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Abstract Lift-and-project cuts can be obtained by defining an elegant optimiza-
tion problem over the space of valid inequalities, the Cut Generating Linear Pro-
gram (CGLP). A CGLP has two main ingredients: (i) an objective function, which
invariably maximizes the violation with respect to a fractional solution x̄ to be
separated; and (ii) a normalization constraint, which limits the scale in which cuts
are represented. One would expect that CGLP optima entail the best cuts, but
the normalization may distort how cuts are compared, and the cutting plane may
not be a supporting hyperplane with respect to the closure of valid inequalities
from the CGLP. This work proposes the Reverse Polar CGLP (RP-CGLP), which
switches the roles conventionally played by objective and normalization: violation
with respect to x̄ is fixed to a positive constant, whereas we minimize the slack for
a point p that cannot be separated by the valid inequalities. Cuts from RP-CGLP
optima define supporting hyperplanes of the immediate closure. When that closure
is full-dimensional, the face defined by the cut lays on facets first intersected by a
ray from x̄ to p, all of which corresponding to cutting planes from RP-CGLP op-
tima if p is an interior point. In fact, these are the cuts minimizing a ratio between
the slack for p and the violation for x̄. We show how to derive such cuts directly
from the simplex tableau in the case of split disjunctions and report experiments
on adapting the CglLandP cut generator library for the RP-CGLP formulation.

Keywords cutting planes · lift-and-project · integer programming

1 Introduction

Many optimization problems can be formulated as a Mixed Integer Linear Pro-
gram (MILP) of the form min{cTx : Ax ≥ b, x ∈ {0, 1}q ×Rn−q+ }. Some are found
more frequently and have been studied in more detail, such as the classic traveling
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salesman problem, for which families of valid inequalities are known (Applegate
et al., 2006). One can tackle an MILP problem by solving its Linear Program (LP)
relaxation min{cTx : Ax ≥ b, x ∈ [0, 1]q × Rn−q+ } and then iteratively branch to

restrict the domains of integer variables or add inequalities of the form αTx ≥ β
to separate solutions in which those variables are fractional. These inequalities are
denoted as cuts with respect to the fractional solutions that they separate, and
in many cases the cuts from different methods are equivalent (Balas and Serra,
2019).

In general, there is a greater and justified interest for facet-defining cuts, which
are those essential to characterize a full-dimensional convex hull of feasible solu-
tions. There is also a secondary interest in the broader family of cuts defining
supporting hyperplanes, which cannot be strengthened by merely increasing the
right-hand side β. When considering a general MILP instead of a special case,
however, it is challenging to guarantee that a cut defines even a supporting hy-
perplane with respect to the convex hull of the feasible solutions. Hence, we aim
for a compromise: which cuts would define facets or supporting hyperplanes of the
immediate closure? In other words, among the many cuts that can be obtained in
the first round of a method, can we select the essential ones or else those that are
as close as possible to the set of valid solutions?

We investigate this question from the perspective of lift-and-project (Balas
et al., 1993), which is a method to generate cuts by defining a tighter relaxation
of the MILP using a Disjunctive Program (DP) (Balas, 1998). Such DP usually
consists of a union of disjoint polyhedra covering the feasible set of the MILP. In
a typical example, if a solution x̄ of the LP is such that 0 < x̄k < 1 for some 1 ≤
k ≤ q, we can intersect the split disjunction {x : xk ≤ 0} ∪ {x : xk ≥ 1} with the
LP feasible set {x : Ax ≥ b, x ∈ [0, 1]q×Rn−q+ } := {x : Ãx ≥ b̃} to define a system
on the inequalities that are valid for each term and thus for the disjunctive hull

Pk = conv
(
{x ∈ Rn : Ãx ≥ b̃,−xk ≥ 0} ∪ {x ∈ Rn : Ãx ≥ b̃, xk ≥ 1}

)
. In fact, we

can define a restricted system without loss of non-dominated inequalities as follows:

α −uT Ã +u0ek = 0

α −vT Ã −v0ek = 0

β −uT b̃ = 0

β −vT b̃ −v0 = 0
u, v, u0, v0 ≥ 0

(C)k

where ek ∈ Rn is a vector with value 1 at position k and 0 elsewhere.
Among these inequalities, we obtain one that separates x̄ by solving a Cut

Generating Linear Program (CGLP) (Balas et al., 1993, 1996) such as

min αT x̄− β
s.t. (C)k

uT e+ vT e+ u0 + v0 = 1

(CGLP)k

These formulations have invariably aimed at maximizing the cut violation for
x̄, i.e., making αT x̄ − β as negative as possible. However, cuts from (CGLP)k
optima may neither define a facet nor a supporting hyperplane of the immediate
closure (Fischetti et al., 2011). This paradox is due to how cuts are ranked by the
CGLP, which relates to how these formulations restrict the algebraic representation
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of the valid inequalities. Since (λα)Tx ≥ (λβ) is the same cut for any λ > 0, one has
to further limit the feasible set defined by the cone (C)k to guarantee the existence
of an optimal solution. This is usually done by adding a so-called normalization
constraint, such as uT e+vT e+u0 +v0 = 1 in the case above. These constraints are
as important to the CGLP outcome as the objective function: each normalization
defines a different infeasibility certificate for x̄ from solving the CGLP dual (Ceria
and Soares, 1997), which in turn validates cuts from CGLP optima. Aiming for
cuts with better guarantees, our goal is to understand which normalization to use
and, more broadly, how to define the CGLP.

The name for these constraints comes from early approaches fixing the norm of
cut coefficients through linear constraints, including ‖α‖` = 1 for ` ∈ {1,∞} and
β = κ for κ ∈ {−1, 0,+1}. Fixing an `-norm of α implies that cuts from CGLP
maximize the distance to x̄ in that norm. While ` ∈ {1,∞} can be defined with
multiple constraints, Cadoux (2010) explored a nonlinear formulation to maximize
Euclidean distance. However, cuts maximizing distance are not necessarily facet-
defining. More generally, since facet-defining cuts correspond to extreme rays of
(C)k, it is preferable to apply a normalization consisting of a single linear constraint
that intersects all rays to ensure that facet-defining cuts correspond to extreme
points of the CGLP. In the case of fixing β, we are partitioning the cuts into
three CGLPs and some of those might remain unbounded. Hence, more recent
approaches have focused on constraining the Farkas multipliers instead. Fischetti
et al. (2011) shows that the so-called Standard Normalization Constraint (SNC)
uT e + vT e + u0 + v0 = 1 tends to generate sparser and lower-rank cuts, but also
that the solutions depend on the scaling of the constraints and that they might not
define supporting hyperplanes. Variants and a generalization of SNC are discussed
by Fischetti et al. (2011) and Balas and Bonami (2009), respectively. Notably,
is has been shown that the so-called trivial normalization u0 + v0 = 1 yields
the Gomory fractional cut when x̄ is a basic solution of the LP (for example, in
Fischetti et al. (2011)).

Finally, we note that explicitly solving a CGLP is considered challenging in
practice because the CGLP is at least twice as large as the LP. For a system such
as (C)k, there are two rows for each column of the LP and two columns for each
row. Hence, generating each cut is more computationally expensive than solving
the linear relaxation. However, it is possible to find cuts from CGLP optima
through formulations with same size as the LP. In the case of split disjunctions,
Balas and Perregaard (2003) have shown that there is a correspondence between
cuts from CGLP optima and Gomory fractional cuts from basic solutions of the LP,
which may or may not be feasible. Hence, one may pivot among LP basic solutions
to find a cut deemed as optimal by the CGLP formulation (Balas and Perregaard,
2003; Balas and Bonami, 2009). In the case of the trivial normalization on 2-term
disjunctions, Bonami (2012) has shown how to project out the Farkas multipliers
and obtain a dual problem known as the Membership Linear Program (MLP),
which only differs from the LP by the objective and right-hand side.

1.1 Contribution

We propose a CGLP reformulation that we name the Reverse Polar CGLP (RP-
CGLP), which switches the roles played by the objective function and the nor-
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malization constraint. Cuts are normalized by fixing their violation with respect
to x̄ and the objective function evaluates the cut at a point p ∈ Pk. To the best of
our knowledge, this is the first CGLP formulation that uses a different objective,
which can be leveraged to generate diverse cuts.

More interestingly, cuts derived from optimal solutions of RP-CGLP define
supporting hyperplanes of the immediate closure. When the disjunctive hull Pk is
full-dimensional, there is always a facet-defining cut from some RP-CGLP opti-
mum. In fact, cutting planes from RP-CGLP optima are those exposed when a ray
from x̄ toward p first intersects Pk. If the point at which that ray first intersects
Pk is at the interior of a facet, then that facet is the unique cutting plane from
RP-CGLP optima. More generally, each cutting plane from RP-CGLP optima is
a combination of facets that separate or are active at x̄. If p is at the interior of
Pk, then the cutting plane is a combination of facets separating x̄ only.

We note that related work by Balas and Perregaard (2002), Cadoux and
Lemaréchal (2013), and Conforti and Wolsey (2016) can be framed as proposing
CGLP variants yielding the same cuts. Compared to those, the main advantage of
the approach described here is that the feasible set of RP-CGLP does not depend
on p, which facilitates generating multiple cuts by just reoptimizing the CGLP
with a new objective function. This equivalence is shown by unveiling the true ob-
jective function of these CGLPs after normalization. To the best of our knowledge,
a precise and meaningful objective function has only been previously reported for
CGLPs fixing a norm of α.

Finally, we show that the solution of RP-CGLP in the case of split disjunctions
can be mimicked over the tableau of the LP relaxation, hence requiring little
adaptation to be incorporated in solvers generating lift-and-project cuts that way.
We report computational results on the implementation.

1.2 Organization

First, we present the RP-CGLP and its properties in Section 2 and prove its
equivalence to other recently proposed CGLP formulations in Section 3. In the
sequence, we show how to solve the RP-CGLP for split disjunctions using the LP
tableau in Section 4, some methods to parameterize RP-CGLP in Section 5, and
report experiments comparing RP-CGLP to a conventional CGLP in Section 6.
We draw some conclusions in Section 7.

2 The Reverse Polar Reformulation

We propose the Reverse Polar Cut Generating Linear Program (RP-CGLP) to
generate a cut αTx ≥ β separating x̄ with the orientation of some point p ∈ Pk:

min αT p− β
s.t. (C)k

β − αT x̄ = 1

(RP-CGLP)pk

Similarly to other CGLP formulations, (RP-CGLP)pk contains a single normaliza-
tion constraint, β − αT x̄ = 1, which fixes the violation conventionally maximized
by a CGLP. Moreover, the interplay between objective and normalization changes.
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While most normalizations bound the feasible set to guarantee that there is an op-
timum, we explain in the next paragraph that the feasible set remains unbounded,
whereas the normalization prevents the root (α, β, u, v, u0, v0) = 0 of the cone
defined by (C)k from being an optimal solution. That is due to αT p ≥ β for any
valid inequality, which implies that the objective function value of RP-CGLP is
always nonnegative for p ∈ Pk while αT0− 0 = 0. Finally, the separability of x̄ is
guaranteed by CGLP feasibility instead of optimality.

By reformulating the MILP that we want to solve on coordinates centered at x̄,
say x′ = x− x̄, the corresponding RP-CGLP defines a cut of the form α′Tx′ ≥ β′
in those coordinates, where α′ = α and β′ = 1. Hence, cuts from RP-CGLP
optima can be characterized by their left-hand sides, which define a subset of

the reverse polar set
(
Pk−x̄

)−
:=
{
y : yT (x− x̄) ≥ 1 ∀x ∈ Pk

}
. For any p ∈ Pk,

(RP-CGLP)pk yields a cut of the form αTx ≥ β for some y ∈
(
Pk−x̄

)−
, where

α = y and β = 1 + yT x̄. In fact, the superset of (C)k obtained from replacing the
equalities on the terms with β by ≤ along with normalization β−αT x̄ = 1 defines
an extended formulation of the reverse polar set.

When convenient to elucidate proofs, cuts from (RP-CGLP)pk will be denoted
in the form yT (x− x̄) ≥ 1. Whenever we refer to a cut from (RP-CGLP)pk or from
any other formulation, we assume that these cuts come from optimal solutions of
the corresponding CGLP formulation.

Lemma 1 Cuts from (RP-CGLP)pk define supporting hyperplanes of Pk.

Proof Let us suppose, for contradiction, that there is a cut from (RP-CGLP)pk
where that does not hold. Since the distance from x̄ to the hyperplane defined by

αT x̄ = β is given by dist(αTx = β, x̄) = |αT x̄−β|
‖α‖ with respect to any norm, the

norm of parallel cutting planes get smaller as they move away from x̄. Hence, if we
put that cut in the form ȳT (x− x̄) ≥ 1, then ∃ε ∈ (0, 1) for which εȳT (x− x̄) ≥ 1
is valid for Pk. However, the former cut would not be optimal since the objective
function value of the latter is smaller: ȳT (p− x̄)− 1 > εȳT (p− x̄)− 1. ut

From this point on, let us assume that Pk is full-dimensional and then charac-
terize which of its facets characterize cutting planes from (RP-CGLP)pk optima. Let

F =
{

(γi)T (x− x̄) ≥ δi
}
i∈F be the set of facet-defining inequalities of Pk, with F

finite for A, b rational. Without loss of generality, we partition F = F+∪F 0∪F−,
where δi = 1 if i ∈ F+, δi = 0 if i ∈ F 0, and δi = −1 if i ∈ F− . Hence, a
face-defining cut ȳT (x − x̄) ≥ 1 from an optimal solution of (RP-CGLP)pk can
be described by some nonnegative combination of multipliers {λ̄i}i∈F in which
ȳ =

∑
i∈F λ̄iγ

i, λ̄ ≥ 0, and
∑
i∈F+ λ̄i −

∑
i∈F− λ̄i = 1 since

∑
i∈F λ̄iδi = 1.

Now we can characterize the cuts from (RP-CGLP)pk through a result that,
interestingly, resembles complementary slackness for the facets not separating x̄:

Theorem 1 For a cut ȳT (x− x̄) ≥ 1 from (RP-CGLP)pk for p ∈ Pk, any combi-
nation λ̄ is such that λ̄i = 0 or (γi)T (p− x̄)− δi = 0 ∀i ∈ F 0 ∪ F−.

Proof Suppose not for a cut of the form ȳT (x− x̄) ≥ 1 with a combination λ̄. Let
G0 := {i ∈ F 0 : λ̄i > 0 and (γi)T (p − x̄) > 0} and G− := {i ∈ F− : λ̄i > 0 and
(γi)T (p−x̄)+1 > 0}, where G0∪G− 6= ∅. If G0 6= ∅, then starting with λ′ ← λ̄ and
setting λ′i ← 0 ∀i ∈ G0 would yield a valid cut with objective function value smaller
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by
∑
i∈G0 λ̄i[(γ

i)T (p − x̄)] > 0. If G− 6= ∅, we similarly could start with λ′ ← λ̄,

set λ′i ← 0 ∀i ∈ G− and accordingly set λ′j ← λ̄j/
(
1 +

∑
i∈G− λ̄i

)
∀j ∈ F+ to

keep
∑
i∈F+ λ

′
i−
∑
i∈F− λ

′
i = 1. That would decrease the objective function value

by
∑
i∈G− λ̄i[(γ

i)T (p − x̄) + 1] > 0 and
∑
j∈F+(λ̄j − λ̄′j)[(γj)T (p − x̄) − 1] ≥ 0,

respectively. Hence, ȳT (x− x̄) ≥ 1 is not obtained from an (RP-CGLP)pk optimum,
a contradiction. ut

Corollary 1 For a cut ȳT (x − x̄) ≥ 1 with combination λ̄ derived from (RP-
CGLP)pk for p ∈ Pk, we have ȳT (p− x̄) = (γi)T (p− x̄) ∀i ∈ F+ : λ̄i > 0.

Proof From Theorem 1, we have ȳT (p − x̄) =
∑
i∈F+ λ̄i[(γ

i)T (p − x̄)]. Further-

more, either ȳT (p − x̄) − 1 = 0 or
∑
i∈F+ λ̄i = 1, since otherwise

∑
i∈F− λ̄i > 0

and we could find a cut with better objective with multipliers λ′ by starting
with λ′ ← λ̄, setting λ′i ← 0 ∀i ∈ F−, and then scaling down with λ′j ←
λ̄j/

(
1 +

∑
i∈F− λ̄i

)
∀j ∈ F+. Thus, if ȳT (p − x̄) > (γi)T (p − x̄) for some i ∈

F+ : λ̄i > 0, then ∃j ∈ F+ : λ̄j > 0 such that ȳT (p − x̄) < (γj)T (p − x̄) and
vice-versa. If that was possible, however, then there would be a cut with strictly
better objective by increasing λ̄i while decreasing λ̄j accordingly. ut

Corollary 2 For p ∈ int(Pk), a cut from (RP-CGLP)pk is a combination λ̄ of
facets separating x̄ that each correspond to some (RP-CGLP)pk optimum.

Proof If p is not on any facet, Theorem 1 implies that λ̄i = 0 ∀i ∈ F 0 ∪ F−, and
by Corollary 1 the cut from each facet i with λ̄i > 0 defines an optimal solution
of (RP-CGLP)pk. ut

Thus, cuts from (RP-CGLP)pk are a combination of (i) inequalities of F that
are active at p, and (ii) inequalities of F that separate x̄. The only set with non-
zero objective value is the latter, which comprises inequalities indexed by F+

with same evaluation for p if normalized by the same right-hand side, hence each
associated with some (RP-CGLP)pk optimum. We are now left with one question
— what makes the cuts defining each of such facets optimal?

Lemma 2 A cut αTx ≥ β from (RP-CGLP)pk with objective value ζ is active at
the point p′ := x̄+ 1

ζ+1 (p− x̄), which lies on the ray from x̄ to p.

Proof It suffices to check that αT p′ − β = 0: αT
(
x̄+ 1

ζ+1 (p− x̄)
)
− β = (αT x̄−

β)+
(

1
ζ+1 (αT p− αT x̄)

)
= −1+

(
1
ζ+1 (αT p− (β − 1))

)
= −1+

(
1
ζ+1 (ζ + 1)

)
= 0.
ut

Theorem 2 A cut from (RP-CGLP)pk is active at the first intersection of Pk with
the ray from x̄ to p, which corresponds to point p′ from Lemma 2.

Proof A cut αTx ≥ β from (RP-CGLP)pk is such that αT x̄−β = −1 and αT p−β ≥
0, hence defining a monotonically increasing function for the slack along the ray.
Since that slack is negative for any point before p′, those are all separated by the
cut and p′ is the first intersection of the ray with Pk. ut
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In other words, cutting planes from (RP-CGLP)pk optima are combinations of

facets of Pk that are first intersected by a ray from x̄ toward p. Note that the ray
from x̄ to p may intersect other facets separating x̄ prior to p′, but none of those
at a point in Pk. In fact, a cutting plane from (RP-CGLP)pk only combines facets
indexed by F+ that are last intersected by the ray from x̄ to p.

We can observe that in a different way. If we replace β according to the nor-
malization, the objective can be restated as minαT (p− x̄)− 1. Consequently, all
points defining the same ray with x̄ as p yield the same cuts from (RP-CGLP)pk. If
we choose a point p′ along that ray for which the objective value is 0, it becomes
clear that facets separating x̄ should be active at p′. If p′ is at the interior of a
facet of Pk, then that facet is the unique cutting plane from (RP-CGLP)pk optima,
as implied by Corollary 1.

3 Equivalent Formulations and Related Work

For any CGLP formulation, the imposed normalization and its interplay with the
objective function may result in a different ranking of the cuts. In order to compare
(RP-CGLP)pk with other recent formulations, we need to understand how cuts are
truly evaluated.

Lemma 3 Valid inequalities of Pk that separate x̄ are compared by (RP-CGLP)pk
using

min
αT p− β
β − αT x̄ (1)

Proof Let us denote cuts in the form µTx ≥ ν, where ‖µ‖ = 1. Hence, for a cut of
the form αTx ≥ β, we consider a correspondence of the form (α, β) = θ(µ, ν) for
some θ > 0.

Normalization β − αT x̄ = 1 implies that θ = 1
ν−µT x̄

. The objective function

is restated as minαT p − β = min θ(µT p − ν) = min µT p−ν
ν−µT x̄

. Therefore, the cuts

separating x̄ obtained with (RP-CGLP)pk are those minimizing the ratio between
the slack for p and the violation for x̄. Note that the ratio does not depend on the
algebraic representation of the cut. ut

3.1 Equivalent Formulations

A similar reformulation is proposed by Balas and Perregaard (2002), as follows:

min αT x̄− β
s.t. (C)k

αT (p− x̄) = 1

(BP-CGLP)pk

Balas and Perregaard (2002) have proven that (BP-CGLP)pk has an optimum if,

and only if, the line defined by x̄ and p ever intersects Pk. If so, the resulting
cut defines a supporting hyperplane, which contains the point of Pk that is the
closest to x̄ on the line between x̄ and p. This normalization is used for multi-row
cuts by Louveaux et al. (2015). Formulation (BP-CGLP)pk resembles (RP-CGLP)pk
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when the objective of the latter is restated as minαT (p − x̄) − 1 by substituting
β according to the normalization, except that switching the expressions for the
objective function and the normalization constraint.

However, a key difference between (RP-CGLP)pk and (BP-CGLP)pk is that the
feasible set of the former does not depend on p. That allows to generate different
cuts by just changing the objective function and reoptimizing, hence entailing
more variability if we choose the next point in Pk to entirely change the set of
CGLP optima. In a sense, that generalizes the approach by Balas (1997) of using
alternate CGLP optima to generate multiple cuts.

Corollary 3 (BP-CGLP)pk and (RP-CGLP)pk derive the same cuts for p ∈ Pk.

Proof The normalization of (BP-CGLP)pk implies θ = 1
µT (p−x̄)

, and the objec-

tive becomes minαx̄ − β = maxβ − αx̄ = max θ[ν − µT x̄] = max ν−µT x̄
µT (p−x̄)

=

max ν−µT x̄
(µT p−ν)+(ν−µT x̄)

. Since (BP-CGLP)pk optima yield cuts separating x̄, we

can divide numerator and denominator by the violation. The objective becomes

max 1
µT p−ν
ν−µT x̄

+1

, which is equivalent to min µT p−ν
ν−µT x̄

+ 1, which in turn matches that

of (RP-CGLP)pk except for a constant term. ut

Cadoux and Lemaréchal (2013) praise the boundedness from normalizing by
an interior point, hence motivating what we denote as the Polar CGLP (P-CGLP):

min αT x̄− β
s.t. (C)k

αT p− β = 1

(P-CGLP)pk

We can similarly state (P-CGLP)pk as a CGLP for a problem on coordinates cen-
tered at p with right-hand side of −1, hence characterizing the α-projection as a
subset of the polar set

(
Pk−p

)◦
:= {y : yT (x − p) ≤ 1 ∀x ∈ Pk} when p is an

interior point. Moreover, we can easily adapt the proof of Lemma 1 to show that
cuts from (P-CGLP)pk define supporting hyperplanes. However, while normaliza-

tion αT p − β = 1 defines a bounded feasible set if p ∈ int(Pk), a valid inequality
might be active at p while separating x̄ if p ∈ bd(Pk), in which case (P-CGLP)pk
has no optimum. Note that, if Pk is not full-dimensional, then there are no interior
points.

While giving less importance to separating x̄, Cadoux and Lemaréchal (2013)
nevertheless regard that as a possible role for the objective function in the polar
formulation. If separating x̄ is of central importance, however, we show below that
(RP-CGLP)pk is equivalent but more general than (P-CGLP)pk because it works

with any p ∈ bd(Pk). Such distinction is particularly relevant if Pk is not full-
dimensional, and therefore any p ∈ Pk is such that p ∈ bd(Pk). When (P-CGLP)pk
has no optimum, then the corresponding cuts have to be derived from rays of the
unbounded problem. Cadoux and Lemaréchal (2013) also present a concern with
unbounded sets such as the reverse polar, which we address with the objective
function evaluating a point in Pk.

Corollary 4 If (P-CGLP)pk has an optimum, then (RP-CGLP)pk and (P-CGLP)pk
derive the same cuts for p ∈ Pk.
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Proof For (P-CGLP)pk, the normalization implies θ = 1
µT p−ν and the objective

becomes minαx̄−β = maxβ−αx̄ = max θ[ν−µT x̄] = max ν−µT x̄
µT p−ν . Hence, unless

p is active at some facet-defining inequality separating x̄, we are maximizing a
well-defined ratio. ut

Another related work is a parallel development by Conforti and Wolsey (2016)1.
Their approach consists of generating cuts through a coordinate system in which a
point p from the relative interior of Pk is centered at the origin. The LP formulation
used by their cut generator maximizes violation subject to the RHS normalization
−1 ≤ β ≤ 1, which they show to almost surely produce a facet-defining inequality if
Pk is full-dimensional and an improper face otherwise. The resulting approach is in
essence very similar to (P-CGLP)pk. Consequently, generating a second inequality
separating x̄ may require another formulation due to the change of coordinate
systems instead of a change of objective function as in (RP-CGLP)pk.

Our work contributes to this literature in the following ways. First, we propose
a reformulation that permits generating multiple cuts with the intended properties
by only changing the objective function. Second, we show the equivalence between
the different formulations presented above and how those formulations rank all
valid cuts. Third, we complement the analyses of Balas and Perregaard (2002),
Cadoux (2010), and Conforti and Wolsey (2016) by characterizing the decompo-
sition of the resulting cuts in terms of facet-defining inequalities of Pk when the
cut is not facet-defining. Finally, we present the first method to generate such cuts
using the simplex tableau of the LP relaxation, as described in Section 4.

3.2 Duality

The dual of a CGLP is regarded as the lift-and-project primal, where the solutions
correspond to a convex combination of points on each term of the disjunction. The
effect of each normalization constraint in the CGLP is to relax the lift-and-project
in a different way to make x̄ feasible, hence defining an infeasibility certificate.
Ceria and Soares (1997) explore the interpretation of these duals in conventional
CGLP formulations.

Among the formulations that we have proven equivalent above, the dual for
(BP-CGLP)pk is particularly insightful because it yields the point alluded by Lemma 2
as p′ = x0 + x1:

min ω

s.t. Ãx0 −b̃y0 ≥ 0
x0
j ≥ 0

Ãx1 −b̃y1 ≥ 0
x1
j −y1 ≥ 0
y0 + y1 = 1

(x̄− p)ω +x0 + x1 = x̄

(BP-L&P)pk

1 A poster with the results that we prove up to this point in the paper was presented on May
2016 at the MIP Workshop (https://sites.google.com/site/mipworkshop2016/posters), which
was almost simultaneous with their presentation at the CORE@50 Conference.
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3.3 Supporting Hyperplane Methods

There is a broader stream of literature on related techniques dating back to Veinott
(1967), which are often denoted as supporting hyperplane methods. They are used
for network design by Ben-Ameur and Neto (2007) and for mixed-integer nonlin-
ear programs by Kronqvist et al. (2016), both considering a segment between an
interior point p and x̄ to obtain a boundary point p′ and a cutting plane active at
p′. Using a conventional CGLP, the in-out approach by Fischetti and Salvagnin
(2010) separates another exterior point within that segment. For p sufficiently close
to Pk, the latter approach is intuitively equivalent to ours, as described next. For
any valid inequality derived by the finite set of basic CGLP solutions that does
not define a supporting hyperplane of Pk, there is a set of exterior points that are
sufficiently close to Pk in the line segment between x̄ and p that would not be
separated. Therefore, an exterior point that is sufficiently close to Pk would imply
that all valid inequalities from CGLP optima define supporting hyperplanes of Pk.

The target cuts by Buchheim et al. (2008) exploit a projection where it is possi-
ble to enumerate all extreme points. Using a polar normalization and an objective
maximizing violation, a linear program prevents inequalities from separating the
extreme points and yields a facet-defining cut for the projection. This facet is
active at the boundary point between p and x̄. The method is later applied to
solve robust network design (Buchheim et al., 2011) and quadratic integer pro-
gramming (Buchheim et al., 2010). The same idea is used by Tjandraatmadja and
van Hoeve (2016) to generate facet-defining cuts with respect to the polytope as-
sociated with the convex hull of the solutions represented by a decision diagram
corresponding to a relaxation of the problem being solved.

4 Cut Generation from the Simplex Tableau

When the CGLP is defined on a split disjunction with a single normalization
constraint, Balas and Perregaard (2003) have shown that there is a correspondence
between basic solutions of the CGLP defining a cut and those of the LP relaxation.
Such result assumes the restricted set of inequalities defined by (C)k, where there
are 2n+3 basic variables in any basic CGLP solution. In the case of cuts separating
x̄, these basic variables consist of α, β, u0, v0, and n multipliers among u and v.
Furthermore, the basic variables among u and v correspond to linearly independent
inequalities of the LP feasible set. From each of those basic multipliers, we infer
that the slack of the corresponding inequality is non-basic at a basic LP solution
where the same cut can be derived as a Gomory cut. These slacks correspond to
the variables in x for the inequalities defining bounds.

In what follows, we show how to generate cuts from (RP-CGLP)pk directly
from the simplex tableau, hence using some results and proof steps from Balas
and Perregaard (2003) when appropriate. Let āij denote the j-th column and āi0
the right-hand side of the i-th row of the simplex tableau for basic solution x̄.
The set J = M1 ∪M2 defines the index set of nonbasic variables of the LP for a
given CGLP solution, where M1 correspond to basic multipliers among u and M2

to basic multipliers among v. Finally, let the slacks of the linear relaxation with
respect to x̄ and p denote s̄ = Ãx̄− b̃ and ¯̄s = Ãp− b̃, respectively.
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Theorem 3 For a given basic solution of the LP relaxation, the reduced costs of
non-basic multipliers ui and vi of (RP-CGLP)pk for some row i for the correspond-
ing given basic solution (ᾱ, β̄, ū, v̄) are

rui = −σ

 ∑
j∈M2

āij s̄j − āi0(1− x̄k)

−
 ∑
j∈M2

āij ¯̄sj − āi0(1− pk)

 (2)

and

rvi = −σ

 ∑
j∈M1

āij s̄j − āi0x̄k

−
 ∑
j∈M1

āij ¯̄sj − āi0pk

 , (3)

where the objective function value of the CGLP solution corresponds to

σ = −
∑
j∈M2

ākj ¯̄sj − āk0(1− pk)∑
j∈M2

ākj s̄j − āk0(1− x̄k)
(4)

or

σ = −
∑
j∈M1

ākj ¯̄sj + (1− āk0)pk∑
j∈M1

ākj s̄j + (1− āk0)x̄k
(5)

with ākj ≤ 0 ∀j ∈M1 and ākj ≥ 0 ∀j ∈M2.

Proof By restricting to the basic multipliers in u and v along with one non-basic
multiplier for each term, ui and vi, we have the following expressions for the cut
coefficients:

α = uTM1
ÃM1

+ uiÃi −u0ek = vTM2
ÃM2

+ viÃi +v0ek (6)

β = uTM1
b̃M1

+ uib̃i = vTM2
b̃M2

+ vib̃i +v0 (7)

After substitutions using Lemma 8 from Balas and Perregaard (2003), we have

uj = −(u0 + v0)ākj + (ui − vi)āij ∀j ∈M1 (8)

vj = (u0 + v0)ākj − (ui − vi)āij ∀j ∈M2 (9)

v0 = (u0 + v0)āk0 − (ui − vi)āi0 (10)

Since u0, v0 > 0 because the inequality separates x̄, we show the partitioning
among M1 and M2 by setting ui, vi = 0:

uj = − (u0 + v0)ākj → ākj ≤ 0 ∀j ∈M1 (11)

vj = (u0 + v0)ākj → ākj ≥ 0 ∀j ∈M2 (12)

Now we compute the slack of x̄ with respect to the M2 and also M1:

αT x̄− β = vTM2
(ÃM2

x̄− b̃M2
) + vi(Ãix̄− b̃i) + v0(eTk x̄− 1)

= vTM2
s̄M2

+ vis̄i + v0(x̄k − 1)

= (u0 + v0)
∑
j∈M2

ākj s̄j − (ui − vi)
∑
j∈M2

āij s̄j + vis̄i + [(u0 + v0)āk0 − (ui − vi)āi0](x̄k − 1)

= (u0 + v0)

 ∑
j∈M2

ākj s̄j − āk0(1− x̄k)

− (ui − vi)

 ∑
j∈M2

āij s̄j − āi0(1− x̄k)

 + vis̄i

(13)
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αT x̄− β = uTM1
(ÃM1

x̄− b̃M1
) + ui(Ãix̄− b̃i)− u0e

T
k x̄

= uTM1
s̄M1

+ uis̄i − u0x̄k

= −(u0 + v0)
∑
j∈M1

ākj s̄j + (ui − vi)
∑
j∈M1

āij s̄j + uis̄i − [(u0 + v0)(1− āk0) + (ui − vi)āi0]x̄k

= −(u0 + v0)

 ∑
j∈M1

ākj s̄j + (1− āk0)x̄k

 + (ui − vi)

 ∑
j∈M1

āij s̄j − āi0x̄k

 + uis̄i

(14)

We can obtain similar expressions with respect to p:

αT p− β = (u0 + v0)

 ∑
j∈M2

ākj ¯̄sj − āk0(1− pk)

− (ui − vi)

 ∑
j∈M2

āij ¯̄sj − āi0(1− pk)

 + vi ¯̄si

(15)

αT p− β = −(u0 + v0)

 ∑
j∈M1

ākj ¯̄sj + (1− āk0)pk

 + (ui − vi)

 ∑
j∈M1

āij ¯̄sj − āi0pk

 + ui ¯̄si

(16)

This is the point where our proof differs from Balas and Perregaard (2003).
We use our normalization to determine the value of u0 + v0 and plug that in the
objective function. We first use the expressions depending on M2:

αT x̄− β = −1→ (u0 + v0) =
−1 + (ui − vi)

[∑
j∈M2

āij s̄j − āi0(1− x̄k)
]
− vis̄i∑

j∈M2
ākj s̄j − āk0(1− x̄k)

(17)

αT p− β =
−1 + (ui − vi)

[∑
j∈M2

āij s̄j − āi0(1− x̄k)
]
− vis̄i∑

j∈M2
ākj s̄j − āk0(1− x̄k)

 ∑
j∈M2

ākj ¯̄sj − āk0(1− pk)


−(ui − vi)

 ∑
j∈M2

āij ¯̄sj − āi0(1− pk)

 + vi ¯̄si

(18)

Note that fixing ui, vi = 0 above yields the CGLP objective as in (4), whereas
fixing only vi = 0 and subtracting σ yields (2). Now we use the expressions de-
pending on M1:

αT x̄− β = −1→ (u0 + v0) =
1 + (ui − vi)

[∑
j∈M1

āij s̄j − āi0x̄k
]

+ uis̄i[∑
j∈M1

ākj s̄j + (1− āk0)x̄k

] (19)
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αT p− β =
−1− (ui − vi)

[∑
j∈M1

āij s̄j − āi0x̄k
]
− uis̄i[∑

j∈M1
ākj s̄j + (1− āk0)x̄k

]
 ∑
j∈M1

ākj ¯̄sj + (1− āk0)pk


+(ui − vi)

 ∑
j∈M1

āij ¯̄sj − āi0pk

 + ui ¯̄si

(20)

Similarly, fixing ui, vi = 0 above yields the CGLP objective as in (5), whereas
fixing ui = 0 and subtracting σ yields (3). ut

In fact, it would also be possible to define rvi in terms of M1 as well as rui in
terms of M2, but both of these would leave the slack of a nonbasic multiplier in
the expression, which does not need to be computed otherwise.

Note that σ resembles (1). In contrast, Balas and Perregaard (2003) showed

that the tableau expression for (CGLP)k is σ′ =

∑
j∈M2

ākj s̄j − āk0(1− x̄k)

1 +
∑
j∈J |ākj |

,

where the denominator evidences the effect of coefficient scale pointed out by
Fischetti et al. (2011).

Finally, note that choosing which variable enters the CGLP basic solution cor-
responds to choosing which variable leaves the LP basic solution: solving the CGLP
through the LP implies dualizing the solution method. However, LP solutions do
not need to be feasible. In fact, it is very common for a CGLP solution to be
associated with an infeasible LP solution.

If we decide to put ui or vi into the CGLP basis, we need to pivot out xi
from the LP basis and replace it by some other variable xl. Consequently, we are
changing the coefficients of the non-basic variables in the line defining xk and thus
the cut that we obtain.

To simplify notation, we assume xk is defined by row k, xi by row i, and sj
denotes a nonbasic variable in the LP that is a basic multiplier in the CGLP.
Hence, the rows associated with xk and xi in the LP relaxation can be denoted as

xk +
∑
j∈J

ākjsj =āk0 (21)

xi +
∑
j∈J

āijsj =āi0 (22)

Corollary 5 Given an LP basis where bx̄kc < xk < dx̄ke and variable xi leaves

the basis, pivoting a non-basic variable xl preserves bx̄kc < xk < dx̄ke if
bx̄kc − āk0

āi0
<

γl <
dx̄ke − āk0

āi0
, where γl = − ākl

āil
. If γl > 0, the corresponding improvement in

the objective function of (RP-CGLP)pk is given by

f+(γ) := −
∑
j∈J (min{0, ākj + γāij}) ¯̄sj + (1− āk0 − γāij)pk∑
j∈J (min{0, ākj + γāij}) s̄j + (1− āk0 − γāij)x̄k

− σ.

Otherwise, if γl < 0, then it is given by

f−(γ) := −
∑
j∈J (max{0, ākj + γāij}) ¯̄sj − (āk0 + γāi0)(1− pk)∑
j∈J (max{0, ākj + γāij}) s̄j − (āk0 + γāi0)(1− x̄k)

− σ.
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The pivot operation yields no improvement if γl = 0.

Proof If we add row i multiplied by some γ > 0 to row k, we obtain

xk + γxi +
∑
j∈J

(ākj + γāij)sj = āk0 + γāi0

and the right-hand side remains in the range (bx̄kc, dx̄ke) if
bx̄kc − āk0

āi0
< γ <

dx̄ke − āk0

āi0
.

If xi is pivoted out and replaced by the variable in the l-th column, then setting

the coefficient of that variable to 0 in the k-th row requires γ = − ākl
āil

= γl.

The impact of such pivot on (RP-CGLP)pk depends on γl being positive or
negative. If γl > 0, column i joins M2. In such case, M1 remains a subset of the
non-basic variables from the previous basis, which corresponds to those variables
with nonpositive coefficients in the k-th row. Hence, the objective function of
(RP-CGLP)pk after the pivot is given by

−
∑
j∈J (min{0, ākj + γāij}) ¯̄sj + (1− āk0 − γāij)pk∑
j∈J (min{0, ākj + γāij}) s̄j + (1− āk0 − γāij)x̄k

Otherwise, if γl < 0, column i joins M1 and the objective with respect to M2

becomes

−
∑
j∈J (max{0, ākj + γāij}) ¯̄sj − (āk0 + γāi0)(1− pk)∑
j∈J (max{0, ākj + γāij}) s̄j − (āk0 + γāi0)(1− x̄k)

Note that there is no change in σ if γl = 0 because the k-th row remains the
same. ut

Finally, we observe that there are LP basic solutions corresponding to solutions
with negative objective for (RP-CGLP)pk, which are those yielding inequalities that
do not separate x̄. These solutions have no correspondence in the CGLP because
they are removed by the normalization constraint. When using the LP relaxation
to generate the cut, one should not pivot to such bases. If we keep using p ∈ Pk,
they are easily spotted through the objective function of the CGLP.

5 Parameterizing the Cut Generator

We are now left to discuss the choice of a point p ∈ Pk to parameterize the cut
generator. From a theoretical perspective, we want to preferably choose a point
p ∈ int(Pk) to obtain a cutting plane that is a combination of facets separating
x̄. From a practical perspective, we want to keep the computational cost closer to
that of competing alternatives. As mentioned previously, using the simplex tableau
associated with the LP relaxation instead of an explicit CGLP formulation halves
the size of the LP formulation with which the cuts are generated. Therefore, any
method to choose p must preferably not require a computational effort that fairly
exceeds that of solving the LP relaxation or of using it as a surrogate.
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One immediate option is to use the line defined by the gradient of the objective
function. Namely, choose a point p such that (p − x̄) = λc for some λ 6= 0.
Alternately, or if it is not straightforward to check if such line intersects Pk, we
can compute p as the convex combination of points of the LP relaxation in each of
the terms of the split disjunction {x : xk ≤ 0}∪{x : xk ≥ 1}, say p0 and p1, hence
entailing the independent solution of two LP formulations of similar size as the
LP relaxation. When pursuing the latter option, we augment these formulations
with a single decision variable s that captures a lower bound on the slacks of the
linear inequalities. Subsequently, those points are combined in proportion to their
corresponding slack. If we denote the solutions of each LP as (pγ , sγ) for γ ∈ {0, 1},
then we choose p := s0

s0+s1
p0 + s1

s0+s1
p1.

Our first method combines both ideas. First, we check if extending the objective
gradient yields a point in the LP relaxation on either side of the split disjunction.
If not, we calculate a pair of points on both sides with a formulation that priori-
tizes moving away from the boundary of Pk by maximizing s. We calculate those
points as pγ := argx maxx,s{s : Ax + s ≥ b, xk = γ, x ∈ [0, 1]q × Rn−q+ , s ∈ R+}
for γ ∈ {0, 1}, and we denote the method as Gradient or Maximize Minimum
Slack (GMMS). If it is possible to increase s indefinitely, we use γ = 1 to trun-
cate the resulting unbounded solution (xv, sv) + γ(xr, sr), γ ≥ 0, which is defined
by the extreme point (xv, sv) and the extreme ray (xr, sr).

Our second method also leverages the objective function of the MILP while en-
suring a lower bound on the slacks. We calculate those points as pγ := argx max{cTx :
Ax + s ≥ b, s ≥ ε, xk = γ, x ∈ [0, 1]q × Rn−q+ , s ∈ R+} for γ ∈ {0, 1} and some
ε > 0, and we denote the method as Required Minimum Slack (RMS). We can
choose ε = 1 and keep halving its value up to a threshold if the linear system is in-
feasible. If the formulation is feasible, the change of objective function in contrast
to the MMS formulation ensures that an optimal solution exists since the same is
true for the MILP, whereas the objective function induces some proximity to x̄.

6 Computational Experiments

This section compares the cuts generated by solving (CGLP)k and (RP-CGLP)pk
in the case of split disjunctions through the tableau of the linear relaxation. We
use the implementation for (CGLP)k described in Balas and Bonami (2009) and
adapt it to also generate cuts using (RP-CGLP)pk with methods GMMS and RMS.

Our primary focus is solving MILP formulations faster, which can be at odds
with metrics evaluating the local impact of a cut or collection on cuts. For ex-
ample, a cut maximizing the distance between the separating hyperplane and the
fractional solution may not necessarily be facet-defining. Furthermore, the opti-
mality gap closed by a collection of cuts may not capture the complementary of
such cuts beyond such immediate impact. While average distance and optimality
gap closed are reported for the cuts generated, the development of the cut genera-
tor has focused on parameterizations that improve the final outcome of the solver.
Nevertheless, we disable all cuts that are automatically generated by the solver in
order to avoid generating redundant cuts with either approach, since that could
potentially distort the comparison.
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In the experiments, we first solve the linear relaxation of instances from the
MIPLIB benchmarks2 and then generate a lift-and-project cut for each fractional
variable xk using either (CGLP)k or (RP-CGLP)pk, which is then strengthened,
up to a limit of 300 distinct cuts. We circumvent most of the numerical issues that
arise when the objective function gets too close to zero or RMS does not yield a
feasible solution by reverting to the conventional formulation in those cases. As we
generate the cuts for each instance using each formulation, we measure the total
gap closed when adding all the cuts generated and resolving the linear relaxation
as well as the average Euclidean distance of each cutting plane to x̄. The gap
closed here refers to the optimal value of the linear relaxation after adding the
cuts in comparison with the optimal value of the linear relaxation with no cuts
and the known optimal value of each instance. Finally, we try solving the resulting
MILP formulations on a single thread using the CPLEX solver 12.9 with the cuts
from each method added and automatic cut generation disabled and a time limit
of ten minutes, from which we report the runtime or the remaining gap after the
time limit is reached. All code is written in C++ and the CPLEX experiments ran
on a Windows 10 machine with an Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz
processor and 16 GB of RAM.

Tables 1 to 4 describe the results per instance. Table 5 summarizes them.
Table 5 also aggregates the results in a different form with a column for best
virtual method, which counts the cases in which using (RP-CGLP)pk with either
GMMS or RMS has a better result than (CGLP)k and the cases in which using
(CGLP)k has a worse result than both.

2 miplib.zib.de
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Table 5 Performance of (RP-CGLP)pk against (CGLP)k for each method generating p and a
virtual best method consisting of the best result from either method.

GMMS RMS Virtual best method

Better Worse Better Worse Better Worse

Total gap closed 21 48 23 44 32 31
Average distance 31 55 28 56 41 39

CPLEX performance 57 47 63 41 75 29

We observe that using (RP-CGLP)pk with both GMMS or RMS often yields
a better performance solving the problem than (CGLP)k. However, the total gap
closed and the average distance of the cutting planes tends to be smaller. An intu-
itive explanation is that these cutting planes do not maximize violation for some
scale of the constraints. Furthermore, the aggregated results in the last columns
indicate that a more calibrated choice of p could potentially improve the results.

7 Conclusion

This paper introduced the Reverse Polar Cut Generating Linear Program (RP-
CGLP), which is parameterized by a point x̄ that we want to separate and a point
p that we cannot. We have shown that these lift-and-project cuts define supporting
hyperplanes of the immediate closure. When that closure if full-dimensional, the
cutting plane is a combination of facets that are active at the point that a ray from
x̄ to p first intersects the closure, with each facet separating x̄ also corresponding
to an optimal solution to RP-CGLP. We also adapt this formulation to generate
cuts from the tableau of the LP relaxation in the case of split disjunctions. Note,
however, that all other results remain valid for arbitrary disjunctions.

While we switch the roles of normalization and objective in comparison to
other CGLP formulations, we nevertheless observe that a distortion in how the
cuts are compared with respect to the objective is unavoidable. We fix violation
to guarantee separability and then choose to minimize the slack for p to ensure
boundedness. That intuitively favors cuts that are farther away from x̄ and closer
to p. In fact, we show that RP-CGLP actually minimizes the ratio between slack
for p and violation for x̄ across all valid cuts, consequently proving the equivalence
between RP-CGLP and other recent CGLP formulations. Previously, the CGLPs
for which an explicit representation of the objective was known were those fixing
a norm of α. Moreover, in comparison to the equivalent CGLP formulations that
have been recently proposed, RP-CGLP has the benefit of preserving the feasible
set for different choices of p, whereas changing p affects the left-hand side of those
formulations. Hence, RP-CGLP may facilitate generating multiple cuts because we
only need to reoptimize after changing p. In fact, any feasible solution of RP-CGLP
yields a cut separating x̄, while that depends on the objective function value for
other formulations. In addition, we can potentially use sensitivity analysis on the
objective of RP-CGLP to look for points in the disjunctive hull yielding a disjoint
set of cuts.

The experimental results have shown that there is some potential for RP-
CGLP, but also that finding a good choice for p deserves further study. There is
a noticeable difference in the results according to the method used to generate



22 Thiago Serra

p, especially for the second experiment of testing the performance on CPLEX
with those cuts and automatic cut generation disabled. In fact, one could argue
that there is a way to choose p in each case for which the same cuts from the
conventional formulation are obtained, or else strictly better ones are found in the
case that they do not define supporting hyperplanes.

Ultimately, one could argue that the reformulation shifts where the numerical
issues are. While the concept of a most violated cut depends on an adequate
scale of the constraints in the conventional formulation, the family of equivalent
in-out formulations to which RP-CGLP belongs depends on a careful choice of
point or ray parameterizing the direction of separation. Therefore, an important
milestone for these approaches is finding points in the disjunctive hull that yield
strictly better cuts. One would expect the ideal point to define a CGLP optimum
with unique (α, β)-projection, which in turn derives a cut αTx ≥ β defining a
facet of the disjunctive hull. When the disjunctive hull is not full-dimensional and
the point is inevitably at the boundary, further restricting the CGLP by facial
reduction (Borwein and Wolkowicz, 1981) could be a possibility for better results.
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