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Abstract 
The substitution of deuterium, an isotope of hydrogen containing one proton and one 

neutron, for a hydrogen has far reaching effects on the behavior of the compound. Scientists have 

been utilizing the effects of deuterium since 19611. The primary purpose for deuterium has been 

concentrated in the development of internal standards for NMR and mass spectrometers, due to 

their relative ‘silence’ in these studies, allowing scientists to elucidate mechanisms and trace a 

compound's movement throughout the body. However, recently, in addition to the use of 

deuterium as a standard, it has been added to developing or previously created pharmaceutical 

compounds with the intent to stabilize the drug. This stabilization can take many forms, 

including decreasing the rate of metabolic breakdown, decreasing enantiomeric switching, and, 

in some cases, decreasing toxicity. With this more widespread application, a resurgence of 

studies have been completed to develop new methods of deuterating a wide variety of molecules, 

with a focus on common functional groups found within pharmaceutical compounds and mild 

reaction conditions.  

 

Pharmaceutical Applications 

General Effects 

Pharmaceuticals are generally analyzed according to several different features: 

absorption, distribution, metabolism, and excretion (ADME)2 through isotopic labeling. The 

heavier than normal element allows scientists to track the drug as it moves throughout the body. 

However, deuterium has an additional effect on the compound known as the kinetic isotope 

effect (KIE)2,3,. Deuterium changes the pharmacokinetics of the compound, or how the drug 

moves throughout the body2. Though the difference in bond enthalpies of C-D and C-H is just 
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1.8 kJ*mol-1  4, the addition of deuterium decreases the rate of metabolism3. This allows for a 

decrease in both the dosage and frequency of dosage which in turn lessens the negative side 

effects5.  

 Deuterium can also be utilized in pharmaceutical compounds in order to stabilize 

stereocenters5. The addition of deuterium on a chiral center allows the emergence of one, more 

common, enantiomer6. This, in turn, allows for the development of a medicine with more 

beneficial effects. Moreover, this stabilization is important as some compounds have a toxic 

enantiomer and isolation of the beneficial enantiomer was previously impossible due to the chiral 

environment of the body. While the deuterated compounds may not be entirely stable, it is up to 

five times more stable than its deuterium-lacking counterpart5.  

 

Deuterium Containing Drugs in Development (or Approved) 

 A drug in clinical development goes through four distinct phases. The first phase involves 

15-50 patients and aims to determine whether or not a drug is safe; it is given increasingly large 

doses to determine the magnitude of negative side effects. Phase II involves a larger sample 

study and begins to determine the effectiveness of a drug, whether or not it will produce the 

desired outcome. Often, this stage also involves testing the compatibility of the drug in 

development to other medications used to treat the disease. In the third phase, the developing 

drug is compared to the current standard of care drug. In this phase, participants are chosen 

randomly and are not told whether or not the drug that they are receiving is experimental or the 

standard. Moreover, each patient is watched carefully for side effects. This last phase tests the 

drug after it is approved by the FDA in several thousands of patients and studies both long and 

short term effects. This stage can also involve testing for compatibility with other drugs7.  
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Figure 1: A pie chart detailing the distribution of the phases of development of the deuterated 
drugs. The raw data can be found in Appendix A and was simplified so each drug is only 
represented once. 
 

The first deuterated drug that was approved by the Food and Drug Administration (FDA) 

was Austedo, deutetrabenazine, deuterated benzoquinoline, or d6-tetrabenazine, developed by 

Teva Pharmaceuticals5,8. It should be noted that in addition to this drug being approved by the 

FDA, it received a patent as a New Molecular Entity (NME)9. This drug is used to treat chorea 

(tremors) caused by Huntington's disease which are caused by reducing dopamine and serotonin 

production8. As previously mentioned, the main effect of deuterium in this compound is the 

decrease in the metabolic breakdown by 69-87%9. This allows the drug to be administered only 

twice a day leading to a decrease in negative side effects such as sleepiness, depression, and 

anxiety8. Currently, there are twenty different pharmaceutical compounds in various stages of 

testing that contain deuterium5. Of these, sixteen compounds are deuterium containing analogs to 

already approved and administered drugs, two are deuterated forms of nutritional compounds, 
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and two do not have a non-deuterated counterpart, meaning deuterium was utilized from the 

beginning stages of development5. 

 

Figure 2: A pie chart detailing the different effects that the addition of deuterium has on already 
known drugs. 
 

 Aldehyde Oxidase and Metabolism 

 A study on the development of a heroin “vaccine” provides further evidence that the body 

can differentiate between hydrogen and deuterium30. This vaccine is a heroin haptinn that would 

elicit an immune response from the body which in turn would prevent heroin and heroin 

metabolites from entering the brain. Heroin breaks down first into 6-monoacetylmorphine (6AM) 

and then morphine; it is morphine that causes the negative side effects of heroin. The deuterated 

vaccine for heroin bonded more closely to heroin than the non-deuterated vaccine. The reason 

for this tighter bonding is not fully known and most likely has to do with “different T-cell 
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dependent B-cell receptor activation populations”. This difference however clearly indicates that 

the immune system can differentiate between deuterium and hydrogen. Furthermore, the 

deuterated vaccine also allowed for an increase in 6AM as the breakdown was no longer subject 

to P450; the deuterated compound slowed the rate of metabolism allowing for a decrease in the 

metabolite causing undesired effects30. 

 The addition of deuterium to slow the metabolism of a drug was utilized in the 

development of HC-114428. The phosphorylation and activation of Vascular endothelial growth 

factor receptors (VEGFR) leads to the creation of new tumors. Tivozanib is a VEFGR inhibitor 

with a longer progression-free survival. However, there was a large increase in both hypertension 

(34% to 44%) and dysphonia (5% to 21%) compared to sorafenib, a less effective VEFGR 

inhibitor. The deuterated analog of Tivozanib (HC-1144) was as effective in vitro as Tivozanib 

itself. HC-1144 was synthesized through the deuteration of an early reactant and had a 69% 

yield. HC-1144 had a larger half-life, a larger max concentration (Cmax, meaning smaller doses 

could be given), a 1.5 times larger AUC (an integral of the change in concentration over time, 

meaning that the compound stayed in the body for a longer period of time) and a similar peak 

time (meaning the release of the drug was not further delayed) 28.  

 

 Stabilization of Chiral Center 

The isolation of the beneficial enantiomer (eutomer) from the undesired enantiomer 

(distomer) first arose around the 1990s, allowing for the creation of drugs such as Nexium, 

Lexapro, Lunesta, and Xopenex 31. However, some compounds, such as those with hydrogen at 

the chiral center, could not be isolated due to enantiomeric switching in vivo. This switching 

can be stabilized through deuterium labeling. For example, (S)-D lenalidomide is ten times 
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more potent than racemic lenalidomide and (-)-D avadomide was 20 times more potent than its 

racemic mixture 31. Furthermore, the deuterated analog had a reduction in degradation rate as 

well. The addition of deuterium at the chiral center pioglitazone, creating the drug DRX-065 

which is used to treat diabetes, allowed for the a reduction in PPARɣ agonist activity which 

causes weight gain, edema (swelling), and bone fracture as it is caused solely by the S 

enantiomer 10. However, it should be noted that deuteration did not affect the stability of 

inolitazone 31. 

 

Intellectual Property Laws 

 While deuterated compounds do possess beneficial side effects, there is some controversy 

surrounding these drugs due to intellectual property laws5. Determination of whether or not a 

deuterated form of a pre-existing compound can be considered a new compound, and thus be 

eligible for a new patent, is done on a case by case basis. Some believe that scientists are using 

deuterated forms of their compounds as merely a way to extend their patent without fully 

developing a new product5.  

However, this is not to say that the intention of all scientists behind the development of 

deuterated drugs are less than pure. At least two drugs containing deuterium are currently in 

development that do not have an analog. This suggests that deuterium is becoming more 

prominent in methods of drug design. Furthermore, deutetrabenazine was approved as a NME, 

rather than as an extension of tetrabenazine, suggesting that  sometimes the KIE can be large 

enough to have a significant, patentable effect10. Moreover, the process of deuterating a drug is 

complex. One would have to determine exactly which hydrogen atoms should be exchanged and 



Martinez 8 

then study the effects of the drug. This study is complicated by the fact that sometimes while 

drugs are beneficial in vitro they are not in vivo5.  

The issue of patentability has large monetary importance, increasing its importance. The 

intellectual property rights for a deuterated version of lenalidomide, with the addition of 

deuterium decreasing the rate of racemization, was sold from Deuteria Pharmaceuticals to 

Celegene for 42 billion dollars11. This sale occurred before the drug was fully developed. On a 

much larger scale, Teva Pharmaceuticals paid 3.5 billion dollars to acquire Auspex, the company 

reasonable for the development of Austedo.  

 Patentability would become even more difficult if the rights to the deuterated drug were 

owned by a different company than the one that sells the non-deuterated drug. Because there can 

never be one-hundred percent deuterium incorporation, some of the deuterated drug would be 

sold with its deuterium-lacking counterpart—a complication that could lead to lawsuits. To 

counteract this possibility, many companies, such as Celegene, are purchasing or patenting any 

deuterated analogs. 

 

Toxicity and Cost Concerns 

 Deuterium does not only have positive effects on the compound, however. In some 

instances, the metabolites of the deuterated compound are toxic, while the metabolites of the 

undeuterated compound are not5. It should be noted that generally, this is not the case and 

deuterium is relatively non-toxic. Deuterium would need to be present in 20% of a humans total 

body water before it reached toxic levels and even then this toxicity is reversible 9, 10. However, 

in some instances, such as with JNJ-38877605 and HC-1119, the toxicity could decrease12. In 

this way, deuterium could be used to ‘save’ already developed drugs that proved too toxic to pass 
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phase one clinical trials.  Therefore, it is essential to study the toxicity at all stages when 

developing new drugs, even if the only new aspect is the addition of deuterium. 

 Another concern is the cost of deuteration. While strides have been made in the field, 

many reactions still involve precious metals such as gold or deuterated solvents, both of which 

increase the cost of production. Though this cost could be partially mitigated by the decrease in 

dosage size and the relatively small amount of deuterium needed, it still may remain too high for 

some. Due to cost and selectivity issues of deuteration as well as limited KIE, Cargnin et. al. 

suggests that less than 10% of the drugs currently on the market are good candidates for 

deuteration12. Nevertheless, an increasing number of drugs containing deuterium are produced, 

with several sources comparing deuterium's potential to that of fluorine.  

 

Comparison with Fluorine  

 Fluorine, beginning in the 1970s, began to be added to more drugs for stability. While 

originally fluorine was only in 2% of drugs, it is now in around 50%5. Several articles draw the 

parallel between deuterium labeling and the addition of a fluorine group 12,5. Furthermore, the 

addition of a deuterium atom can, in some cases, be more beneficial than the addition of fluorine. 

Most notable this occurs when changes in electronegativity and steric hindrance cannot be 

tolerated. One example of this is the recent study on how to best improve Celecoxib. 

Celecoxib is an anti-inflammatory, pain relieving, antipyretic drug that belongs to a class 

of cyclooxygenase-2 (COX-2) inhibitors. These drugs currently lack a radiotracer as current 

tracers lack either specific binding, metabolic stability, or ability to demonstrate COX-2 binding 

in vivo. This study focuses on increasing the metabolic stability of methylsulfonyl-substituted 

celecoxib through the addition of deuterium or fluorine. Deuterium was added through the 
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reduction of an intermediate with LiAlD4, rather than LiAlH4. Deuterium was found to not 

change the COX-2 inhibitory potency but lengthening the fluoroethyl chain decreased both the 

inhibitory potency and selectivity. While the two variations had similar pharmacokinetic 

patterns, the deuterium substituted variation was more intact after 60 minutes (52% remaining vs 

28% remaining). Deuteration enhances metabolic stability both in vitro and in vivo the most; it 

has a greater positive effect than the addition of fluorine29.  

Deuterium was also chosen over fluorine in the development of JNJ-38877605 12. While 

fluorine was the first instinct of the developers to stabilize this drug, it could not be used as it 

would affect the ability of the compound to bond with the residue of kinase as it needs to do 12.  

 

A Comprehensive List of Deuterated Drugs? 

 Currently, there are twenty different pharmaceutical compounds in various stages of 

testing that contain deuterium5. Of these, sixteen compounds are deuterium containing analogs to 

already approved and administered drugs, two are deuterated forms of nutritional compounds, 

and two do not have a non-deuterated counterpart, meaning deuterium was utilized from the 

beginning stages of development5. 

 
A full list of drugs currently in development and accessible through a search on 

clincialtrials.gov can be found in Appendix A. However, it should be noted that this list is not 

fully comprehensive as some individual companies advertise the development of deuterium 

containing drugs that do not appear in the aforementioned database. Furthermore, many 

companies are reluctant to advertise the composition of drugs under development. In May of 

2015 when Teva purchased Auspex it was estimated that over 60 deuterated drug candidates 
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were being studied11. Currently many companies, including Pfzier, Teva, Concert, Avanir, and 

DeuteRx are all researching, or at least patenting, deuterated analogs of drugs in development. 

 
Methods of Deuterium Labeling 
Using Nanoparticles and Nanosheets 

 A number of modern reactions use either nanosheets or nanoparticles, though not 

necessarily of the same element. However, while multiple elements can be used to catalyze these 

reactions, one common element utilized is cadmium 13,14,15. Cadmium selenide is used in 

experiments due to several of its electrochemical properties, such as its bandgap which allows it 

to absorb solar energy and its conduction band edge which allows it to reduce water, which lends 

itself toward single electron transfer (SET) reactions as it forms D+ ions, which later become 

deuterium radicals.15. When CdSe is developed in porous nanosheets, more catalytic sites 

become available to the substrate, allowing for more reactions to occur in the same span of 

time14,15. Nanowire cadmium sulfide is used for much of the same reasons13. 

 

Figure 3: A reaction scheme for photocatalytic deuterium labeling with CdSe nanosheets15 

 While some articles found good deuterium incorporation with any halogen13,14, it was 

determined that due to both bond enthalpies and reduction potentials, the best results occur when 

iodine is used15. Because of the mild reaction conditions, sensitive groups such as cyan, ester, 

amaino, hydroxyl, aldehyde, and ketones were not affected15. This marks a significant 

improvement over other halogen/deuterium exchanges which commonly use strong bases and 
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therefore lack the same degree of flexibility. Though pharmaceutical compounds were not 

directly synthesized using this technique, it remains an important step in the synthesis of 

deuterated pharmaceutical compounds. Deuterated intermediates that would otherwise remain 

inaccessible due to their fragility, such as alkynes, boric acid, and alkene-containing compounds, 

can undergo Suzuki coupling or bond insertion in order to form desired products15. An 

intermediate for deuterated nicotinic acid, an anti-hypercholesterolemia drug, was synthesized 

through this technique before undergoing further ester hydrolysis15.  

Palladium, Pd, is another element that, when in nanosheets, is used for reactions in which 

an aryl chloride is replaced with a deuterium atom16. Palladium serves as the catalyst to both 

activate  the C-Cl bond and to replace the chloride atom with a deuterium atom16. Furthermore, 

the nanosheet structure of this reagent allows it to collect the electrons released when the 

deuterium source, in this case D2O, breaks down as well as regenerate the sacrificial agent16. 

  

Figure 4: A reaction scheme for the replacement of a chloride atom with a deuterium atom 

through the use of a palladium nanosheet 16.  

 Ruthenium is one of nanocatalysts that has been used for the longest period of time in the 

field of deuterium labeling and in a way, paved the way for the aforementioned elements17. 

Ruthenium, similarly to palladium, activates the CH bond, allowing the rest of the reaction to 

occur17. As this step is the rate determining step, it is important to note that the nanoparticle 

nature of the ruthenium atoms decrease the activation energy17. Therefore, while ruthenium is the 

catalyst, the innovation of using a nanocluster allows the reaction to proceed faster and with less 

energy. Ruthenium nanoparticles, along with D2O, were able to deuterate the α position of the 
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nitrogen atom of an amine through the activation of a C(sp3)-H bond. This reaction occurred 

enantiospecifically for amino acids with aliphatic, amide, and nitrogen containing side chains17. 

Molecules containing multiple good ruthenium coordination units, such as carboxylic acids, 

amines, and aromatic rings, had a lower deuterium incorporation due to decrease in flexibility of 

the molecule. Notably, these reaction conditions were able to selectively deuterate the Cα carbon 

atom of the N-terminal group amino acid of several peptides—a modification of interest in the 

field of drug development. 

  

Figure 5: A reaction scheme for a HAT reaction using ruthenium nanoparticle as a catalyst17.  

 

Radical Pathways 

 The palladium nanosheet previously mentioned has a radical pathway. Palladium works 

with the photocatalyst which is, in this reaction, crystalline polymeric carbon nitrides (CPCN)16. 

While the CPCN creates the radical deuterium, the palladium nanosheet traps the radical that 

causes the HAT to occur16.  

 Cadmium sulfide, or CdS, has a slightly different radical pathway. It works with gold to 

deuterate aryl halides13. The gold releases an electron which is then transferred to first the CdS 

nanowire and then the aryl halide13. The halide then falls off of the aryl halide anion leaving an 

aryl radical, which is then deuterated by D2O13.  

 Another radical pathway occurs in the development of deuterated silanes. In this reaction, 

the catalyst, 4CzIPN, becomes a radical18. This radical is then quenched by HAT through SET to 
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make a thiyl radical18. It is this thiyl radical that both regenerates the photocatalyst and forms the 

silane radical18. Once the silane is a radical, it can rob the deuterated thiol of its deuterium atom 

and become deuterated18. 

 

Figure 6: A reaction scheme for the deuteration of silanes through the use of the photocatalyst 

CzIPN18.  

 A very similar mechanism occurs with iridium, Ir, as the photocatalyst. However, in this 

reaction, amines, rather than silanes, are deuterated and several intermediate steps are eliminated. 

This reaction starts when the ‘excited’ iridium atom oxidizes an amine, forming an amino radical 

at the alpha position19. This amino radical is then deuterated with the same deuterium donor as 

the previous reaction, deuterated thiol.  

 

Figure 7: A reaction scheme for the deuteration of α-amines through the use of the photocatalyst 

iridium19.  

 Some mechanisms, unlike those previously mentioned, do not require a catalyst. Instead, 

light can immediately activate a bond, such as the S-N bond in arylazo sulfones, forming an aryl 

radical20. The weakest CH bond on the ring then undergoes HAT with either deuterated 

isopropanol or deuterated THF as the deuterium donor20.  
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Figure 8: A reaction scheme for an arylazo sulfane undergoing deuteration without the use of a 

photocatalyst20.  

 Though there are many different individual radical pathways, most follow a similar 

pattern. First, the substrate must be radicalized, though this may occur through an 

intermediate16,18, due to a photocatalyst 13,16,18,19, or independently20. The substrate then becomes 

quenched with the addition of a deuterium atom with the donor changing depending on the 

reaction. In some cases, this reaction can be nearly infinite18 while most others are limited by the 

amount of reagent.  

 

Photocatalytic Reactions 

 Due to the current interest and demand for green chemistry, a number of reactions 

involving both visible and UV light have been researched 13-16,18-21. These reactions benefit from 

conditions that are less harsh, as many do not require strong acids or bases, though some21 still 

do. This lack of strong acids generally leads to a higher tolerance of functional groups. 

Moreover, it allows for the development of deuterated pharmaceutical compounds, many of 

which are not tolerant to extremely basic or extremely acidic solutions. However, these benefits 

do not imply that there are no issues with photocatalytic reactions. 
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 Though much research has been done regarding photoredox reactions22, the best 

photocatalyst is still debated. While some, such as gold, allow for a greater separation of charge 

and absorption of light in the visible spectrum13 and may have a high quality, others are a 

significantly less expensive 18,21 but sacrifice some functional group tolerance and variability. 

Still others do not require a photocatalyst20 but only work on one type of molecule. Within the 

community, however, it is noted that the photocatalyst CdSe porous nanosheets 14,15 marked a 

significant turning point in the ability to label compounds.  

A study completed by Kuang et. al. focuses on the direct H/D exchange between D2O 

(used at 50 equiv) and molecules containing either formyl C-H or hydriodic C(sp3)-H bonds 

using tetra-n-butylammonium decatungstate (TBADT)(2%mol) and 2,4,6-triisopropyl 

benzenethiol(10% mol) as HAT photocatalysts25. The direct H/D is preferred because while 

halogen/deuterium exchange and reductive deuteration both require precursors, H/D exchange 

can be done directly on the compound of interest. The average reaction time was 4-8 hours 

under 390nm light, though some substrates, such as the hydric C(sp3)-H bonds that occurred in 

the same molecule as an aldehyde group and 4-acetoxybenzaldehyde required either a longer 

reaction time (48hr) or higher energy light (365nm).  

 

Figure 9: A reaction scheme for the deuteration of aldehydes through the addition of the 

photocatalyst TBADT25.  
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Aromatic aldehydes, aldehyde with an electron withdrawing group (ie halides, 

trifluoromethyl, cyanide, boronate ester), and aldehydes with electron donating substituents (ie 

amides, phenols, ethers) were all able to be deuterated with no lower than 89% deuterium 

incorporation. These reaction conditions also allow for selective deuteration for if the reaction 

continued for 48hours, the secondary groups (α-oxy,α-thioxy, benzylic C(sp3)-H bonds) could 

be deuterated as well. The more hydridic C-H bonds underwent deuteration to a greater extent. 

Those molecules with hydridic C(sp3)-H bonds without an aldehyde could be selectively 

deuterated as well. However, for these substrates, more TBADT was necessary.  

Several pharmaceutical compounds could be deuterated using this method including 

ibuprofen, gemfibrozil, heterocyclic drugs (fomepizole, edaravone, pirfenidone) at only the 

benzylic C-H bonds, mexiletine, and chloroxylenol. Notably, drugs in the adamantane family 

(amantadine, memantine) were deuterated with more than 5 deuterium atoms per molecule and 

less than 0.1% unlabeled molecule remaining, allowing them to be used as internal standards in 

ADME-Tox biostudies. Several precursors for drugs were also deuterated. However, the 

deuteration mainly occurred at the benzylic position, rather than all of the required positions 

(missing phenyl methoxy groups and α-carbonyl).  

 

Figure 10: Structures and percent incorporation of deuterium for drugs in the 

adamantane family through the use of the TBADT catalyst25. 

This reaction proceeds through a radical pathway. A carbon radical is generated through 

HAT between the substrate and photo-excited TBADT. The deuterated thiol is made due to the 
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presence of excessive D2O. The carbon radical then reacts with the deuterated thiol to make the 

deuterated product and a thiyl radical. The thiyl radical interacts with [W10O32]5-H+ to remake 

TBADT and deuterated thiol25. 

For the deuteration of aldehydes, Garg et. al. focused on using N-heterocyclic carbenes 

(NHC). The NHC condensed on the aldehyde forming a Breslow intermediate, which then 

underwent deuteration, forming the desired product26. Different catalysts were necessary for 

varying aldehydes with varying functional groups. Aryl aldehydes were deuterated using an 

imidazolium catalyst, while enal aldehydes used triazolium catalysts26.  

 

Figure 11: A reaction scheme for the deuteration of aldehydes through the addition of NHC26. 

 
Deuterating Pharmaceutical Compounds (miscellaneous) 

Deuterating sites that are metabolized is an effective method to slow the deterioration of 

a compound. "Metabolism occurs on pyridines and diazines by molybdenum-containing 

enzymes such as aldehyde oxidases (AOs)"27. Currently, the drug VX-984, involving a 

deuteration that slows this AO metabolism, is in development. Koniarczyk et. al. developed a 

method for deuterating pyridines and diazines by first transforming them into phosphonium salts 

and then reacting these salts with D2O and K2CO3
27. This reaction allows for the hydrogen at 



Martinez 19 

carbon position 4 to be deuterated with high regioselectivity. This is in contrast to several other 

methods, including one discovered by Chirk, that for the same compound (loratadine) 

deuterated at positions 2 and 3.  When this position is blocked the compound is deuterated at 

position 2. Pyridines with 3,5-substituents are deuterated with complete regioselectivity, even 

when this substituent is a halogen. 

 

Figure 12: The selective deuteration at position 4, the selective deuteration at position 2 when 
positive 4 is blocked, and the selective deuteration with 3,5 substituents through the 
transformation into salts and then deuteration with K2Co3

27. 
 

Around 50% of the top-selling pharmaceuticals contain N-alkyl amine groups23. 

Recently, a photoredox method was discovered resulting in the deuteration of 𝛼𝛼 bonds. However, 

a method for the deuteration of 𝛽𝛽C-H bonds is slightly more complicated due to their increased 

stability. Chang et. al. discusses an acid-base reaction containing acetone-d6 as a deuterium 

source, B(C6F5)3 as a catalyst, and a reaction temperature of 150℃. The product was then 

filtered through silica gel chromatography. Cyano, ester, amide, and ketone N-alkylaines all gave 

deuterium products in a yield >95% 23. Moreover, this reaction was more efficient when the 

substrate had a hindering group. Some pharmaceutical compounds that were effectively 

deuterated include piperidine, 1,4-diazepane, piperazine, thiophene, indanone, benzodioxole, 

benzothiophene, benzimidazole, clopidogrel, prasugrel, and doneprezil23.  
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Figure 13: A proposed reaction scheme for the deuteration of the β-CH bonds of amines through 
the addition of the catalyst B(C6F5)3

23. 
 

The same catalyst, utilized by Chang et. al. could be used to deuterated carbonyls at 

temperatures ranging from 60 to 100℃ (with a higher temperature leading to higher levels of 

deuterium incorporation)24. Both acyclic and cyclic bioactive ketones were deuterated, along 

with compounds containing methoxy theobromine, carboxylic acid, N-alkylamine, and hydroxyl 

groups. Clopidogrel and risperidone, two pharmaceuticals containing these groups, also showed 

moderately high (60%) to very high (95%) deuterium incorporation24. However, some 

compounds, such as the drug donepezil which is used to treat Alzheimer's, required up to 12 

hours to reach 90% incorporation24.  

Conclusion 
 The addition of deuterium in pharmaceutical compounds has multiple different effects 

ranging from a decrease in the rate of metabolism to an increase in stability of a chiral 

compound. This in turn allows medicinal chemists to develop new drugs or breathe new life back 

into previously patented drugs, both increasing its effectiveness and decreasing the negative side 
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effects. While some may have concerns regarding the patentability, toxicity, or cost of these 

compounds, these worries do not currently serve as a strong enough deterrent to persuade people 

to not study the effects of deuterium incorporation. Deuterium appears to be creating a new wave 

in the drug development industry, with multiple experts predicting a similar level of 

incorporations of deuterium across the field as the addition of fluorine that occurred years ago. 

 To this end, new methods for adding deuterium to compounds, especially medically 

relevant compounds, are being developed. The majority of these developments focus on 

photocatalytic deuterium addition due to its mild reaction conditions which allow for the 

persistence of sensitive functional groups. Of these reactions, most proceed through a radical 

pathway and involve nanoparticles or nanosheets of previously well known and utilized catalysts 

such as ruthenium. Through the utilization of these new reaction conditions, amines, aldehydes, 

and aryl groups are able to be deuterated, facilitating the development of deuterated drugs. 

 Research in this field will only increase as the deuterated drugs already undergoing 

clinical trials become approved and more begin to be created. Further research on methods of 

activating and deuterating C(sp2)-H bonds is needed and may follow the example of Liu, Yifu, 

and Dong and their application of porous CdSe nanosheets. However, even this method is not 

perfect as it requires that the desired drug have an acceptable, halogenated intermediate.  
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Appendix A 
 

Drug Name Therapeutic 
Indication Effect of Deuterium De novo? Phase Status 

Deutetrabenazine 
(Austedo) 

Chorea from 
Huntingtons 

different ratio 
metabolites, longer half 

life 
No *  

JNJ38877605 C-Met inhibitor 
(neoplasms) less toxic, less doses No 1 Terminated 

(Health Risks) 

CC-122 melanoma stabilize enantiomer 
switching No 2 Recruiting 

 renal insufficiency  No 1 Unknown 

 lymphoma, non-
hodgkin  No 1 Active, Not 

Recruiting 

 lymphoma, non-
hodgkin  No 1 Active, Not 

Recruiting 

 diffuse B-cell 
lymphoma  No 1 Active, Not 

Recruiting 

 
leukemia, 

lymphocytic, 
chronic B-cell 

 No 1,2 Completed 

 

lymphoma (non-
hodgkin), 

lymphoma (large 
B-Cell, diffuse), 

lymphoma 
(follicular) 

 No 1,2 Recruiting 

 

multiple 
myeloma, 
lymphoma, 
pleiotropic 

pathway modifier, 
glioblastoma, 

 No 1 Active, Not 
Recruiting 

 carcinoma, 
hepatocellular  No 1 Terminated (No 

Health Risk) 

 carcinoma, 
hepatocellular  No 1,2 Unknown 
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HC-1119 

prostate cancer 
metastatic, 
castration-

resistant prostate 
cancer 

less toxic No 3 Not Yet 
Recruiting 

 

metastatic 
castration 

resistant prostate 
cancer 

 No 3 Recruiting 

ALK-001 

stargardt disease, 
stargardt macular 

degeneration, 
stargardt macular 

dystrophy, 
autosomal 
recessive 

stargardt disease 
1 

inhibitor No 2 Recruiting 

 

geographic 
atrophy, age 

related macular 
degeneration, 

AMD 

 No 3 Recruiting 

RT-001 
Friedreich's 
Ataxia, lipid 
peroxidation 

half life No 3 Recruiting 

 
Infantile 

neuroaxonal 
dystrophy 

 No 2,3 Active, Not 
Recruiting 

 
lateral canthal 

lines, crows feet, 
facial wrinkles 

 No 2 Completed 

BMS-986165 

autoimmune 
(inhibit tyrosine 
kinase 2) (with 

rosuvastati) 

 Yes 1 Completed 

 lupus  Yes 2 Recruiting 

 ulcerative colitis  Yes 2 Recruiting 
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granulomatous 
colitis, crohn's 

disease, crohn's 
enteritis, 

granulomatous 
enteritis 

 Yes 2 Recruiting 

 renal impairment  Yes 1 Completed 

 active psoriatic 
arthritis  Yes 2 Active, Not 

Recruiting 

 psoriasis  Yes 3 Recruiting 

CTP-543 JAK1 inhibitor, 
Alopecia areata  No 3 Recruiting 

CTP-656 cystic fibrosis half life No 2 Completed 

SD-1007 (D3-L-
DOPA) Parkinsons Slows metabolism by 

slowing AO metabolism No   

AVP-786 

neurobehavioral 
disinhibition 

(agitation due to 
brain injury) 

simplify No 2 Recruiting 

 schizophrenia  No 2,3 Recruiting 

 

agitation in 
patients with 

dementia of the 
alzheimer's type 

 No 3 Completed 

 
intermittent 
explosive 
disorder 

 No 2 Terminated (No 
Health Risk) 

 

depressive 
disorder, 

treatment-
resistant 

 No 2 Completed 

HC-1144 Anti tumor side effects, half life No   

VX-984 cancer 
(endometrial) 

reduce aldehyde-oxidase 
(AO) metabolism Yes 1 Completed 
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CTP-354 

multiple sclerosis 
(MS), cerebral 

palsy, 
amyotrophic 

lateral sclerosis 
(ALS), spinal cord 

injury, and 
hereditary 
paraplegia 

improved 
pharmacokinetics 

(bonding affinity, subunit 
specificity, 

pharmacological activity 

 2 Unknown 

CTP-518 HIV  No 1 Completed 

JZP-386 

narcolepsy, 
excessive 
daytime 

sleepiness 

 No 1 Completed 

CTP-730   No 1 Completed 

CTP-499 
moderate chronic 
kidney disease, 

non dialysis 
 No 1 Completed 

donafenib thyroid cancer  No 3 recruiting 

 metastatic 
colorectal cancer  No 3 Completed 

 
advanced 

hepatocellular 
carcinoma 

 No 1,2 Not Yet 
Recruiting 

 
advanced 

gastrointestinal 
tumors 

 No 1,2 Not Yet 
Recruiting 

 nasopharyngeal 
carincoma  No 1,2 Recruiting 

 non-small cell 
lung cancer  No 1 Recruiting 

 hcc  No 2,3 Completed 

 advanced solid 
tumor  No 1,2 Not Yet 

Recruiting 

PXL065 (DRX-
065) 

nonalcoholic 
steatohepatitis chiral switching No 2 Not Yet 

Recruiting 

CTP-692 schizophrenia  No 2 Not Yet 
Recruiting 

* Indicates that the drug has been approved by the FDA 
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