae dominated the psammon in both rivers. Both Cyanophyta and Chlorphyta-Euglenophyta were of secondary importance in the Mississippi River, but Cyanophyta, especially the genus <u>Oscillatoria</u>, was at times the predominant alga in the exposed sand of the Wild Rice River. Testaceous rhizopods were the dominant animal forms in both rivers, with the Mississippi River exhibiting the greatest variety.

## Quantitative Data

Only organisms that appeared to have been alive at the time of the collection were enumerated. Normally an individual, or cell, served as a counting unit, but with some colonial and filamentous forms the following designations were treated as units:

| Coelosphaerium                       | l colony               |
|--------------------------------------|------------------------|
| Merismopedia                         |                        |
| Gomphosphaeria                       |                        |
| Microcystis                          | l grid $(4761 \mu^2)$  |
| Chroococcus                          | 16 cells               |
| Anabena                              | 10 cells               |
| Nostoc                               | l grid (4761 $\mu^2$ ) |
| All other Nostocales                 | 100 µ filament         |
| Eudorina                             | 16 cells               |
| Ulotrichales                         |                        |
| Microsporales                        | loo ~ filament         |
| Chaetophorales                       | loo µ filament         |
| Cladophorales                        | 100 µ filament         |
| Oedogoniales                         | loo ~ filament         |
| Siphonales                           |                        |
| Mougeotia                            |                        |
| Spirogyra                            |                        |
| Pediastrum boryanum                  |                        |
| P. simplex                           |                        |
| P. <u>duplex</u><br>P. <u>tetras</u> | 15 cells               |
|                                      |                        |
| Scenedesmus                          |                        |
| Sorastrum                            |                        |
| Coelastrum                           | 1 colony               |
|                                      |                        |

Diatoms were counted as individual cells, but forms that could not be separated at 100X were grouped as follows: (1) the Navicula group, including <u>Navicula</u>, some <u>Nitzschia</u>, <u>Neidium</u>, <u>Amphipleura</u>, <u>Achnanthes</u>, <u>Symedra</u>, <u>Frustulia</u>, <u>Stauroneis</u>, <u>Anomoeoneis</u>, and <u>Pinnularia</u>, and (2) the Fragilaria group, consisting of <u>Fragilaria</u> and <u>Opephora</u>.

Mississippi River

## Transect 1

Algae. <u>Bacillariophyceae</u>. Diatoms were by far the most abundant life form in the potamopsammon (Table 7). Fluctuations of one million diatom cells per cubic centimeter of sand were not uncommon. These changes were initiated to a large degree by currents which removed and deposited diatoms along with finer grades of sand. As mentioned previously, sand grade distribution on June 13 indicated current erosion List of Organisms

## Bacteria

#### Schizomycophyta

Chromatium sp. WRR\*

Sphaerotilus sp. WRR

#### Algae

## Cyanophyta

#### Chroococcales

Chroococcus limneticus Lemmerman WRR Chroococcus minutus (Kuetz.) Naegeli MR\* Chroococcus turgidus (Kuetz.) Naegeli WRR Microcystis aeruginosa Kuetz.; emend. Elenkin MR, WRR Microcystis flos-aquae (Wittr.) Kirchner MR Microcystis incerta Lemmermann WRR Merismopedia elegans A. Braun MR Merismopedia glauca (Ehr.) Naegeli MR, WRR Merismopedia Trolleri Bachmann MR Coelosphaerium Naegelianum Unger MR Gomphosphaeria aponina Kuetz. WRR Gomphosphaeria lacustris Chodat MR Gomphosphaeria lacustris var. compacta Lemmermann MR Eucapsis alpina Clements and Schantz MR Gloeothece rupestris (Lyngb.) Bornet Syn. Anacystis rupestris (Lyngb.) Drouet and Daily WRR

\*Note: MR = Mississippi River WRR = Wild Rice River List of Organisms - Continued

Nostocales

Spirulina laxissima G. S. West WRR Spirulina major Kuetz. WRR Arthrospira gomontiana Setchell MR Oscillatoria acutissima Kufferath MR Oscillatoria Agardhii Gomont WRR Oscillatoria amoena (Kuetz.) Gomont MR Oscillatoria amphibia C. A. Agardh WRR Oscillatoria articulata Gardner WRR Oscillatoria chalybea Mertens WRR Oscillatoria curviceps C. A. Agardh WRR Oscillatoria formosa Bory WRR Oscillatoria limnetica Lemmermann MR Oscillatoria limosa (Roth) C. A. Agardh MR Oscillatoria negra Vaucher MR, WRR Oscillatoria subbrevis Schmidle MR. WRR Oscillatoria terebriformis C. A. Agardh MR, WRR Lyngbya aestuarii (Mert.) Liebmann WRR Lyngbya Birgei G. M. Smith MR Microcoleus vaginatus (Vauch.) Gomont WRR Aphanizomenon flos-aquae (L.) Ralfs MR Anabena aequalis Borge WRR Anabena affinis Lemmermann WRR Anabena spiroides Klebahn MR Anabena sp. MR Nostoc paludosum Kuetz. MR, WRR

List of Organisms - Continued

WRR

<u>Tolypothrix distorta</u> Kuetz. MR, WRR <u>Hapalosiphon</u> sp. WRR <u>Gloeotrichia natans</u> (Hedwig) Rabenhorst

<u>Gloeotrichia pisum</u> (C. A. Ag.) Thuret MR Chrysophyta

Chrysophyceae

Chrysomonadales

<u>Uroglenopsis americana</u> (Calkins) Lemmermann MR Xanthophyceae Heterococcales

Ophiocytium sp. MR

Bacillariophyceae

Centrales

Melosira ambigua (Grun.) O. Mull. MR Melosira granulata (Ehr.) Ralfs MR. WRR Melosira varians C. A. Agardh MR, WRR Cyclotella catenata Brun. WRR Cyclotella comata (Ehr.) Kutz. MR Cyclotella glomerata Bachmann WRR Cyclotella Meneghiniana Kutz. MR, WRR Cyclotella striata var. bipunctata Fricke. MR, WRR Stephanodiscus niagarae MR

## Pennales

<u>Diatoma vulgare</u> Bory var. <u>vulgare</u> Patrick MR, WRR <u>Tabellaria fenestrata</u> (Lyngb.) Kutz. var. <u>fenestrata</u> Patrick MR, WRR <u>Tabellaria flocculosa</u> (Roth) Kutz. var. <u>flocculosa</u> Patrick WRR

## List of Organisms - Continued

Meridion circulare (Grev.) Ag. var. circulare Patrick MR Opephora martyi Herib. var. martyi Patrick MR. WRR Fragilaria brevistriata var. inflata (Pant.) Hust. MR Fragilaria capucina var. mesolepta Rabh. WRR Fragilaria construens (Ehr.) Grun. var. construens Patrick MR Fragilaria Leptostauron var. dubia (Grun.) Hust. MR Fragilaria pinnata var. intercedens (Grun) Hust. MR Fragilaria vaucheriae (Kutz.) Peters. var. vaucheriae Patrick MR, WRR Synedra acus Kutz. var. acus Patrick MR Synedra capitata Ehr. var. capitata Patrick MR Synedra delicatissma W. Sm. var. delicatissma Patrick MR Synedra parasitica (W. Smith) Hust. var. parasitica Patrick WRR Synedra parasitica var. subconstricta (Grun.) Hust. MR Synedra ulna (Nitz.) Ehr. var. ulna Patrick WRR Synedra ulna var. contracta Østr. MR Synedra ulna var. longissima (W. Smith) Brun. WRR Synedra ulna var. oxyrhynchus f. mediocontracta (Forti) Hust. MR Asterionella formosa Hass. var. formosa Patrick MR Eunotia monodon Ehr. var. monodon Patrick WRR Eunotia praerupta Ehr. var. praerupta Patrick WRR Eunotia sp. MR Cocconeis pediculus Ehr. var. pediculus Patrick MR, WRR Cocconeis placentula Ehr. var. placentula Patrick MR Cocconeis placentula var. euglypta (Ehr.) Cl. MR Cocconeis placentula var. lineata (Ehr.) V. H. WRR Achnanthes clevei Grun. var. clevei Patrick MR

List of Organisms - Continued Achnanthes clevei var. rostrata Hust. MR Achnanthes exigua var. constricta (Grun.) Hust. MR Achnanthes lanceolata (Breb.) Grun. var. lanceolata Patrick MR, WRR Achnanthes lanceolata var. dubia Grun. MR, WRR Achnanthes lanceolata var. haynaldii (Istu. - Schaarsch.) Cl. MR Achnanthes linearis (W. Smith) Grun. var. linearis Patrick WRR Rhiocosphenia curvata (Kutx.) Grun. var. curvata Patrick MR. WRR Amphipleura pellucida Kutz. var. pellucida Patrick MR, WRR Frustulia rhomboides (Ehr.) DeT. var. rhomboides Patrick WRR Frustulia vulgaris (Thwaites) DeT. var. vulgaris Patrick WRR Gyrosigma acuminatum (Kutz.) Rabh. var. acuminatum Patrick WRR Gyrosigma attenuatum (Kutz.) Rabh. var. attenuatum Patrick MR Gyrosigma obtusatum (Sulliv. and Wormley) Boyer var. obtusatum WRR Stauroneis kriegeri Patrick var. kriegeri Patrick WRR Stauroneis phoenicenteron f. gracilis (Ehr.) Hust. WRR Stauroneis salina W. Sm. MR Stauroneis smithii Grun. var. smithii Patrick MR Anomoeoneis sphaerophora (Ehr.) Pfitz. var. sphaerophora Patrick WRR Neidium affine var. humerus Reim. var. nov. WRR Neidium dubium (Ehr.) Cl. var. dubium Patrick MR Neidium kozlowii var. parvum Mereschk WRR Navicula anglica var. subsalsa (Grun.) Cl. MR, WRR Navicula capitata Ehr. var. capitata Patrick MR, WRR Navicula cryptocephala var. veneta (Kutz.) Rabh. MR Navicula cuspidata (Kutz.) Kutz. var. cuspidata Patrick MR. WRR Navicula declivis Hust. MR

List of Organisms - Continued Navicula gastrum (Ehr.) Kutz. var. gastrum Patrick MR. WRR Navicula halophila (Grun.) Cl. var. halophila Patrick WRR Navicula hambergii Hust. var. hambergii Patrick WRR Navicula laterostrata Hust. var. laterostrata Patrick MR Navicula menisculus var. upsaliensis (Grun.) Grun. MR. WRR Navicula odiosa Wallace var. odiosa Patrick WRR Navicula protracta Grun. var. protracta Patrick WRR Navicula pupula Kutz. var. elliptica Hust. MR Navicula pupula var. rectangularis (Greg.) Grun. MR. WRR Navicula radiosa var. tenella (Breb. ex Kutz.) Grun. MR Navicula reinhardtii (Grun.) Grun. var. reinhardtii Patrick MR Navicula salinarum Grun. var. salinarum Patrick MR Navicula salinarum var. intermedia (Grun.) Cl. MR, WRR Navicula seminulum var. hustedtii Patrick WRR Navicula texana Patrick var. texana Patrick WRR Navicula tripunctata (0. F. Mull.) Bory var. tripunctata Patrick WRR Navicula tuscula Ehr. var. tuscula Patrick MR Navicula vulpina Kutz. var. vulpina Patrick MR Navicula spp. MR, WRR Caloneis bacillum (Grun.) Cl. var. bacillum Patrick WRR Caloneis lewisii Patrick var. lewisii Patrick WRR Caloneis limosa (Kutz.) Patrick comb. nov., var. limosa Patrick WRR Pinnularia spp. MR, WRR Amphiprora alata Kutz. MR Amphiprora ornata Bailey MR, WRR Amphora coffeaeformis Agardh MR

Amphora ovalis var. libyca (Ehr.) Cl. MR Amphora ovalis var. pediculus Kutz. MR. WRR Cymbella affinis Kutz. MR Cymbella cistula (Hemprich) Grun. MR Cymbella ehrenbergii Kutz. WRR Cymbella gracilis (Rabh.) Cl. WRR Cymbella hebridica (Greg.) Grun. MR Cymbella obtusiuscula (Kutz.) Grun. WRR Cymbella prostata (Berkeley) Cl. MR. WRR -Cymbella sinuata Greg. MR. WRR Cymbella tumida (Breb.) Van Heurck WRR Cymbella ventricosa Kutz. MR. WRR Gomphonema acuminatum var. brebissonii (Kutz.) Cl. MR. WRR Gomphonema acuminatum var. coronata (Ehr.) W. Sm. MR Gomphonema acuminatum var. trigonocephala (Ehr.) Grun. MR, WRR Gomphonema angustatus var. producta Grun. MR, WRR Gomphonema constrictum Ehr. MR Gomphonema gracile Ehr. WRR Gomphonema intricatum Kutz. MR Gomphonema intricatum var. pumila Grun. MR, WRR Gomphonema olivaceum (Lyng.) Kutz. WRR Gomphonema parvulum var. micropus (Kutz.) Cl. MR Gomphonema sphaerophorum MR Ehr. Epithemia argus var. longicornis Grun. WRR Epithemia sorex Kutz. MR, WRR Epithemia turgida (Ehr.) Kutz. MR, WRR

List of Organisms - Continued Rhopalodia gibba (Ehr.) O. Mull. MR, WRR Rhopalodia gibba var. ventricosa (Ehr.) Grun. MR Rhopalodia giberula (Ehr.) O. Mull. WRR Cylindrotheca gracilis (Breb.) Grun. WRR Hantzschia amphioxys (Ehr.) Grun. WRR Hantzschia amphioxys var. maior Grun. WRR Hantzschia sp. MR Nitzschia acicularis W. Sm. MR. WRR Nitzschia acuta Hantzsch WRR Nitzschia amphibia Grun. MR Nitzschia dissipata (Kutz.) Grun. MR. WRR Nitzschia filiformis (W. Sm.) Hust. MR. WRR Nitzschia fonticola Grun. MR Nitzschia palea (Kutz.) W. Sm. WRR Nitzschia sigmoidea (Ehr.) W. Sm. MR. WRR Nitzschia sp. WRR Cymatopleura solea (Breb.) W. Sm. MR, WRR Cymatopleura solea var. regula (Ehr.) Grun. MR Surirella angustata Kutz. WRR Surirella elegans Ehr. MR Surirella linearis var. helvetica (Brun.) Meister Surirella ovata Kutz. MR, WRR Surirella ovalis Breb. MR Surirella robusta var. splendida (Ehr.) Van Heurck

Surirella spiralis Kutz. MR, WRR

62

WRR

WRR

Chlorophyta

## Volvocales

Eudorina elegans Ehr. MR, WRR

Tetrasporales

<u>Sphaerocystis</u> <u>schroeteri</u> Chodat MR

Ulotrichales

Stichococcus bacillaris Naegeli WRR

<u>Ulothrix zonata</u> (Weber and Mohr) Kuetz. MR Microsporales

Microspora stagnorum (Kuetz.) Lagerheim MR Chaetophorales

<u>Stigeoclonium pachydermum</u> Prescott WRR <u>Stigeoclonium</u> sp. MR

Cladophorales

Cladophora sp. MR, WRR

Oedogoniales

Bulbochaete sp. MR

Oedogonium sp. MR

Chlorococcales

<u>Pediastrum boryanum</u> (Turp.) Meneghini MR, WRR <u>Pediastrum duplex</u> Meyen MR, WRR <u>Pediastrum duplex var. clathratum</u> (A. Braun) Lagerheim MR <u>Pediastrum glanduliferum</u> Bennett MR <u>Pediastrum simplex</u> (Meyen) Lemmermann MR <u>Pediastrum tetras</u> (Ehr.) Ralfs MR, WRR <u>Sorastrum spinulosum</u> Naegeli MR

Coelastrum microporum Naegeli MR Dictyosphaerium pulchellum Wood MR Occystis borgei Snow MR Occystis sp. WRR Dimorphococcus lunatus A. Braun MR Ankistrodesmus falcatus (Corda) Ralfs MR Tetraedron constrictum G. M. Sm. MR Tetraedron hastatum (Reinsch) Hansgirg MR Tetraedron trigonum var. gracile (Reinsch) DeToni MR Scenedesmus arcuatus var. platydisca G. M. Sm. MR Scenedesmus dimorphus (Turp.) Breb. MR, WRR Scenedesmus opoliensis var. contacta Prescott WRR Scenedesmus quadricauda (Turp.) Breb. MR, WRR Actinastrum gracilimum G. M. Sm. MR Crucigenia rectangularis (A. Braun) Gay MR Siphonales

Vaucheria sp. WRR

Zygnematales

- Mougeotia sp. MR
- Spirogyra sp. MR, WRR
- Closterium moniliferum (Bory.) Ehr. MR, WRR
- Closterium sp. MR, WRR
- Cosmarium spp. MR, WRR
- Euastrum spp. MR
- Netrium sp. MR
- Staurastrum sp. MR

## Euglenophyta

## Euglenales

Euglena acus Ehr. WRR Euglena acus var. angularis Johnson WRR Euglena chlamydophora Mainx WRR Euglena deses Ehr. WRR Euglena proxima Dangeard MR Euglena terricola Dangeard WRR Phacus acuminatus Stokes WRR Phacus spirogyra var. maxima Prescott WRR Phacus triqueter (Ehr.) Dujardin WRR Phacus sp. MR Trachelomonas acanthostoma (Stokes) Deflandre MR Trachelomonas varians (Lemm.) Deflandre MR Trachelomonas volvocina Ehr. MR Trachelomonas sp. WRR Paranema sp. WRR

Pyrrhophyta

Peridiniales

Peridinium sp. MR

<u>Ceratium carolinianum</u> (Bailey) Jorgenson MR <u>Ceratium hirundinella</u> (O. F. Muell.) Dujardin MR

#### Animals

#### Rhizopoda

#### Testacealobosa

Microchlamys patella Claparede and Lachmann MR Arcella dentata Ehr. MR Arcella discoides Ehr. MR Arcella vulgaris Ehr. MR. WRR Pyxidicula cymbalum Penard MR Pyxidicula operculata Ehr. MR Centropyxis aculeata (Ehr.) Stein MR. WRR Centropyxis ecornis (Ehr.) Leidy MR Difflugia acuminata Ehr. MR, WRR Difflugia constricta (Ehr.) Leidy MR, WRR Difflugia corona Wallich MR Difflugia globulosa Dujardin MR, WRR Difflugia lebes Penard MR Difflugia lobostoma Leidy MR Difflugia oblonga Ehr. MR, WRR Difflugia spiralis Ehr. MR, WRR Difflugia urceolata Carter WRR Quadrulella symmetrica Wallich MR, WRR Nebela collaris Ehr. MR Wailesella eboracensis Wailes MR Testaceafilosa Cyphoderia ampulla Ehr. MR, WRR

Cyphoderia ampulla var. papillata Wailes MR, WRR Pareuglypha reticulata Penard MR Euglypha alveolata Dujardin MR Euglypha ciliata Ehr. MR, WRR Euglypha laevis Ehr. MR, WRR Trinema enchelys Ehr. MR Trinema lineare Penard MR

#### Ciliophora

#### Holotrichida

Lionotus sp. MR, WRR

Loxodes magnus Stokes MR

Loxodes sp. MR

Paramecium sp. WRR

Pseudoprorodon sp. MR

Spirotrichida

<u>Blepharisma lateritum</u> Ehr. MR <u>Blepharisma</u> sp. MR <u>Codonella cratera</u> (Leidy) MR, WRR <u>Eschaneustyla brachytona</u> Stokes MR <u>Eupoltes</u> sp. MR, WRR <u>Urosoma</u> sp. WRR Peritrichida

<u>Cothurnia</u> sp. MR <u>Vorticella</u> sp. MR

Tentaculiferida

Podophrya sp. WRR

Sphaerophrya sp. WRR

Nematoda

Nematoda spp. MR, WRR

Gastrotricha

Chaetonotus sp. MR, WRR

Rotifera

Ploima

Keratella cochlearis Ahlstrom MR

Trichocerca sp. MR, WRR

Colurella adriatica Carlin MR, WRR

Trichotria sp. MR

Lepadella patella (Muller) MR, WRR

Lepadella sp. MR, WRR

Cephalodella exigua Harring and Myer MR

Cephalodella spp. MR, WRR

Lecane ohioensis (Herrick) MR

Lecane flexilis (Gosse) WRR

Lecane spp. MR, WRR

Monostyla closterocerca Pennak MR, WRR

Monostyla hamata (Stokes) MR

Monostyla psaumophilia Wiszniewski MR, WRR

Monostyla sp. MR, WRR

Lindia sp. WRR

## Bdelloida

| Rotaria | sp. | MR, | WRR |  |
|---------|-----|-----|-----|--|
|         |     |     |     |  |

Philodina sp. MR, WRR

## Tardigrada

Hypsibius sp. MR, WRR

Macrobiotis sp. WRR

Annelida

Oligochaeta

Oligochaeta spp. WRR

Aeolosoma sp. MR

Arthropoda

Crustacea

Cladocera

Bosmina sp. MR

Ostracoda

Ostracoda spp. MR, WRR

Copepoda

Cyclopoida spp. MR

Nauplius larvae MR

Insecta

Plecoptera nymphs MR

Ephemeroptera nymphs MR

Trichoptera larvae MR

Coleoptera

Dytiscidue adult MR

Diptera

Ceratopogonidae larvae MR

Chironomidae larvae MR, WRR

Acari

Larval mites MR

## TABLE 7

## VERTICAL AND HORIZONTAL DISTRIBUTION OF PSAMMON ORGANISMS FOR THE MISSISSIPPI RIVER, NUMBERS ARE PER CUBIC CENTIMETER OF SAND

A. Mississippi River - June 13, 1968

| Organism            | Depth                           |                                                            |                                                 | Stat                                           | ions                                              |                                                      |                                          |
|---------------------|---------------------------------|------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|---------------------------------------------------|------------------------------------------------------|------------------------------------------|
|                     | (cm)                            | 2                                                          | 2                                               | 3                                              | 4                                                 | 5                                                    | 6                                        |
| Diatoms             | 1<br>2<br>3<br>4<br>5<br>6      | 1,072,806<br>683,061<br>375,510<br>282,918<br>N.S.         | 183,740<br>32,549<br>1,640<br>1,084<br>300      | 254,160<br>130,135<br>38,452<br>544<br>120     | 1,297,363<br>419,316<br>228,471<br>3,612<br>1,320 | 1,732,787<br>710,909<br>593,949<br>150,534<br>91,233 | 287,795<br>5,668<br>1,676<br>304<br>N.S. |
| Blue-Green<br>Algae | 6<br>1<br>2<br>3<br>4<br>5<br>6 | N.S.<br>13,800<br>17,922<br>6,161<br>2,337<br>N.S.<br>N.S. | 256<br>708<br>1,745<br>4,924<br>804<br>48<br>16 | 144<br>1,262<br>3,332<br>524<br>40<br>12<br>52 | 292<br>420<br>332<br>4<br>0<br>0<br>0             | 6,980<br>902<br>666<br>278<br>16<br>8<br>0           | N.S.<br>302<br>36<br>0<br>N.S.<br>N.S.   |
| Green<br>Algae      | 1<br>2<br>3<br>4<br>5<br>6      | 1,960<br>172<br>456<br>516<br>N.S.<br>N.S.                 | 84<br>88<br>360<br>96<br>44<br>0                | 100<br>56<br>24<br>8<br>20<br>0                | 3,816<br>604<br>154<br>92<br>16<br>0              | 3,064<br>900<br>700<br>140<br>48<br>68               | 128<br>20<br>4<br>0<br>N.S.<br>N.S.      |

| Organism    | Depth       |              |                    | Statio  | ns       | •        |         |
|-------------|-------------|--------------|--------------------|---------|----------|----------|---------|
|             | (cm)        | 1            | 2                  | 3       | 4        | 5        | 6       |
| Rhizopoda   | 1           | 216          | 20                 | 24      | 128      | 436      | 328     |
| -           | 1<br>2      | 68           | 60                 | 68      | 28       | 284      | 104     |
|             | 3           | 96           | 168                | 88      | 12       | 144      | 136     |
|             | 4           | 56           | 292                | 28      | 88       | 84       | 48      |
|             | 5           | N.S.         | 92                 | 20      | 80       | 180      | N.S.    |
|             | 6           | N.S.         | 84                 | 20      | 40       | 84       | N.S.    |
| Rotifera    | 1           | 96<br>8<br>4 | 16                 | 32<br>8 | 60       | 160      | 52      |
|             | 2           | 8            | 0                  | 8       | 0        | 8        | 52<br>8 |
|             | 2<br>3      | 4            | 4                  | 0       | 0        | 0        | 8       |
|             | 4           | 0            | 4                  | 0       | 0        | 4        | 0       |
|             | 56          | N.S.         | 0                  | 0       | 0        | 0        | N.S.    |
| 2           | 6           | N.S.         | 0                  | 0       | 0        | 0        | N.S.    |
| Nematoda    | 1           | 24           | 40                 | 36      | 52       | 136      | 52      |
|             | 2<br>3<br>4 | 20           | 72                 | 0       | 4        | 56<br>28 | 4       |
|             | 3           | 4<br>8       | 72<br>12<br>8<br>4 | 12<br>8 | 0        | 28       | 12      |
|             | 4           |              | 8                  |         | 0        | 4        | 0       |
|             | 5           | N.S.         | 4                  | 0       | 4        | 4        | N.S.    |
|             | 6           | N.S.         | 8                  | 4       | 0        | 0        | N.S.    |
| Tardigrada. | 1           | 64           | 24                 | 188     | 52       | 72       | 0       |
|             | 1<br>2<br>3 | 4            | 20                 | 12      | 52<br>56 | 44       | 8       |
|             | 3           | 20           | 0                  | 16      | 4        | 4        | 0       |
|             | 4           | 4            | 0                  | 16      | 0        | 4        | 0       |
|             |             | N.S.         | 0                  | 20      | 0        | 0        | N.S.    |
|             | 56          | N.S.         | 0                  | 0       | 0        | 0        | N.S.    |

TABLE 7 - Continued

| Organism  | Depth            |         |             | Stati            | ons       |                                        |           |
|-----------|------------------|---------|-------------|------------------|-----------|----------------------------------------|-----------|
|           | (cm)             | 1       | 2           | 3                | 4         | 5                                      | 6         |
| Others    | 1                | 16      | 4           | 56               | 60        | 88                                     | 40        |
|           | 2                | 0       | 4           | 0                | 8         | 0                                      | 0         |
|           | 3                | 0       | 0           | 0                | 4         | 8                                      | 0         |
|           | 4                | 0       | 0           | 0                | 0         | 0                                      | 0         |
|           | 56               | N.S.    | 0           | 0                | 4         | 0                                      | N.S.      |
|           | 6                | N.S.    | 0           | 0                | 0         | 0                                      | N.S.      |
|           | <u></u>          |         | B. Mississi | ppi River - July | y 2, 1968 | ************************************** |           |
| Diatoms   | 1                | 210,395 | 199,697     | 118,620          | 91,653    | 444,951                                | 1,687,917 |
|           | 1<br>2<br>3<br>4 | 63,346  | 40,590      | 66,129           | 51,711    | 33,392                                 | 670,647   |
|           | 3                | 5,412   | 2,404       | 3,532            | 2,072     | 18,240                                 | 359,069   |
|           |                  | 1,348   | 1,428       | 2,744            | 936       | 5,160                                  | 14,164    |
|           | 56               | 468     | 364         | 952              | 292       | 1,788                                  | 8,532     |
|           | 6                | 268     | 192         | N.S.             | 144       | 108                                    | 3,104     |
| lue-Green | 1                | 269     | 1,401       | 469              | 291       | 358                                    | 8,760     |
| Algae     | 2                | 536     | 1,427       | 548              | 120       | 124                                    | 2,022     |
|           | 1<br>2<br>3<br>4 | 365     | 456         | 620              | 1.2       | 12                                     | 16        |
|           | 4                | 16      | 64          | 2,920            | 40        | 0                                      | 0         |
|           | 56               | 20      | 62          | 926              | 16        | 0                                      | 72        |
|           | 6                | 20      | 0           | N.S.             | 32        | 0                                      | 0         |
| reen      |                  | 000     | 200         | 251              | 224       |                                        | 0.000     |
| Algae     | 1                | 232     | 720         | 256              | 336       | 344                                    | 2,092     |
|           | 2                | 180     | 32          | 128              | 56        | 848                                    | 384       |
|           | 3                | 228     | 32<br>62    | 44               | 32        | 384                                    | 156       |

TABLE 7 - Continued

| Organism  | Depth       |     |        | Statio | ns  |     |     |
|-----------|-------------|-----|--------|--------|-----|-----|-----|
|           | (cm)        | 1   | 2      | 3      | 4   | 5   | 6   |
|           | 4           | 12  | 12     | 64     | 20  | 188 | 256 |
|           | 5           | 0   | 18     | 12     | 0   | 16  | 40  |
|           | 5<br>6      | 12  | 10     | N.S.   | 8   | 0   | 24  |
| hizopoda  | 1           | 248 | 268    | 416    | 112 | 344 | 840 |
|           | 1<br>2<br>3 | 120 | 8      | 208    | 88  | 136 | 336 |
|           | 3           | 124 | 104    | 108    | 24  | 216 | 218 |
|           | 4           | 16  | 72     | 76     | 40  | 96  | 204 |
|           |             | 12  | 14     | 64     | 8   | 72  | 168 |
|           | 5<br>6      | 12  | 8      | N.S.   | 16  | 80  | 180 |
| otifera   | 1           | 84  | 168    | 52     | 92  | 4   | 8   |
|           | 1<br>2      | 24  | 0      | 16     | 16  | 0   | 4   |
|           | 3           | 8   | 16     | 8      | 8   | 0   | 0   |
|           | 4           | 0   | 0      | 4      | 0   | 0   | 0   |
|           | 5           | 0   | 2      | 0      | 0   | 0   | 0   |
|           | 5<br>6      | 0   | 2<br>4 | N.S.   | 0   | 0   | 0   |
| ematoda   | 1           | 12  | 56     | 52     | 28  | 0   | 60  |
|           | 2           | 4   | 0      | 20     | 0   | 8   | 60  |
|           | 3           | 8   | 4      | 0      | 4   | 0   | 4   |
|           | 34          | 0   | 4      | 0      | 4   | 0   | 0   |
|           | 5           | 0   | 8      | 0      | 0   | 0   | 0   |
|           | 5<br>6      | 4   | 6      | N.S.   | 4   | 4   | 0   |
| ardigrada | 1           | 104 | 68     | 12     | 112 | 32  | 0   |
| -0-       | 2           | 24  | 4      | 0      | 24  | 0   | 0   |
|           | 3           | 8   | 0      | 0      | 12  | 0   | 0   |

TABLE 7 - Continued

| Organism                              | Depth       |           |                | Statio           | ons      |                                            |                                          |
|---------------------------------------|-------------|-----------|----------------|------------------|----------|--------------------------------------------|------------------------------------------|
|                                       | (cm)        | 1         | 2              | 3                | 4        | 5                                          | 6                                        |
| andra gan de Meren de Lever et en est | 4           | 4         | 8              | 0                | 20       | 4                                          | 0                                        |
|                                       | 56          | 0         | 0              | 0                | 8        | 0                                          | 0                                        |
|                                       | 6           | 0         | 0              | N.S.             | 4        | 0                                          | 0                                        |
| Others                                | 1           | 40        | 8              | 4                | 20       | 0                                          | 28                                       |
|                                       |             | 16        | 0              | 36               | 0        | 0                                          | 0                                        |
|                                       | 2 3 4 5 6   | 0         | 0              | 0                | 0        | 0                                          | 0                                        |
|                                       | 4           | 0         | 0              | 0                | 0        | 0                                          | 0                                        |
|                                       | 5           | 0         | 0              | 0                | 0        | 0                                          | 0                                        |
|                                       | 6           | 0         | 0              | 0                | 0        | 0                                          | 0                                        |
|                                       |             | 14        | C. Mississippi | i River - July 1 | 16, 1968 | and an | 975.9969.9969.9969.9969.9969.9969.9969.9 |
| Diatoms                               | 1           | 1,050,339 | 6,604          | 2,324            | 30,752   | 78,268                                     | N.C.                                     |
|                                       | 2           | 187,748   | 1,672          | 496              | 7,100    | 24,430                                     |                                          |
|                                       | 2<br>3<br>4 | 40,727    | 1,892          | 412              | 2,488    | 596                                        |                                          |
|                                       | 4           | 1,308     | 1,412          | 300              | 1,156    | 276                                        |                                          |
|                                       | 56          | 1,248     | 304            | 260              | 220      | 132                                        |                                          |
|                                       | 6           | 1,306     | N.S.           | N.S.             | 128      | N.S.                                       |                                          |
| Blue-Green                            | 1           | 796       | 31             | 36               | 169      | 196                                        |                                          |
| Algae                                 | 2           | 222       | 28             | 243              | 49       | 33                                         |                                          |
|                                       | 23          | 20        | 0              | 224              | 36       | 16                                         |                                          |
|                                       | 4           | 8         | 0              | 276              | 40       | 0                                          |                                          |
|                                       | 56          | 0         | 0              | 8                | 40       | 8                                          |                                          |
|                                       | 6           | . 0       | N.S.           | N.S.             | 22       | N.S.                                       |                                          |

TABLE 7 - Continued

| rganism   | Depth                      |                      |       | Station | ns  |      |      |
|-----------|----------------------------|----------------------|-------|---------|-----|------|------|
|           | (cm)                       | l                    | 2     | 3       | 4   | 5    | 6    |
| reen      | 1                          | 920                  | 1,596 | 52      | 232 | 140  | N.C. |
| Algae     | 1<br>2                     | 164                  | 16    | 12      | 208 | 20   |      |
| 0         | 3                          | 72                   | 0     | 16      | 40  | 0    |      |
|           | 4                          | 72<br>88             | 12    | 4       | 64  | 0    |      |
|           | 5                          | 28                   | 412   | 0       | 16  | 0    |      |
|           | 6                          | 16                   | N.S.  | N.S.    | 12  | N.S. |      |
| hizopoda  | 1                          | 300                  | 4     | 100     | 60  | 112  |      |
|           | 2                          | 102                  | 4     | 68      | 20  | 88   |      |
|           | 3                          |                      | 0     | 52      | 12  | 24   |      |
|           | 4                          | 56                   | 0     | 40      | 16  | 16   |      |
|           | 5                          | 72                   | 8     | 0       | 4   | 8    |      |
|           | 1<br>2<br>3<br>4<br>5<br>6 | 36<br>56<br>72<br>32 | N.S.  | N.S.    | 8   | N.S. |      |
| otifera   | 11                         | 32                   | 12    | 32      | 72  | 0    |      |
|           | 1<br>2<br>3<br>4           | 0                    | 8     | 32<br>8 | 48  | 0    |      |
|           | 3                          | 0                    | 0     | 4       | 16  | 0    |      |
|           | 4                          | 0                    | 0     | 4<br>8  | 20  | 0    |      |
|           | 5                          | 0                    | 0     | 0       | 8   | 0    |      |
|           | 5<br>6                     | 0                    | N.S.  | N.S.    | 0   | N.S. |      |
| ematoda   | 1                          | 4                    | 0     | 4       | 8   | 8    |      |
|           | 2                          | 4                    | 4     | 4       | 16  | 0    |      |
|           | 3                          | 0                    | 0     | 0       | 4   | 0    |      |
|           | 4                          | 0                    | 0     | 0       | 0   | 0    |      |
|           |                            | 0                    | 0     | 4       | 0   | 0    |      |
|           | 5<br>6                     | °,                   | N.S.  | N.S.    | 0   | N.S. |      |
| ardigrada | 1                          | 12                   | 32    | 16      | 16  | 24   |      |

TABLE 7 - Continued

| Organism   | Depth                 |           |              | Stati           | ons      |        |      |
|------------|-----------------------|-----------|--------------|-----------------|----------|--------|------|
|            | ( cm )                | l         | 2            | 3               | 4        | 5      | 6    |
|            | 2                     | 16        | 4            | 0               | 4        | 24     | N.C. |
|            | 34                    | 4         | 16           | 12              | 8        | 0      |      |
|            | 4                     | 0         | 0            | 0               | 16       | 0      |      |
|            | 56                    | 0         | 0            | 0               | 20       | 0      |      |
|            | 6                     | 0         | N.S.         | N.S.            | 8        | N.S.   |      |
| Others     | 1                     | 0         | 0            | 8               | 24.      | 0      |      |
|            | 2                     | 0         | 0            | 4               | 4        | 0      |      |
|            | 2<br>3<br>4<br>5<br>6 | 0         | 0            | 0               | 0        | 0      |      |
|            | 4                     | 0         | 0            | 0               | 0        | 0      |      |
|            | 5                     | 0         | 0            | 0               | 0        | 0      |      |
|            | 6                     | . 0       | N.S.         | N.S.            | 0        | N.S.   |      |
|            |                       |           | D. Mississip | pi River - July | 30, 1968 |        |      |
| Diatoms    | 1                     | Broken    | Broken       | 7,047           | 2,388    | 34,030 | N.C. |
|            | 2                     | 2,181,824 | 129,740      | 58,999          | Broken   | 700    |      |
|            | 2 3 4 5 6             | 193,559   | 260,201      | 81,485          | 1,624    | 276    |      |
|            | 4                     | 2,736     | 118,157      | 2,104           | 1,784    | 324    |      |
|            | 5                     | 4,280     | 2,148        | 620             | 328      | 28     |      |
|            | 6                     | 264       | 584          | 744             | N.S.     | 20     |      |
| Blue-Green | 1                     | Broken    | Broken       | 28              | 4        | 2,769  |      |
| Algae      | 2                     | 704       | 237          | 508             | Broken   | 72     |      |
| 0          | 3                     | 0         | 80           | 673             | 1.04     | 24     |      |
|            | 1 7 1                 | 0         | 146          | 454             | 96       | 234    |      |
|            | 4                     | 0         |              |                 |          |        |      |
|            | 4 5 6                 | 8         | 132          | 32<br>8         | 0        | 128    |      |

TABLE 7 - Continued

| Organism  | Depth                 |        |        | Stati          | ons    |       |      |
|-----------|-----------------------|--------|--------|----------------|--------|-------|------|
|           | (cm)                  | l      | 2      | 3              | 4      | 5     | 6    |
| Green '   | 1                     | Broken | Broken | 124            | 180    | 3,964 | N.C. |
| Algae     | 2                     | 976    | 156    | 228            | Broken | 8     |      |
|           | 34                    | 56     | 116    | 184            | 48     | 0     |      |
|           | 4                     | 24     | 120    | 76             | 600    | 0     |      |
|           | 5                     | 8      | 132    | 24             | 24     | 0     |      |
|           | 5<br>6                | 12     | 8      | 24             | N.S.   | 0     |      |
| Rhizopoda | 1                     | Broken | Broken | 152            | 84     | 550   |      |
|           | 2                     | 504    | 64     | 480            | Broken | 8     |      |
|           | 1<br>2<br>3<br>4      | 368    | 68     | 472            | 80     | 28    |      |
|           | 4                     | 200    | 84     | 1.532          | 216    | 24    |      |
|           | 5                     | 112    | 24     | 1,532<br>1,852 | 64     | 16    |      |
|           | 5<br>6                | 60     | 12     | 1,224          | N.S.   | 32    |      |
| Rotifera  | 1                     | Broken | Broken | 160            | 4      | 0     |      |
|           | 2                     | 0      | 8      | 80             | Broken | 0     |      |
|           | 3                     | 0      | 12     | 72             | 0      | 0     |      |
|           | 4                     | 0      | 16     | 52             | 0      | 0     |      |
|           | 5                     | 8      | 0      | 52<br>24       | 0      | 0     |      |
|           | 2<br>3<br>4<br>5<br>6 | 0      | 0      | 24             | N.S.   | 0     |      |
| Nematoda  | ı                     | Broken | Broken | 12             | 4      | 10    |      |
|           | 2                     | 0      | 0      | 8              | Broken | 0     |      |
|           | 3                     | 0      | 0      | 0              | 4      | 0     |      |
|           | 4                     | 0      | 0      | 0              | 8      | 0     |      |
|           | 5                     | õ      | 0      | 0              | 8      | 0     |      |
|           | 56                    | 4      | Õ      | 0              | N.S.   | 0     |      |

TABLE 7 - Continued

.

| Organism   | Depth    |           |              | Stati            | lons        |         |                                        |
|------------|----------|-----------|--------------|------------------|-------------|---------|----------------------------------------|
|            | (cm)     | 1         | 2            | 3                | 4           | 5       | 6                                      |
| Tardigrada | 1        | Broken    | Broken       | 0                | 0           | 0       | N.C.                                   |
| 0          | 2        | 2.4       | 4            | 24               | Broken      | 0       |                                        |
|            | 34<br>56 | 8         | 4            | 0                | 0           | 0       |                                        |
|            | 4        | 0         | 0            | 0                | 0           | 0       |                                        |
|            | 5        | 0         | 0            | 0                | 0           | 0       |                                        |
|            | 6        | 0         | 0            | 0                | N.S.        | 0       |                                        |
| thers      | 1        | Broken    | Broken       | 24               | 0           | 0       |                                        |
|            | 2        | 32        | 0            | 44               | Broken      | 0       |                                        |
|            | 3<br>4   | 0         | 4            | 24               | 0           | 8       |                                        |
|            | 4        | 16        | 0            | 12               | 0           | 16      |                                        |
|            | 56       | 0         | 0            | 4                | 0           | 0       |                                        |
|            | 6        | 0         | 0            | 4                | N.S.        | 0       |                                        |
|            | 11       |           | E. Mississip | opi River, Augus | st 14, 1968 |         |                                        |
| Diatoms    | 1        | 1,316,322 | 472,215      | 474,090          | 44,743      | 236,678 | CB Party Science and Course and Course |
|            | 2        | 55,292    | 102,601      | 397,687          | 11,487      | 7,392   |                                        |
|            | 34       | 2,460     | 15,093       | 107,130          | 1,968       | 4,580   |                                        |
|            | 4        | 1,756     | 7,641        | 40,431           | 448         | 208     |                                        |
|            | 5        | N.S.      | 112          | 26,648           | 200         | 100     |                                        |
|            | 6        | N.S.      | 66           | N.S.             | 48          | 8       |                                        |
| Blue-Green | 1        | 464       | 322          | 460              | 9           | 720     |                                        |
| Algae      | 2        | 16        | 60           | 828              | 88          | 36      |                                        |
|            | 3        | 16        | 0            | 234              | 370         | 60      |                                        |
|            |          |           |              |                  |             |         |                                        |

TABLE 7 - Continued

| Organism       | Depth                      |                                           |                                   | Statio                                      | ns                                    |                                          |      |
|----------------|----------------------------|-------------------------------------------|-----------------------------------|---------------------------------------------|---------------------------------------|------------------------------------------|------|
|                | (cm)                       | 1                                         | 2                                 | 3                                           | 4                                     | 5                                        | 6    |
|                | 5<br>6                     | N.S.<br>N.S.                              | 0<br>0                            | 4<br>N.S.                                   | 0<br>0                                | 0<br>0                                   | N.C. |
| Freen<br>Algae | 1<br>2<br>3<br>4<br>5<br>6 | 3,296<br>68<br>40<br>36<br>N.S.<br>N.S.   | 1,300<br>108<br>48<br>4<br>8<br>8 | 1,690<br>1,448<br>748<br>222<br>100<br>N.S. | 336<br>444<br>168<br>104<br>56<br>24  | 4,476<br>464<br>332<br>16<br>8<br>8      |      |
| Rhizopoda      | 1<br>2<br>3<br>4<br>56     | 1,556<br>380<br>112<br>80<br>N.S.<br>N.S. | 412<br>168<br>52<br>32<br>52<br>2 | 1,636<br>1,380<br>632<br>268<br>208<br>N.S. | 424<br>520<br>602<br>416<br>208<br>48 | 1,252<br>812<br>2,256<br>252<br>88<br>24 |      |
| Rotifera       | 1<br>2<br>3<br>4<br>5<br>6 | 164<br>8<br>4<br>4<br>N.S.<br>N.S.        | 252<br>48<br>8<br>0<br>0          | 452<br>140<br>60<br>20<br>28<br>N.S.        | 96<br>48<br>20<br>8<br>0<br>0         | 40<br>8<br>4<br>0<br>0<br>0              |      |
| Nematoda       | 1<br>2<br>3<br>4<br>5      | 100<br>8<br>0<br>N.S.                     | 4<br>0<br>4<br>0<br>0             | 32<br>12<br>4<br>4<br>0                     | 0<br>4<br>4<br>0<br>8                 | 8<br>4<br>8<br>4<br>0                    |      |

TABLE 7 - Continued

| Organism                         | Depth                      |                                                    |                                                       | Stati                                             | ons                                              |                                             |      |
|----------------------------------|----------------------------|----------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------------|------|
|                                  | (cm)                       | 1                                                  | 2                                                     | 3                                                 | 4                                                | 5                                           | 6    |
| Mangar dir diriya sayar sayar sa | 6                          | N.S.                                               | 0                                                     | N.S.                                              | 0                                                | 0                                           | N.C. |
| fardigrada                       | 1<br>2<br>3                | 0<br>8<br>8                                        | 20<br>12<br>4                                         | 40<br>24<br>0                                     | 0<br>0<br>8                                      | 4<br>0<br>16                                |      |
|                                  | J4 56                      | 0<br>N.S.<br>N.S.                                  | 0<br>0<br>0                                           | 12<br>4<br>N.S.                                   | 0<br>0<br>0                                      | 0                                           |      |
| Others                           | 1<br>2<br>3<br>4<br>5<br>6 | 52<br>0<br>0<br>N.S.<br>N.S.                       | 76<br>12<br>0<br>0<br>0                               | 108<br>56<br>0<br>8<br>0<br>N:S.                  | 16<br>32<br>8<br>0<br>0<br>0                     | 12<br>0<br>0<br>4<br>0                      |      |
|                                  | A                          |                                                    | F. Mississippi                                        | River - August                                    | 27, 1968                                         |                                             |      |
| Diatoms                          | 1<br>2<br>3<br>4<br>5<br>6 | 500,689<br>36,541<br>18,895<br>1,132<br>784<br>160 | 137,086<br>49,551<br>58,094<br>29,509<br>1,200<br>236 | 102,814<br>17,720<br>10,921<br>696<br>152<br>N.S. | 595,300<br>37,827<br>1,344<br>212<br>168<br>N.S. | 321,580<br>44,049<br>828<br>84<br>216<br>28 |      |
| Blue-Green<br>Algae              | 1<br>2<br>3                | 1,592<br>68<br>24                                  | 456<br>0<br>4                                         | 120<br>48<br>116                                  | 1,142<br>1,440<br>168                            | 15,758<br>640<br>100                        |      |

TABLE 7 - Continued

| Organism  | Depth            |               |              | Stati      | ons         | ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ |      |
|-----------|------------------|---------------|--------------|------------|-------------|---------------------------------------|------|
|           | (cm)             | l             | 2            | 3          | 4           | 5                                     | 6    |
|           | 4                | 0             | 0            | 12         | 0           | 44                                    | N.C. |
|           | 56               | 0             | 28<br>0      | 20<br>N.S. | N.S. 0      | 8<br>16                               |      |
| Green     | 11               | 9,346         | 356          | 488        | 1,548       | 2,180                                 |      |
| Algae     | 1<br>2<br>3<br>4 | 76<br>36<br>4 | 108          | 76         | 168         | 308                                   |      |
|           | 3                | 36            | 56           | 64         | 24          | 100                                   |      |
|           |                  | 8             | 44<br>24     | 56<br>40   | 16          | 28<br>0                               |      |
|           | 56               | 12            | 12           | N.S.       | N.S.        | 4                                     |      |
| Rhizopoda | 1                | 768           | 532          | 442        | 1,128       | 1,304                                 |      |
|           | 1<br>2<br>3<br>4 | 68            | 132          | 136        | 96          | 380                                   |      |
|           | 3                | 68            | 144          | 180        | 104         | 148                                   |      |
|           | 4                | 64            | 44           | 180<br>60  | 392         | 16<br>20                              |      |
|           | 56               | 40<br>0       | 68<br>0      | N.S.       | 176<br>N.S. | 36                                    |      |
| Rotifera  | 1                | 60            | 104          | 40         | 4           | 68                                    |      |
|           | 1<br>2           | 8             | 24           | 8          | 0           | 4                                     |      |
|           | 34               | G             | 8            | 4          | 0           | 0                                     |      |
|           |                  | 0             | 0            | 0          | 0           | 0                                     |      |
|           | 56               | 0             | 0            | 0          | 0           | 0                                     |      |
|           | 6                | 0             | 0            | N.S.       | N.S.        | 0                                     |      |
| Nematoda  | 1                | 144           | 32<br>8<br>4 | 16         | 88          | 44                                    |      |
|           | 1<br>2<br>3      | 12<br>8       | 8            | 4          | 4           | 24                                    |      |
|           | 3                | 8             | 4            | 4          | 4           | 0                                     |      |

TABLE 7 - Continued

| Organism            | Depth |             |                  | Stati           | ons         |          |      |
|---------------------|-------|-------------|------------------|-----------------|-------------|----------|------|
|                     | (cm)  | 1           | 2                | 3               | 4           | 5        | 6    |
|                     | 4     | 0           | 8                | 4               | 0           | 0        | N.C. |
|                     | 5     | 0           | 0                | 0               | 16          | 0        |      |
|                     | 6     | 0           | 0                | N.S.            | N.S.        | 0        |      |
| Tardigrada          | 1     | 0           | 44               | 8               | 4           | 0        |      |
|                     | 2     | 0           | 0                | 0               | 0           | 4        |      |
|                     | 3     | 0           | 0                | 4               | 4           | 0        |      |
|                     | 4     | 0           | 0                | 4               | 4           | 0        |      |
|                     | 56    | 0           | 0                | 0               | 0           | 0        |      |
|                     | 6     | 0           | 4                | N.S.            | N.S.        | 0        |      |
| Others              | 11    | 176         | 136              | 92              | 0           | 32       |      |
|                     | 2     | 20          | 16               | 0               | 0           | 32<br>56 |      |
|                     | 3     | 12          | 4                | 8               | 4           | 8        |      |
|                     | 34    | 0           | 4                | 20              | 0           | 20       |      |
|                     | 56    | 4           | 56               | 0               | 0           | 0        |      |
|                     | 6     | 0           | 0                | N.S.            | N.S.        | 0        |      |
| <b></b>             | I     | 4. <u> </u> | G. Mississippi H | River - Septemb | er 21, 1968 |          |      |
| Diatoms             | 1     | 221,224     | 368,286          | 53,945          | 68,016      | 113,802  |      |
| -                   | 2     | 26,522      | 14,264           | 41,382          | 54,039      | 125,879  |      |
|                     |       | 2,172       | 11,060           | 1,368           | 31,483      | 11,862   |      |
|                     | 34    | 11,138      | 5,580            | 1,664           | 5,736       | 2,892    |      |
|                     | 5     | 840         | 2,380            | 860             | 3,544       | 2,320    |      |
|                     | 6     | 504         | 132              | 180             | N.S.        | 144      |      |
| Blue-Green<br>Algae | l     | 600         | 3,436            | 0               | 608         | -180     |      |

TABLE 7 - Continued

| Organism          | Depth                      |                                         |                                      | Stati                               | ons                                     |                                                  |      |
|-------------------|----------------------------|-----------------------------------------|--------------------------------------|-------------------------------------|-----------------------------------------|--------------------------------------------------|------|
|                   | (cm)                       | l                                       | 2                                    | 3                                   | 4                                       | 5                                                | 6    |
|                   | 2<br>3<br>4<br>5<br>6      | 180<br>12<br>24<br>0<br>8               | 840<br>1,040<br>128<br>8<br>2        | 0<br>0<br>0<br>0                    | 464<br>20<br>400<br>272<br>N.S.         | 48<br>20<br>120<br>8<br>10                       | N.C. |
| Freen<br>Algae    | 1<br>2<br>3<br>4<br>5<br>6 | 876<br>348<br>60<br>28<br>124<br>164    | 436<br>72<br>124<br>56<br>28<br>4    | 312<br>0<br>20<br>8<br>0<br>0       | 292<br>164<br>56<br>196<br>96<br>N.S.   | 4,372<br>2,648<br>804<br>1,556<br>1,560<br>8     |      |
| <b>lhizopo</b> da | 1<br>2<br>3<br>4<br>5<br>6 | 2,268<br>216<br>132<br>56<br>40<br>. 32 | 664<br>180<br>212<br>108<br>84<br>16 | 208<br>64<br>140<br>92<br>138<br>90 | 744<br>904<br>436<br>540<br>284<br>N.S. | 1,660<br>4,408<br>1,508<br>1,648<br>1,404<br>258 |      |
| Rotifera          | 1<br>2<br>3<br>4<br>5<br>6 | 8<br>0<br>0<br>0<br>0                   | 28<br>8<br>0<br>0<br>0               |                                     | 12<br>16<br>0<br>0<br>N.S.              | 4<br>16<br>0<br>0<br>0                           |      |
| lematoda          | 1 2                        | 36<br>20                                | 0                                    | 0<br>0                              | 12<br>24                                | 8<br>8                                           |      |

TABLE 7 - Continued

| Organism   | Depth            |           |                | Stati          | ons        |         |      |
|------------|------------------|-----------|----------------|----------------|------------|---------|------|
|            | (cm)             | 1         | 2              | 3              | 4          | 5       | 6    |
|            | 3                | 24        | 0              | 0              | 0          | 24      | N.C. |
|            | 34               | 4         | 4              | 0              | 4          | 24      |      |
|            | 5                | 8         | 0              | 0              | 0          | 0       |      |
|            | 6                | 0         | 0              | 0              | N.S.       | С       |      |
| Tardigrada | 1                | 0         | 0              | 0              | 4          | 0       |      |
| 0          | 2                | 0         | 0              | 0              | 12         | 0       |      |
|            | 3<br>4           | 0         | 0              | 0              | 0          | 0       |      |
|            | 4                | 0         | 0              | 0              | 0          | 4       |      |
|            | 5                | 0         | 0              | 0              | 0          | 0       |      |
|            | 6                | 0         | 2              | 0              | N.S.       | 0       |      |
| Others     | 11               | 80        | 24             | 0              | 24         | 16      |      |
|            | 2                | 0         | 0              | 0              | 4          | 16      |      |
|            | 1<br>2<br>3<br>4 | 0         | 0              | 0              | 0          | 0       |      |
|            | 4                | 0         | 0              | 0              | 4          | 0       |      |
|            | 5                | 0         | 0              | 0              | 12         | 0       |      |
|            | 6                | 0         | 0              | 0              | N.S.       | 0       |      |
|            | 11               |           | H. Mississippi | River - Octobe | er 6, 1968 |         |      |
| Diatoms    | 1                | 1,246,375 | 652,540        | 330,447        | 154,433    | 237,903 |      |
|            | 2                | 53,985    | 274,868        | 115,875        | 36,815     | 71,269  |      |
|            |                  | 38,732    | 261,938        | 60,633         | 4,664      | 37,432  |      |
|            | 4                | 1,984     | 48,561         | 8,532          | 5,984      | 30,053  |      |
|            | 3456             | 672       | 3,192          | 3,770          | N.S.       | 1,920   |      |
|            | 6                | 648       | 2,616          | 3,516          | N.S.       | 240     |      |

TABLE 7 - Continued

| Organism   | Depth  |          |            | Stati                    | ons    |       |      |
|------------|--------|----------|------------|--------------------------|--------|-------|------|
|            | (cm)   | l        | 2          | 3                        | 4      | 5     | 6    |
| Blue-Green | 1      | 5,308    | 186        | 12.832                   | 16,124 | 1,120 | N.C. |
| Algae      | 2      | 20       | 134        | 12,832<br>4,888<br>2,060 | 1,680  | 320   |      |
|            | 3      | 32       | 340        | 2,060                    | 2,112  | 116   |      |
|            | 4      | 0        | 96         | 1,356                    | 412    | 160   |      |
|            | 56     | 8        | 0          | 616                      | N.S.   | 30    |      |
|            | 6      | 12       | 0          | 228                      | N.S.   | 0     |      |
| Green      | 1      | 19,757   | 268        | 556                      | 432    | 512   |      |
| Algae      | 2      | 384      | 86         | 344                      | 96     | 448   |      |
|            | 34     | 258      | 166        | 64                       | 232    | 140   |      |
|            | 4      | 560      | 1,216      | 132                      | 22'4   | 36    |      |
|            | 5      | 128      | 56         | 34                       | N.S.   | 0     |      |
|            | 6      | 152      | 0          | 28                       | N.S.   | 0     |      |
| Rhizopoda  | 1      | 2,212    | 388        | 536                      | 892    | 256   |      |
|            | 1<br>2 | 120      | 160        | 224                      | 432    | 132   |      |
|            | 3      | 80       | 130        | 92                       | 860    | 220   |      |
|            | 4      | 52<br>28 | <b>9</b> 6 | 108                      | 1,096  | 100   |      |
|            | 56     |          | 272        | 72                       | N.S.   | 112   |      |
|            | 6      | 24       | 176        | 64 .                     | N.S.   | 48    |      |
| Rotifera   | 1      | 12       | 10         | 28                       | 8      | 36    |      |
|            | 1<br>2 | 0        | 10         | 20                       | 16     | 8     |      |
|            | 3      | 0        | 0          | 8                        | 4      | 4     |      |
|            | 4      | 0        | 0          | 12                       | 12     | 0     |      |
|            | 56     | 0        | 0          | 0                        | N.S.   | 0     |      |
|            | 6      | 0        | 0          | 0                        | N.S.   | 0     |      |

TABLE 7 - Continued

| Organism   | Depth            |           |                | Stati          | ons        |      |      |
|------------|------------------|-----------|----------------|----------------|------------|------|------|
|            | (em)             | l         | 2              | 3              | 4          | 5    | 6    |
| Nematoda   | 1                | 100       | 0              | 28             | 60         | 20   | N.C. |
|            | 2                | 24        | 0              | 4              | 4          | 4    |      |
|            | 3                | 4         | 0              | 4              | 32         | 0    |      |
|            | 2<br>3<br>4      | 4         | 0              | 8              | 32<br>20   | 0    |      |
|            | 5                | 4         | 0              | 0              | N.S.       | 0    |      |
|            | 6                | 0         | 0              | 0              | N.S.       | 0    |      |
| Tardigrada | 11               | 8         | 0              | 4              | 8          | - 0  |      |
|            | 1<br>2<br>3<br>4 | 0         | 0              | 0              | 0          | 0    |      |
|            | 3                | 0         | 0              | 0              | 8          | 0    |      |
|            | 4                | 0         | 0              | 0              | 0          | 0    |      |
|            |                  | 0         | 0              | 0              | N.S.       | 0    |      |
|            | 5<br>6           | 0         | 0              | 8              | N.S.       | 0    |      |
| Others     | 1                | 60        | 20             | 36             | 96         | 417  |      |
|            | 2                | 8         | 0              | 0              | 0          | 4    |      |
|            | 3                | 4         | 10             | 0              | 0          | 0    |      |
|            | 4                | 0         | 0              | .0             | 12         | 0    |      |
|            | 5                | 0         | 0              | 0              | N.S.       | 0    |      |
|            | 5<br>6           | 0         | 0              | 0              | N.S.       | 0    |      |
|            |                  |           | I. Mississippi | River - Octobe | r 19, 1968 |      |      |
| Diatoms    | 1                | 1,397,509 | 796,957        | 141,231        | 557,397    | N.C. | N.C. |
|            | 2                | 661,247   | 176,769        | 50,683         | 38,558     |      |      |
|            | 3                | 121,225   | 62,976         | 73,257         | 2,624      |      |      |
|            | 4                | 53,728    | 60,444         | 1,900          | 1,172      |      |      |

TABLE 7 - Continued

|                     | T                          |                                             |                                       |                                        | n na mara a sana wakatan ka saka sa |      |      |
|---------------------|----------------------------|---------------------------------------------|---------------------------------------|----------------------------------------|-------------------------------------------------------------------------|------|------|
| Organism            | Depth                      |                                             |                                       | Station                                | ns                                                                      |      |      |
|                     | (cm)                       | 1                                           | 2                                     | 3                                      | 4                                                                       | 5    | 6    |
|                     | 5<br>6                     | 19,064<br>8,100                             | 2,992<br>956                          | 2,272<br>2,112                         | 710<br>72                                                               | N.C. | N.C. |
| Blue-Green<br>Algae | 1<br>2<br>3<br>4<br>5<br>6 | 1,652<br>240<br>64<br>48<br>18<br>0         | 31,685<br>164<br>56<br>60<br>0<br>16  | 1,856<br>60<br>16<br>28<br>72<br>0     | 54<br>0<br>24<br>0<br>0                                                 |      |      |
| Green<br>Algae      | 1<br>2<br>3<br>4<br>5<br>6 | 11,705<br>8,141<br>476<br>180<br>612<br>424 | 1,008<br>252<br>116<br>76<br>12<br>20 | 416<br>280<br>68<br>48<br>32<br>12     | 548<br>76<br>40<br>0<br>52<br>0                                         |      |      |
| Rhizopoda           | 1<br>2<br>3<br>4<br>56     | 1,326<br>624<br>276<br>204<br>176<br>60     | 760<br>252<br>80<br>52<br>48<br>76    | 532<br>372<br>264<br>244<br>228<br>176 | 148<br>260<br>360<br>264<br>80<br>48                                    |      |      |
| Rotifera            | 1<br>2<br>3<br>4           | 24<br>0<br>0<br>0                           | 96<br>0<br>8<br>0                     | 12<br>4<br>4<br>0                      | 0<br>0<br>0                                                             |      |      |

100.08

TABLE 7 - Continued

| Organism                                                                                                       | Depth            |                 |                | Stati          | ons        |      |                                                          |
|----------------------------------------------------------------------------------------------------------------|------------------|-----------------|----------------|----------------|------------|------|----------------------------------------------------------|
|                                                                                                                | (cm)             | 1               | 2              | 3              | 4          | 5    | 6                                                        |
| an de la constantin de la | 56               | 0               | 0              | 12             | 0          | N.C. | N.C.                                                     |
|                                                                                                                | 6                | 0               | 0              | 0              | 0          |      |                                                          |
| Nematoda                                                                                                       | 11               | 136             | 32             | 12             | 8          |      |                                                          |
|                                                                                                                | 1<br>2           | 32              | 4              | 4              | 0          |      |                                                          |
|                                                                                                                | 3                | 136<br>32<br>28 | 0              | 0              | 8          |      |                                                          |
|                                                                                                                | 34               | 0               | 8              | 0              | 0          |      |                                                          |
|                                                                                                                | 5                | 0               | 0              | 8              | 0          |      |                                                          |
|                                                                                                                | 56               | 0               | 0              | 0              | 0          |      |                                                          |
| Tardigrada                                                                                                     | 1                | 0               | 8              | 0              | 0          |      |                                                          |
| Ū                                                                                                              | 2                | 0               | 0              | 0              | 0          |      |                                                          |
|                                                                                                                | 1<br>2<br>3<br>4 | 0               | 0              | 0              | 0          |      |                                                          |
|                                                                                                                | 4                | 0               | 0              | 0              | 0          |      |                                                          |
|                                                                                                                | 56               | 0               | 0              | 0              | 0          |      |                                                          |
|                                                                                                                | 6                | 0               | 0              | 0              | 0          |      |                                                          |
| Others                                                                                                         | 1                | 16              | 64             | 48             | 0          |      |                                                          |
|                                                                                                                | 1<br>2<br>3<br>4 | 0               | 0              | 4              | 0          |      |                                                          |
|                                                                                                                | 3                | 0               | 0              | 0              | 0          |      |                                                          |
|                                                                                                                | 4                | 0               | 0              | 0              | 0          |      |                                                          |
|                                                                                                                | 56               | 0               | 0              | 0              | 0          |      |                                                          |
|                                                                                                                | 6                | 0               | 0              | 0              | 0          |      |                                                          |
|                                                                                                                | L                |                 | J. Mississippi | River - Novemb | er 3, 1968 |      |                                                          |
| Diatoms                                                                                                        | 1                | 2,429,910       | 63,482         | 699,273        | 489,377    |      | ny diversity of the new diversity of the Colores and the |

TABLE 7 - Continued

| Organism            | Depth                      |                                                |                                                     | Stati                                         | ons                                        |      |      |
|---------------------|----------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|--------------------------------------------|------|------|
|                     | (cm)                       | l                                              | 2                                                   | 3                                             | 4                                          | 5    | 6    |
|                     | 2<br>34<br>5<br>6          | 340,567<br>112,336<br>99,331<br>9,436<br>9,276 | 73,069<br>520,295<br>1,078,934<br>187,378<br>11,780 | 225,889<br>83,960<br>98,467<br>12,396<br>N.S. | 170,471<br>17,890<br>4,156<br>1,144<br>480 | N.C. | N.C. |
| Blue-Green<br>Algae | 1<br>2<br>3<br>4<br>5<br>6 | 13,430<br>448<br>64<br>12<br>40<br>56          | 276<br>528<br>14,317<br>62,038<br>48<br>0           | 816<br>2,952<br>1,172<br>12<br>8<br>N.S.      | 287<br>0<br>60<br>16<br>0<br>10            |      |      |
| Green<br>Algae      | 1<br>2<br>3<br>4<br>5<br>6 | 18,111<br>809<br>112<br>16<br>12<br>68         | 216<br>132<br>10,386<br>12,478<br>968<br>48         | 552<br>432<br>124<br>104<br>92<br>N.S.        | 392<br>158<br>10<br>0<br>0                 |      |      |
| Rhizopoda           | 1<br>2<br>3<br>4<br>5<br>6 | 994<br>448<br>416<br>156<br>376<br>112         | 70<br>116<br>720<br>2,372<br>352<br>76              | 632<br>672<br>308<br>96<br>80<br>N.S.         | 888<br>366<br>140<br>250<br>120<br>180     |      |      |
| Rotifera            | 11                         | 30                                             | 40                                                  | 88                                            | 20                                         |      |      |

TABLE 7 - Continued

| Organism   | Depth                      |          |                 | Statio          | ns |      |      |
|------------|----------------------------|----------|-----------------|-----------------|----|------|------|
|            | (cm)                       | 1        | 2               | 3               | 4  | 5    | 6    |
| *******    | 2                          | 8        | 16              | 40              | 0  | N.C. | N.C. |
|            | 34                         | 0        | 40              | 4               | 0  |      |      |
|            | 4                          | 0        | 40              | 4               | 10 |      |      |
|            | 56                         | 0        | 16              | 0               | 0  |      |      |
|            | 6                          | 0        | 0               | N.S.            | 0  |      |      |
| Nematoda   | 1<br>2<br>3<br>4           | 120      | 70              | 40              | 76 |      |      |
|            | 2                          | 16       | 64              | <b>32</b><br>88 | 0  |      |      |
|            | 3                          | 0        | 64<br>96<br>216 | 88              | 0  |      |      |
|            |                            | 0        | 216             | 16              | 0  |      |      |
|            | 56                         | 0        | 32<br>8         | 0               | 0  |      |      |
|            | 6                          | 0        | 8               | N.S.            | 0  |      |      |
| Tardigrada | 1                          | 0<br>8   | 4               | 8               | 0  |      |      |
|            | 2                          | 8        | 0               | 32              | 0  |      |      |
|            | 1<br>2<br>3<br>4<br>5<br>6 | 0        | 0               | 0               | 0  |      |      |
|            | 4                          | 0        | 0               | 0               | 0  |      |      |
|            | 5                          | 0        | 0               | 0               | 0  |      |      |
|            | 6                          | 0        | 0               | N.S.            | 0  |      |      |
| Others     | 1                          | 74<br>48 | <b>56</b><br>16 | 80              | 0  |      |      |
|            | 2                          | 48       | 16              | 0               | 0  |      |      |
|            | 1<br>2<br>3<br>4           | C        | 8               | 0               | 0  |      |      |
|            | 4                          | 0<br>4   | 40              | 4               | 0  |      |      |
|            | 56                         | 0        | 0               | 0               | 0  |      |      |
|            | 6                          | 0        | 0               | N.S.            | 0  |      |      |

TABLE 7 - Continued

Note: N.S. means No Sample and N.C. means No Core

## TABLE 8

1

## VERTICAL AND HORIZONTAL DISTRIBUTION OF PSAMMON ORGANISMS FOR THE WILD RICE RIVER, NUMBERS ARE PER CUBIC CENTIMETER OF SAND

| Organism                | Depth                      | Distance Relative to Waterline, cm |                                   |                                           |                                  |                                      |                                                      |  |  |
|-------------------------|----------------------------|------------------------------------|-----------------------------------|-------------------------------------------|----------------------------------|--------------------------------------|------------------------------------------------------|--|--|
|                         | (cm)                       | +210                               | +140                              | +70                                       | 0                                | -70                                  | -140                                                 |  |  |
| Diatoms                 | 1<br>2<br>3<br>4<br>5<br>6 | 816<br>8<br>4<br>0<br>0<br>0       | 4,196<br>164<br>20<br>4<br>0<br>0 | 202,048<br>690<br>454<br>344<br>112<br>80 | 28<br>62<br>52<br>24<br>36<br>28 | 2,816<br>200<br>40<br>32<br>32<br>24 | 234,174<br>30,430<br>45,932<br>5,788<br>2,116<br>480 |  |  |
| Blue-Green<br>Algae     | 1<br>2<br>3<br>4<br>5<br>6 | 6,348<br>4<br>0<br>0<br>0<br>0     | 20,176<br>50<br>4<br>0<br>0<br>0  | 3,794<br>64<br>0<br>0<br>0                | 36<br>84<br>0<br>0<br>0          | 172<br>8<br>0<br>24<br>40<br>6       | 239<br>60<br>88<br>36<br>57<br>20                    |  |  |
| G <b>re</b> en<br>Algae | 1<br>2<br>3<br>4<br>5<br>6 | 48<br>0<br>0<br>0<br>0<br>0        | 1,348<br>40<br>20<br>0<br>0<br>0  | 90<br>18<br>0<br>0<br>0                   | 0<br>8<br>0<br>0<br>0<br>0       | 0<br>0<br>0<br>0<br>0                | 2,048<br>404<br>4,162<br>416<br>400<br>36            |  |  |

A. Wild Rice River - June 13, 1968

| Organism  | Depth       | Distance Relative to Waterline, cm |              |                  |        |          |                                               |  |  |
|-----------|-------------|------------------------------------|--------------|------------------|--------|----------|-----------------------------------------------|--|--|
|           | (cm)        | +210                               | +140         | +70              | 0      | -70      | -140                                          |  |  |
| Rhizopoda | 1           | 104                                | 8            | 58               | 36     | 8        | 272                                           |  |  |
| •         | 1<br>2<br>3 | 80                                 | 0            | 70               | 16     | 40       | 590                                           |  |  |
|           | 3           | 24                                 | 0            | 20               | 20     | 88       | 180                                           |  |  |
|           | 4           | 16                                 | 24           | 80               | 16     | 144      | 20                                            |  |  |
|           |             | 12                                 | 36           | 24               | 20     | 64       | 16                                            |  |  |
|           | 5<br>6      | 24                                 | 36<br>16     | 24               | 8      | 80       | 8                                             |  |  |
| Nematoda  | 11          | 194                                | 236          | 150              | 8      | 0        | 24                                            |  |  |
|           | 1<br>2      | 16                                 | 24           | 10               | 8      | 0        | 3                                             |  |  |
|           | 3           | 8                                  | 0            | 0                | 0      | 0        | 0                                             |  |  |
|           | 4           | 16                                 | 8            | 0                | 0      | 0        | 0                                             |  |  |
|           |             | 4                                  | 4            | 0                | 4      | 8        | 4                                             |  |  |
|           | 5<br>6      | 4                                  | 16           | 0                | 0      | 0        | 0                                             |  |  |
| Others    | 1           | 60                                 | 72           | 40               | 16     | 32       | 176                                           |  |  |
|           | 2           | 0                                  | 8            | 0                | 16     | 32<br>24 | 68                                            |  |  |
|           | 3           | 20                                 | 0            | 0                | 16     | 16       | 70                                            |  |  |
|           | 34          | 0                                  | 8            | 0                | 12     | 24       | 70<br>52<br>16                                |  |  |
|           | 5           | 8                                  | 4            | 0                | 20     | 16       | 16                                            |  |  |
|           | 5<br>6      | 4                                  | 4            | 0                | 8      | 16       | 4                                             |  |  |
|           | il          | 1                                  | B. Wild Rice | e River - July 2 | , 1968 |          | anna <sub>a</sub> nn, ma an anna ann an Aunth |  |  |
| Diatoms   | 1           | 1,992                              | 4,398        | 5,480            | 4,432  | 25,128   | 4,016                                         |  |  |
|           | 2           | 32                                 | 140          | 392              | 3,528  | 3,436    | 2,688                                         |  |  |
|           | 3           | 32<br>132<br>36                    | 0            | 168              | 1,720  | 216      | 2,688<br>1,560<br>272                         |  |  |
|           | 4           | - 36                               | õ            | 169              | 744    | 0        | 272                                           |  |  |

TABLE 8 - Continued

| Organism                         | Depth  | Distance Relative to Waterline, cm |       |     |                  |     |       |
|----------------------------------|--------|------------------------------------|-------|-----|------------------|-----|-------|
|                                  | (cm)   | +210                               | +140  | +70 | 0                | -70 | -1.40 |
| an ann an tha na cur drain an an | 5      | 40                                 | 0     | 48  | 272              | 0   | 448   |
|                                  | 5<br>6 | 8                                  | 0     | 72  | 2.4              | 0   | 484   |
| Blue-Green                       | 1      | 14,335                             | 7.968 | 404 | 6,262            | 600 | 352   |
| Algae                            | 2      | 665                                | 244   | 0   | 1,102            | 20  | 144   |
|                                  | 3      | 728                                | 64    | 12  | 572              | 0   | 6     |
|                                  | 4      | 224                                | 0     | 48  | 64               | 0   | 3.2   |
|                                  |        | 148                                | 0     | 96  | 0                | 0   | C     |
|                                  | 5      | 16                                 | 0     | 108 | 0                | 0   | 30    |
| Green<br>Algae                   | 1      | 340                                | 444   | 332 | 424              | 176 | 124   |
|                                  | 2      | 0                                  | 20    | 0   | 136              | 48  | 24    |
|                                  | 3      | 0                                  | 0     | 0   | 22               | 20  | 48    |
|                                  | 4      | 96                                 | 0     | 0   | 72               | 0   | 16    |
|                                  | 5      | 48                                 | 0     | 0   | 72               | 0   | 3     |
|                                  | 6      | 0                                  | 0     | 0   | 0                | 0   | C     |
| Rhizopods                        | 1      | 108                                | 156   | 158 | 128              | 60  | 404   |
|                                  | 2      | 144                                | 0     | 48  |                  | 36  | 144   |
|                                  | ĩ      | 96                                 | õ     | 36  | 56<br>84         | 4   | 224   |
|                                  | 34     | 16                                 | 8     | 72  | 8                | 0   | 20    |
|                                  |        | 16                                 | 16    | 84  | 36               | 0   | 48    |
|                                  | 56     | 16                                 | 8     | 144 | 36<br><b>6</b> 0 | 0   | 200   |
| Nematoda                         | 1      | 172                                | 168   | 68  | 56               | 84  | 32    |
|                                  | 2      | 36                                 | 4     | 12  | 8                | 20  | 0     |
|                                  | 3      | 36<br>36<br>24                     | 24    | 0   | 12               | 0   | C     |
|                                  | 4      | 24                                 | 0     | 0   | 0                | 0   | C     |

TABLE 8 - Continued

| Organism                                      | Depth  |        | Distar       | nce Relative to  | Waterline, cm |       |          |
|-----------------------------------------------|--------|--------|--------------|------------------|---------------|-------|----------|
|                                               | (cm)   | +210   | +140         | +70              | 0             | -70   | -140     |
| an faile and Courts double-charge at the open | 4      | 24     | 0            | 0                | 0             | 0     | 0        |
|                                               | 56     | 8      | 8            | 0                | 0             | 0     | 0        |
|                                               | 6      | 12     | 8            | 12               | 12            | 0     | 8        |
| Others                                        | 1      | 56     | 84           | 24               | 32            | 0     | 0        |
| 011010                                        | 2      | 48     | 40           | 12               | 32            | 16    |          |
|                                               | 3      | 0      | 8            | 12               | 32<br>24      | 0     | 32<br>24 |
|                                               | 34     | 0      | 0            | 36               | 0             | 0     | 0        |
|                                               |        | 8      | 0            | 36<br>36         | 36            | 0     | 12       |
|                                               | 56     | 0      | 8            | 0                | 0             | 0     | 40       |
|                                               | 11     |        | C. Wild Rice | e River, July 16 | , 1968        |       |          |
| Diatoms                                       | 1      | 9,276  | 2,408        | 2,856            | 7,780         | 3,360 | 17,628   |
|                                               | 2      | 12     | 516          | 202              | 638           | 3,314 | 616      |
|                                               | 3      | 0      | 268          | 64               | 214           | 482   | 128      |
|                                               | 4      | 0      | 24           | 180              | 220           | 396   | 68       |
|                                               |        | 8      | 0            | 108              | 120           | 752   | 16       |
|                                               | 5<br>6 | 0      | 0            | 82               | 50            | 120   | 4        |
| Blue-Green                                    | 1      | 54,520 | 31,6         | 5,175            | 722           | 48    | 1,888    |
| Algae                                         | 2      | 0      | 56           | 8                | 10            | 280   | 1,600    |
| 0                                             | 3      | 0      | 24           | 0                | 0             | 100   | 240      |
|                                               | 4      | 0      | 12           | 0                | 10            | 196   | 136      |
|                                               | 5      | 0      | 0            | 24               | 0             | 112   | 32       |
|                                               | 56     | 0      | 0            | 0                | 0             | 0     | 0        |

TABLE 8 - Continued

| Organism  | Lepth                      |                                                                                                                  | Distar                                 | nce Relative to                                                                                                 | Waterline, cm |                                                                                                                 |                                           |
|-----------|----------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|           | (cm)                       | +210                                                                                                             | +140                                   | +70                                                                                                             | 0             | -70                                                                                                             | -140                                      |
| Green     |                            | n fan ferste skriver fan een ferste ferste skriver fan de ferste ferste ferste ferste skriver fan de ferste skri | ###################################### | , gene date were die een werde eendoord die een sy van die heerde ook de oorde staat were die die die die die d |               | Gala de Francia, Aparto de Contra de Cont | 80°62"""""""""""""""""""""""""""""""""""" |
| Algae     | 1 1                        | 952                                                                                                              | 144                                    | 144                                                                                                             | 106           | 220                                                                                                             | 328                                       |
|           | 2                          | 0                                                                                                                | 0                                      | 24                                                                                                              | 10            | 176                                                                                                             | 8                                         |
|           | 1<br>2<br>3<br>4<br>5<br>6 | 0                                                                                                                | 0                                      | 24                                                                                                              | 10            | 8                                                                                                               | 0                                         |
|           | 4                          | 0                                                                                                                | 0                                      | 0                                                                                                               | 0             | 0                                                                                                               | 0                                         |
|           | 5                          | 0                                                                                                                | 0                                      | 0                                                                                                               | 0             | 0                                                                                                               | 0                                         |
|           | 6                          | 0                                                                                                                | 0                                      | 0                                                                                                               | 0             | 0                                                                                                               | 0                                         |
| Rhizopoda | 1                          | 252                                                                                                              | 24                                     | 12                                                                                                              | 40            | 612                                                                                                             | 248                                       |
|           | 2                          | 48                                                                                                               | 60                                     | 172                                                                                                             | 60            | 180                                                                                                             |                                           |
|           | 1<br>2<br>3<br>4           | 0                                                                                                                | 36                                     | 96                                                                                                              | 30            | 150                                                                                                             | 32<br>8                                   |
|           |                            | 0                                                                                                                | 12                                     | 60                                                                                                              | 40            | 50                                                                                                              | 16                                        |
|           | 56                         | 0<br>8                                                                                                           | 0                                      | 144                                                                                                             | 10            | 80                                                                                                              | 20                                        |
|           | 6                          | 0                                                                                                                | 0                                      | 0                                                                                                               | 0             | 0                                                                                                               | 0                                         |
| Nematoda  | 1                          | 124                                                                                                              | 72                                     | 60                                                                                                              | 20            | 24                                                                                                              | 0                                         |
|           | 1<br>2<br>3<br>4           | 12                                                                                                               | 24<br>56<br>12                         | 0                                                                                                               | 10            | 0                                                                                                               | 16                                        |
| C.        | 3                          | 12<br>36<br>32<br>8<br>8                                                                                         | 56                                     | 12                                                                                                              | 30            | 10                                                                                                              | 0                                         |
|           | 4                          | 32                                                                                                               | 12                                     | 12                                                                                                              | 0             | 0                                                                                                               | 4                                         |
|           | 56                         | 8                                                                                                                | 0                                      | 0                                                                                                               | 30            | 0                                                                                                               | 0                                         |
|           | 6                          | 8                                                                                                                | 8                                      | 0                                                                                                               | 0             | 0                                                                                                               | 0                                         |
| Others    | 1                          | 0                                                                                                                | 0                                      | 0                                                                                                               | 20            | 24                                                                                                              | 24                                        |
|           | 1<br>2                     | 0                                                                                                                | 0                                      | 0                                                                                                               | 10            | 20                                                                                                              | 0                                         |
|           | 3                          | 0                                                                                                                | 0                                      | 0                                                                                                               | 30            | 60                                                                                                              | 8                                         |
|           | 3<br>4                     | 0                                                                                                                | 0                                      | 24                                                                                                              | 0             | 0                                                                                                               | 0                                         |
|           |                            | 0                                                                                                                | 0                                      | 0                                                                                                               | 30            | 0                                                                                                               | 0                                         |
|           | 56                         | 0                                                                                                                | 0                                      | 0                                                                                                               | 0             | 0                                                                                                               | 0                                         |

TABLE 8 - Continued

| Organism                                                              | Depth                      |                                                 | Distar                             | nce Relative to                         | Waterline, cm                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           |
|-----------------------------------------------------------------------|----------------------------|-------------------------------------------------|------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|                                                                       | (cm)                       | +280                                            | +140                               | +70                                     | 0                                       | -70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -140                                                                      |
| u A <sub>n a</sub> ngga gi sha an | <u></u>                    | na, jenden Granger Brats Andra Karlanda (Brats) | D. Wild Rice                       | River - July 30                         | 1968                                    | 1994 - Baller V. B. 1996 - Baller Start Law Barrison, Barrison and B | \$\$*\$000 \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ |
| Diatoms                                                               | 1<br>2<br>3<br>4<br>56     | 1,156<br>40<br>0<br>0<br>0                      | 5,914<br>92<br>36<br>20<br>0       | 39,260<br>264<br>40<br>16<br>0          | 1,264<br>576<br>690<br>352<br>102<br>76 | 7,568<br>578<br>502<br>376<br>272<br>102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7,712<br>6,904<br>664<br>812<br>432<br>556                                |
| Blue-Green<br>Algae                                                   | 1<br>2<br>3<br>4<br>5<br>6 | 1,236<br>10<br>0<br>0<br>0                      | 14,996<br>10<br>36<br>0<br>20<br>0 | 8,9 <i>5</i> 2<br>8<br>8<br>0<br>0<br>0 | 124<br>8<br>44<br>8<br>4<br>36          | 483<br>108<br>50<br>16<br>0<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 118<br>583<br>12<br>0<br>16<br>0                                          |
| Green<br>Algae                                                        | 1<br>2<br>3<br>4<br>5<br>6 | 16<br>0<br>0<br>0<br>0                          | 284<br>0<br>0<br>0<br>0            | 240<br>16<br>0<br>0<br>0                | 24<br>96<br>330<br>80<br>16<br>8        | 84<br>54<br>20<br>48<br>82<br>138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 84<br>104<br>52<br>616<br>192<br>68                                       |
| Rhizopoda                                                             | 1<br>2<br>3<br>4<br>5      | 88<br>50<br>16<br>4<br>4                        | 60<br>40<br>156<br>120<br>90       | 172<br>32<br>48<br>120<br>104           | 156<br>72<br>0<br>16<br>0               | 240<br>180<br>220<br>68<br>258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 344<br>72<br>52<br>24<br>0                                                |

TABLE 8 - Continued

| Organism       | Depth            |        | Distar         | ce Relative to | Waterline, cm |          | Distance Relative to Waterline, cm |  |  |  |  |  |  |  |  |
|----------------|------------------|--------|----------------|----------------|---------------|----------|------------------------------------|--|--|--|--|--|--|--|--|
|                | (cm)             | +280   | +140           | +70            | Ũ             | -70      | -140                               |  |  |  |  |  |  |  |  |
|                | 6                | 4      | 40             | 100            | 0             | 68       | 0                                  |  |  |  |  |  |  |  |  |
| Nematoda       | 1                | 86     | 70             | 8              | 12            | 10       | 36                                 |  |  |  |  |  |  |  |  |
|                |                  | 80     | 0              | 0              | 24            | 0        | 0                                  |  |  |  |  |  |  |  |  |
|                | 2 3 4 5 6        | 0      | 24             | 0              | 0             | 0        | 0                                  |  |  |  |  |  |  |  |  |
|                | 4                | 0      | 0              | 0              | 8             | 0        | 0                                  |  |  |  |  |  |  |  |  |
|                | 5                | 12     | 0              | 8              | 0             | 0        | 4                                  |  |  |  |  |  |  |  |  |
|                | 6                | 4      | 0              | 0              | 0             | 0        | 0                                  |  |  |  |  |  |  |  |  |
| Others         | 11               | 0      | 0              | 56             | 24            | 64       | 0                                  |  |  |  |  |  |  |  |  |
|                | 2                | 10     | 0              | 0              | 0             | 34       | 0                                  |  |  |  |  |  |  |  |  |
|                | 2 3 4 5 6        | 0      | 0              | 0              | 0             | 14       | 12                                 |  |  |  |  |  |  |  |  |
|                | 4                | 0      | 0              | 0              | 0             | 12       | 0                                  |  |  |  |  |  |  |  |  |
|                | 5                | 0      | 0              | 0              | 0             | 20       | 0                                  |  |  |  |  |  |  |  |  |
|                | 6                | 0      | 0              | 0              | 0             | 0        | 0                                  |  |  |  |  |  |  |  |  |
| 8 - 24 Martine |                  |        | E. Wild Rice R | iver - August  | 14, 1968      | 9******* |                                    |  |  |  |  |  |  |  |  |
| <u></u>        |                  | +140   | +70            | 0              | -70           | -140     | -210                               |  |  |  |  |  |  |  |  |
| Diatoms        |                  | 22,407 | 166,730        | 6,560          | 295,418       | 86,191   | 157,184                            |  |  |  |  |  |  |  |  |
|                | 2                | 20     | 864            | 84             | 5,088         | 2,800    | 1,268                              |  |  |  |  |  |  |  |  |
|                | 1<br>2<br>3<br>4 | 16     | 72             | 160            | 760           | 128      | 1,448                              |  |  |  |  |  |  |  |  |
|                | 4                | 8      | 32             | 12             | 92            | 116      | 216                                |  |  |  |  |  |  |  |  |
|                |                  | 8      | 50             | 16             | 32            | 72       | 240                                |  |  |  |  |  |  |  |  |
|                | 56               | 40     | 56             | 4              | 8             | 88       | 1.92                               |  |  |  |  |  |  |  |  |

A REAL PROPERTY OF A REAL PROPER

Sec.5.

TABLE 8 - Continued

| Organism   | Depth  |        | Distan         | ce Relative to | Waterline, cm |      |       |
|------------|--------|--------|----------------|----------------|---------------|------|-------|
|            | ( cm ) | +140   | +70            | 0              | -70           | -140 | -210  |
| Blue-Green | 1 1    | 13,866 | 1,551          | 572            | 12,628        | 601  | 3,292 |
| Algae      | 2      | 10     | 1,551<br>6,296 | 88             | 197           | 60   | 320   |
| 0          | 3      | 10     | 1,400          | 20             | 40            | 0    | 144   |
|            | 4      | 0      | 760            | 0              | 16            | 0    | 68    |
|            | 5      | 8      | 100            | 0              | 0             | 0    | 60    |
|            | 6      | 0      | 16             | 0              | 0             | 0    | 16    |
| Green      | 1      | 2,204  | 1,216          | 68             | 1,365         | 252  | 520   |
| Algae      | 2      | 10     | 20             | 4              | 116           | 44   | 72    |
| 0          | 34     | 0      | 4              | 0              | 24            | 128  | 32    |
|            | 4      | 0      | 0              | 0              | 4             | 44   | 40    |
|            | 5      | 0      | 0              | 0              | 0             | 0    | 4     |
|            | 56     | 0      | 0              | 0              | 0             | 16   | 4     |
| Rhizopoda  | 1<br>2 | 4      | 40             | 8              | 710           | 228  | 456   |
|            | 2      | 80     | 56             | 28             | 68            | 8    | 80    |
|            | 3      | 80     | 56<br>32<br>32 | 12             | 24            | 136  | 20    |
|            | 4      | 24     | 32             | 8              | 20            | 130  | 0     |
|            | 5      | 16     | 120            | 16             | 16            | 128  | 12    |
|            | 6      | 30     | 64             | 20             | 24            | 40   | 16    |
| Nematoda   | 1      | 52     | 8              | 12             | 58            | 24   | 32    |
|            | 2      | 0      | 0              | 8              | 4             | 4    | 0     |
|            | 3      | 0      | 0              | 0              | 0             | 0    | 0     |
|            | 4      | 0      | 0              | 0              | 4             | 0    | 0     |
|            | 5      | 0      | 0              | 0              | 0             | 0    | 0     |
|            | 56     | 0      | 0              | . 0            | 0             | 0    | 0     |

TABLE 8 - Continued

| Organism   | Depth |                                                    | Dista        | nce Relative to | Waterline, cm |        |                                                                                                                 |
|------------|-------|----------------------------------------------------|--------------|-----------------|---------------|--------|-----------------------------------------------------------------------------------------------------------------|
|            | (cm)  | +140                                               | +70          | 0               | -70           | -140   | -210                                                                                                            |
| Others     | 1     | 0                                                  | 0            | 20              | 10            | 28     | 64                                                                                                              |
|            | 2     | 0                                                  | 0            | 0               | 0             | 4      | 8                                                                                                               |
|            | 34    | 0                                                  | 0            | 0               | 8             | 0      | 12                                                                                                              |
|            | 4     | 0                                                  | 0            | 0               | 4             | 0      | 0                                                                                                               |
|            | 5     | 0                                                  | 0            | 0               | 0             | 0      | 0                                                                                                               |
|            | 6     | 0                                                  | 0            | 0               | 0             | 0      | 4                                                                                                               |
|            |       | apake nan ayar oga, annan kasha ging ng biga ganan | F. Wild Rice | River - August  | 27, 1968      |        | and you an a state of the second of the second s |
|            |       | +70                                                | 0            | -70             | -140          | -210   | -280                                                                                                            |
| Diatoms    | ı     | 34,296                                             | 10,680       | 113,848         | 182,054       | 18,886 | 49,763                                                                                                          |
|            | 2     | 96                                                 | 568          | 5,161           | 4,494         | 8,410  | 4,444                                                                                                           |
|            | 3     | 144                                                | 88           | 5,280           | 3,056         | 4,652  | 3,532                                                                                                           |
|            | 4     | 16                                                 | 64           | 1,200           | 972           | 1,104  | 2,220                                                                                                           |
|            | 5     | 30                                                 | 16           | 932             | 576           | 212    | 412                                                                                                             |
|            | 6     | 64                                                 | 24           | 248             | 1,280         | 20     | 36                                                                                                              |
| Blue-Green | 1     | 40,816                                             | 2,640        | 10,828          | 4,994         | 4,983  | 1,000                                                                                                           |
| Algae      | 2     | 2.34                                               | 32           | 5,528           | 568           | 658 .  | 368                                                                                                             |
|            | 34    | 0                                                  | 0            | 2,448           | 480           | 520    | 240                                                                                                             |
|            |       | 0                                                  | 24           | 1,500           | 328           | 200    | 200                                                                                                             |
|            | 5     | 10                                                 | 8            | 364             | 436           | 200    | 16                                                                                                              |
|            | 6     | 8                                                  | 32           | 208             | 220           | 18     | 64                                                                                                              |
| Green      | 1     | 40                                                 | 120          | 236             | 326           | 550    | 24                                                                                                              |
| Algae      | 2     | 16                                                 | 8            | 84              | 164           | 200    | 84                                                                                                              |

TABLE 8 - Continued

| Organism  | Depth            |     | Distar | Distance Relative to Waterline, cm |      |      |          |  |  |  |  |
|-----------|------------------|-----|--------|------------------------------------|------|------|----------|--|--|--|--|
| 1         | ( cm )           | +70 | 0      | -70                                | -140 | -210 | -280     |  |  |  |  |
|           | 3                | 0   | 8      | 112                                | 112  | 156  | 60       |  |  |  |  |
|           | 34               | 0   | 0      | 24                                 | 48   | 24   | 44       |  |  |  |  |
|           | 5                | 0   | 0      | 24                                 | 44   | 12   | 8        |  |  |  |  |
|           | 56               | 0   | 0      | 8                                  | 34   | 0    | 0        |  |  |  |  |
| Rhizopoda | 11               | 160 | 160    | 724                                | 490  | 600  | 256      |  |  |  |  |
| 1         | 2                | 96  | 168    | 1,140                              | 430  | 296  | 108      |  |  |  |  |
|           | 1<br>2<br>3      | 120 | 32     | 56                                 | 40   | 44   | 76       |  |  |  |  |
|           | 4                | 136 | 120    | 20                                 | 48   | 8    | 56<br>44 |  |  |  |  |
|           |                  | 190 | 24     | 36                                 | 12   | 0    | 44       |  |  |  |  |
|           | 56               | 64  | 80     | 36<br>64                           | 200  | 12   | 36       |  |  |  |  |
| Nematoda  | 1 1              | 88  | 16     | 72                                 | 58   | 30   | 40       |  |  |  |  |
|           | 2                | 0   | 0      | 0                                  | 10   | 0    | 16       |  |  |  |  |
|           | 1<br>2<br>3<br>4 | 0   | 0      | 8                                  | 0    | 8    | 4        |  |  |  |  |
|           | 4                | 0   | 0      | 12                                 | 0    | 0    | 4        |  |  |  |  |
|           |                  | 0   | 0      | 0                                  | 0    | 4    | 0        |  |  |  |  |
|           | 56               | 0   | 0      | 0                                  | 0    | 0    | 0        |  |  |  |  |
| Others    | 1                | 0   | 48     | 0                                  | 40   | 60   | 60       |  |  |  |  |
| 0.01.01.0 | 2                | 0   | 0      | 0                                  | 20   | 32   | 444      |  |  |  |  |
|           | 3                | 0   | 0      | 0                                  | 0    | 20   | 48       |  |  |  |  |
|           | 4                | Õ   | 0      | 8                                  | 0    | 12   | 28       |  |  |  |  |
|           | 5                | 0   | 0      | 4                                  | 0    | 8    | 4        |  |  |  |  |
|           | 6                | 0   | 0      | 0                                  | 10   | 0    | 4        |  |  |  |  |

TABLE 8 - Continued

G. Wild Rice River - September 21, 1968

| Organism   | Depth  |       | Dista    | nce Relative to | Waterline, cm |          |         |
|------------|--------|-------|----------|-----------------|---------------|----------|---------|
|            | (cm)   | +70   | 0        | -70             | -140          | -210     | -280    |
| Diatoms    | 1      | 4,024 | 284      | 39,055          | 19,636        | 81,280   | 147,593 |
|            | 2      | 280   | 48       | 1,316           | 2,092         | 2,968    | 876     |
|            | 3      | 136   | 72       | 424             | 1,240         | 2,326    | 200     |
|            | 4      | 248   | 16       | 88              | 1,186<br>640  | 880      | 80      |
|            |        | 216   | 44       | 72              | 640           | 600      | 40      |
|            | 5<br>6 | 48    | 0        | 40              | 266           | 160      | 32      |
| Blue-Green | 1      | 3,080 | 543      | 508             | 936           | 0        | 192     |
| Algae      | 2      | 150 . | 0        | 50              | 40            | 4        | 24      |
| 0          | 3      | 36    | 24       | 24              | 16            | 52       | 8       |
|            | 4      | 0     | 40       | 0               | 8             | 16       | 8       |
|            | 5      | 372   | 44       | 0               | 32            | 16       | 0       |
|            | 6      | 0.    | 72       | 0               | 16            | 0        | 0       |
| Green      | 1      | 28    | 36       | 282             | 96            | 68       | 128     |
| Algae      | 2      | 0     | 36<br>24 | 28              | 58            | 16       | 20      |
| U          | 3      | 0     | 24       | 8               | 28            | 162      | 56      |
|            | 4      | 8     | 0        | 0               | 30            | 48       | 0       |
|            | 5      | 24    | 0        | 0               | 44            | 40       | 4       |
|            | 6      | 0     | 0        | 0               | 20            | 16       | 0       |
| Rhizopoda  | 1 1    | 36    | 24       | 278             | 636           | 1,152    | 184     |
| r          | 1 2    | 0     | 24       | 130             | 160           | 394      | 40      |
|            | 3      | 8     | 24       | 24              | 32            | 300      | 48      |
|            | 4      | 0     | 8        | 16              | 250           | 96       | 16      |
|            | 5      | 0     | 0        | 24              | 110           | 72       | 12      |
|            | 6      | 0     | 8        | 32              | 70            | 72<br>72 | 56      |

TABLE 8 - Continued

| Organism   | Depth       |         | Distar         | nce Relative to | Waterline, cm |        |                                                                                                                  |
|------------|-------------|---------|----------------|-----------------|---------------|--------|------------------------------------------------------------------------------------------------------------------|
|            | (cm)        | +70     | 0              | -70             | -140          | -210   | -280                                                                                                             |
| Nematoda   | 1           | 4       | 0              | 50              | 24            | 0      | 0                                                                                                                |
|            | 2           | 0       | 0              | 0               | 10            | 0      | 8                                                                                                                |
|            | 3           | 0       | 12             | 0               | 0             | 0      | 0                                                                                                                |
|            | 3<br>4      | 0       | 0              | 0               | 4             | 0      | 0                                                                                                                |
|            | 5           | 0       | 0              | 0               | 0             | 0      | 0                                                                                                                |
|            | 56          | 0       | 0              | 0               | 0             | 0      | 0                                                                                                                |
| Others     | 1           | 24      | 0              | 50              | 60            | 48     | 32                                                                                                               |
|            |             | 0       | 0              | 10              | 30            | 8      | 4                                                                                                                |
|            | 2<br>3<br>4 | 0       | 0              | 16              | 8             | 40     | 0                                                                                                                |
|            | 4           | 0       | 0              | 0               | 24            | 32     | 0                                                                                                                |
|            | 56          | 0       | 0              | 8               | 50<br>8       | 1.6    | 0                                                                                                                |
|            | 6           | 0       | 0              | 0               | 8             | 0      | 0                                                                                                                |
| aingan,    | <u></u>     | <b></b> | H. Wild Rice H | River - October | 6, 1968       |        | and a first of the state of the st |
| ******     |             | + 50    | 0              | -70             | -140          | -210   | -280                                                                                                             |
| Diatoms    | 1           | 42,330  | 6,472          | 5,302           | 31,593        | 94,997 | 592                                                                                                              |
| - 20000000 |             | 384     | 328            | 3,388           | 1,905         | 5,166  | 104                                                                                                              |
|            | 3           | 320     | 60             | 916             | 1,714         | 548    | 88                                                                                                               |
|            | 2<br>3<br>4 | 680     | 8              | 792             | 1,472         | 250    | 40                                                                                                               |
|            |             | 232     | 4              | 128             | 472           | 170    | 20                                                                                                               |
|            | 56          | 68      | 4              | 0               | 344           | 80     | 32                                                                                                               |
| Blue-Green | 1           | 5,858   | 760            | 630             | 195           | 648    | 24                                                                                                               |
| Algae      | 2           | 460     | 0              | 126             | 108           | 0      | 0                                                                                                                |

TABLE 8 - Continued

and the second second

| Organism                  | Depth |          | Dista | nce Relative to | Waterline, cm |      |          |
|---------------------------|-------|----------|-------|-----------------|---------------|------|----------|
|                           | (cm)  | +50      | 0     | -70             | -140          | -210 | -280     |
|                           | 3     | 375      | 0     | 396             | 91            | 40   | 24       |
|                           | 4     | 2,341    | 0     | 12              | 16            | 0    | 0        |
|                           | 5     | 0        | 0     | 0               | 8.,           | 50   | 0        |
|                           | 6     | 0        | 0     | 0               | 24            | 0    | 0        |
| Green                     | 1     | 88       | 12    | 78              | 334           | 144  | 24       |
| Algae                     | 2     | 0        | 0     | 68              | 70            | 180  | 0        |
| 0                         | 3     | 112      | 0     | 36              | 78            | 32   | 0        |
|                           | 4     | 24       | 0     | 124             | 16            | 0    | 0        |
|                           | 5     | 0        | 0     | 0               | 0             | 10   | 0        |
|                           | 6     | 0        | 0     | 0               | 40            | 0    | 8        |
| Rhizopoda                 | 11    | 16       | 228   | 300             | 945           | 652  | 72       |
|                           | 2     | 16       | 24    | 572             | 456           | 530  | 32<br>24 |
|                           | 3     | 16       | 8     | 384             | 70            | 200  | 24       |
|                           | 4     | 12       | 8     | 124             | 66            | 220  | 28       |
|                           | 5     | 24       | 28    | 40              | 64            | 140  | 34       |
|                           | 6     | 0        | 32    | N.S.            | 40            | 10   | 16       |
| Nematoda                  | 1     | 0        | 0     | 60              | 75            | 14   | 0        |
|                           | 2     | 0        | 0     | 48              | 12            | 20   | 0        |
|                           | 3     | 0        | 0     | 40              | 10            | 0    | 0        |
|                           | 4     | 0        | 0     | 0               | 0             | 0    | 0        |
|                           | 5     | 0        | 0     | 0               | 8             | 0    | 0        |
|                           | 6     | 0        | . 0   | N.S.            | 0             | 0    | 0        |
| Others                    | 11    | 36<br>32 | 36    | 70              | 120           | 40   | 0        |
| Contraction of the second | 2     | 32       | 0     | 36              | 12            | 0    | 16       |

TABLE 8 - Continued

| Organism                                         | Depth                      |                                             | Dista                                      | nce Relative to                               | Waterline, cm                                        |                                                   |                                                      |
|--------------------------------------------------|----------------------------|---------------------------------------------|--------------------------------------------|-----------------------------------------------|------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|
|                                                  | (cm)                       | +50                                         | 0                                          | -70                                           | -140                                                 | -210                                              | -280                                                 |
|                                                  | 3<br>4<br>5<br>6           | 4 60<br>5 0                                 | 36<br>0<br>0<br>0                          | 70<br>24<br>36<br>N.S.                        | 120<br>32<br>0<br>8                                  | 40<br>10<br>10<br>0                               | 0<br>0<br>0<br>0                                     |
| nan an an aig dan an an an Phana ai              |                            |                                             | I. Wild Rice                               | River - Octobe                                | er 19, 1968                                          |                                                   |                                                      |
| <b>561:20:2:</b> - <u>3</u> 12-2: - <u>3</u> -2: |                            | +18                                         | 0                                          | -70                                           | -140                                                 | -210                                              | -280                                                 |
| Diatoms                                          | 1<br>2<br>3<br>4<br>5<br>6 | 138,834<br>52,839<br>128<br>86<br>110<br>10 | 111,559<br>22,998<br>330<br>70<br>30<br>20 | 423,140<br>12,486<br>472<br>170<br>160<br>130 | 66,929<br>30,537<br>3,854<br>2,332<br>3,670<br>2,890 | 147,576<br>15,870<br>1,888<br>1,368<br>664<br>128 | 177,156<br>137,655<br>132,017<br>4,070<br>810<br>360 |
| Blue_Green<br>Algae                              | 1<br>2<br>3<br>4<br>5<br>6 | 182,844<br>62,182<br>124<br>170<br>0        | 210,624<br>22,698<br>300<br>40<br>0        | 64,985<br>272<br>12<br>90<br>120<br>0         | 140<br>312<br>1,190<br>84<br>72<br>149               | 180<br>216<br>108<br>56<br>0<br>24                | 160<br>328<br>30<br>30<br>10<br>0                    |
| reen<br>Algae                                    | 1<br>2<br>3<br>4           | 192<br>132<br>0<br>8                        | 120<br>50<br>0                             | 156<br>32<br>12<br>0                          | 132<br>76<br>72<br>8                                 | 120<br>28<br>112<br>26                            | 70<br>56<br>20<br>80                                 |

TABLE 8 - Continued

| Organism  | Depth |     | Distar | nce Relative to | Waterline, cm |      |      |
|-----------|-------|-----|--------|-----------------|---------------|------|------|
|           | (cm)  | +18 | 0      | -70             | -140          | -210 | -280 |
|           | 5     | 20  | 0      | 0               | 40            | 48   | 0    |
|           | 56    | 0   | 0      | 0               | 140           | 0    | 0    |
| Rhizopoda | 11    | 80  | 30     | 1,284           | 1,032         | 500  | 380  |
|           | 2     | 180 | 40     | 16              | 350           | 110  | 120  |
|           | 3     | 96  | 140    | 156             | 394           | 144  | 460  |
|           | 4     | 90  | 40     | 50              | 732           | 80   | 670  |
|           |       | 0   | 40     | 0               | 564           | 0    | 200  |
|           | 56    | 0   | 30     | 20              | 400           | 48   | 240  |
| Nematoda  | 11    | 184 | 40     | 36              | 56            | 0    | 50   |
|           | 2     | 30  | 0      | 40              | 20            | 0    | 40   |
|           | 3     | 12  | 0      | 0               | 36            | 0    | 20   |
|           | 4     | 20  | 0      | 0               | 0             | 20   | 0    |
|           |       | 20  | 0      | 0               | 0             | 0    | 20   |
|           | 56    | 0   | 0      | 0               | 10            | 0    | 20   |
| Others    | 11    | 170 | 30     | 240             | 24            | 28   | 40   |
|           | 1 2   | 30  | 10     | 8               | 56            | 10   | 8    |
|           | 3     | 24  | 0      | 0               | 56<br>36      | 0    | 40   |
|           | 4     | 20  | 0      | 10              | 36            | 0    | 0    |
|           |       | 30  | 0      | 0               | 24            | 0    | 0    |
|           | 5     | 10  | 0      | 0               | 50            | 8    | 0    |

TABLE 8 - Continued

J. Wild Rice River - November 2, 1968

| Organism   | Depth  |         | Dista  | nce Relative to | Waterline, cm |         |         |
|------------|--------|---------|--------|-----------------|---------------|---------|---------|
|            | ( em ) | +15     | 0      | -70             | -140          | -210    | -280    |
| Diatoms    | 1      | 414,712 | 36,299 | 198,724         | 144,180       | 441,470 | 207,792 |
|            | 2      | 132     | 312    | 44,148          | 44,422        | 209,524 | 54,864  |
|            | 3      | 168     | 70     | 696             | 648           | 107,046 | 40,097  |
|            | 4      | 36      | 24     | 180             | 1,496         | 4,970   | 8,130   |
|            | 5      | 36      | 12     | 36              | 900           | 2,912   | 1,900   |
|            | 6      | 24      | 0      | 64              | 240           | 754     | 620     |
| Blue-Green | 1      | 14,569  | 37,990 | 12,713          | 3,480         | 1,308   | 320     |
| Algae      | 2      | 168     | 480    | 352             | 168           | 1,340   | 80      |
|            | 3      | 0       | 50     | 12              | 0             | 88      | 46      |
|            | 4      | 0       | 0      | 0               | 40            | 380     | 170     |
|            | 5      | 12      | 0      | 24              | 60            | 100     | 60      |
|            | 6      | 0       | 0      | 0               | 80            | 0       | 70      |
| Green      | 1 1    | 0       | 24     | 260             | 84            | 94      | 16      |
| Algae      | 2      | 0       | 8      | 84              | 174           | 94      | 48      |
|            | 3      | 0       | 10     | 0               | 8             | 100     | 24      |
|            | 4      | 0       | 0      | 0               | 48            | 30      | 50      |
|            | 5      | 0       | 0      | 0               | 0             | 88      | 50      |
|            | 6      | 0       | 0      | 0               | 0             | 66      | 20      |
| Rhizopoda  | 1      | 72      | 40     | 480             | 668           | 480     | 96      |
|            | 2      | 48      | 8      | 108             | 896           | 440     | 248     |
|            | 3      | 60      | 40     | 24              | 80            | 296     | 240     |
|            | 4      | 0       | 12     | 80              |               | 360     | 740     |
|            | 5      | 12      | 0      | 1.68            | 8<br>8        | 60      | 480     |
|            | 6      | ,12     | 0      | 4               | 0             | 30      | 50      |

TABLE 8 - Continued

| Organism | Depth                      | Distance Relative to Waterline, cm |                        |                              |                              |                                |                               |  |  |  |  |
|----------|----------------------------|------------------------------------|------------------------|------------------------------|------------------------------|--------------------------------|-------------------------------|--|--|--|--|
|          | (cm)                       | +15                                | 0                      | -70                          | -140                         | 210                            | -280                          |  |  |  |  |
| Nematoda | 1 2                        | 84<br>12                           | 8<br>8                 | 24<br>0                      | 28<br>0                      | 0                              | 72<br>32                      |  |  |  |  |
|          | 34<br>56                   | 0<br>0<br>0                        | 0<br>0<br>0            | 12<br>0<br>0<br>0            | 8<br>8<br>0<br>0             | 12<br>0<br>0<br>0              | 16<br>0<br>0<br>0             |  |  |  |  |
| Others   | 1<br>2<br>3<br>4<br>5<br>6 | 64<br>0<br>12<br>0<br>0            | 24<br>8<br>0<br>0<br>0 | 0<br>24<br>0<br>0<br>24<br>0 | 112<br>0<br>0<br>8<br>0<br>0 | 70<br>38<br>72<br>10<br>8<br>0 | 0<br>0<br>48<br>40<br>0<br>20 |  |  |  |  |

TABLE 8 - Continued

at Stations 2 and 3, and deposition at Stations 1, 4, 5, and 6. Diatom concentrations were high at Station 1, decreased at Stations 2 and 3, and increased again at Stations 4 and 5. They were low also at Station 6, but this was considered to be due to less favorable growth conditions rather than to erosion.

Generic composition varied as follows: (1) The <u>Navicula</u> and <u>Fragilaria</u> groups were the major components of the population at essentially all points along this transect (Table 9a), and (2) <u>Cymbella</u>, <u>Melosira, Gomphonema, Tabellaria</u>, and <u>Amphora</u> were limited to Stations 1, <u>4</u>, 5, and 6, where medium and finer sands were more common than at Stations 2 and 3. The July 2 patterns appear to show a discrepancy, but a discharge increase at that time affected population composition at Stations 1 and 4.

Numbers showed a decrease with depth in the sand; however, the rate of decline was dependent upon stream processes. Rapid decline was indicative of erosional regions, whereas gradual declines or increases with depth were indicative of depositional zones. Generic diversity at depths below one centimeter remained similar to that of the upper centimeter of sand.

<u>Cyanophyta</u>. On June 13, depositional areas (Stations 4 and 5) had <u>Oscillatoria, Anabena, Merismopedia</u>, and <u>Lyngbya</u> as major population components (Table 9b). But erosional areas (Stations 2 and 3) had only two prevalent genera, <u>Oscillatoria</u> and <u>Lyngbya</u>, or <u>Oscillatoria</u> and <u>Anabena</u>. <u>Oscillatoria</u> and <u>Merismopedia</u> and/or <u>Microcystis</u> dominated blue-greens at depositional Stations 1 and 6. On July 2 and July 16, Stations 4 and 5 had less generic diversity with <u>Anabena</u>, <u>Lyngbya</u>, or <u>Oscillatoria</u> as predominant forms. Station 6 had <u>Lyngbya</u>, <u>Tolypothrix</u>,

TABLE 9

DOMINANT GENERA IN CORES FOR THE MISSISSIPPI RIVER - JUNE THROUGH NOVEMBER, 1968

| Date          |                                                                                                                        |                                                                                                         |                                                                                                                         | Station                                                          | 1                                                                                           |                                                                                             |                                                      |
|---------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------|
|               | 1                                                                                                                      | 2                                                                                                       | 3                                                                                                                       | 4                                                                | 5                                                                                           | 6                                                                                           | 7                                                    |
| wne 13        | Navicula Group<br>Fragilaria<br>Gyabella<br>Helceira<br>Gomphonema<br>Tabellaria                                       | Pregilaria<br>Navicula Group                                                                            | Navicula Group<br>Fragilaria<br>Cymbella                                                                                | Navicula Group<br>Fragilaria<br>Meridion<br>Cymbella<br>Melosira | Navicula Group<br>Fragilaria<br>Cymbella<br>Amphora<br>Gomphonema<br>Tabellaria<br>Melosira | Navigula Group<br>Fragilaria<br>Cymbella<br>Gomphonema                                      |                                                      |
| uly 2         | Navicula Group<br>Fragilaria                                                                                           | Navicula Group<br>Fragilaria                                                                            | Navicula Group<br>Fragilaria                                                                                            | Navicula Group<br>Fragilaria                                     | Navicula Group<br>Fragilaria<br>Cocconeis<br>Amphora                                        | Fragilaria<br>Navicula Group<br>Amphora<br>Cymbella<br>Tabellaria<br>Gomphonema<br>Melosira |                                                      |
| aly 16        | Navicula Group<br>Fragilaria<br>Amphora                                                                                | (1000 or More)<br>Navigula Group<br>Diatoma                                                             | (1000 or More)<br>Navicula Group                                                                                        | Navicula Group                                                   | Navicula Group<br>Fragilaria<br>Gomphonema                                                  |                                                                                             |                                                      |
| aly 30        | Navicula Group<br>Fragilaria<br>Amphora<br>Cymbella                                                                    | Navicula Group<br>Fragilaria                                                                            | Navicula Group<br>Fragilaria                                                                                            | an magan maga kan pana ang ang ang ang ang ang ang ang ang       | (1000 or More)<br>Cocconeis                                                                 |                                                                                             | Fragilaria<br>Navicula Group                         |
| <b>eg.</b> 14 | Fragilaria<br>Navicula Group<br>Diatoma<br>Amphora<br>Cymbella                                                         | Navicula Group<br>Fragilaria<br>Cocconsis<br>Diatoma<br>Amphora<br>Cymbella                             | Navicula Group<br>Fragilaria<br>Amphora<br>Gocconeis<br>Diatoma<br>Gymbella                                             | 999 997 997 997 997 997 997 997 997 997                          | Navicula Group<br>Fragilaria                                                                |                                                                                             | Navicula Group<br>Fragilaria<br>Diatoma              |
| ag. 27        | Fragilaria<br>Navicula Group<br>Diatoma<br>Amphora                                                                     | Navicula Group<br>Fragilaria<br>Cocconsis                                                               | Fragilaria<br>Navicula Group<br>Cocconsis<br>Diatoma                                                                    |                                                                  |                                                                                             | Fragilaria<br>Navicula Group<br>Diatoma<br>Amphora<br>Melosira                              | Fragilaria<br>Navicula Group<br>Diatoma<br>Cocconsis |
| opt. 21       | Fregilaria<br>Navicula Group<br>Amphora<br>Cymbella                                                                    | Navioula Group<br>Fragilaria<br>Cymbella<br>Cocconeis<br>Diatoma<br>Amphora<br>Melosira                 | Fragilaria<br>Navicula Group                                                                                            | Navicula Group<br>Fragilaria<br>Diatoma<br>Cymbella              |                                                                                             | Navicula Group<br>Fragilaria<br>Diatoma<br>Amphora<br>Melosira                              |                                                      |
| et. 6         | Fragilaria<br>Navicula Group<br>Distoma<br>Melosira<br>Cocconeis<br>Amphora                                            | Fragilaria<br>Navicula Group<br>Diatoma<br>Melosira                                                     | Navicula Group<br>Fragilaria<br>Diatoma<br>Cocconeis<br>Nelosira<br>Cymbella<br>Amphora                                 | Savicula Group<br>Fragilaria<br>Melosira<br>Cocconsis            | -                                                                                           | Navicula Group<br>Fragilaria<br>Diatoma<br>Melosira<br>Gymbella                             |                                                      |
| et. 20        | Fragilaria<br>Navicula Group<br>Diatoma<br>Nelosira<br>Amphora<br>Cymbella<br>Cocoonsis<br>Gomphonema                  | Navicula Group<br>Fregilaria<br>Cocconeis<br>Distoma<br>Cymbella<br>Melosira<br>Amphora                 | Navicula Group<br>Fregilaria<br>Distoma<br>Cymbella<br>Melosira<br>Cocconsis                                            |                                                                  | Navicula Group<br>Fragilaria<br>Diatoma<br>Melosira<br>Amphora<br>Cocconeis                 |                                                                                             |                                                      |
| lov. 3        | Fragilaria<br>Mavicula Group<br>Melosira<br>Diatoma<br>Tabellaria<br>Asterionella<br>Goconeis<br>Gomphonema<br>Amphora | Fragilaria<br>Navioula Group<br>Melosira<br>Cocconsis<br>Diatoma<br>Amphora<br>Gomphonema<br>Tabellaria | Fragilaria<br>Navicula Group<br>Cocconsis<br>Astorionella<br>Tabellaria<br>Diatoma<br>Amphora<br>Kelosira<br>Gomphonema |                                                                  | Fragilaria<br>Navicula Group<br>Diatoma<br>Melosira<br>Tabellaria                           |                                                                                             |                                                      |

|          | 1                                                                            | and the providence is not some particular                             |                                              | Station                                                                                                          | 19                                                          |                                                        |                                                       |           |
|----------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-----------|
| Date     | 1                                                                            | 2                                                                     | 3                                            | 4                                                                                                                | - 5                                                         | 6                                                      | ?                                                     |           |
| une 13   | Oscillatoria<br>Merismopedia                                                 | Anabena<br>Oscillatoria                                               | Oscillatoria<br>Lyngbya                      | Oscillatoria<br>Anabena<br>Lyngbya                                                                               | Oscillatoria<br>Anabena<br>Merismopedia<br>Lyngbya          | Microcystis<br>Oscillatoria                            |                                                       |           |
| uly 2    | Oscillatoria<br>Lyngbya                                                      | Oscillatoria<br>Lyngbya                                               | Oscillatoria                                 | Lyngbya<br>Anabena                                                                                               | Oscillatoria                                                | Lyngbya<br>Tolypothrix<br>Oscillatoria<br>Merismopedia |                                                       | ransact 1 |
| uly 16   | Merismopedia<br>Oscillatoria                                                 | None Dominate                                                         | Oscillatoria                                 | Lyngbya                                                                                                          | Oscillatoria<br>Lyngbya                                     |                                                        |                                                       | 1         |
| July 30  | Oscillatoria<br>Lyngbys<br>Olosotricha                                       | Oscillatoris<br>Morismopedia                                          | Oscillatoria                                 |                                                                                                                  | Oscillatoria                                                | -                                                      | Lyngbyz<br>Oscillatoria<br>Merismopedia<br>Anabena    |           |
| lug. 14  | Oscillatoria<br>Gomphosphearia<br>Merismopedia                               | Merismop 418                                                          | Merismopedia                                 |                                                                                                                  | Oscillatoria                                                |                                                        | Oscillatoria                                          | ect 2     |
| lug. 27  | Oscillatoria<br>Anabena                                                      | Merismopedia<br>Gomphosphearia                                        | (None Over 50)<br>Merismopedia               |                                                                                                                  |                                                             | Oscillatoria                                           | Oscillatoria<br>Lyngbya                               | Transact  |
| iept. 21 | Oscillatoria                                                                 | Merismopedia                                                          | None                                         | Merismopedia<br>Oscillatoria                                                                                     |                                                             | Lyngbya<br>Oscillatorin                                |                                                       |           |
| Dot. 6   | Oscillatoria<br>Merismopedia<br>Anabenu<br>Lyngbya<br>Gomphosphearia         | Merismopedia<br>Lyngbya                                               | Merismopedia<br>Oscillatoria<br>Microcystis  | Oscillatoria<br>Merismopedia<br>Microcystis                                                                      | a an an the obtained an | Merismope dia<br>Oscillatoria                          |                                                       | 2         |
| Dot. 20  | Oscillatoria<br>Merismopedia<br>Lyngbya<br>Microcystis<br>Anabena            | Merismopedia<br>Anabena                                               | Merismopedia                                 |                                                                                                                  | (None - 100)                                                |                                                        |                                                       | Transact  |
| lov. 3   | Oscillatoria<br>Chrocococus<br>Merismopedia<br>Microoystis<br>Comphosphaeria | Oscillatoria<br>Merismopedia<br>Lyngbya<br>Microcystis<br>Chroococcus | Merismopedia<br>Oscillatoria<br>Chroococcus  | 99 99 99 99 99 99 99 99 99 99 99 99 99                                                                           | Oscillatoria                                                |                                                        |                                                       |           |
|          |                                                                              | C. Chlorophyta                                                        | and Euglenophyta                             | Genera with 1                                                                                                    | 00+ Units per Cub                                           | to Centimeters of                                      | Sand                                                  |           |
| June 13  | Scenedasmus<br>Pediastrum<br>Oocystis                                        | Scenedesmis<br>Cocystis                                               | Ulothrix                                     | Scenedesaus<br>Pediastrum<br>Euglema<br>Vlothrix                                                                 | Scenedesaus<br>Suglena<br>Pediastrum                        | Pediastrum                                             |                                                       |           |
| July 2   | Scenedesmus<br>Pediastrum                                                    | Sceneciesmus<br>Mougeotia                                             | Soenedesmus                                  | Soevedeenus<br>Peridinium                                                                                        | Scenedeamus                                                 | Soenedesana<br>Pediastrum<br>Cladophora<br>Ulothrix    |                                                       |           |
| July 16  | Scenedesaus<br>Pediastrum                                                    | Cladophora                                                            | None in 100<br>Range                         | Soanadasurua                                                                                                     | Scenedeanus                                                 |                                                        |                                                       |           |
| jely 30  | Scenedesmus<br>Pediastrum                                                    | Scensdesmus<br>Cladophore                                             | (50 or More)<br>Scenedessus<br>Trachelosonas | and the second | Scenedesmus<br>Cladophora                                   | ný namení les in an hann i an hann a start far         | Pediastrus<br>Scenedesmus<br>Microspora<br>Cladophora |           |

TABLE 9 - Continued

TABLE 9 - Continued

| Date    |                                                                                                  |                                                                                 |                                                                                                                                  | Stations                              |                                                                                                                 |                                                                       |                                                            |         |
|---------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------|---------|
|         | 1                                                                                                | 2                                                                               | 3                                                                                                                                | 4                                     | 5                                                                                                               | 6                                                                     | 7                                                          |         |
| ag. 14  | Scenedesmus<br>Trachelosonas<br>Pediastrus<br>Closterius<br>Euastrus<br>Crucigenia<br>Cladophora | Cladophore<br>Closteriuz<br>Pediastrum<br>Trachelomonas<br>Scenedesmus          | Closterium<br>Frachelomonas<br>Scenedesmus<br>Crucigenia<br>Peridinium                                                           |                                       | Trachelomonas                                                                                                   |                                                                       | Scenedesnus<br>Trachelomonas<br>Srucigenia<br>Cladophorm   |         |
| ug, 27  | Scensdessus<br>Trachelomonas<br>Pediastrum                                                       | Scensdesmus<br>Trachalomonas                                                    | Cladophora<br>Scenedesnus<br>Trachelomonas                                                                                       |                                       |                                                                                                                 | Scenedosmus<br>Pediastrum<br>Trachelomonas                            | Cladophora<br>Pediastrum<br>Frachelomonas                  |         |
| ept. 21 | Scenedesmus<br>Pediastrum<br>Cladophora                                                          | Trachelomonas<br>Scenedesmus<br>Cladophora                                      | Trachelomonas                                                                                                                    | Scenedesmus<br>Trachelomonas          |                                                                                                                 | Cladophora<br>Trachelomonas                                           |                                                            | t 2     |
| bot. 6  | Scenedesmus<br>Pediastrum<br>Trachelomonas<br>Oocystis<br>Mougeotia<br>Crucigenia<br>Cladophora  | Mougeotia<br>Trachelomonas                                                      | Closterium<br>Pediastrum<br>Trachelomonas<br>Cladophora                                                                          | Trachelomonas                         |                                                                                                                 | Mougeotia<br>Trachelomonas<br>Scenedesmus                             |                                                            | Tansect |
| ct. 20  | Scenedesmus<br>Pediastrum<br>Trachelomonas<br>Mougeotia                                          | Trachelomonas<br>Cladophora<br>Scenedesmis                                      | "rachelomonas                                                                                                                    |                                       | Scenedesaus<br>Pediastrum                                                                                       |                                                                       |                                                            |         |
| iov. 3  | Sconedesmus<br>Trachelomonas<br>Cladophora<br>Pediastrum<br>Peridinium                           | Scenedesmus<br>Truchelomonas<br>Pediastrum<br>Cladophora<br>Peridinium          | Trachelomonas<br>Scenedesmus<br>Pediastrum                                                                                       |                                       | Scenedesmus<br>Trachelomonas                                                                                    |                                                                       |                                                            |         |
|         | 1                                                                                                | D. Anim                                                                         | als: Genera with                                                                                                                 | 50+ Individuals                       | per Cubia Centime                                                                                               | ter of Sand                                                           | a na an                   |         |
| June 13 | Centropyxis<br>Hypeibius                                                                         | Centropyxis<br>Nematoda                                                         | typsibius<br>Centropyxis                                                                                                         | Centropyxis<br>Hysibius<br>Nematoda   | Centropyris<br>Nematoda<br>Monostyla<br>Arcella<br>Aelosoma<br>Hypsibius                                        | Centropyxis<br>Difflugia<br>Nomatoda                                  |                                                            |         |
| July 2  | Centropyxis<br>Hypsibius<br>Cephalodells                                                         | Centropyxis<br>Hypsibius<br>Cephalodella<br>Nematoda                            | Centropyxis<br>Nematoda                                                                                                          | Hypsiblus<br>Centropyxis<br>Lepsdella | Centropyxis                                                                                                     | Centropyxis<br>Difflugia<br>Arcella<br>Nematoda                       |                                                            |         |
| uly 16  | Centropyxis                                                                                      | None<br>Hypsibius(32)                                                           | Cent.ropyxis                                                                                                                     | Centropyxis                           | Centropyxis                                                                                                     | No Core                                                               | yydd yw fan ywraigodd y dan ddagon y dan yn y              |         |
| July 30 | Centropyxis<br>Difflugia                                                                         | Centropyxis                                                                     | Centropyxis<br>Pyxidicula<br>Arcella<br>Euglynha<br>Nebela<br>Difflugia<br>Honostyla<br>Colurella                                |                                       | Centropyxis<br>Difflugia                                                                                        |                                                                       | Centropyxis<br>Difflugia                                   |         |
| Aug. 14 | Difflugia<br>Centropyzis<br>Arcella<br>Euglypha<br>Colurella                                     | Centropyxis<br>Colurella<br>Difflugia<br>Pyxidicula<br>Honcetyla<br>Chactotonus | Pyxidicula<br>Centropyxis<br>Arcella<br>Monostyla<br>Chastotonus<br>Trichocerca<br>Nebela<br>Colurella<br>Difflugia<br>Philodina |                                       | Difflugia<br>Nobela<br>Euglypha                                                                                 |                                                                       | Euglypha<br>Nebela<br>Centropyxis<br>Difflugia             |         |
| lag. 27 | Difflugia<br>Centropyxis<br>Namatoda<br>Aroella<br>Pyxidicula<br>Ciliates                        | Pyxidicula<br>Difflugia<br>Centropyxis<br>Suglypha<br>Loxodes<br>Mites          | Arcella<br>Centropyxis<br>Euglypha<br>Difflugia<br>Pyxidicula                                                                    |                                       | acente della contra della d | Difflugia<br>Centropyxis<br>Euglypha<br>Nebela<br>Arcella<br>Nematoda | Difflugia<br>Centropyxis<br>Nebela<br>Arcella<br>Monostyla |         |

|  | TA | BLE | 9 | - | Continued |
|--|----|-----|---|---|-----------|
|--|----|-----|---|---|-----------|

| Date     |                                                                                                      |                                                                                                                 |                                                                                         | Station                                                                                             | าร                                                                            |                                                                                       |   |  |
|----------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---|--|
|          | 1                                                                                                    | 2                                                                                                               | 3                                                                                       | 4                                                                                                   | 5                                                                             | 6                                                                                     | 7 |  |
| Sept. 21 | Difflugia<br>Centropyxis<br>Nebela<br>Arcella<br>Euglypha<br>Cyphoderia<br>Wailesellia<br>Ciliates   | Euglypha<br>Centropyxis<br>Arcella<br>Pyxidicula<br>Difflugia                                                   | Difflugia<br>Centropyxis                                                                | Arcella<br>Euglypha<br>Pyzidicula<br>Centropyzis<br>Difflugia                                       |                                                                               | Euglypha<br>Nebela<br>Arcella<br>Centropyxis<br>Difflugia<br>Cyphoderia<br>Pyxidicula |   |  |
| 0et. 6   | Difflugia<br>Aroella<br>Centropyxis<br>Euglypha<br>Nematoda<br>Fareuglypha<br>Cyphoderia<br>Ciliates | Arcella<br>Difflugia<br>Centropyxis                                                                             | Arcella<br>Difflugia<br>Euglypha<br>Centropyxis                                         | Arcella<br>Euglypha<br>Certropyxis<br>Cyphoderia<br>Difflugia<br>Pyxidioula<br>Nematoda<br>Ciliates |                                                                               | Ciliates<br>Pyridicula<br>Centropyris<br>Arcella                                      |   |  |
| Oct. 20  | Centropytis<br>Pyxidicula<br>Arcella<br>Difflugia<br>Euglypha<br>Nematoda                            | Centropyxis<br>Difflugia<br>Arcella<br>Euglypha<br>Pyxidicula<br>Cyphoderia<br>Chironomidae<br>Monostyla        | Euglypha<br>Difflugia<br>Centropyxis<br>Arcella<br>Chironomidae                         |                                                                                                     | Difflugia<br>Centropyxis                                                      |                                                                                       |   |  |
| Nov, 3   | Euglypha<br>Pyxidicula<br>Arcella<br>Centropyxis<br>Difflugia<br>Nematoda<br>Cyphoderia              | Difflugia<br>Centropyris<br>Pyridioula<br>Buglypha<br>Nematoda<br>Wallosella<br>Nebela<br>Cyphoderia<br>Aroella | Arcella<br>Euglypha<br>Pyzidicula<br>Difflugia<br>Centropyris<br>Nematoda<br>Vorticella |                                                                                                     | Pareuglypha<br>Difflugia<br>Centropyxis<br>Cyphoderia<br>Nematoda<br>Euglypha |                                                                                       |   |  |

前保

Oscillatoria, and Merismopedia, but the June dominants were still present at Station 1.

Vertical distribution followed the general pattern shown by diatoms in which the number of individuals decreased with depth unless present in a depositional zone (Table 7). However, some exceptions to this were observed: (1) Stations 2 and 3, when undergoing erosion on June 13, showed increased numbers of <u>Oscillatoria</u> with depth; (2) Station 3 on July 2 had increased numbers of <u>Oscillatoria</u> with depth in the erosion zone; and (3) July 16 showed an <u>Oscillatoria</u> population occurring at some depth in the core at Station 3. Increased <u>Oscillatoria</u> populations at three and four centimeters suggests removal of other genera from upper sand layers prior to depletion of <u>Oscillatoria</u>. <u>Oscillatoria</u> was the only blue-green persisting at greater depths.

<u>Chlorophyta and Euglenophyta</u>. These groups were generally distributed like the diatoms (Tables 7 and 9c). Dominants (100+ individuals per cc of sand) were <u>Scenedesmus</u>, <u>Pediastrum</u>, <u>Oocystis</u>, <u>Cladophora</u>, <u>Mougeotia</u>, <u>Ulothrix</u>, and <u>Euglena</u>. Seasonal and spatial occurrence (Table 9c) illustrate succession and differing degrees of sand stability. Current removal of sand was most common at Stations 2 and 3; deposition formed a ridge at Stations 4 and 5, and was the dominant process at Stations 1 and 6.

Animals. <u>Testaceous Rhizopoda</u>. Rhizopods were generally most numerous in depositional regions (Table 7). <u>Centropyxis</u> was the dominant rhizopod at all times (Table 9d). <u>Arcella</u> and <u>Difflugia</u>, the only other thecamoebae found, were present as indicated in Table 9d. In depositional areas <u>Centropyxis</u> was generally most concentrated in the upper layers. In erosional areas its greatest concentration varied between

deep and surface layers (Table 7), which suggests that active migration plays a role in its vertical distribution.

Rotifera. Rotifers were usually localized in the upper three centimeters of sand (Table 7), and their areas of concentration were quite varied. On June 13, greatest numbers occurred in depositional areas, on July 2 erosional zones supported a larger population and on July 16 their numbers were much reduced, but again greatest in depositional areas.

<u>Monostyla</u> dominated the June 13 population (Table 9d); the most prevalent genera on July 2 were <u>Cephalodella</u> and <u>Lepadella</u>; and <u>Philodina</u> and <u>Colurella</u> were the most numerous genera at Station 4 on July 16, when other stations had a mixed composition of small numbers.

<u>Nerratoda</u>. From June 13 to July 16 the nematode population steadily declined (Table 7). On June 13, they were most concentrated in upper layers of Station 5 in the depositional zone, but were more abundant at Station 2 in the erosional area than at any of the remaining stations. On July 2 they were most concentrated at Station 6 in a depositional area, and at Stations 2 and 3 in the area being eroded. On July 16 their numbers were few, but greatest at Station 4 in the depositional region. They seemed to prefer the upper sand layers, but occasionally were found to six centimeters.

<u>Terdigrada</u>. <u>Hypsibius</u> sp. was the only tardigrade found. It occurred only once at Station 6 (Table 7). There was a gradual decrease in numbers from June 13 to July 16. Greatest concentration was found on June 13 at Station 3 in the erosion zone, but a shift to deposition Stations 1 and 4 had occurred by July 2, and a small, but more uniformly distributed, population was present on July 16.

Other Animals. Oligochaeta, Cladocera, Chironomidae larvae,

Gastrotricha, and Ostracoda comprise this category. They were found in the upper two centimeters and decreased in numbers from June 13 to July 16, at which time only a few remained (Table 7). Oligochaetes were found only on June 13, at which time they were the major constituent of this group. No specific animal dominated this population on other dates.

### Transect 2

Both exposed and submerged sand were available for study when sampling was changed to this location on July 30. The exposed point bar (Station 1) was composed of sand, largely of medium grade, whereas the exposed region on the left bank (Station 5) was mainly gravel (Figures 7 and 8). The sand surface at Station 1 was always wet, but the surface of the coarser sand at Station 5 was dry because of a lower capillary potential.

Algae. <u>Bacillariophyceae</u>. On July 30, Station 1 was at the waterline; from August 14 through October 6 it was exposed to the air; and from October 19 through November 3 it was again submerged.

The diatom population at Station 1 on July 30 was dominated by the <u>Navicula</u> group, <u>Fragilaria</u> group, <u>Amphora</u>, and <u>Cymbella</u> (Table 9a). <u>Diatoma</u> joined the dominant groups on August 14, and through October 6 a quartet or more of these diatoms accounted for most of the population. The <u>Fragilaria</u> group outnumbered the <u>Navicula</u> group at some or all stations in August, and maintained its dominance in at least one station until November 3. The <u>Navicula</u> group regained dominance in some areas in September and October. Greater stability of sand resulting from exposure led to greater concentrations of diatoms in its upper layers (Table 7). Light penetration is limited to the first few millimeters, and without

the disrupting influences of erosion or deposition, diatoms were confined to the more favorable upper regions of the core.

The autumn submergence of the point bar was accompanied by an increase in diversity and numbers, and by greater population in deeper sand regions. The <u>Fragilaria</u> group, <u>Navicula</u> group, <u>Diatoma</u>, <u>Melosira</u>, <u>Amphora</u>, <u>Cymbella</u>, <u>Cocconeis</u>, and <u>Gomphonema</u> all achieved domiant rank on October 19. <u>Asterionella</u> replaced <u>Cymbella</u> on November 3.

Station 5 on the left bank was exposed from July 30 to August 27, and was at the waterline from September 21 to October 6. The <u>Navicula</u> and <u>Fragilaria</u> groups were dominant here on July 30, but with continued exposure, <u>Diatoma</u> and then <u>Cocconeis</u> also became prevalent. Generic composition remained about the same, but numbers decreased rapidly with depth. Return of the waterline to Station 5 resulted in a downward movement of diatoms into the second centimeter and a larger number of dominant species.

Stations 2, 3, and 4 were continually submerged. Station 2 was always 70 cm from Station 1; Station 3 was always 70 cm from Station 2; and Station 4 was located at various distances along the transect, depending upon where the sand would permit coring.

Station 2 had a smaller but more variable population than did Station 1. The <u>Navicula</u> group dominated this station longer, and larger numbers occurred at greater depths in the sand. Except for July 30 and November 3, Station 2 was influenced in part by erosional, and in part by stable, conditions. Details of its biota on November 3 will be given later. Except for these two dates, its population decreased with depth.

The generic composition of the population varied from a co-dominance by the <u>Navicula</u> and <u>Fragilaria</u> groups to a complex of eight dominant forms:

the Fragilaria group, <u>Navicula</u> group, <u>Melosira</u>, <u>Cocconeis</u>, <u>Diatoma</u>, Amphora, <u>Gomphonema</u>, and <u>Tabellaria</u>.

The population of Station 3 was usually reduced by erosion, at which times numbers decreased with greater depth. Make-up of the population, seldom the same from date to date, involved an assortment of groupings from bi-dominant <u>Fragilaria-Navicula</u> groups to a multidominant complex of <u>Fragilaria</u> and <u>Navicula</u> groups, <u>Cocconeis</u>, <u>Asterionella</u>, <u>Tabellaria</u>, <u>Diatoma</u>, <u>Amphora</u>, <u>Melosira</u>, and <u>Gomphonema</u>, showing no particular successional pattern.

The smallest population was at Station 4, where current erosion appeared most severe. Numbers declined with depth and dominance ranged from a single form, <u>Cocconeis</u>, on July 30, to <u>Navicula-Fragilaria</u> groups on August 14, to these two groups plus <u>Diatoma</u>, <u>Cymbella</u>, <u>Melosira</u>, <u>Cocconeis</u>, and <u>Tabellaria</u> in varying ranks (Table 9a).

<u>Cyanophyta</u>. On July 30, dominant genera varied at different stations as shown in Table 11. They occurred at most depths, but were evidently most concentrated near the surface in stable sand (Table 7). Under currents (Station 3) they occurred at greater depths. Over the remainder of the sampling period, blue-greens exhibited no consistent pattern. Occasionally they were most concentrated near the surface in stable sand, but at times occurred with greatest numbers in the erosional zone; whereas some were restricted to the surface zone, others penetrated to a depth of six centimeters (Table 7d-j). Dominance varied among a number of groups (Table 9b) with <u>Oscillatoria</u> tending to outnumber others in the autumn and in more stable sands. <u>Microcystis</u> and <u>Chroococcus</u> entered when sand again became submerged.

Deposition resulted in occurrences at greater depths, but in eroded

and stable sands, blue-greens were generally concentrated in the upper two centimeters. Erosion completely removed blue-greens from Station 3 on September 21, but they were relatively highly concentrated there at later dates.

<u>Chlorophyta</u> and <u>Euglenophyta</u>. Dominance among green algae and euglenophytes was held by the groups appearing in Table 9c. Their numerical distribution tended to follow the diatom pattern, although they were much less abundant. They responded to erosion, deposition, and stable conditions in much the same manners as diatoms and blue-greens, as is indicated by their horizontal and vertical distribution in Table 7d-j. Return of the waterline to a previously exposed position brought about qualitative changes (Table 9c).

Animals. <u>Testaceous Rhizopoda</u>. This group was the major segment of the animal population, with rather substantial numbers generally all along the transect (Table 7). The greatest concentration noted was in coarse materials at Station 5, but this area did not consistently have more than others. <u>Centropyxis</u> was the most prevalent form when sampling began on this transect, but others were more numerous in later samples as shown in Table 9d. However, <u>Centropyxis</u> was among dominants in all but one sample. In addition to this genus, dominant rank was achieved by <u>Difflugia</u>, <u>Pyxidicula</u>, <u>Arcella</u>, <u>Euglypha</u>, <u>Nebela</u>, <u>Pareuglypha</u>, <u>Cyphoderia</u>, and <u>Wajlesella</u>. Water level variation, sand deposition, and erosion were determinant factors in the establishment of these genera as dominants (Table 9d). Some forms (<u>Pyxidicula</u>, <u>Nebela</u>, <u>Cyphoderia</u>, <u>Wailesella</u>, and <u>Pareuglypha</u>) became more prominent as exposed sand "aged", whereas others (<u>Centropyxis</u>, <u>Euglypha</u>, and <u>Arcella</u>) appeared to prefer water-filled sand. Testaceous rhizopods as a group penetrated to the

deepest sampled sand layers, and were occasionally more numerous there than in upper sands (Table 7d-j). This may result from deposition or migration.

<u>Rotifera.</u> Rotifers were frequently restricted to the top two centimeters of sand but they did occur at greater depth on depositional sites (Table 7). They were less prevalent in the gravel-dominated sediments of Stations 4 and 5, but did occur there. <u>Monostyla, Colurella,</u> and <u>Trichocerca</u> were the most abundant genera. Their times and locations as dominant groups are shown in Table 9d. Exposure of sand evidently caused a decrease of Colurella at Station 1.

<u>Nematoda</u>. Nematodes were generally limited to the upper three centimeters of sand, with apparent preference for more stabilized sand (Table 7). Finer sand and increased stability at Station 1 supported a steady population over most of the sampling period. Stations 2, 3, and 4 supported only small populations unless they were the sites of depositional activity, such as Station 2 on November 3. Numbers at Station 5, while small, continued to increase with age of exposure, but they declined when the waterline returned to the vicinity.

<u>Tardigrada</u>. Tardigrades were localized in the upper two centimeters of the cores unless the station was in a depositional zone. Station 1 was almost completely lacking in <u>Hypsibius</u> after exposure. Stations 2, 3, and 4 varied from time to time, often having no <u>Hypsibius</u>, and whereas only "strays" occurred at Station 5.

Other Animals. Oligochaeta, Copepoda, Dipteran larvae, Gastrotricha, Ostracoda, Acari, and Ciliophora comprise this category in Table 7. These organisms were confined to surface or near surface sand cores unless in a deposition area.

Wild Rice River

### Algae

Bacillariophyceae. The smallest population usually occured at the 0 cm station (Table 8). The <u>Navicula</u> group dominating this station (Table 10a) was located in the upper two centimeters, with small populations lingering in deeper layers.

Exposed Sand Region. Sand 70 centimeters above the waterline generally had the largest diatom populations found in exposed sand. The <u>Navicula</u> group was dominant there, except on October 19, when <u>Rhopalodia</u> shared dominance. Diatoms diminished rapidly with depth, but <u>Surirella</u> often persisted in small numbers down to six centimeters.

The population declined at 140 cm above the waterline, where <u>Rhopalodia</u> and the <u>Navicula</u> group were the prevalent genera in small numbers. Again with the exception of <u>Surirella</u>, diatoms were limited to the uppermost centimeter of sand. At distances greater than +140 cm, diatoms continued to decline, being restricted to near surface sand, with <u>Rhopalodia</u> or the <u>Navicula</u> group forming the bulk of the small populations.

<u>Submerged Sand Region</u>. Numbers frequently increased between the waterline and the sand 70 cm below it, where they were sometimes greater, but often less, than at +70 cm. Small eddy currents frequently eroded sand at -70 cm, and it then contained fewer diatoms than sand beyond it. This was not always true, but it appeared that the smaller populations in submerged sand usually marked the locations of currents. Diatoms attained their maxima in the uppermost centimeter, but they occurred in greater numbers deeper in the sand than they did on the exposed beach.

|          |                                                    |                                                                             |                                        | Distance Relat                                     | ive to Waterline                                  | (cm)                                                |                                                 |                                                                                                                 |
|----------|----------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Date     | +210                                               | +140                                                                        | +70                                    | 0                                                  | -70                                               | -140                                                | -210                                            | ~280                                                                                                            |
| iune 13  | Mavigula Group<br>(700)                            | Mavioula Group<br>(2,000)                                                   | Navioula Group                         | All Loss<br>Than 50                                | Navicula Group<br>(2,600)                         | Navioula Group<br>Diatoma<br>Melosira<br>Fragilaria | alan ang da ya manang ang ang                   | 1999 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - |
| July 2   | Rhopalodia<br>(1,200)                              | Rhopalodia<br>(2,000)<br>Mavioula Group<br>(1,400)<br>Fragilaria<br>(1,000) | Navicula Group<br>(4,500)              | Navioula Group<br>(3,000)<br>Rhopelodia<br>(1,300) | Navioula Group                                    | Mavicula Group<br>(3,400)                           |                                                 |                                                                                                                 |
| July 16  | Navicala Group<br>(5,600)<br>Rhopalodia<br>(3,800) | Navioula Group<br>(2,000)                                                   | Navioula Group<br>(2,600)              | Navicula Group<br>(6,600)                          | Navicula Group<br>(2,000)<br>Surirella<br>(1,000) | Rhopalodia<br>Mavicula Group<br>(6,800)             |                                                 |                                                                                                                 |
| July 30  | Rhopalodia<br>(200)<br>(280cm)                     | Navicula Group<br>(5,300)                                                   | Navicula Group                         | Navicula Group<br>(600)                            | Navicula Group<br>(5,300)                         | Mavicula Group<br>(6,800)                           |                                                 |                                                                                                                 |
| Aug. 14  |                                                    | Mavicula Group                                                              | Mavicula Group                         | Navicula Group<br>(5,400)                          | Navicula Group<br>Cocconeis                       | Kavicula Group                                      | Mavicula Group                                  |                                                                                                                 |
| Aug. 27  |                                                    |                                                                             | Navicula Group                         | Navicula Group<br>(8,400)                          | Navicula Group                                    | Navicula Group<br>Cyrosigna<br>Amphora              | Navicula Group<br>(8,500)<br>Diatoma<br>(5,700) | Navioula Group<br>Gymbells                                                                                      |
| Sept. 21 |                                                    |                                                                             | Navicula Group<br>(3,800)              | Navioula Group<br>(200)                            | Navicula Group                                    | Navicula Group                                      | Haviculs Group<br>Diatoma<br>(5,200)            | Mavicula Group<br>Cymbella<br>Amphora                                                                           |
| Oct. 6   |                                                    |                                                                             | Mavicula Group<br>(50cm)               | Navicula Group<br>(3,800)                          | Navicula Group<br>(2,100)<br>Surirella<br>(1,000) | Mavicula Group                                      | Navicula Group<br>Amphora                       | Navicula Group<br>(400)                                                                                         |
| 0ot. 20  |                                                    |                                                                             | Esvicula Group<br>Rhopalodia<br>(18cm) | Navicula Group                                     | Navicula Group<br>Diatoma<br>Amphora              | Kavicula Group<br>Amphora                           | Mavicals Group<br>Distons                       | Mavicula Grou<br>Amphora<br>Distoma<br>Cymbella                                                                 |
| Nov. 3   |                                                    |                                                                             | Mavicula Group                         | Navionia Oroup                                     | Navioula Group<br>Diatoma<br>Amphora<br>Cymbella  | Navioula Group<br>Diatoma<br>(6,600)                | Navioula Group<br>Diatoma<br>Amphora            | Mavicula Group<br>Amphora<br>Cymbella<br>Diatoma                                                                |

TABLE 10 DOMINANT GENERA IN CORES FOR THE WILD RICE RIVER - JUNE THROUGH NOVEMBER, 1968 DISTANCES RELATIVE TO WATERLINE WHICH DIFFER FROM HEADING IN PARENTHESIS

and district make a

|                          |                                                  |                         | B. Cyanophyta:                                                        | Gamera with 1004        | Units new Cubic                         | Centimeter of Sau           | ad                      | where the state from the state of the state |
|--------------------------|--------------------------------------------------|-------------------------|-----------------------------------------------------------------------|-------------------------|-----------------------------------------|-----------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No Print Lance de Calvar | T                                                |                         | - oyanopnyta:                                                         |                         | tive to Waterlin                        |                             | <b></b>                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Date                     | +210                                             | +140                    | +70                                                                   | 0                       | -70                                     | -140                        | _210                    | -280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ine 13                   | Oscillatoria                                     | Anabena<br>Oscillatoria | Oscillatoria<br>Anabana<br>Microcystis                                | Lyngbya<br>(60)         | Oscillatoria                            | Oscillatoria                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| uly 2                    | Oscillatoria<br>Anabena<br>Chroceccous<br>Nestoc | Oscillatoria            | Oscillatoria                                                          | Oscillatoria<br>Anabena | Oscillatoria                            | Oscillatoria                | *****                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1 <b>y</b> 16            | Oscillatoria<br>Microcoleus<br>Anabena           | Oscillatoria<br>Anabena | Oscillatoria<br>Anabena                                               | Oscillatoria            | Oscillatoria                            | Oscillatoria                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| uly 30                   | Oscillatoria<br>Nostoc<br>Microcoleus<br>(280cm) | Osoillatoria<br>Anabena | Anabena<br>Oscillatoria<br>Lyngbya                                    | Oscillatoria<br>(90)    | Oscillatoria                            | Oscillatoria<br>Anabena     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ag. 14                   |                                                  | Oscillatoria<br>Anabena | Oscillatoria                                                          | Oscillatoria            | Oscillatoria<br>Anabena<br>Mérismopedia | Oscillatoria                | Oscillatoria            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>ng.</b> 27            |                                                  |                         | Oscillatoria<br>Microcoleus<br>Anabena                                | Oscillatoria            | Oscillatoria<br>Lyngbya                 | Oscillatoria                | Oscillatoria            | Oscillatoria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| apt. 21                  |                                                  |                         | Oscilla coria                                                         | Oscillatoria            | Oscillatoria                            | Oscillatoria                | Oscillatoria<br>(30)    | Oscillatoria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| rt. 6                    |                                                  | 17                      | Cscillatoria<br>Microsoleus<br>Lyngbya<br>(500m)                      | Oscillatoria            | Oscillatoria                            | Oscillatoria                | Oscillatoria<br>Anabena | Oscillatoria<br>(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| rt. 20                   |                                                  |                         | Cecillatoria<br>Anabena<br>Lyngbya<br>Chrococccus<br>Nostoe<br>(18cm) | Oscillatoria<br>Anabena | Oscillatoria<br>Nostoo                  | Oscillatoria<br>Chrococcous | Oscillatoria            | Oscillatoria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>w.</b> 3              |                                                  |                         | Oscillatoria<br>(15cm)                                                | Oscillatoria            | Oscillatoria                            | Oscillatoria<br>Chrococcus  | Oscillatoria            | Oscillatoria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

|                |                                | C. Chloroph;                 | yta and Euglenoph                | yta: Genera wit           | a 100+ Units per                                         | Cubic Centimeter                      | e of Jand                                 |                      |
|----------------|--------------------------------|------------------------------|----------------------------------|---------------------------|----------------------------------------------------------|---------------------------------------|-------------------------------------------|----------------------|
|                |                                |                              |                                  | Distance Helat            | ive to Waterline                                         | (cm)                                  |                                           |                      |
| Date           | +210                           | +140                         | +70                              | 0                         | -70                                                      | -140                                  | -210                                      | -280                 |
| ane 13         | Euglena(32)                    | Scenedesmus<br>Euglena       | Podiastrum(50)                   | Absent                    | Absent                                                   | Scenedesmus<br>Pediastrum             |                                           |                      |
| 1y 2           | Vaucheria<br>Euglena (24)      | Scenedesmus                  | Scenedesmus                      | Scenodesmus<br>Vaucheria  | Euglena (80)                                             | Closterium<br>(48)<br>Euglena<br>(44) |                                           |                      |
| ily 16         | Vaucheria                      | Vaucheria                    | Euglena                          | Suglena                   | Scenedasmus                                              | Scenedesaus                           |                                           |                      |
| aly 30         | Scenedesmus<br>(16)<br>(280cm) | Euglens                      | Scenedessus                      | Scenedesmus<br>Pediastrum | Pediastrum<br>(50)                                       | Scenedesmus                           |                                           |                      |
| <b>ug.</b> 14  |                                | Euglena                      | Scenedesmus<br>Stigeoclonium     | Scenedesmus<br>(25)       | Scenedesmus<br>Closterium<br>Stigeoclonium<br>Cladophora | Scenedasmus<br>Stigeoclonium          | Scenedesmus<br>Stigeoclonium              |                      |
| <b>ug.</b> 27  |                                |                              | Euglena (24)                     | Euglena (50)              | Closterium                                               | Closterium<br>Stigeoclonium           | Cladophors.<br>Closterium                 | Stigeocloniu         |
| <b>spt.</b> 21 |                                |                              | Scenedesmus<br>(28)              | Euglena (36)              | Stigeoclonium                                            | Stigwoolonium                         | Stigeoclonium                             | Cosmarium            |
| et. 6          |                                | MANAGE 14 88 / C 4 / C 4 / C | Stigeoclonium<br>(70)<br>(50 am) | Absent                    | Cosmarium<br>(80)                                        | Stigeoclonium<br>Pediastrum           | Stigeoclonium<br>(80)<br>Occystis<br>(80) | Cosmarium<br>(16)    |
| rt. 20         |                                |                              | Scenedesaus<br>(18cm)            | Scenedesaus<br>(40)       | Scenedesque<br>(70)                                      | Scenedoamus                           | Scenedesmus<br>(68)                       | Stigeocloniu<br>(60) |
| ov. 3          |                                |                              | Absent<br>(15om)                 | Euglona (16)              | Cocystis                                                 | Stigeoclonium                         | Stigeoclonium<br>(40)                     | Stigeocloniu<br>(40) |

124

11.1

|                  |                                  |                         | D. Animals: Gen                               | nera with 50+ in         | ilviduals per cul                    | bid Centimeter o                     | r Juna                   |                                     |
|------------------|----------------------------------|-------------------------|-----------------------------------------------|--------------------------|--------------------------------------|--------------------------------------|--------------------------|-------------------------------------|
| Date             | ļ                                |                         |                                               | Distance Re.             | lative to Waterl                     |                                      |                          |                                     |
|                  | +210                             | +140                    | +70                                           | 0                        | -70                                  | -140                                 | -210                     | -280                                |
| ane 13           | Nematoda<br>Centropyxis          | Nomatoria               | Newatoda<br>Centropyxis                       | Centropycis<br>(24)      | Centropyzis                          | Centropyxis<br>Arcella<br>Difflugia  |                          |                                     |
| uly 2            | Nematoda<br>Centropyxis          | Nematoda<br>Centropyris | Centropyzis<br>Nematoda                       | Centropyxis<br>Nematoda  | Nematoda<br>Centropyzis              | Centropyxis<br>Difflugia             |                          |                                     |
| uly 16           | Cantropyzis<br>Sematoda          | Nematoda<br>Gentropyzis | Centropyzis<br>Nematoda                       | Contropyxis              | Centropyzis<br>Difflugia             | Centropyxis<br>Difflagia             |                          |                                     |
| uly 30           | Difflugia<br>Nematoda<br>(280cm) | Difflugia<br>Mematoda   | Difflugia                                     | Difflugia<br>Centropyzia | Difflugia                            | Diffingia                            |                          |                                     |
| ng. 14           |                                  | Difflugia<br>Nematoda   | Difflugia                                     | Difflugia<br>(30)        | Difflugia<br>Nematoda                | Diffingia                            | Difflugia                |                                     |
| ug. 27           |                                  |                         | Difflugia<br>Nematoda                         | Difflugia                | Difflugia<br>Centropycis<br>Rematoda | Diffingia<br>Centropyzia             | Difflugia<br>Centropyzis | Difflugia<br>Centropyxia            |
| apt. 21          |                                  |                         | Difflugia<br>(32)                             | Difflugia<br>(24)        | Difflugia<br>Centropyxis<br>Nematoda | Diffingia<br>Centropyzia             | Difflugia<br>Centropyzia | Difflugia                           |
| et. 6            |                                  |                         | Difflugia<br>(50cm)                           | Difflugia                | Difflugia<br>Centropyzis<br>Rematoda | Difflugia<br>Centropycis<br>Nemetoda | Difflugia<br>Centropyzia | Difflugia                           |
| <b>st.</b> 20    |                                  |                         | Nematoda<br>Difflugia<br>Centropyds<br>(18cm) | Difflugia                | Difflugia<br>Centropyxia             | Difflugia<br>Centropyxis<br>Nematoda | Difflugia<br>Centropyzis | Difflugia<br>Centropyzi<br>Nematoda |
| <del>7</del> . ) |                                  |                         | Difflugia<br>Nematodu<br>(15cm)               | Difflugia<br>(24)        | Difflugia                            | Difflugia<br>Centropyzis             | Difflugia<br>Contropyxia | Diffingia<br>Centropyzi<br>Nematoda |

THEF IS Continued

125

The <u>Navicula</u> group was the most numerous diatom in submerged sand until October 19 when Diatoma and Amphora became abundant (Table 8). <u>Cymbella</u> entered dominant ranks on November 3.

Cyanophyta. At the beginning of sampling, this group had its greatest abundance on the beach, usually +140 cm above the waterline. This continued until August 14, when substantial numbers appeared at -70 cm and beyond (Table 8). In September and early October there was a decline in numbers, with beach stations having the larger populations. A great increase was evident on October 19, with highest numbers at waterline, and this pattern was noted again on November 3, although numbers were much smaller. The -70 cm station was well populated on these dates.

Seasonal variations in dominant genera at different stations is shown in Table 10b. <u>Oscillatoria</u> was the chief dominant except on three occasions involving two stations. Other dominants may be noted in the table.

Blue-greens were often restricted to surface sands, but at times occurred in appreciable numbers at depth down to four centimeters both above and below the waterline. Those present at greater depths have been buried by deposition, and those in deeper sand above water probably reflect exposure of a submerged depositional area. In this regard, bluegreens appear to be more tolerant than diatoms.

Chlorophyta and Euglenophyta. Distribution and density of green algae and euglenophytes varied throughout the study. Their inconsistency can best be domonstrated by reference to Table 8. Dominance among them was shared by <u>Scenedesmus</u>, <u>Euglena</u>, <u>Pediastrum</u>, and others as appears in Table 10c.

### Arimals

Testaceous Rhizopoda. This group was dominated by <u>Centropyxis</u> and <u>Difflugia</u>, whose relative abundance over the seasons and transect appears in Table 10d. Their numbers varied with distance from the waterline and depth into the sand as is shown in Table 8. Initial populations at the waterline were sparse but increased with time.

Nematoda. This group was most abundant on the beach +70 cm above the waterline, with only three exceptions (Table 8), when it was most numerous at -70 cm.

Other Animals. Rotifera, Chironomidae larvae, and occasional Ostracoda and Tardigrada occurred in small numbers and were localized in the upper centimeters.

### Effects of Deposition on Population Dynamics

On Movember 3, Station 2 on the Mississippi River transect was sampled, having recently received a new sand deposit which added three centimeters atop the old sand (Figure 11). Vertical distribution of the potamops ammon population at Station 2 on that date (Table 11) may be compared with that at the same site on October 19 (Table 12). The surface centimeter of October 19 was the fourth centimeter on November 3, and it still contained the large numbers of organisms that had developed in surface sand. The new sand brought in numbers of organisms that were mixed in the upper three centimeters, but they were usually less numerous than in the older established sand. A planktonic form, <u>Asterionella</u>, present in the new sand, had not occurred in the older sand, and <u>Cymbella</u> and <u>Cladophora</u> were more numerous in new sand. Greater numbers of

# TABLE 11

# VERTICAL DISTRIBUTION OF ORGANISMS IN A NEWLY FORMED SANDBAR AT STATION 2 OF THE MISSISSIPPI RIVER - NUMBERS ARE PER CUBIC CENTIMETER OF SAND

| Organism          |        | <b></b> | Depth   | (cm)        | en men en en de treste statisticales de tre | 1     |
|-------------------|--------|---------|---------|-------------|---------------------------------------------|-------|
| organitsm         | 1      | 2       | 3       | 4           | 5                                           | 6     |
| Navicula Group    | 19,397 | 28,889  | 211,477 | 271,555     | 57,778                                      | 1,640 |
| Fragilaria        | 35,905 | 16,508  | 165,080 | 469,651     | 85,842                                      | 7,360 |
| Melosira          | 2,380  | 21,460  | 63,556  | 181,588     | 23,111                                      | 1,240 |
| Tabellaria        | 4,480  | 2,920   | 16,508  | 10,050      | 8,254                                       | 720   |
| Asterionella      | 2,200  | 2,320   | 880     | 0           | 0                                           | .0    |
| Amphora           | 120    | 360     | 9,905   | 24,350      | 9,905                                       | 72    |
| Diatoma           | 60     | 120     | 9,079   | 41,683      | 240                                         | 480   |
| Cymbella          | 100    | 120     | 9,079   | 700         | 0                                           | 32    |
| Cocconeis         | 180    | 1,000   | 26,413  | 57,778      | 2,160                                       | 160   |
| G <b>yrosigma</b> | 440    | 160     | 200     | 92          | 0                                           | 0     |
| Gomphonema        | 80     | 120     | 6,603   | 20,635      | 24                                          | 24    |
| Oscillatoria      | 220    | 440     | 11,557  | 33,176      | 16                                          | 0     |
| Merismopedia      | 240    | 0       | 2,000   | 26,858      | 0                                           | 0     |
| Gomphosphaeria    | 0      | 0       | 32      | 108         | 32                                          | 0     |
| Microcystis       | 6      | 16      | 48      | <b>16</b> 8 | 0                                           | 0     |
| Chroococcus       | 8      | 72      | 0       | 428         | 0                                           | 0     |
| Lyngbya           | 0      | 0       | 680     | 1,300       | 0                                           | 0     |
| Trachelomonas     | 180    | 80      | 240     | 700         | 144                                         | 8     |
| Scenedesmus       | 16     | 32      | 5,778   | 8,274       | 240                                         | 40    |
| Pediastrum        | 4      | 16      | 160     | 108         | 8                                           | 0     |
| Cladophora        | 0      | 0       | 4,280   | 3,100       | 576                                         | 0     |
| Euglena           | 0      | 0       | 0       | 32          | 0                                           | 0     |
| Phaeus            | 0      | 0       | 0       | 32          | 0                                           | 0     |
| Peridinium        | 4      | 4       | 24      | 100         | 0                                           | 0     |
| Centropyxis       | 10     | 0       | 120     | 400         | 96                                          | 16    |
| Difflugia         | 18     | 20      | 120     | 600         | 64                                          | 12    |
| Pyxidicula        | 8      | 24      | 120     | 540         | 48                                          | 8     |
| Euglypha          | 4      | 0       | 48      | 332         | 64                                          | 16    |
| Arcella           | 16     | 16      | 160     | 316         | 64                                          | 16    |
| Cyphoderia        | 14     | 16      | 64      | 60          | 16                                          | 8     |
| Wailesella        | 0      | 4       | 32      | 108         | 0                                           | 0     |
| Nebela            | 0      | 0       | 56      | 16          | 0                                           | 0     |
| Nematoda          | 70     | 64      | 96      | 216         | 32                                          | 8     |
| Monostyla         | 18     | 16      | 8       | 0           | 16                                          | 0     |
| Colurella         | 6      | 0       | 16      | 20          | 0                                           | 0     |

### TABLE 12

### VERTICAL DISTRIBUTION OF ORGANISMS IN SAND OF STATION 2 OF THE MISSISSIPPI RIVER BEFORE BEING COVERED WITH SANDBAR REFERRED TO IN TABLE 11 - NUMBERS ARE PER CUBIC CENTIMETER OF SAND

| Organism                                                                                                           | Depth (cm)                                                                         |                                                                           |                                                                 |                                                               |                                                          |                                                   |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|
|                                                                                                                    | 1                                                                                  | 2                                                                         | 3                                                               | 4                                                             | 5                                                        | 6                                                 |
| Navicula Group<br>Fragilaria<br>Diatoma<br>Cocconeis<br>Cymbella<br>Melosira<br>Amphora<br>Gyrosigma<br>Gomphonema | 338,410<br>297,140<br>44,572<br>37,968<br>29,714<br>26,413<br>21,460<br>560<br>320 | 80,889<br>52,000<br>15,683<br>8,254<br>9,905<br>1,600<br>8,254<br>24<br>8 | 40,445<br>20,735<br>200<br>160<br>400<br>560<br>360<br>12<br>24 | 29,714<br>29,714<br>80<br>120<br>120<br>400<br>200<br>0<br>12 | 720<br>1,640<br>120<br>204<br>56<br>120<br>120<br>8<br>4 | 200<br>560<br>12<br>0<br>24<br>28<br>12<br>0<br>0 |
| Tabellaria<br>Merismopedia<br>Anabena<br>Oscillatoria<br>Chroococcus                                               | 240<br>31,365<br>312<br>0<br>0                                                     | 120<br>120<br>0<br>12<br>32                                               | 32<br>56<br>0<br>0                                              | 64<br>60<br>0<br>0                                            |                                                          | 120<br>0<br>16<br>0                               |
| Scenedesmus<br>Trachelomonas<br>Pediastrum<br>Cladophora                                                           | 240<br>400<br>40<br>280                                                            | 120<br>48<br>68<br>0                                                      | 32<br>32<br>32<br>0                                             | 56<br>16<br>0                                                 | 0<br>8<br>0<br>0                                         | 8<br>0<br>12<br>0                                 |
| Centropyxis<br>Difflugia<br>Euglypha<br>Arcella<br>Pyxidicula<br>Cyphoderia                                        | 208<br>152<br>144<br>104<br>72<br>48                                               | 60<br>32<br>20<br>120<br>8<br>0                                           | 56<br>12<br>0<br>4<br>0                                         | 20<br>16<br>0<br>8<br>0<br>0                                  | 20<br>24<br>0<br>4<br>0                                  | 40<br>24<br>0<br>8<br>0<br>4                      |
| Nematoda                                                                                                           | 32                                                                                 | 4                                                                         | 0                                                               | 8                                                             | 0                                                        | 0                                                 |
| Monostyla<br>Colurella<br>Trichocerca                                                                              | 56<br>16<br>16                                                                     | 0<br>0<br>0                                                               | 8<br>0<br>0                                                     | 0<br>0<br>0                                                   | 0<br>0<br>0                                              |                                                   |

organisms in the third centimeter of new sand may reflect a disturbance of the older surface which momentarily suspended organisms, or drove them down through the looser new sand, or both.

#### DISCUSSION

Physical Features

### Sand

Sand exercises great control over the potamopsammon assemblage, since its texture determines pore space, capillary potential, and water... holding capacity. Arrangement of sand grains delimits the amount of interstitial space, which determines the amount of potential living room, the amount of water held therein, and the capillary potential.

Sand composed of uniformly-sized spheres would have an interstitial space volume of 25.96% (Bruce, 1928a and Ruttner-Kolisko, 1962). Previous workers (Sassuchin, <u>et al.</u>, 1927; Pennak, 1940; Neel, 1948; and Ruttner-Kolisko, 1962) found ungraded beach sand to have from 37% to 43% pore space. This divergence from the theoretical value can be attributed to angularity of the sand which prevents optimal packing. Reduction of interstitial space as determined in this study of the Mississippi Ri er sand (22%-25%) was caused by a variety of grades, which allowed more complete packing. The Wild Rice River, with better sorted sand, had 35%-37% pore space.

Bruce (1928a) reported a capillary rise for ungraded marine beach sediments of 260 to 268 mm after two hours. Pennak (1940) and Neel (1948) found capillary rise in ungraded lake beach sand to vary from 63 to 89 mm after 24 hours. The Mississippi River sand showed somewhat greater variation than that found by Pennak and Neel, 36 to 80 mm after 24 hours.

Finer sand of the Wild Rice River produced readings intermediate to those of marine and lake beaches, 118 to 191 mm after 24 hours. Height of capillary rise along with slope of beach determines the lardward extent of the psammon above waterline. Influences of slope, as effective in beach dynamics of both marine and freshwater beaches, have been previously discussed by Pennak (1940), Neel (1948), Ruttner-Kolisko (1956, 1961) and Jansson (1967a).

### Temperature

Jansson (1967b) described temperature relationships of a marine beach, whereas those for freshwater beaches have been presented by Sassuchin, <u>et al.</u> (1927), Pennak (1940), and Neel (1948). Meteorological conditions which affect both insolation and evaporation determine temperature relationships between free water, interstitial water, and beach sand. Beach sand in direct sunlight will absorb heat to the extent that organisms could not survive. However, due to the high latent heat of vaporization of water (539.55 cal/gm), the moist sand remains very stable in its temperature regime, provided sufficient water is available at the surface for evaporation.

## Organic Matter

Pennak (1940) stated that two general types of dead particulate organic matter occur in beach sands, one a finely divided debris, and the other consisting of larger particles such as bits of leaves, twigs, aquatic vegetation, and insect remains. The incorporation of this material into the beach by waves was described by Neel (1948). Particulate organic matter accumulated in exposed and submerged sands of small

streams is not mixed into sand by wave action. Deposition of such material reflects variation in current patterns. This is suggested by variation in organic content with depth in both the Wild Rice and Mississippi Rivers (Table 5). The Mississippi River sand ranged from 105 to 217 mg organic matter/10cc of sand. Pennak (1940) found the range for lake beaches to be from 0.3 to 15.3 mg/10cc of sand, and only when a sample was taken from a recent windrow of wave-accumulated debris did the lake values (128.7 mg/10cc of sand) approach those of the streams.

### Chemical Features

## Chemistry of Interstitial Water

Interstitial water from depths of 6 to 9 cm is not considered representative of that in the upper layers of sand which contain the bulk of potamopsammon populations. It does, however, permit speculation regarding conditions in more superficial layers.

## Oxygen

Marine beaches, as a result of frequent and often massive wave action, develop measurable oxygen concentrations some distance above the waterline. Brafield (1964) found oxygen levels varying from 3.93 to 0.26 ml/liter, depending upon percentage of fine sand, existence of a black layer, and depth of sampling. Jansson (1967c) and Enckell (1968), using a platinum microelectrode, found oxygen concentrations ranging from 9.83 to 0.0 mgl, the determinative factors being grain size, slope, particulate organic matter, and frequency of a black layer.

Pennak (1940, 1951), Neel (1948), and Ruttner-Kolisko (1956) reported that the waterline region, which was subject to frequent wave

action, contained 5.5, 3.5, and 8.0 mgl, respectively. Further shoreward, concentrations dropped abruptly, Pennak and Neel reporting a maximum of 0.4 mgl and Ruttner-Kolisko, a maximum of 3.5 mg.

Ruttner-Kolisko (1961) presented data on the oxygen content of stream beaches in Austria, but only on exposed regions. She reported variations of from 12.5 to 7.0 mgl in interstitial water at the waterline. Decline with distance above waterline was sometimes progressive (8.0 mgl at the waterline to 1.0 mgl 50 cm above it), and sometimes discontinuous (10.0 mgl at the waterline, 2.5 mgl at 30 cm, and 7.0 mgl at 50 cm). With the exception of August 14, 1968, oxygen was not found above waterline in either Mississippi or Wild Rice River beaches or bars. The submerged fine sands of the Wild Rice River contained no oxygen, whereas the coarser submerged sands of the Mississippi River had small amounts (up to 4.4 mgl) until August 20, 1968.

Abundance of life in upper layers of exposed sand strongly suggests the presence of oxygen. It may be absorbed from the atmosphere and supplied by photosynthesis.

## Hydrogen Ion Concentration

Pennak (1940) and Neel (1948) reported that the pH of interstitial water of lake beaches was lower than that of the lake water. A situation existed in the sands of the streams studied, and may be attributed to influx of ground water and/or decomposition of organic matter in the sand.

### Alkalinity

Carbonate alkalinity was found only in stream water of both rivers. There was a progressive increase in bicarbonate alkalinity from stream

to submerged sand to exposed sand for each river (Tables 6a,b). Greater amounts in interstitial water resulted from concentration by evaporation on the beach, from probable ground water entry into submerged sand, and by the dissolution of marl by CO<sub>2</sub> formed by decomposition. Similar data were reported by Ruttner-Kolisko (1961) for the Ybbs River in Austria, which is comparable to the Mississippi in alkalinity. A shoreward increase in alkalinity has been reported for lakes by Pennak (1940) and Ruttner-Kolisko (1956). Neel (1948), however, found higher bicarbonate alkalinity occurring in the submerged regions of Douglas Lake, due to formation of bicarbonate from marl deposits.

### Total Hardness, Calcium, and Magnesium

Increases of total hardness, calcium, and magnesium occurred from the stream to submerged to exposed sand, and varied with discharge. Decrease in discharge was accompanied by uniform hardness values for the three regions, possibly indicating the flux of ground water. Disparity among the regions with increasing duration of low discharge resulted from evaporation of interstitial water and photosynthetic activity.

#### Phosphate and Ammonia-Nitrogen

Influence of drainage basin on streams is illustrated by phosphate and ammonia-nitrogen concentrations. The Wild Rice River drained predominately agricultural land, and, in the immediate vicinity of the station, a feedlot. This environment accounted for concentratiions considerably above those of the Mississippi River, which drained bog and forest land.

Black Layer

Sassuchin et al. (1927), Bruce (1928b), Pennak (1940, 1951), Neel (1948), Brafield (1964), and Fenchel (1967) reported the development of a black layer in the beach sands of oceans, lakes, and streams. Jansson (1968) noted the absence of this black layer in several Swedish marine beaches. No black layer or its accompanying hydrogen sulfide odor was found in either the exposed or submerged sands of the two rivers in this study, even in cores extended to a depth of 25 cm. In the laboratory, hydrogen sulfide gas was bubbled through sand samples; the sand developed a black color which indicated the presence of iron oxide coating the sand grains.

#### Biological Features

Life forms comprising the potamopsammon are motile or sessile. Algae are predominantly motile forms, as indicated by the great number of motile diatoms. A similar association, the epipelic association of Round (1957c) was also dominated by motile species. He noted that mobility is a prime necessity in order to overcome burial during periods of wave and animal-induced disturbances of sediment. Diatoms may be borne on mucilagenous stalks (e.g., <u>Gomphonema</u> spp.) or attached directly to sand grains (e.g., <u>Achnanthes</u> spp. ). Stalked forms were more susceptible to washing and recovery from sand. Attached species, when present, were not easily dislodged by washing, but sand grains bore very few of them.

# Potamopsammon Compared to Lake Psammon

The psammon of Douglas Lake, Michigan, was composed of 255 different species of algae and animals (Neel, 1948), of which 89 were found in the potamopsammon of the Mississippi and Wild Rice Rivers. Table 13 summarizes the quantitative data presented by Neel. Maximum population levels were attained in the upper centimeter of relatively undisturbed sand. Organisms seldom occurred below the six centimeter depth.

Distribution of potamopsammon had many similarities to that of lake psammon. Exposed sands of both streams had organisms concentrated in the upper centimeters of sand. Submerged sand showed more variation, with algal populations occurring mainly in the upper centimeters one week, in the intermediate layers (3-5 cm) the next, and uniformly distributed throughout the 6 cm core the next. Animals with greater mobility apparently moved to the upper layers. Causative agents of this variable distribution were sand erosion and deposition, which were dependent upon current patterns. Neel (1948) noted that concentration of organisms in deeper layers (3-5 cm) of sand resulted from formation of beach ridges by onshore waves. On one occasion an alongshore current increased the population of deeper layers in submerged sand. Generally such currents depopulated sand.

Pennak (1940) and Ruttner-Kolisko (1956) described the microscopic interstitial fauna of the beaches of several Wisconsin lakes and an Austrian lake; respectively. Of the 71 different animals found in Wisconsin beaches, only 14 were present in the potamopsammon. Ruttner-Kolisko listed 11 different animals of which 4 were present in these two streams.

## TABLE 13

### SUMMARY OF THE RANGE OF QUANTITATIVE DATA FOR THE FIRST CENTIMETER OF THE SAND FOR DOUGLAS LAKE, MICHIGAN; NUMBER OF PSAMMON ORGANISMS PER CUBIC CENTIMETER OF SAND

| Location  | Diatoms | Cyanophyta | Chlorophyta | Rhizopoda | Rotifera | Nematoda | Tardigrada |
|-----------|---------|------------|-------------|-----------|----------|----------|------------|
| Exposed   | 500     | 30         | 9           | 3         | 0        | 0        | 0          |
|           | to      | to         | to          | to        | to       | to       | to         |
| Sand      | 288,200 | 677        | 134         | 1011      | 69       | 96       | 27         |
| Water     | 160     | 5          | 0           | 0         | 0        | 0        | 0          |
|           | to      | to         | to          | to        | to       | to       | to         |
| Line      | 325,900 | 292        | 43          | 219       | 62       | 114      | 5          |
| Submerged | 300     | 2          | 0           | 0         | 1        | 0        | 0          |
|           | to      | to         | to          | to        | to       | to       | to         |
| Sand      | 270,400 | 768        | 371         | 295       | 83       | 139      | 26         |

Source: Neel, J. K. 1948. A limnological investigation of the psammon in Douglas Lake, Michigan, with especial reference to shoal and shoreline dynamics. Trans. Am. Microc. Soc. 67: 1-53.

Table 14 summarizes data of Pennak and Ruttner-Kolisko regarding horizontal location of main faunal groups. The Mississippi and Wild Rice Rivers had representatives of all these groups, except the harpacticoid copepods. The rotifer fauna of the two streams was much less diverse than that of Douglas Lake and the Wisconsin lakes.

Pennak described the vertical distribution of major animal groups as follows: tardigrades varied from existing solely in the upper two centimeters to being uniformly dispersed to a depth of eight centimeters; copepods were restricted to the upper four centimeters of the sand; rotifers were found in the upper two centimeters of both submerged and exposed sand; and flagellated protozoans were most abundant in the uppermost centimeter of sand.

The tardigrade, <u>Hypsibius</u> <u>augusti</u>, and the copepod <u>Parastenocaris</u> <u>phyllura</u>, were the two dominant interstitial animals in the beach sand of three Swedish lakes (Enckell, 1968). This is the only previous report of <u>Hypsibius</u> in the psammon fauna.

Moore (1939) found animals in moderate numbers to a depth of four to five centimeters in the profundal benthos of Douglas Lake, Michigan, whereas Cole (1955) reported that 70 to 90% of the animals in the microbenthos of Lake Itasca and Crystal Lake, Minnesota were in the uppermost centimeter.

Round (1957a, b, and c, 1960, and 1961), listed 86 species of algae as comprising the epipelic population of some English lakes. Thirty of these were found in the potamopsammon of the Mississippi and Wild Rice Rivers. Round stated that Bacillariophyceae were most abundant on sediments high in organic matter (30.8%) and calcium (780 mgl), and that Cyanophyta were generally more abundant on sediments poor in

## TABLE 14

## SUMMARY OF THE HORIZONTAL AND NUMERICAL DISTRIBUTION OF THE MICROFAUNA OF SEVERAL WISCONSIN LAKES AND AN AUSTRIAN LAKE; NUMBER OF ORGANISMS PER CUBIC CENTIMETER OF SAND

|                   | Wisconsin Lake Beaches |                           |                 |                          | Austrian Lake Beach |                       |          |          |             |                    |
|-------------------|------------------------|---------------------------|-----------------|--------------------------|---------------------|-----------------------|----------|----------|-------------|--------------------|
| Location          | Tardi <i>g</i> rada.   | Cepepoda<br>Harpacticoida | Rotifera        | Protozoa<br>(Euglenoids) | Nematoda            | Protozoa<br>(Ciliata) | Rotifera | Nematoda | Oligocheata | Harpacticoida      |
| Exposed<br>Sand   | 0<br>to<br>41          | 0<br>to<br>27             | 0<br>to<br>1155 | 200<br>to<br>50,000      | 0<br>to<br>14       | 4000                  | 500      | 30       | 10          | Less<br>Than<br>10 |
| Waterline         | 0<br>to<br>1           | 0<br>to<br>1              | 0<br>to<br>40   |                          |                     |                       |          | • •      | • •         |                    |
| Submerged<br>Sand | 0<br>to<br>1           | 0                         | 0<br>to<br>5    |                          | • •                 | • • •                 | • •      | • •      | • 5         |                    |

Source: Pennak, R. W. 1940. Ecology of the microscopic metazoa inhabiting the sandy beaches of some Wisconsin lakes. Ecol. Monogr. 10: 538-615. Ruttner-Kolisko, A. 1956. Der Lebensraum des Limnopsammals. In, Verh. dt. Zool. Ges. im Hamburg 1956, Akademische Verlagsgesellschaft Geest and Portig K.-G., Leipzig, pp. 421-427.

distoms, or having low organic matter (14.7%) and calcium (370 mgl) content. This may appear to explain dominance change from diatoms to blue-green algae in exposed sand of the Wild Rice River, but the change was more the result of less capillary water.

The general lack of Cyanophyta, Chlorophyta, Pyrrophyta, and Euglenophyta species in the epipelic association led Round (1957c) to assume that the benthic habitat is unsuited for these groups. Chlorophyta, Pyrrophyta, and Euglenophyta were not represented by a great variety of species in the Mississippi and Wild Rice psammon, but on occasion attained substantial numbers. The Cyanophyta, not prominent in lake psammon, was represented by substantial numbers of motile species in both streams.

The potamopsammon did not exhibit obvious cyclic patterns; there were no gradual build-ups but continual variation, as stream currents were constantly disturbing the habitat. The Bacillariophyceae and the Cyanophyta of the epipelic association exhibited a seasonal cycle. Round (1960 and 1961) summarized it as follows: a low winter growth, high spring growth, variable summer growth, and moderate autumn growth.

Round (1965) reported 18 species of diatoms attached to sand grains in the sediment of four English ponds. Six of these were present in the Mississippi and Wild Rice potamopsammon.

A detailed comparison of potamopsammon as exhibited by the Mississippi and Wild Rice Rivers with lake psammon as described by Pennak (1940), Neel (1948), and Ruttner-Kolisko (1956) follows. The Mississippi River possessed a wider range of sand grades than was reported for lakes, since it flowed through an area composed of glacial till. As a consequence of this greater variety, the unsieved sand of the Mississippi River

possessed less pore space than has been reported for lakes, and the capillary potential of this sand was generally lower than that reported for lakes. The Wild Rice River with a more uniform sand composition, possessed an ungraded sand pore space approximately equal to that of lakes. This uniformity produced a capillary potential considerably higher than that of either the Mississippi River or lakes. The content of organic matter in stream sand was higher than in lake sand except for beach ridges. Submerged sand of the streams, unlike that of lakes, was constantly under the influence of currents. Furthermore, wave action was an insignificant force in establishing sand grade at the waterline which is not true for lake sand. The potamopsammon environment (submerged and exposed sand) was subject to more pronounced and varied water level fluctuations. Marl was a component of Wild Rice River sand, as it was for some areas in Douglas Lake. Temperature relationships were similar to those in lakes.

Interstitial water was collected from a greater depth than was reported by Neel (1948). Less oxygen was present in both the submerged and exposed sand than was reported for lakes, due to the sampling depth. The pH and alkalinity were similar to those of lakes, with increases shoreward resulting from decomposition and evaporation. Total hardness, calcium, magnesium, ortho-phosphate, ammonia-nitrogen, and nitritenitrogen, given here, have not been reported for lakes. A black layer was absent in the upper 25 cm of sand in both streams, whereas in lakes this layer usually separates oxygenated and deoxygenated zones. A possible explanation for the lack of this layer may be a more rapid replacement of the interstitial water, preventing the establishment of a reducing environment for bubbling of hydrogen sulfide gas through moist

sand in the laboratory resulted in a definite black layer.

Of the 236 different psammon organisms in the Mississippi River 71 were present in lakes; the Wild Rice River potamopsammon was composed of 178 different organisms, 47 of which were common to lake psammon. Cyanophyta species were more numerous in these streams than in lakes. Euglenophyta were present in potamopsammon, but Pennak (1940) only briefly noted their existence in lake psammon. Harpacticoid copepods were absent in the streams, although they were a characteristic group in the lake assemblage. Bacillariophyceae, Cyanophyta, Chlorophyta, Euglenophyta, and testaceous Rhizopods were found in greater numbers per cubic centimeter of sand than in lakes. Rotifera, Nematoda, Tardigrada, Gastrotricha, Dipteran larvae, and Oligochaeta were generally found in numbers similar to those of lakes. Substantial populations occurred in submerged sand with greatest numbers being found in depositional ridges of the stream, whereas submerged sand in lakes was less well colonized. Smallest populations occurred generally at the waterline of the streams, but the largest populations in lake psammon often occurred at this location. Exposed sand populations for streams were generally larger than those at the waterline, but populations declined with distance from water. Shoreward reduction in numbers was also reported for lakes.

The Mississippi River exposed sand developed little slope and exhibited no shoreward change in flora or fauna, whereas the exposed beach of the Wild Rice River had a significant slope, and established a saturation gradient from the waterline shoreward. A succession of algae followed this gradient with diatoms dominating the saturated portion, and was replaced by blue-green algae in less saturated regions. The

potamopsammon fauna did not show a shoreward succession but a succession of animals, not algae, was noted in lake psammon. Stability of the exposed sand for both streams allowed the potamopsammon organisms to disperse freely. This resulted in algae populations being located predominantly in the upper two centimeters of sand, but with viable cells extending to a depth of six centimeters as compared with one centimeter for undisturbed lake sand. Animals dispersed similarly to algae, but had a more uniform distribution in the deeper layers, as reported in lakes. Downward movement of potamopsammon organisms was not impeded by an anaerobic black layer as has occurred in lakes.

### Comparison of Minnesota Rivers and European Rivers

The following algae were reported as being dominant in the Oka River sand (Sassuchin <u>et al.</u>, 1927): <u>Navicula radiosa</u>, <u>N. crytocephala</u>, <u>Nitzschia palea</u>, <u>Phormidium</u> sp., <u>Oscillatoria tenuis</u>, <u>Chlamydomonas</u> sp., and <u>Scenedesmus quadricauda</u>. Sassuchin found psammon organisms existing to a depth of ten centimeters, and reported that buried organisms remained viable up to two weeks.

Butcher (1932) listed 23 genera and 22 species of Bacillariophyceae, Cyanophyta, and Chlorophyta, all of which were sessile, for several English rivers. Of these, 17 genera and 14 species were part of the Mississippi River and Wild Rice River psammon assemblages.

Neiswestnova-Shadina (1935) found that the microbenthos of the Oka River completely lacked a microflora. She attributed this to high turbidity which prevented light penetration beyond 80 cm. In sandy shallow regions, reduced currents permitted deposit of a thin layer of mud atop the sand. Light penetrated to this area and the development

of a rich microflora, composed mainly of diatoms, but including also green flagellates, Protococcales, and Volvocales, resulted. Neiswestnowa-Shadina listed 81 different animal species (41 protozoans, 28 rotifers, 9 cladocerans, etc.), few of which occurred in the psammon of the Mississippi and Wild Rice Rivers. A typical quantitative sample she described contained 80 rotifers, 38 protozoans, and 4 oligochaetes per cubic centimeter of sand.

Douglas (1958) found maximum populations of the attached <u>Achnanthes</u> sp.  $(5.1 \times 10^6 \text{ cells/cm}^2)$  on stone or rock surfaces in a small English stream. Water level fluctuations were the most important factors influencing this <u>Achnanthes</u> population. Physical disturbance of the stream bottom by increased flow simply removed diatoms from their attached surfaces.

Flow pattern variations were also effective in population dynamics of the potamopsammon, removing organisms from interstitial spaces and redepositing them elsewhere, generally at a different depth.

Ruttner-Kolisko (1961) described only general animal groups (ciliates, rotifers, etc.) present on Austrian river beaches. Quantitative data were not given, but she stated that only sand from 2.0 to 0.2 mm in grain size was capable of supporting a psammon association. The Donau River beach was composed of 90% fine sand (0-250  $\mu$ ), and was sparsely colonized only in the upper three centimeters. The Langau station on the Ybbs River, having 28% of the sand as medium sand (250-400  $\mu$ ) and lacking fine sand, exhibited the greatest animal diversity. Colonization on this beach reached a depth of six centimeters. Other stations were intermediate in sand composition and colonization.

Mississippi River sand was similar to that of the Ybbs and it

supported an equally diverse animal association down to a depth of six centimeters. Sands of the Wild Rice River were comparable with those of the Donau River; and animal diversity was equally limited, although organisms occurred to greater depths in the Wild Rice. With decreased discharge, exposed sand became more heterogeneous, containing a larger percentage of medium grades. Accompanying this change was an increase in diversity of both algae and animals. While this does not substantiate Ruttner-Kolisko's hypothesis that sand below 0.2 mm grain size is incapable of supporting an interstitial flora (organisms were found in fine sand), the increase in diversity with more heterogeneous sand would support her general thesis.

Sassuchin <u>et al</u>. (1927) stated that a vertical cut in the sand near the stream revealed four characteristic color layers: the upper surface was unstained; the second stratum was green due to development of massive algal populations; the third stratum was brown, arising from accumulation of silt and formation of iron oxides; and the fourth layer was black. This pattern was not exhibited by the Mississippi and Wild Rice Rivers. Their sand surface layers were brown due to massive populations of diatoms, and neither had a green layer. Diatoms colored the upper few centimeters of Mississippi River cores, and marl imparted a grey color to Wild Rice River sand below the first centimeter. As mentioned previously, the black layer did not exist in either river.

Round (1965) described phytobenthos as being composed of four distinct associations: (1) the epiphytic: attached non-motile species growing mainly on macroscopic plants; (2) the epilithic: attached nonmotile species growing on rock surfaces and inorganic substrata; (3) the epipelic: motile species found on the sediments of freshwater; and

(4) the epipsammic: small non-motile species attached specifically to sand grains. In this system, the potamopsammon would be termed an epipelic association with an epipsammic component. But an epipelic association implies an assemblage of algae on the surface of a highly organic mud or silt deposit. This was not the situation with potamopsammon as organisms occurred to a depth of several centimeters in both exposed and submerged sands of streams. There was an epipsammic component, if this association is not restricted to surface sand grains, of occasional small diatoms attached to sand grains in the two streams. Thus, I view the potamopsammon as a separate entity from the four situations described by Round.

### Migration

It has been mentioned that mobility is advantageous for the potamopsammon microflora, allowing escape from burial. This could imply migration of these algae. Palmer and Round (1965) described the following occurrence on the banks of the River Avon: During the daytime at low tide, the exposed banks of the river developed a green color, owing to a massive population of <u>Euglena obtusa</u>, which emerged from the black mud.

Round and Palmer (1966) indicated that a diatom population was associated with the <u>Euglena</u>. Both populations exhibited a rhythmic vertical migrational pattern. In the laboratory, the vertical migration continued for almost a month, even after being subjected to constant illumination and temperature, and isolated from the tidal influence. The rhythm changed from a tidal to a diurnal period. Various intensities of constant illumination altered the amplitude of the rhythm, but not

the periodicity. Total darkness inhibited the rhythm. The rhythm was also inhibited at 2°C, but between 5 and 15°C there was no alteration.

The epipelic algae of a freshwater pond also demonstrated vertical migration under three different sets of conditions: natural light/darkness, continuous light, and continuous darkness (Round and Eaton, 1966). Round and Happey (1965) found that the epipelic flora of a stream would migrate under laboratory conditions. Harper (1969) established that epipsammic diatoms migrate, but more slowly than epipelic diatoms.

With the potamopsammon microflora having representatives of both the epipelic and epipsammic associations, the probability of vertical migration from deeper layers to surface and vice-versa exists, and could be an important factor in the distribution of the assemblage. No direct evidence was collected, however, which would demonstrate the existence of vertical migration on either the Mississippi or the Wild Rice Rivers.

### SUMMARY

- 1. Potamopsammon reported herein represents the upper Mississippi and middle Wild Rice Rivers which drain bog-forests, and bog-forests followed by cultivated lands, respectively.
- Sands of the Mississippi River were coarser than those of the Wild Rice River, and had less pore space and capillarity. Submerged sand was frequently eroded and deposited by currents.
- 3. Oxygen was absent from water 6-9 cm deep in exposed sand of both streams and in submerged sand of the Wild Rice River, but occasionally occurred in samples taken from submerged sand in the Mississippi; pH decreased progressively from stream to submerged to exposed sand as decomposition became more localized. Carbonate alkalinity was not observed in interstitial water. Bicarbonate alkalinity, total hardness, calcium, and magnesium increased in the same order as pH, seemingly because of ground water seepage, decomposition, and evaporation.
- 4. Ammonia-nitrogen and ortho-phosphate were contributed to the psammon of the Wild Rice River by local surface drainage. Much lower levels occurred in Mississippi River sand.
- 5. Potamopsammon organisms in descending order of dominance were: diatoms, blue-green algae, green algae, testaceous rhizopods, euglenophytes,

rotifers, nematodes, tardigrades, dinoflagellates, oligochaetes, gastrotrichs, dipteran larvae, ciliates, ostracods, and hydrachnid larvae.

- 6. Potamopsammon organisms were most numerous in stable submerged sand. They were next most abundant in exposed sand within 70 cm of the waterline, newly formed sand bars under water, eroded portions of submerged sand, exposed sand 70+ cm above the waterline, and at the waterline, in that order.
- 7. The major portion of the population was usually located in the upper two centimeters of stable sand, but organisms penetrated to a depth of six centimeters. Organisms were most concentrated at a depth of three or more centimeters in newly formed submerged bars usually as a result of burial of established surface populations.

#### LITERATURE CITED

- American Public Health Association, American Water Works Association, and Water Pollution Control Federation. 1965. Standard Methods for the Examination of Water and Wastewater Including Bottom Sediments and Sludges. 12th Ed. American Public Health Association, New York.
- Brafield, A. E. 1964. Oxygen content of interstitial water in sandy shores. J. Anim. Ecol. 33: 97-116.
- Bruce, J. 1928a. Physical factors on the sandy beach. Part I. Tidal, climatic, and edaphic. J. Mar. Biol. Ass. U. K. 15: 535-552.
- . 1928b. Physical factors on the sandy beach. Part II. Chemical changes - carbon dioxide concentration and sulfides. J. Mar. Biol. Ass. U. K. 15: 553-565.
- Butcher, R. W. 1932. Studies in the ecology of rivers. II. The microflora of rivers with special reference to the algae of the river bed. Ann. Bot. Lond. 46: 813-861.
- Cole, A. G. 1955. An ecological study of the microbenthic fauna of two Minnesota lakes. Amer. Midl. Nat. 53: 213-231.
- Douglas, B. 1958. The ecology of the attached diatoms and other algae in a small stony stream. J. Ecol. 46: 295-322.
- Edmondson, W. T. (Ed.) 1959. Fresh-Water Biology. 2nd ed. John Wiley and Sons, Inc. New York.
- Enckell, H. 1968. Oxygen availability and microdistribution of interstitial mesofauna in Swedish freshwater sandy beaches. Oikos 19: 271-291.
- Harper, M. A. 1969. Movement and migration of diatoms on sand grains. Brit. Phycol. J. 4: 97-103.
- Hustedt, F. 1930. Bacillariophyta. Heft 10 in: A. Pascher (ed.). Die Susswasser-Flora Mitteleuropas. G. Fischer, Jena.
- Jansson, B.-O. 1967a. The significance of grain size and pore water content for the interstitial fauna of sandy beaches. Oikos 18: 311-322.

. 1967b. Diurnal and annual variations of temperature and salinity of interstitial water in sandy beaches. Ophelia 4: 173-201.

. 1967c. The availability of oxygen for the interstitial fauna of sandy beaches. J. Exp. Mar. Biol. Ecol. 1: 123-144.

. 1968. Quantitative and experimental studies of the interstitial fauna in four Swedish sandy beaches. Ophelia 5: 1-71.

- Leidy, J. 1879. Fresh-water rhizopods of North America. U. S. Geol. Survey Territ. 12:1-324.
- Moore, G. M. 1939. A limnological investigation of the microscopic benthic fauna of Douglas Lake, Michigan. Ecol. Monogr. 9: 538-582.
- Myers, F. J. 1936. Psammolittoral rotifers of Lenape and Union Lakes, New Jersey. Amer. Mus. Nov. No. 830. 22 pp.
- Neel, Joe K. 1948. A limnological investigation of the psammon in Douglas Lake, Michigan, with especial reference to shoal and shoreline dynamics. Trans. Am. Micros. Soc. 57: 1-53.
- Neiswestnova-Shadina, K. 1935. Zur Kenntnis des rheophilen Mikrobenthos. Arch. f. Hydrobiol. 28: 555-582.
- Palmer, J. D. and F. E. Round. 1965. Persistent, vertical-migration rhythms in benthic microflora. I. The effect of light and temperature on the rhythmic behaviour of <u>Euglena</u> obtusa. J. Mar. Biol. Ass. U. K. 45: 567-582.
- Patrick, R. and C. W. Reimer. 1966. The diatoms of the United States: exclusive of Alaska and Hawaii. Acad. Nat. Sci. Phila., Monograph 13, 1-688.
- Pennak, R. W. 1939a. A new rotifer from the psammolittoral of some Wisconsin Lakes. Trans. Amer. Micros. Soc. 58: 222-223.

\_\_\_\_\_. 1939b. A new copepod from the sandy beaches of a Wisconsin lake. Trans. Amer. Micros. Soc. 58: 224-227.

\_\_\_\_\_. 1940. Ecology of the microscopic metazoa inhabiting the sandy beaches of some Wisconsin lakes. Ecol. Monogr. 10: 538-615.

. 1951. Comparative ecology of the interstitial fauna of fresh-water and marine beaches. Ann. Biol. 27: 449-480.

- Prescott, G. W. 1962. Algae of the Western Great Lakes Area. Wm. C. Brown Co. Dubuque, Ia.
- Round, F. E. 1957a. Studies on bottom-living algae in some lakes of the English Lake District. Part I. Some chemical features of the sediments related to algal productivities. J. Ecol. 45: 133-148.

. 1957b. Studies on bottom-living algae in some lakes of the English Lake District. Part II. The distribution of Bacillariophyceae on the sediments. J. Ecol. 45: 343-360.

. 1957c. Studies on bottom-living algae in some lakes of the English Lake District. Part III. The distribution of algal groups other than the Bacillariophyceae on the sediments. J. Ecol. 45: 649-664.

. 1960. Studies on bottom-living algae in some lakes of the English Lake District. Part IV. The seasonal cycles of the Bacillariophyceae. J. Ecol. 48: 529-547.

. 1961. Studies on bottom-living algae in some lakes of the English Lake District. Part V. The seasonal cycles of the Cyanophyceae. J. Ecol. 49: 31-38.

\_\_\_\_. 1965. The epipsammon: a relatively unknown freshwater algal association. Br. Phycol. Bull. 2: 456-462.

, and C. M. Happey. 1965. Persistent, vertical-migration rhythms in benthic microflora. IV. A diurnal rhythm of the epipelic diatom association in non-tidal flowing water. Br. Phycol. Bull. 2: 463-471.

, and J. W. Eaton. 1966. Persistent, vertical-migration rhythms in benthic microflora. III. The rhythm of epipelic algae in a freshwater pond. J. Ecol. 54: 609-616.

\_\_\_\_\_, and J. D. Palmer. 1966. Persistent, vertical-migration rhythms in benthic microflora. II. Field and laboratory studies on diatoms from the banks of the River Avon. J. Mar. Biol. Ass. U. K. 46: 191-214.

Ruttner-Kolisko, A. 1956. Der Lebensraum des Limnopsammals. In, Verh. dt. Zool. Ges. in Hamburg 1956, Akademische Verlagsgesellschaft Geest and Portig K.-G., Leipzig, pp. 421-427.

. 1961. Biotop und Biozonose des Sandufers einiger osterreichischer Flusse. Verh. Internat. Verein. Limnol. 14: 362-368.

. 1962. Porenraum und kapillare Wasserstromung im Limnopsammal, ein Beispiel fur die Bedeutung verlangsamter Stromung. Schweiz. Z. Hydrol. 24: 444-458.

Sassuchin, D. 1926. Zur Frage der Bodenprotozoen. Russ. Arkh. Protistol. 5: 241-246.

N. M. Kabanov, and K. S. Neiswestnova. 1927. Uber die mikroskopische Pflanzen- und Tierwelt der Sandflache des Okaufers bei Murom. Russ. Hydrobiol. Zeitschrift. 6: 59-83. . 1930. Materialien zur Grage uber die Organismen des Flugsandes in den Kirgesensteppen. Russ. Hydrobiol. Zeitschr. 9: 121-130.

. 1931. Lebensbedingungen der Midrofauna in Sandanschwemmungen der Flusse und in Triebsand der Wusten. Arch. f. Hydrobiol. 22: 369-388.