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Abstract: Modeling is an integral part of fuel cell design and development. This paper identifies
a long-standing inaccuracy in the fuel cell modeling literature. Specifically, it discusses an inexact
insertion, in popular models, of cell/stack current into Nernst’s equation in the derivation of output
(load) voltage. The origin of the inaccuracy is traced to the nature of reversible and irreversible
potentials (equilibrium and non-equilibrium states) in the cell. The significance of the inaccuracy is
explained in the context of the electrochemistry and thermodynamics of the fuel cell.

Keywords: fuel cell model; fuel cell stack; hydrogen; Nernst equation; proton exchange membrane
fuel cell (PEMFC); solid oxide fuel cell (SOFC)

1. Introduction

Modeling the operation of fuel cells is an indispensable part of fuel cell research. In many papers in
the literature involving the modeling of solid oxide fuel cells (SOFCs) and proton exchange membrane
fuel cells (PEMFCs), an inaccuracy is found in the cell/stack voltage expression (see, for example,
references [1–30]). We argue that the problem arises because of an inexact intermediate step in the
derivation of the output voltage. The origin of this inaccuracy can be traced to the substitution in the
Nernst equation of activity (or concentration or partial pressure) with a function of the load current.
An analysis of the flaw is presented in the remainder of this paper.

2. Background: The Nernst Equation

The Nernst equation, which is the cornerstone of fuel cell thermodynamics, provides an expression
for the reversible thermodynamic potential, also known as the equilibrium voltage or the open-circuit
electromotive force (EMF), of the fuel cell [31]:

ENernst = E0 +
RT
nF

ln

∏i aci
reactanti

∏j a
cj
productj

 (1)

where E0 is the reference (standard) EMF at unit activity and atmospheric pressure; i and j are the
numbers of reactant and product species; a represents the activity; ci is the stoichiometric coefficient
of species i; R is the universal gas constant; F is Faraday’s constant; n is the number of electrons
transferred for each molecule of the fuel participating in the reaction; and T is the temperature. For a
hydrogen–oxygen fuel cell (e.g., solid oxide fuel cell or proton exchange membrane fuel cell), hydrogen
and oxygen are the reactants, and the product is water (or steam). The reference EMF, E0, depends on
the temperature, T:

E0 = E0
0 + (T − T0)

∆s
nF

, (2)
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where E0
0 is the standard EMF at temperature T0, and ∆s is the change in entropy. The activity, a, of an

ideal gas is expressed in terms of its pressure (or partial pressure), p:

aH2 =
pH2

p0 , (3)

aO2 =
pO2

p0 , (4)

where p0 is the standard-state pressure (1 atm). At high temperatures, such as 1000 ◦C (as in solid
oxide fuel cells), steam can be assumed to behave as an ideal gas, and therefore,

aH2O =
pH2O

p0 . (5)

Using p0 = 1 atm, and noting that n = 2 for a hydrogen fuel cell, we have the following version of
the Nernst equation for solid oxide fuel cells:

ENernst = E0 +
RT
2F

ln
( pH2

√pO2

pH2O

)
. (6)

If the fuel cell is operated below 100 ◦C so that liquid water is produced (as in proton exchange
membrane fuel cells), the activity of water can be taken to be unity (aH2O = 1). In that case, the Nernst
equation takes the form

ENernst = E0 +
RT
2F

ln
(

pH2

√
pO2

)
. (7)

3. The Inaccuracy in the Model

Drawing inspiration from the pioneering work in reference [1] where an elegant dynamic model
for an SOFC plant was developed, many later papers (e.g., references [2–30]) re-derived and/or built
upon the model, expressing the partial pressures of the reactants and products as functions of the cell
current (not to be confused with the exchange current [31] or the fuel crossover/internal current [31]),
before inserting those partial pressure expressions into the Nernst equation.

Reference [1], in its “dynamic behaviour algorithm” (Figure 2 on p. 497 of that paper), expressed
(i) the partial pressures of the reactants and products in terms of the corresponding molar flow rates,
and (ii) the molar flow rates taking part in the reaction in terms of cell (load) current, and inserted the
resulting expressions of pH2 , pO2 and pH2O into Equation (6).

Building upon reference [1], other papers (e.g., references [6,7,12,14–16,19,20]) obtained essentially
the same core model with the following fallacious form of the Nernst equation:

ENernst = E0 +
RT
2F

{
ln

(
KH2O

KH2

√
Kr

rHOKO2

)
+

1
2

ln

(
IFC

(
1
u
− 1
)2 ( 2

u
− rHO

))}
, (8)

where KH2 , KO2 , and KH2O are valve molar constants [1]; Kr = 1/(4F) [1,12,13]; rHO is the ratio of the
input molar flow rates of hydrogen and oxygen [2,6]; u is the fuel utilization ratio [2,6]; and IFC is the
load current [6]. A detailed derivation of Equation (8) is given in the following sub-section.

Derivation of the Fallacious Expression

A derivation of the fallacious form of the Nernst voltage expression (Equation (8)) is presented
here. This derivation follows the treatment in references [1,6,12]. A single cell is considered here; the
extension of the derivation to a stack is trivially easy.
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Assuming perfect gas properties for hydrogen at the anode channel, we have

panode
H2

Vanode = nanode
H2

RT, (9)

where panode
H2

= panode
H2

(t) is the partial pressure of hydrogen in the anode channel; nanode
H2

= nanode
H2

(t) is
the number of moles of hydrogen in the anode channel; and Vanode is the anode volume. Taking the
derivative with respect to time, we can express the rate of change of partial pressure in terms of the
molar flow rate:

d
dt

panode
H2

(t) =
RT

Vanode

(
qanode

H2
(t)
)

, (10)

with qanode
H2

(t) defined as

qanode
H2

(t) =
d
dt

nanode
H2

(t). (11)

Splitting qanode
H2

(t) into its three components, namely, the input flow rate, the flow rate that takes
part in the reaction, and the output flow rate, we have

qanode
H2

(t) = qin
H2
(t)− qreact

H2
(t)− qout

H2
(t), (12)

and thus (omitting the t for simplicity)

d
dt

panode
H2

=
RT

Vanode

(
qin

H2
− qreact

H2
− qout

H2

)
. (13)

The process of oxygen inflow–reaction–outflow at the cathode channel can be described by

d
dt

pcathode
O2

=
RT

Vcathode

(
qin

O2
− qreact

O2
− qout

O2

)
. (14)

In SOFCs, water vapor (steam) forms at the anode:

d
dt

panode
H2O =

RT
Vanode

(
0 + qreact

H2O − qout
H2O

)
. (15)

In PEMFCs, water forms at the cathode. Of course, when liquid water is produced in a fuel cell
(as in PEMFCs), we have

pH2O = 1. (16)

Assuming that “the molar flow of any gas through the valve is proportional to its partial pressure
inside the channel” [1], we have for an SOFC

qout
H2

pH2

= KH2 (17)

and
qout

H2O

pH2O
= KH2O (18)

at the anode and
qout

O2

pO2

= KO2 (19)

at the cathode, with KH2 , KH2O, and KO2 being constants.
From electrochemistry we know that

qreact
H2

= qreact
H2O = 2qreact

O2
=

IFC
2F

, (20)
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where IFC = IFC(t) is the cell current. Upon the introduction of a constant [1,13],

Kr =
1

4F
, (21)

Equation (20) yields
qreact

H2
= qreact

H2O = 2Kr IFC (22)

and
qreact

O2
= Kr IFC. (23)

Now, inserting Equations (17) and (22) into Equation (13) and taking the Laplace transform
(we use the notation that the transform of x(t) is X (s)), we get [12]

sPH2(s)− pH2(0) =
RT

Vanode

(
Qin

H2
(s)− 2KrIFC(s)− KH2PH2(s)

)
(24)

which, upon the substitution of pH2(0) = 0 and

τH2 =
Vanode
KH2 RT

, (25)

becomes

PH2(s) =
1/KH2

1 + τH2 s

(
Qin

H2
(s)− 2KrIFC(s)

)
. (26)

Similarly, for oxygen, Equations (14), (19) and (23) yield

sPO2(s)− pO2(0) =
RT

Vcathode

(
Qin

O2
(s)− KrIFC(s)− KO2PO2(s)

)
(27)

which, with the substitution of pO2(0) = 0 and

τO2 =
Vcathode
KO2 RT

, (28)

gives

PO2(s) =
1/KO2

1 + τO2 s

(
Qin

O2
(s)− KrIFC(s)

)
. (29)

Finally, for steam, we have from Equations (15), (18), and (22)

PH2O(s) =
1/KH2O

1 + τH2Os
2KrIFC(s) (30)

where
τH2O =

Vanode
KH2ORT

. (31)

(Equations (26), (29) and (30) were used in Figure 2 of reference [1].)
Now, applying the inverse Laplace transform to Equation (26) allows us go from the s-domain

back to the time domain:

pH2(t) =
1

KH2 τH2

exp
(
−t
τH2

) ∫ t

θ=0

(
qin

H2
(θ)− 2Kr IFC(θ)

)
exp

(
θ

τH2

)
dθ. (32)

The steady-state partial pressure, then, is obtained from the above equation as

pH2,ss =
1

KH2

(
qin

H2,ss − 2Kr IFC,ss

)
. (33)
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(A simpler derivation of Equation (33) is given in Appendix A.1) The steady-state partial pressures of
oxygen and steam are obtained similarly:

pO2,ss =
1

KO2

(
qin

O2,ss − Kr IFC,ss

)
(34)

and
pH2O,ss =

1
KH2O

2Kr IFC,ss. (35)

Now, plugging the above three Equations (33)–(35), as well as the definitions of u and rHO
(Equations (A4) and (A5), respectively, from Appendix A.2) into the Nernst EMF expression (Equation (6)
of Section 2), we obtain, after some algebra (see Appendix A.2), our familiar Equation (8).

4. Analysis of the Inaccuracy

The terminal (load) voltage is generally obtained by subtracting the following types of losses (or
“irreversibilities”) from ENernst:

• activation loss;
• concentration loss;
• ohmic loss; and
• losses due to fuel crossover and internal current.

Equation (8), or one of its many (implicit or explicit) variants, has been the mainstay of a line of
fuel cell modeling research for about two decades now (examples abound; a few representative articles
are listed in the References section). Not all of the models in references [1–30] show the explicit form of
Equation (8), but they all use some form of this equation, by expressing—directly or indirectly—the
Nernst voltage as a function of, among other variables, current.

The problem with Equation (8) is that it mixes equilibrium and non-equilibrium expressions.
The Nernst voltage (EMF) is the reversible thermodynamic potential that applies only to the equilibrium
condition of the cell; the equilibrium is lost when current is drawn from the cell. In other words, the
Nernst voltage is, by definition, the open-circuit EMF and cannot therefore be expressed in terms of
the cell (load) current or current density.

That the use of IFC in Equation (8) is questionable can also be seen from the fact that setting

IFC = 0

causes the right side to be mathematically undefined.
The effect of Equation (8) on the output voltage can be seen in the SOFC polarization curve

(Figure 1) obtained from the following relationship:

V = ENernst − rIFC, (36)

where V is the output (load) voltage; ENernst is given by Equation (8); and r is the ohmic resistance of
the cell (cell parameter values, taken from references [1,6,12], are given in Table 1). The upper curve
(red) in Figure 1 shows the Nernst voltage, ENernst, computed from Equation (8), while the lower
one plots the output voltage, V. Equation (36), like Equation (12) of reference [1] and Equation (6) of
reference [6], considers only the ohmic loss out of the four types of losses mentioned earlier.
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Table 1. Numerical values of parameters and constants.

Parameter Value

T 1273 K
E0 1.18 V
u 0.8
Kr 1/(4F) mol/(s.A)
KH2 0.843 mol/(s.atm)
KH2O 0.281 mol/(s.atm)
KO2 2.52 mol/(s.atm)
r 3.28125 × 10−4 Ω
rHO 1.145
n 2

Constants

F 96,485 Coulombs/mol
R 8.31 J/(mol K)
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Figure 1. Solid oxide fuel cell (SOFC) polarization obtained with ENernst given by Equation (8).

Figure 1 has the horizontal (current) axis starting at 1 A, not zero, because in Equation (8), the
Nernst voltage is undefined at IFC = 0.

Figure 1 shows an increase in the Nernst voltage with an increasing load current. At first sight,
it may not be immediately clear how the model represented by Equation (8) produces the V-values in
this figure (it may not be impossible for the polarization characteristics in Figure 1 to be obtained from
actual measurements of a physical fuel cell stack under specific operating conditions; much depends
on fuel flow, fuel utilization, thermal effects, diffusion, back-diffusion, load current and voltage
requirements, and not all complex interactions are fully understood). It can, however, be argued that
Equation (8) produces this polarization curve by holding both u and rHO constant to mimic a constant
fuel utilization ratio and a constant hydrogen–oxygen ratio of input flow rates. We need to account for
the changes in the V-values without having to make ENernst a function of current.

For a head-to-head comparison of the polarization produced by Equation (8) with the “correct”
polarization, we need the “correct” Nernst voltage (that is, the Nernst voltage at open circuit), which,
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unfortunately, cannot be obtained from Equation (8). (We could, of course, obtain the correct Nernst
voltage by assuming reasonable values for pH2 , pO2 and pH2O and plugging those values, along with
the relevant parameter values from Table 1, into Equation (6), but the resulting Nernst voltage would
have no connection to Equation (8).) We circumvent this difficulty by extrapolating the open-circuit
Nernst voltage from values produced by Equation (8). Specifically, we use a trivial extrapolation
where we obtain the point where the line joining the first two points—(1 A, 0.670472 V) and (2 A,
0.689471 V)—meets the IFC = 0 line. This gives us an extrapolated

ENernst = 0.651473 V,

which is used in Figure 2 to show the “correct” polarization behavior. The upper plot (red) in Figure 2
represents the (constant) Nernst voltage, and the lower one shows the output values from Equation (36)
(obviously, both the plots in this figure are straight lines). For ease of comparison with Figure 1,
the current axis in Figure 2 starts from 1 A.
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Figure 2. SOFC polarization obtained with ENernst = 0.651473 V.

5. Discussion

If a non-zero current is to be considered, the proper equation to use is the Butler–Volmer
equation, not the Nernst equation. The current–voltage relationship at a non-zero current (away
from equilibrium) is perhaps best investigated using reaction kinetic expressions with microscopic
reversibility. When modeling specific polarization behaviors, it is important to distinguish between
the “reversible” potential and the “irreversibilities”.

The difference between reversible and irreversible potentials and its connection to the Nernst
equation are important in the study of solid oxide electrolysis cells (e.g., [32]), too.

In reference [33], the partial pressures of hydrogen and oxygen of a proton exchange membrane
fuel cell are expressed (in Equations (2) and (3) of that paper [33]) in terms of current, but before these
partial pressures are plugged into the Nernst equation Equation (1) of that paper [33]) to obtain the
reversible potential, the current, correctly, is set to zero. Reference [33] also reported using non-zero
values of current in the Nernst equation.

Reference [12] used Equation (8) to generate both training and test data, and therefore, none of
the conclusions in that paper are invalidated by the inaccuracy discussed here.
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6. Conclusions

An inaccuracy in the fuel cell modeling literature involving the nature of the reversible
thermodynamic potential was identified in this paper. An analysis of the inaccuracy was provided and
its significance explained. To summarize, there is nothing wrong with the Nernst equation that provides
the reversible (equilibrium) voltage of a fuel cell; what is wrong is the mixing up of equilibrium and
non-equilibrium conditions by inserting cell (load) current into the Nernst voltage expression. It can
be argued that expressing the Nernst voltage as a function of current is a “quick-and-dirty” trick that
makes modeling easy for us. However, by taking such a shortcut, we compromise scientific rigor for
the sake of practical convenience.

Funding: This research was funded, in part, by the United States National Science Foundation Grant IIS-1115352.

Acknowledgments: Three anonymous reviewers provided detailed comments on an earlier version of this paper.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SOFC Solid oxide fuel cell
PEMFC Proton exchange membrane fuel cell
EMF Electromotive force
ENernst Nernst potential (open-circuit EMF) of a single cell, V
E0 Standard (reference) EMF of a single cell, V
E0

0 Standard (reference) EMF of a single cell at temperature T0, V
V Output terminal voltage of a single cell, V
T Temperature, K
n Number of electrons transferred
a Activity
aH2 Activity of hydrogen
aO2 Activity of oxygen
aH2O Activity of water vapor (steam)
∆s Change in entropy, J/(mol K)
p Pressure or partial pressure, atm
p0 Standard-state pressure, atm
pH2 Partial pressure of hydrogen, atm
pO2 Partial pressure of oxygen, atm
pH2O Partial pressure of water vapor, atm
IFC Fuel cell current, A
u Fuel utilization ratio
rHO Ratio of hydrogen-to-oxygen input flow rates
KH2 Valve molar constant for hydrogen, mol/(s atm)
KO2 Valve molar constant for oxygen, mol/(s atm)
KH2O Valve molar constant for water vapor, mol/(s atm)
Kr Modeling constant, mol/(s A)
Vanode Anode compartment volume, m3

Vcathode Cathode compartment volume, m3

t Time, s
nanode

H2
Amount of hydrogen in the anode channel, mol

qanode
H2

Rate of change of the quantity of hydrogen in the anode channel, mol/s
qin

H2
Hydrogen input flow rate, mol/s

qout
H2

Hydrogen output flow rate, mol/s
qreact

H2
Hydrogen flow rate that takes part in the reaction, mol/s

qcathode
O2

Rate of change of the amount of oxygen in the cathode channel, mol/s
qin

O2
Oxygen input flow rate, mol/s
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qout
O2

Oxygen output flow rate, mol/s
qreact

O2
Oxygen reacting flow rate, mol/s

qanode
H2O Rate of change of the amount of water vapor in the anode channel, mol/s

qout
H2O Water vapor output flow rate, mol/s

qreact
H2O Water vapor flow rate produced in the reaction, mol/s

τH2 Hydrogen flow response time constant, s
τO2 Oxygen flow response time constant, s
τH2O Water vapor flow response time constant, s
r Ohmic resistance of a single cell, Ohm
ss Notation (used in the subscript) to indicate steady-state values
X (s) Laplace transform of x(t)
R Universal gas constant, J/(mol K)
F Faraday’s constant, Coulombs/mol

Appendix A

The intermediate steps in the derivations of Equations (8) and (33) are provided in this Appendix.

Appendix A.1. Equation (33)

At steady state, there are no changes in the input/output flow rates or the current, and the partial
pressures of hydrogen, oxygen and water vapor have fixed (unchanging) values. Of course, corresponding
to a load change, the cell (stack) may move from one fixed (steady) state to another fixed (steady) state.
The steady-state partial pressure of a reactant or product can be obtained by setting the time derivative of
its partial pressure to zero and solving for the partial pressure. From Equation (13), setting

d
dt

panode
H2

= 0, (A1)

we have at steady state
qin

H2,ss − qreact
H2,ss − qout

H2,ss = 0 (A2)

which, by Equations (17) and (22), becomes

qin
H2,ss − 2Kr IFC,ss − KH2 pH2,ss = 0, (A3)

which, after rearrangement of terms, yields Equation (33).

Appendix A.2. Equation (8)

We will need the definitions of the fuel utilization ratio [2,6],

u =
qreact

H2

qin
H2

, (A4)

and the ratio of hydrogen-to-oxygen input flow rates [2,6]:

rHO =
qin

H2

qin
O2

. (A5)

Using Equations (33)–(35) (and omitting the steady-state subscript for simplicity), we have
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ln
( pH2

√pO2

pH2O

)
= ln

{
KH2O

KH2

(
qin

H2

2Kr IFC
− 1

)√
1

KO2

(qin
O2
− Kr IFC)

}
(A6)

= ln

{
KH2O

KH2

(
1
u
− 1
)√

1
KO2

(qin
O2
− Kr IFC)

}
from Equations (22) and (A4) (A7)

= ln

KH2O

KH2

(
1
u
− 1
)√√√√ 1

KO2

(
qin

H2

rHO
− Kr IFC

) from Equation (A5) (A8)

= ln

KH2O

KH2

(
1
u
− 1
)√√√√ 1

KO2

Kr IFC

(
qin

H2

rHOKr IFC
− 1

) (A9)

= ln

KH2O

KH2

(
1
u
− 1
)√√√√ 1

rHOKO2

Kr IFC

(
qin

H2

Kr IFC
− rHO

) (A10)

= ln

{
KH2O

KH2

(
1
u
− 1
)√

1
rHOKO2

Kr IFC

(
2
u
− rHO

)}
from Equations (22) and (A4) (A11)

= ln

(
KH2O

KH2

√
Kr

rHOKO2

)
+ ln

{(
1
u
− 1
)√

IFC

(
2
u
− rHO

)}
(A12)

= ln

(
KH2O

KH2

√
Kr

rHOKO2

)
+ ln


√

IFC

(
1
u
− 1
)2 ( 2

u
− rHO

) (A13)

= ln

(
KH2O

KH2

√
Kr

rHOKO2

)
+

1
2

ln

{
IFC

(
1
u
− 1
)2 ( 2

u
− rHO

)}
(A14)

The derivation of Equation (8) is complete upon the substitution of Equation (A14) into
Equation (6).
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