

New Air Quality Measurement Method:

Low-Cost Sensors on UAV's

Jasper H. Bowles¹, Avinash M. Krishnan², Marc D. Compere², Kevin A. Adkins³, Marwa M.H. El-Sayed¹ CIVIL ENGINEERING

¹ Department of Civil Engineering, Embry-Riddle Aeronautical University

- ² Department of Mechanical Engineering, Embry-Riddle Aeronautical University
- ³ Department of Aeronautical Science, Embry-Riddle Aeronautical University

Abstract

- Air pollution is a global concern due to its detrimental impacts on humans and the environment. However, detecting atmospheric pollutants is costly and time-intensive.
- The Environmental Protection Agency (US EPA) utilizes filter-based, stationary techniques to measure ground-based particulate matter (PM) in the atmosphere.
- The development of low-cost sensors has helped in combatting the high cost associated with achieving these measurements.
- Low-cost sensors are light, and small, still allowing for measurements of atmospheric pollutants⁽¹⁾.
- We propose placing low-cost air quality sensors on Unmanned Aerial Vehicles (UAVs)(2).
- Sampling will be conducted seasonally in diverse areas, and PM concentrations will be compared to those using the EPA's methods.

Figure 1: Tarot-T18 used for flying the Vaisala AQT 4000 sensor.

Introduction

- The EPA measures harmful atmospheric pollutants, named as criteria pollutants, namely: ozone, nitrogen dioxide, carbon monoxide, sulfur dioxide, lead, and PM.
- Criteria pollutants are measured in over 4000 locations (Figure 2) in the US by regulated EPA collection devices.
- These collection devices are operated and maintained by state agencies to determine compliance with National Ambient Air Quality Standards (NAAQS).

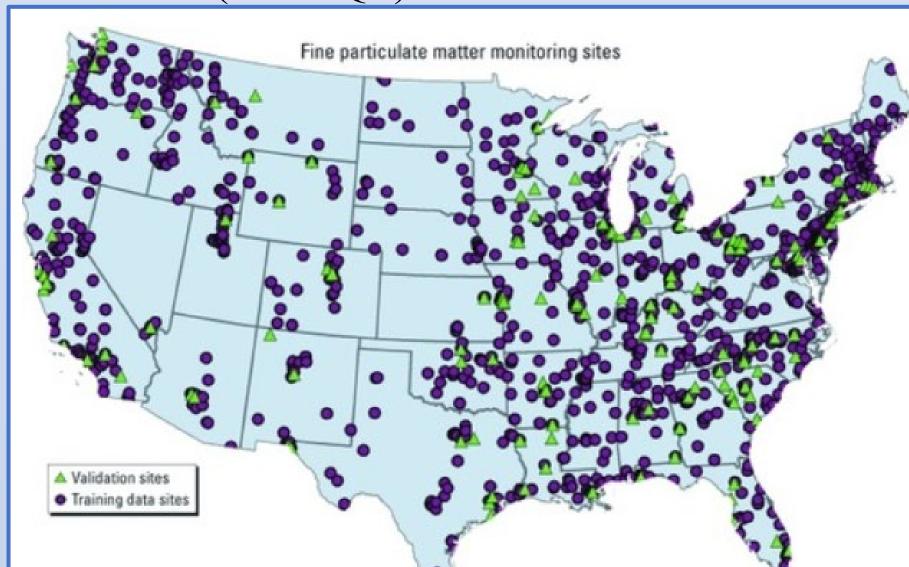


Figure 2: EPA PM monitoring sites in the US.

Objective

- Goal: Develop the technology for placing low-cost sensors on UAV's while achieving reliable measurements for all criteria pollutants.
- *Motivation:* Detect PM and other criteria pollutants at various elevations in diverse areas (remote and congested cities).

Figure 3: M-100 UAV used for flying the OPC-N3 sensor.

Methodology Development

Site Selection

- Flights are conducted at three sites, namely: Daytona Beach (Suburban), Coe Field (Rural), and Orlando (Urban) (Figure 4).
- Diverse sites allow for contrasting PM concentration measurements at different geographical points.
 - Daytona Beach (Suburban)
 - Coe Field (Rural)
 - Orlando (Urban)

Selection of Low-Cost Sensors

Forest Barberville Astor Tiger Bay State Forest Port Springs North De Land De La

Figure 4: Map showing locations used in this study.

Three air quality low-cost sensors are selected for comparison: (1) PMS7003, (2) SDS011, and (3) OPC-N2.

	PMS 7003	SDS011	OPC-N2
Air Quality Low-Cost Sensors			
Weight (g)	30	50	100
Price (\$)	24.97	29.99	39
Dimensions (mm)	48x37x12	71x70x23	75x60x63.5
Accuracy (x/100)	0.83-0.89	0.87-0.9	0.84
Power Supply Voltage (V)	4.5-5.5	5	5
Working Current (mA)	<100	220	180
Life Expectancy	1 year	1 year	1 year

Table 1: Comparison of various low-cost sensors.

Sensor Validation

- The Alphasense OPC-N3 sensor is an optical particle monitor that measures three sizes of PM: $PM_{1.0}$, $PM_{2.5}$ and PM_{10} .
- OPC-N3 was selected because of its high accuracy, and consistent results even at high humidity in previous studies⁽³⁾.
- Validation 1: OPC-N3 is compared to the local, stationary EPA PM monitor in Daytona Beach.
- Validation 2: Vaisala AQT4000 sensor (Figure 5) is used to validate the PM measurements, in addition to other criteria pollutants.
- The code has been created for both sensors and integrated into the UAV's (Figure 1, Figure 3).

Figure 5: Vaisala AQT 4000 sensor used for method validation.

Future Work

- Trial flights for the OPC-N2 and Vaisala AQT4000 sensors will commence in January 2021.
- Collocation of different air quality sensors will take place to test the performance of other sensors as well.

Acknowledgments

We would like to thank the EPA for providing their data to the public as well as ERAU for funding this research.

References

- •Badura, M., Batog, P., Drzeniecka-Osiadacz, A., Modzel, P., "Evaluation of Low-Cost Sensors for Ambient PM_{2.5} Monitoring", *J. Sensors*, vol. 2018, **2018**.
- •Gu, Q.; R. Michanowicz, D.; Jia, C., "Developing a Modular Unmanned Aerial Vehicle (UAV) Platform for Air Pollution Profiling", *Sensors* **2018**, *18*, 4363.
- •Li B., Cao R., Wang Z., et al. "Use of Multi-Rotor Unmanned Aerial Vehicles for Fine-Grained Roadside Air Pollution Monitoring", Transportation Research Record, **2019**; 2673(7):169-180.