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Protocadherin-17 Expression and Function in Vertebrate Brain  

Introduction: 

The central nervous system (CNS) in vertebrates develops from a simple neural tube into 

a complex structure. The developmental steps to get to the complex structure have been 

examined extensively in the past few decades. To begin, the developing neural tube regionalizes 

into longitudinal and transverse subdivisions, with each subdivision undergoes further 

morphogenesis, and gives rise to a functional brain tissue (Redies, 1999).  

During development, cell to cell adhesion plays a major role in the morphogenetic 

process. A type of molecules that is an important part in the process of cell adhesion are 

cadherins. Cadherins are transmembrane proteins that mediates cell to cell adhesion that is 

calcium dependent (Takeichi, 1991; Nollet et al., 2000; Basu et al., 2015). The cadherin 

superfamily can be classified into at least six different subfamilies based mainly on their 

extracellular and intracellular domain features. Two of these groups are classical cadherins and 

protocadherins (pcdhs) (Nollet et al., 2000). 

Almost all members of the cadherin superfamily contain a large extracellular domain 

(called EC domain), a single pass transmembrane domain and a cytoplasmic domain (Takeichi, 

1991). Members of the classical cadherin group have an EC domain consisting of five cadherin 

repeats, each about 110 amino acid residues in length (Suzuki, 1996). The two important 

cadherin repeats in the classical cadherins are the third and fifth repeats (EC3 and EC5). In 

comparison, pcdhs contain more than five EC repeats in their extracellular domains. Their 

domain sequences have been found to be similar to each other but different from those of the 

EC3 and EC5 of the classical cadherins (Suzuki, 1996). Figure 1 depicts the structural 

differences between the two groupings of cadherins based on the extracellular domain. 
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(A)     EC1            EC2            EC3           EC4           EC5           TM        CP 

 

  

 

 

(B)    EC1            EC2            EC3            --                  ECn           TM        CP 

 

  

 

Figure 1. Panel A shows classical cadherins that contain EC3 and EC5 with specific 

characteristics denoted by the double zig-zag lines. Pcdhs (B) contain more than five EC repeats 

denoted by the ECn. The black boxed area in each drawing represents the transmembrane 

domain. CP stands for cytoplasmic domain, and TM stands for transmembrane domain 

 

 

 

          Pcdhs have been more recently discovered and studied (Redies et al., 2005). Within the 

pcdh family, there are more than 70 different genes that have been identified. These different 

pcdh genes can be organized into two different categories based on their genomic structure: 

clustered pcdhs and nonclustered pcdhs. The clustered pcdhs are named such because their genes 

are clustered in the genomes, whereas the nonclustered pcdhs have their genes spread out in the 

genomes, similar to most other protein-coding genes. The clustered pcdh group is the larger of 

the two, containing about 50 of the identified genes. The clustered pcdhs consist of the pcdh, , 

and  groups (Morishita et al., 2007). The nonclustered pcdhs can be subdivided into two groups; 

pcdh and solitary pcdhs. The Pcdh group is characterized by containing highly conserved 

motifs in their cytoplasmic domains (Morishita et al., 2007). This group can be further divided 

into two types based on the number of their EC repeats, and conservation of amino acids motifs 

in their cytoplasmic domains (Redies et al., 2005; Morishita et al., 2007).  
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        A specific example of the nonclustered pcdh is pcdh17. Like most classical cadherins, it  

contains three domains, extracellular, transmembrane and cytoplasmic domainsUnlike the 

classical cadherins, it contains six instead of five EC repeats (Liu et al., 2015). Expression 

patterns and/or function of this molecule have been studied in zebrafish (Biswas and Jontes, 

2009; Liu et. al., 2009), mouse (Hoshina et al., 2013; Hayashi et al., 2014), rat (Kim et al., 

2007)and humans (Abrahams et al., 2007; Chang et al., 2018). Despite their large evolutionary 

distance, the amino acid sequences of pcdh17/PCDH17 in zebrafish, mouse and humans are 

quite similar, over 73% identical in their coding regions (Liu et al. 2009), as shown in figure 2 

and figure 3.  

 
HPcdh17 
MPcdh17 

ZPcdh17 

1 
1 

1 

YSVPEEQGAGTVIGNIGRDARLQPGLPPAERGGG-GRSKSGSYRVLENSAPHLLDVDADSGLLYTKQRIDRESLCRHNAKCQLSLEVFANDKE---ICMIKVEI 

YSVPEEQGAGTVIGNIGKDARLQPGLPPAERGSGSGRSKSGSYRVLENSAPHLLDVDADSGLLYTKQRIDRESLCRHNAKCQLSLEVFANDKE---ICMIKVEI 

YSI PEEKIQ G – VIGNIAKDAELELGE     ----------      QGKKSNFRVLENSAPHL IDVDPESGLLYTKQRIDRETLCRQNSKCQLSMEVFANDKE---ICMIKVEI 

HPcdh17 

MPcdh17 
ZPcdh17 

101 

102 
91 

QDINDNAPSFSSDQIEMDISENAAPGTRFPLTSAHDPDAGENGLRTYLLTRDDHGLFGLDVKSRGDGTKFPELVIQKALDREQQNHHTLVLTALDGGEPPRSAT 

QDINDNAPSFPSDQIEMDISENAAPGTRFPLTSAHDPDAGENGLRTYLLTRDDHGLFALDDVKSRGDGTKFPELVIQKALDRELQNHHTLVLTALDGGEPPRSAT 

QDINDNAPSFPSEQID I DISENAAPGTRFPLAAAYDPDTKENGLKTYQITRDDYSI FSLDVKSRGDG T KFPELVVQRSLDREERSHHTL I I TATDGGEYPKSGT 

HPcdh17 
MPcdh17 
ZPcdh17 

205 
206 

195 

VQINVKVIDSNDNSPVFEAPSYLVELPENAPLGTVVIDLNATDADEGPNGEVLYSFSSYVPDRVRELFSIDPKTGLIRVKGNLDYEENGMLEIDVQARDLGPNP 

VQINVKVIDSNDNSPVFEAPSYLVELPENAPLGTVVIDLNATDADEGPNGEVLYSFSSYVPDRVRELFSIDPKTGLIRVKGNLDYEENGMLEIDVQARDLGPNP 

MQINVKVTDSNDNSPVFEKPSYVVEIPENAPLGTVI IDLNATDSDEGINGQVTYSFSCYVPDRIKELFSIDPRTGVIK IQGK I DFEENP I I E IDVQAKDQGPNP 

HPcdh17 
MPcdh17 
ZPcdh17 

309 
310 

299 

IPAHCKVTVKLIDRNDNAPSIGFVSVRQG-----ALSEAAPPGTVIALVRVTDRDSGKNGQLQCRVLGGGGTGGGGGLGGPGGSVPFKLEENYDNFYTVVTDRP 

IPAHCKVTVKLIDRNDNAPSIGFVSVRQG-----ALSEAAPPGTVIALVRVTDRDSGKNGQLQCRVLGGGGTGGG - - LGGPG – SVPFKLEENYDNFYTVVTDRP 

IPGHCKVTVKVLDRNDNWPSIGFVAVRQG-----AVSEAATPGTVIALVRVTDKDSGRNGQLQCRILG - - - - - - - - - - - - - - - - - NVPFKLEENYDNFYTVVTDRP 

HPcdh17 

MPcdh17 
ZPcdh17 

408 

406 

383 

LDRETQDEYNVTIVARDGGSPPLNSTKSFAIKILDENDNPPRFTKGLYVLQVHENNIPGEYLGSVLAQDPDLGQNGTVSYS ILPSHIGDVSIYTYVSVNPTNGA 

LDRETQDDYNVTIVARDGGSPPLNSTKSFAVKILDENDNPPRFTKGLYVLQVHENNIPGEYLGSVLAQDPDLGQNGTVSYS ILPSHIGDVSIYTYVSVNPTNGA 
LDREVKDEYNI TIVAKDNGNPPLNSTKSFTVKILDENDNAPRFTKMVYVLQVPENNIPGEYLGSVLAHDPDLGQNGTVSYSLLPSNVSEESITTYVNIKPTDGA 

 

 

Figure 2. Amino acid sequence alignment of human protocadherin-17 (HPcdh17), mouse 

protocadherin-17 (MPcdh17), and zebrafish protocadherin-17 (ZPcdh17). Identical sequences 

among the three species are highlighted by the yellow shade. (Adapted from Liu et al., 2009) 

 

The comparisons of the amino acid sequences of zebrafish, mice, and human were attained by 

using ClustalW2.  
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 ZPcdh17 HPcdh17 MPcdh17 

ZPcdh17  73.50% 74.16% 

HPcdh17   98.25% 

MPcdh17    

 

Figure 3: Sequence comparisons between zebrafish, human, and mouse PCDH17/pcdh17 

sequences. Abbreviations are the same as in figure 2. The figure is adopted from Liu et al., 2009. 

 

        This review focuses on the expression patterns and major functions of pcdh17 in the 

vertebrate brain by, first, reviewing the expression of pcdh17 in different brain regions of 

zebrafish, rat and/or mice, and humans and, second, discussing functional studies in those 

organisms.  

 

Pcdh17 Expression in major brain regions 

Pcdh17 in the telencephalon 

       The vertebrate telencephalon is located in the most anterior part of the brain and becomes 

the largest and most sophisticated region in higher vertebrates such as birds and mammals. The 

telencephalon plays a crucial role in memory, attention, sensory integration, and voluntary motor 

control (Sugahara et al., 2013). It includes the pallium (cortex in mammals) and subpallium, or 

basal ganglia (Sugahara et al., 2013). Because of the importance of functions this division 

provides, it is crucial to understand how pcdh17/PCDH17 is expressed in developing and adult 

organisms.  

        The zebrafish telencephalon consists of a pair of olfactory bulbs and two hemispheres. 

Expressional studies were performed to determine pcdh17 mRNA (pcdh17) expression in 
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developing zebrafish embryos (Liu et al., 2009) and adult zebrafish (Liu et al., 2015). Pcdh17 is 

found in the forebrain (it later develops into telencephalon and diencephalon) of zebrafish 

embryos 12-13 hours post fertilization (hpf). Major brain regions have become distinct by 24 hpf 

in zebrafish (Kimmel et al., 1995). In zebrafish telencephalon of 24 hpf zebrafish, pcdh17 shows 

highest expression in the lateroventral regions (Liu et al., 2009). Its expression in the 

telencephalon remains similar in 36 hpf zebrafish, and its expression domains become enlarged 

to almost the entire telencephalon in embryos of 50-72 hpf.  In the adult zebrafish telencephalon, 

pcdh17 shows expression in the internal cellular layer of the olfactory bulb, as well as the 

external cellular and glomerular layers, which is in the more peripheral regions of the olfactory 

bulb (Liu et al. 2015). In the hemispheres of the telencephalon, pcdh17 expression is detected in 

most regions, with higher levels of expression, based on staining intensity, in the dorsomedial 

and ventricular regions.  

          In developing rat brain (post-natal day 3), pcdh17 expression is found to be similar to that 

of the zebrafish, in the olfactory bulb and numerous regions of the cerebral hemispheres, 

including frontal cortex, parietal cortex, basal ganglia, amygdala, and hippocampus (Kim et al., 

2007). In developing mice (P10), pcdh17 protein is detected in the olfactory bulb, prefrontal 

cortex, and basal ganglia (Hoshina et al., 2013). High levels of pcdh17 expression is found in 

both pre- and postsynaptic neurons in the medial prefrontal cortex and anterior striatum 

(receptive regions of the basal ganglia). Pcdh17 is also found in the amygdala (Hayashi et al., 

2014). There is no published reporting, to the best of my knowledge, on pcdh17 expression in 

adult rat or mice. There is no detailed and comprehensive study on distribution of PCDH17 in 

developing human brains, except a brief mentioning of its being enriched in focal regions of the 

prefrontal cortex of 19-20 weeks old human brains (Abrahams et al., 2007). In adult humans, 
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PCDH17 expression is found in Brodmann’s area 46 (Dean et al., 2007), and in other cortical 

regions (Chang et al., 2018). 

        Comparing the expression patterns with fish and mammals in the telencephalon, pcdh17 is 

expressed in the olfactory bulb in zebrafish, rats, and mice, Pcdh17 is expressed in the cortex of 

mice and rats, as well as the pallium, which is the fish homologous region of the mammal cortex. 

Pcdh17 is also detected in the basal ganglia of mammals and the subpallium (ventral half of the 

telencephalon) in zebrafish. Furthermore, both the hippocampus of the mice and rat, and the 

dorsolateral telencephalon region, the fish homologous region for zebrafish, show pcdh17 

expression. Lastly, both the amygdala in mice and rats, and the dorsomedial telencephalon, the 

corresponding zebrafish region, contain many pcdh17 expressing cells.  

 

Pcdh17 in the diencephalon 

        The diencephalon is important in the vertebrate nervous system with functions that include 

a crucial relay and integration, modulation of sensory, motor, and cognitive functions, control of 

endocrine and reproductive functions, food and water intake, and regulation of circadian rhythms 

(Chatterjee and Li, 2012). The vertebrate diencephalon consists of the thalamus, epithalamus, 

and hypothalamus (Sugahara et al., 2013). With the diencephalon playing such important and 

diverse roles, it would be interesting to learn its molecular markers including pcdh17 in this 

region. 

        Pcdh17 expression is found in both the embryonic zebrafish (Liu et al., 2009) and adult 

zebrafish (Liu et al., 2015). As mentioned above, pcdh17 is found in the forebrain (precursors of 

both telencephalon and diencephalon) of 12-13 hpf zebrafish embryos. In 24 hpf zebrafish, 

pcdh17 expression is mainly detected in lateral and ventral diencephalon. A similar pattern of 
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pcdh17 expression is found in the diencephalon of 34 hpf embryos. Pcdh17 continues to be 

expressed in older embryos of 50 and 70 hpf, and its expression, both in space and staining 

intensity, is increased in the older embryos compared to that in the younger embryos. In adult 

zebrafish, pcdh17 has expression in the habenula and dorsal saccus of the epithalamus, in the 

preoptic area, suprachiasmatic nucleus of the anterior hypothalamus, in periventricular regions of 

the hypothalamus, and in the dorsal and ventral thalamus (Liu et al. 2015).  

        In developing rat diencephalon, pcdh17 expression is located in the habenula of the 

epithalamus, in most regions of the hypothalamus, and in anteroventral, ventromedial and lateral 

thalamus (Kim et al., 2007). In developing mice (P10), pcdh17 protein is detected in 

epithalamus, thalamus and hypothalamus (higher level) (Hoshina et al., 2013). The epithalamus 

structure expressing pcdh17 is lateral habenula nucleus. In the thalamus, pcdh17 is found in the 

mediodorsal thalamus and paraventricular thalamus. There is no published report, to the best of 

my knowledge, on PCDH17 expression in human diencephalon. 

        The expression pattern of pcdh17 in the zebrafish and mammal diencephalon are similar. 

Pcdh17 is expressed in the epithalamus (e.g. habenula), hypothalamus (e.g. suprachiasmatic 

nucleus), and thalamus (e.g. wide expression) in the three species.  

 

Pcdh17 in the midbrain 

        The vertebrate midbrain, also called the mesencephalon, is located between the 

diencephalon and hindbrain (Saladin, 2018). The midbrain consists of the optic tectum in 

nonmammals, and superior and inferior colliculi in mammals. Another part of this region is the 

tegmentum, which contains structures such as periaqueductal grey area, red nucleus and reticular 

formation. The optic tectum plays an important role for visual processes in nonmammals. The 
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superior colliculi functions in orienting the head and eyes toward visual and/or auditory stimuli. 

On the other hand, the inferior colliculi functions in processing auditory information 

(Kinkhabwala et al., 2011; Saladin, 2018).  The tegmentum is important for brain functions that 

regulate breathing, cardiovascular activities, arousal, consciousness, and movement coordination. 

Any information about pcdh17 expression in this brain region can help us understand the nature 

of this region.  

        Pcdh17 expression is found in areas of the midbrain in both embryonic zebrafish (Liu et al., 

2009) and adult zebrafish (Liu et al., 2015). There is no obvious pcdh17 expression in the 

midbrain of embryonic zebrafish 12-13 hpf. At 24 hpf, there is some expression in the 

tegmentum (Biswas & Jontes, 2009). Expression of pcdh17 in the midbrain of 34 hpf embryos 

increases in the areas of the optic tectum and tegmentum. In older embryos, 50 to 72 hpf, 

expression intensity increased even more in both the tectum and the tegmentum (Liu et al., 

2009). In adult zebrafish brain, the midbrain shows pcdh17 expression in the stratum 

periventricular (SPV) throughout the tectum (Liu et al., 2015). There is also expression in the 

torus longitudinalis (TL) and the dorsal tegmental nucleus (DTN) (Liu et al., 2015).  

        Similar to zebrafish, there is pcdh17 expression in developing rat midbrain in the areas of 

the of superior and inferior colliculi (Kim et al., 2007).  In P10 day mice, pcdh17 protein appears 

to be expressed in both the superior and inferior colliculi and tegmentum, based on images in 

Hoshina et al. (2013), although its expression in the midbrain was not discussed. PCDH17 

expression is also reported in the human midbrain (Redies et al., 2005), but no information on its 

spatial distribution in the midbrain was provided.  

 

Pcdh17 in the hindbrain 
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        The vertebrate hindbrain is important for controlling and coordinating movement. The 

hindbrain is also home to the cerebellum, medulla oblongata, and pons. These areas help with 

functions that are crucial for survival (Kinkhabwala et al., 2011; Saladin 2018). The hindbrain is 

responsible for controlling movements, balance, respiration, cardiovascular activities, and 

conveying sensory information to higher brain regions. With being associated with such 

important functions, the hindbrain is a crucial part of the vertebrate CNS. Anything we can learn 

about pcdh17 expression in this region can help us understand more about the molecular nature 

of the hindbrain. With that, examining pcdh17 expression in this region is an important study.  

       Pcdh17 expression is found in the hindbrain in both embryonic zebrafish (Liu et al., 2009) 

and adult zebrafish (Liu et al., 2015). Pcdh17 expression in the brain of zebrafish embryos is 

seen as early as 12-13 hpf., but no obvious expression in the hindbrain (Liu et al., 2009). By 24 

hpf, pcdh17 is found in the hindbrain of zebrafish embryos. Small clusters of pcdh17 expressing 

cells are found in ventrolateral regions. Pcdh17 expression is found to become increased in the 

hindbrain in embryos of 34 hpf, with a similar pattern, confined mainly to the ventrolateral 

regions, but with expanded domains, forming two columns of cells lateral to the midline of the 

hindbrain. In older embryos, 50 to 72 hpf, pcdh17 continues to be expressed in the hindbrain, 

with its expression domains expand further, both in dorsoventral and lateromedial directions (Liu 

et al., 2009). In adult zebrafish, pcdh17 is expressed in major regions of the cerebellum including 

the cerebellar body and lateral granular eminence (Liu et al., 2015). Moreover, cells at the border 

between the granular and molecular layers of the cerebellar body show stronger labeling. These 

cells are likely Purkinje cells based on their location and size. Pcdh17 has a wide distribution in 

the medulla. Nuclei of six cranial nerves (fifth to tenth) all contain pcdh17 expressing cells. 
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Strongly labeled cells are found in the superficial regions of both facial and vagal lobes. The 

inferior reticular formation also contains many pcdh17 expressing cells.  

        In the brain of P3 rat brain, pcdh17 expression is strong throughout the hindbrain. 

Moreover, its expression in this region appears to have a stripe-patchy pattern (Kim et al., 2007). 

In developing mice hindbrain (P10), pcdh17 protein expression is found mainly in the ventral 

regions (Hoshina et al., 2013). In humans, PCDH17 expression is detected in regions of the 

hindbrain in the areas of the cerebellum, pons, and medulla oblongata (Redies et al., 2005), but 

more specific spatial distribution pattern in the hindbrain was not provided.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 shows a schematic, sagittal representation of a 12-13 hpf embryonic zebrafish brain, 

highlighting some of the major areas where pcdh17 is found. (green – forebrain/telencephalon, 

diencephalon; red – midbrain, blue – hindbrain) Yellow dots represent regions with high level 

of pcdh17 expression.  
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Figure 5 shows a schematic, sagittal representation of a 24 hpf embryonic zebrafish 

brain, highlighting some of the major areas where pcdh17 is found. (green – 

forebrain/telencephalon, diencephalon; red – midbrain; te-tectum; tg-tegmentum, blue – 

hindbrain) Yellow dots represent regions with high levels of pcdh17 expression. 

 

tectum 

tegmentum 

cerebellum 

hypothalamus 

OB 

Pallium 

Figure 6 shows a schematic, sagittal representation of the adult zebrafish brain, highlighting 

some of the major areas where pcdh17 is found. (green – forebrain/telencephalon, 

diencephalon; red – midbrain, blue – hindbrain; OB – olfactory bulb). Yellow dots represent 

regions with high levels of pcdh17 expression.  

 

thalamus 
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       To summarize, pcdh17 shows expression in all major regions of embryonic and adult 

zebrafish, mice, rat and humans. It is important to note that all the studies of pcdh17/PCDH17 

expression in the vertebrate brain show an anterior-posterior gradient, meaning that anterior 

regions (forebrain) shows more expression than posterior regions (hindbrain) (Liu et al., 2009). 

In other words, pcdh17 expression in the vertebrate brain is conserved. In general, studies on 

expression in zebrafish is much more detailed than in rat, mice and humans.  

 

Functional Studies in Zebrafish 

       To the best of my knowledge, there is only one published report on pcdh17 function in 

zebrafish development (Chen et al., 2013). Morpholino antisense oligonucleotide (MO) 

techniques were used to study the function of pcdh17 in developing zebrafish retinas. The study 

shows that the injected zebrafish embryos have similar body shape and size when compared to 

the control zebrafish, but have significantly reduced eye size (Chen et al., 2013). Further analysis 

of the eye reveals that the reduced eye size is likely due to reduced cell proliferating rates, 

instead of increased cell death. Despite the smaller eye size, there is no apparent defects in the 

differentiation of retinal cell types. There was no report on the effect of reduced pcdh17 

expression on the zebrafish brain development.  

 

Functional Studies in Mice 

        There are several studies on examining the function of pcdh17 in mice brain. Strong 

expression of pcdh17 in both the pre- and postsynaptic neurons in the anatomically connected 

corticobasal ganglia pathway in developing mice suggests its function in the development of 
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these brain circuits (Hoshina et al., 2013). An in vitro assay showed that pcdh17 mediates 

calcium-dependent homophilic cell-cell adhesion (Hoshina et al., 2013).  

        To better understand the function of pcdh17 in the mice brain development and function, 

pcdh17 mutant mice were generated, which showed 96% reduction in pcdh17 protein expression 

(Hoshina et al., 2013). Examination of the mutant mice shows that the mice have no gross 

defects in the architecture of the brain, and no detectable difference in overall axonal projections 

when compared to wild type mice (Hoshina et al., 2013). Specifically, there is no defect found in 

the corticobasal ganglia pathway where pcdh17 is expressed. Moreover, expression of synaptic 

markers such as N-cadherin, synaptophysin, PSD95, and glutamate receptors appears to be 

normal in the pcdh17 mutant mice. Next, the synaptic morphology of wild type and mutant mice 

was examined using electron microscopy. In excitatory synapses, there is a significant increase 

in the docked synaptic vesicles in the mutant mice. This increase is also observed in some 

inhibitory synapses in the corticobasal ganglia circuits. Therefore, pcdh17 appears to have an 

inhibitory effect on the accumulation of synaptic vesicles (Hoshina et al., 2013).  

        Electrophysiological analysis of the pcdh17 mutant mice shows no detectable changes in 

synaptic transmission mediated by glutamate (the major excitatory neurotransmitter in mammal 

brains) within the corticobasal ganglia circuits, suggesting that pcdh17 does not have an effect on 

the excitatory corticostriatal synaptic transmission. However, when similar analysis is performed 

on the GABAergic inhibitory synapses in the basal ganglia, an enhancement in the synaptic 

transmission is observed. One of the major contributing factors to reduced synaptic transmission 

or synaptic depression, is due to depletion of presynaptic vesicles after above normal activation 

of the synaptic transmission. Because there is increased number of presynaptic vesicles in 

pcdh17 mutant mice, they are less susceptible to the synaptic depression. This anti-depressant-
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like phenotype known to be regulated by the corticobasal ganglia circuits, suggests that pcdh17 

is involved in depressive behaviors (Hoshina et al., 2013). This speculation is tested by 

behavioral tests for evaluating sensory and motor functions, cognition, anxiety and depression. 

For example, tail suspension test and forced swim test show that pcdh17 mutant mice are less 

immobile than wild type mice, suggesting that pcdh17 mutant mice are less susceptible to 

depression than wild type mice (Hoshina et al., 2013).  

        Another study of pcdh17 function in mice brain demonstrates that pcdh17 is involved in 

development of efferent axons in amygdala  (Hayashi et al., 2014). Pcdh17 was localized on 

axon fibers that extend from amygdala neurons. Ectopic expression of pcdh17 in amygdala axons 

that do not typically express pcdh17 results in their joining other axons that endogenously 

express pcdh17. This result suggests that pcdh17 is sufficient to induce rearrangement of axons, 

and that pcdh17 regulates grouping of axons through homophilic interactions of their 

extracellular domains (Hayashi et al., 2014). Several amygdala nuclei, including the medial and 

basolateral amygdala, express pcdh17 (Hayashi et al., 2014). Knockout mice for pcdh17 were 

examined and their phenotypes were analyzed. In homozygous mutants. There is no noticeable 

abnormalities in the overall structure of the amygdala nuclei. Moreover, there is no significant 

difference between the wild type and pcdh17 mutant mice in the number of Lhx6 (a transcription 

factor expressed by most neurons in the amygdala) labeled neurons. This suggests that knocking 

out pcdh17 in mice has no detectable effect on the formation of amygdala nuclei (Hayashi et al., 

2014). However, in these homozygous mutant mice, the size of the stria terminalis is reduced. 

The stria terminalis is the major output pathway of the amygdala. Axonal labeling of this 

pathway reveals that axonal fibers in the stria terminalis are significantly reduced (30% in milder 

cases) or completely missing (in severe cases). By the use of electron microscopic analysis, it is 
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determined that the axons passing the dorsal part of the stria terminalis are well-oriented in a 

parallel fashion in the wild type mice, whereas this alignment is disrupted with misoriented 

axons in mutant mice. This led to the conclusion that pcdh17 is required for normal axon 

extension from specific subdivisions of the amygdala (Hayashi et al., 2014).  

 

PCH17 Function in Humans 

        Major mood disorders, or affective disorders, such as bipolar disorder, depressive disorder, 

and anxiety disorders, are mental health problems affecting millions of people and a leading 

cause of disability in this country (Evans & Charney, 2003). Studies have shown that PCDH17 is 

involved in the development of these mood disorders. 

        As in mice and rat, PCDH17 is expressed in human amygdala, which is an important region 

for regulation of mood, anxiety, and fear. This suggests that PCDH17 may be involved in major 

mood disorders (Chang et al., 2018). A large scale clinical data analysis of single-nucleotide 

polymorphisms (SNPs) of more than 60,000 individuals, coupled with functional MRI analysis, 

RNA sequencing, cognitive assessment and personality traits measurements, and in vitro cell 

culture experiments, demonstrate a clear association between a particular PCDH17 allele and 

high risk of developing major mood disorders (Chang et al., 2018). The study showed that one 

SNP, rs9537793, located 3’ to PCDH17 showed the highest association with mood disorders 

when compared to other SNPs tested.  

        Since PCDH17 is highly expressed in the amygdala and caudate nucleus of the basal 

ganglia, brain areas involved in emotional processing, it is hypothesized that this PCDH17 SNP 

is associated with mood and personality disorders. Individuals with this rs9537793 SNP are 

found to be associated with neuroticism, which is an important emotional trait for predicting 
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mood disorders (Chang et al., 2017). Moreover, individuals carrying the risk SNP have 

significantly decreased volumes of both the amygdala and hippocampus. These results lead to the 

hypothesis that the SNP may also be associated with amygdala function underlying negative 

emotional processing (Chang et al., 2017). Healthy individuals who are carriers for the risk SNP 

of PCDH17 show significantly increased amygdala activity when presented with negative 

stimuli compared to those individuals who are not carriers of the particular risk allele. 

Furthermore, individuals who are homozygous carriers of the risk allele show the highest amount 

of amygdala activity, which is followed by heterozygotes, and the least amount of amygdala 

activity are seen in those homozygous for a protective allele.  

        The correlation between PCDH17 and major mood disorders is further supported by an 

RNA sequencing analysis, which showed that individuals with bipolar disorder had significantly 

increased PCDH17 mRNA expression (Chang et al., 2018). An in vitro experiment using 

induced pluripotent stem cells (iPSCs) derived from patients with bipolar disorder and those 

from healthy individuals show that both the iPSCs and neurons derived from them express higher 

levels of PCDH17 from bipolar disorder patients than those from healthy individuals, suggesting 

that PCDH17 plays a role in early brain development, and abnormal PCDH17 expression may 

cause mental disorders including bipolar mood disorder. 

  

Conclusion 

        Studies of pcdh17 expression in zebrafish, mice, rat, and humans show that this cell 

adhesion molecule exhibits similar expression patterns in the major brain areas in both fish and 

mammals. Important regions expressing pcdh17/PCDH17 include frontal cortex, basal ganglia, 

hippocampus and amygdala. There is more data on the spatial distribution of pcdh17 in zebrafish 
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brain than that in the other species, but there is more information on pcdh17/PCDH17 function in 

mice and humans. In both mice and humans, pcdh17/PCDH17 is involved in depression. In 

humans, PCDH17 is associated with major mood disorders, especially the bipolar disorder. 

Future functional studies may shed light on pcdh17/PCDH17 function in activities controlled by 

the diencephalon (e.g. regulation of reproduction) and hindbrain (e.g. control of movement).  
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