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Chapter

The Impact of Dietary Compounds 
in Functional Foods on 
MicroRNAs Expression
Wittaya Chaiwangyen

Abstract

MicroRNAs (miRNAs) are a class of non-coding endogenous RNA molecules 
that are involved in post-transcriptional gene silencing via binding to their tar-
get messenger RNA, leading to mRNA degradation or translational repression. 
MicroRNAs can be modulated by several factors including hormones, transcription 
factors, and dietary compounds. These biologically active compounds have posi-
tive impact on the progression of human pathology including non-communicable 
diseases, which indicating that administration of diet may have potential as thera-
peutic agents in modulating the risk of chronic diseases. Interestingly, evidence 
emerging in recent years suggests that dietary miRNAs can be absorbed in human 
circulation, modulated human gene expression and biological functions. The 
exploitation of the miRNA functioning within different origins, cellular miRNAs 
and dietary miRNAs will help us to understand the molecular machinery as well as 
the regulatory mechanisms involved in fundamentally important biological pro-
cesses. Therefore, this knowledge may be applied of natural bioactive compounds in 
preventive or therapeutic approaches.

Keywords: functional foods, microRNAs, dietary microRNAs, chronic diseases, 
non-communicable diseases

1. Origin, biogenesis and functions of microRNAs

MicroRNAs or miRNAs are a class of small non-coding RNA approximately 
21–25 nucleotides that modulate on gene expression post-transcriptionally via bind-
ing to the 3′ untranslated region (3′-UTR) of the target messenger RNA (mRNA), 
resulting in mRNA degradation or translational repression. The first miRNA, lin-4, 
was discovered by Ambro and his research group in 1993 and it was found to be 
related with larva development in Caenorhabditis elegans [1]. Up to date, almost 
2000 miRNAs have been identified in humans (http://www.miRbase.org – 7.3.2019) 
[1]. It has been estimated that 1–4% of human genes expression can be regulated 
by miRNAs, which is the largest of genomic regulator [2]. In mammals, miRNAs 
have been associated with various cellular pathways with the regulation of cell dif-
ferentiation, cell cycle, proliferation, apoptosis, hematopoiesis, and other cellular 
functions. Recent studies have highlighted the importance of mRNA regulation 
mechanism by validation and differential miRNA expression in a variety of human 
pathological conditions, including chronic diseases.
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miRNAs are normally transcribed by RNA polymerase II from miRNA genes. 
This transcription leads to generate a primary miRNA transcript (pri-miRNA). 
Then, pri-miRNA is further cleaved by a microprocessor complex, which consists 
of Drosha, the double-stranded RNase III enzyme and DiGeorge syndrome critical 
region 8 (DGCR8), important cofactor, into a hairpin structure precursor miRNA 
(pre-miRNA) in the nucleus (Figure 1). The double strand pre-miRNAs with 70 
nucleotides are then exported to the cytoplasm by the process of nuclear export 
factor exportin-5. The pre-miRNA is then processed by RNase III, Dicer, thereby 
generating a mature miRNA:miRNA duplex approximately 22 nucleotides in length 
and without a hairpin structure. The helicase enzyme cleaves miRNA duplexes into 
single-stranded miRNAs and incorporated into the Argonaute (AGO), TRBP and 
PACT proteins to form the RNA-induced silencing complex (RISC). Usually, other 
single strand called passenger strand or the star (*) strand will be degraded, while 
single strand mature miRNA is able to bind with its target mRNA and mediating 
translational inhibition or mRNA degradation, along with their sequence comple-
mentarity to the target [1, 3]. In plants, target mRNA will be degraded if miRNA 
has perfect or near-perfect complementarity to its target. In contrast to mammal, 
miRNAs bind to partially complementary sites in the 3′-UTRs of target mRNA, 
which leading to translational repression [4]. the target mRNA is either blocked 
(imperfect complementary) or degraded (perfect complementary) of the ribosomal 
translation, which sequentially impacts the cellular functions.

Phytochemicals are major plant-derived compounds that naturally found in 
vegetables, fruits, medicinal plants or other plants with medicinal properties 
including antioxidant, anti-diabetic, anti-inflammatory, antimicrobial, antidepres-
sant, anticancer and prevention in other chronic non-communicable diseases [5–7]. 
Phenolic and flavonoid compounds are the most important group of bioactive 
compounds and second metabolites in plants which comprise of essential molecules 

Figure 1. 
miRNA biogenesis. miRNA gene is transcribed by RNA polymerase II and then forming the primary miRNA 
transcript (pri-miRNA), which is further cleaved by the Drosha/DGCR8 complex to generate the precursor 
miRNA (pre-miRNA). Pre-miRNA is then exported into the cytoplasm by exportin 5/RAN-GTP and further 
processed by dicer to create the mature miRNA, which is loaded into RISC, which contains AGO, PACT and 
TRBP proteins. Mature miRNA that binding to its target mRNA by perfect complementary binding and 
resulting in gene suppression by mRNA degradation. The partially complementary binding of miRNA and its 
target mRNA, which in turn inhibit the protein translation.
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of human diet [6, 8]. It has been shown that bioactive compounds can modulate the 
endogenous miRNAs expression [1, 9–12]. Recently, some studies have revealed that 
plant-derived miRNAs (dietary miRNAs) as new bioactive compounds in plants 
can affect the synthesis of endogenous miRNAs [13–15]. Strikingly, miRNAs do 
not function only their origins but they are able to regulate the gene expression in 
cross-kingdom. Therefore, bioactive compounds present in functional foods are 
potentially regulate endogenous miRNAs expression.

2. Dietary compounds and endogenous miRNAs

Extensive studies have been performed to understand the molecular mechanism of 
bioactive compounds with a positive effect on chronic diseases or non-communicable 
diseases such as arthritis, cancer, cardiovascular diseases, diabetes and obesity [1, 16]. 
Emerging evidences confirm that alteration of endogenous miRNAs expression can be 
influenced by bioactive compounds in functional foods [16, 17] (Figure 2 and Table 1).

2.1 Acetyl-11-keto-β-boswellic acid

3-acetyl-11-keto- β -boswellic acid (AKBA) is pentacyclic triterpene acids that 
mainly found in Boswellia serrata and it has been shown in medicinal properties for 
chronic diseases including anti-tumor, anti-inflammation, antioxidant, asthma, 
diabetes, atherosclerosis and analgesic [18–20]. AKBA showed the reduction of 

Figure 2. 
Influences of bioactive compounds and dietary miRNAs on human non-communicable diseases. Ascending 
arrows represent up-regulated miRNAs and descending arrows represent down-regulated miRNAs by bioactive 
compounds. The green triangles show the positive impact of dietary miRNAs on human health.
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Dietary compound miRNA expression Target of 

miRNA

Diseases References

Up-regulation Down-

regulation

Acetyl-11-Keto-β-

Boswellic Acid

miR-27a 

miR-34a

Unknown Colorectal cancer [23]

miR-155 SOCS-1 Neuroinflammation [21]

miR-206 ER-α Breast cancer [22]

Arctigenin miR-16

miR-199a

Unknown Neuroinflammation [28]

miR-21

miR-19b 

miR-148a

Unknown Prostate cancer [29]

Cinnamic acid 

derivatives

miR-143 MAPK/

Erk5

Colon cancer [31]

miR-145 Unknown Gastric cancer [33]

Curcumin miR-15a, miR-

16, miR-34a, 

miR-146b-5p

miR-181b

miR-19a 

miR-19b

Unknown Breast cancer [38]

miR-101, 

miR-200b, 

miR-200c, 

miR-141 

miR-429

miR-21 Unknown Colorectal cancer [39, 40]

miR-21 Gastric cancer [41]

miR-145 

miR-1275

miR-1908 

miR-3127 miR-

3178 miR-3198

miR-23b*, 

miR-183 

miR-193b* 

miR-210 

miR-222* 

miR-494 

miR-664*

miR-671-5p

Oct4 Prostate cancer [42]

miR-181b CXCL1 

CXCL2

Breast cancer [43]

miR-378 p38 glioblastoma [44]

miR-124 

miR-155

Unknown Neurodegenerative 

disorder

[45]

3,3′-Diindolyl-

methane

let-7

miR-34a 

miR-150-5p

EZH2, 

Notch1

AR

Ahr

Prostate cancer [46]

miR-200 FoxM1 Breast cancer [47]

miR-212/132 

cluster

miR-21

Sox4 

Cdc25A

Breast cancer [48, 49]

let-7b, 

let-7c, let-7d, 

let-7e, and 

miR-200b/c

ZEB-1,

E-cadherin

Pancreatic cancer [50]

miR-146a Unknown Pancreatic cancer [51]
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Dietary compound miRNA expression Target of 

miRNA

Diseases References

Up-regulation Down-

regulation

(−)-Epigallocatechin-

3-Gallate

miR-296 STAT3 Nasopharyngeal 

carcinoma

[57]

let-7a miR34a c-Myc Hepatocellular 

carcinoma

[58]

miR-34a miR-93 Unknown Prostate cancer [59]

miR-29 

miR-210

miR-125b 

miR-203

Unknown Cervical cancer [60]

let-7 HMGA2 Melanoma cell [61]

miR-384 Beclin-1 Myocardial 

ischemia/

reperfusion

[62]

miR-140-3p Unknown Osteoarthritis [63]

miR-10b miR-

181a miR-221

Unknown Liver fibrosis [64]

Genistein miR-23b Unknown Breast cancer [66]

miR-1260b sRRP1 

Smad4

Prostate cancer [67]

miR-1260b sFRP1, 

Dkk2, 

Smad4

Renal cancer [68]

miR-27a Unknown Lung cancer [69]

miR-29b Unknown Lung cancer [70]

miR-451 Unknown Chronic liver 

disease

[72]

Quercetin miR-200b-3p Notch1 Pancreatic cancer [75]

miR-146a EGFR Breast cancer [76]

miR-16 HOXA10 Oral cancer [77]

miR-22 WNT1/β-

catenin

Oral cancer [78]

miR-97

miR-298 miR-

2218 miR-1502 

miR-2117

Unknown Oxidative stress in 

pheochromocytoma

[79]

miR-503-5p

miR-1283, 

miR-3714 

miR-6867-5p

CCND1 Endometriosis [80]

miR-122 miR-21 Unknown Liver fibrosis [81]

miR-199 Sert1 Hypoxia [82]

Silymarin miR-203 class 1 

HDAC 

proteins 

and ZEB1

Lung cancer [84]

miR-155 Unknown Rheumatoid 

arthritis

[85]

miR-122 Unknown Liver damage [86]

miR-122 miR-

192 miR-194

Unknown Liver damage [87]

β-Sitosterol-d-

glucoside

miR-10a Unknown Breast cancer [89]
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inflammatory miRNA expression, miR-155 and increased the expression of miR-155 
target gene, suppressor of cytokine signaling-1 (SOCS-1) in neuroinflammatory mice 
model [21]. Therefore, AKBA might be used for treatment of neuroinflammatory 
disorders. AKBA also induced breast cancer cell cycle arrest, apoptosis and decreased 
the expression of estrogen receptor alpha (ER-α) via the up-regulation of miR-206 
[22]. In addition, combination of AKBA and curcumin suppressed colorectal cancer 
growth through the down-regulated miR-27a and miR-34a expression [23].

2.2 Arctigenin

Arctigenin (AR) is a phenylpropanoid dizbenzylbutyrolactone lignin and was first 
identified in Arctium lappa L. Several studies showed anti-inflammatory, anti-cancer, 
anti-viral, immune modulatory activities of AR [24–27]. The study demonstrated that 
AR upregulated miR-16 and miR-199a expression by decreasing upstream protein 
(IKKα and IKKβ) expression and inhibiting NF-κB signaling pathway activity, thereby 
reducing inflammatory cytokines production in neural cells [28]. The combina-
tion treatment of AR and quercetin significantly inhibited the oncogenic miRNAs 
expression including miR-19b, miR-21 and miR-148a in prostate cancer cells. AR and 
quercetin also showed anti-migration activity in prostate cancer cells [29].

2.3 Cinnamic acid derivatives

Cinnamic acid derivatives can occur naturally in plants and their structure 
composing of benzene ring and acrylic acid group. Several compounds of cinnamic 
acid derivatives have been identified including artepilin C, baccharin, drupanin, 
ferulic acid, curcumin, caffeic acid, p-hydroxycinnamic acid, coumaric and chloro-
genic acids, etc. [30, 31]. Medicinal activities of cinnamic acid derivatives have been 
reported such as anti-inflammatory, anti-oxidant, anti-viral, anti-microbial, anti-dia-
betic, neuroprotective and anti-tumor activities [30–32]. Cinnamic acid derivatives 

Dietary compound miRNA expression Target of 

miRNA

Diseases References

Up-regulation Down-

regulation

Sulforaphane miR-23b 

miR-92b 

miR-381 

miR-382

Unknown Breast cancer [92]

miR-616-5p GSK3β/β-

catenin

Lung cancer [93]

miR-135b-5p miR-30a-3p RASAL2

Cx43

Pancreatic cancer [94]

miR-200c Unknown Oral cancer [96]

miR-9 

miR-326

Unknown Gastric cancer [97]

miR-124-3p STAT3 Nasopharyngeal 

cancer

[98]

miR-423-5p Unknown Liver fibrosis [99]

miR-155 Unknown Neuroinflammation [100]

Table 1. 
Summary of miRNAs bioactive compounds and miRNAs expression in human pathology.
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from propolis significantly induced colon cancer cell apoptosis through TRAIL/
DR4/5 and/or FasL/Fas death-signaling pathways and via the upregulated miR-143 
expression, resulting in decreased the target gene MAPK/Erk5 expression and its 
downstream target c-Myc [31]. Moreover, Li et al. demonstrated that cinnamic acid 
derivatives decreased gastric cancer cell proliferation through the up-regulation of 
miR-145 and down-regulation P13K/Akt signaling pathway [33]. Therefore, cinnamic 
acid derivatives have a potential as therapeutic agents for cancer.

2.4 Curcumin

Curcumin[(1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptane-3,5-dione] is well 
known as natural polyphenol and derived from the rhizome of turmeric or Curcuma 
longa Linn [34, 35]. Curcumin has been shown to possess of several medicinal 
properties such as anti-inflammation, antioxidant, pro-apoptosis, chemoprevention, 
anti-proliferation, wound healing, anti-nociception, anti-parasite, anti-malaria, 
anti-diabetes, neuroprotection and anti-tumor [34, 36]. Numerous studies have 
been focused on curcumin as a novel anti-cancer drug due to the inhibition of 
NF-kB, Akt/PI3K, and MAPK pathways and enhancement of p53 by curcumin, 
thereby inhibited several cancer cells proliferation, migration, invasion and induced 
apoptosis [35, 37]. Emerging data suggest that curcumin dysregulate oncogenic 
miRNAs and tumor suppressor miRNAs expression in various type of cancers such 
as lung cancer, prostate cancer, breast cancer, colorectal cancer, nasopharyngeal 
carcinoma, pancreatic cancer, ovarian cancer and etc. [35]. Curcumin have been 
shown to up-regulation of miR-15a, miR-16, miR-34a, miR-146b-5p and miR-181b 
and down-regulation of miR-19a and miR-19b upon treatment of several breast 
cancer cell lines with curcumin [38]. Curcumin but not 5-fluorouracil, upregulated 
the expression of miR-101, miR-200b, miR-200c, miR-141 and miR-429 and down-
regulated oncogenic miR-21 in colorectal cancer cells [39, 40]. In addition, miR-21 
was down-regulated in gastric cancer with curcumin treatment, resulting in inhibi-
tion of cell migration and invasion by regulation of the PTEN/PI3K/AKT pathway 
[41]. Lui et al. showed that curcumin up-regulated 6 miRNAs (miR-145, miR-1275, 
miR-1908, miR-3127, miR-3178, and miR-3198), whereas 8 miRNAs (miR-23b*, 
miR-183, miR-193b* miR-210, miR-222*, miR-494, miR-664*, miR-671-5p) were 
down-regulated when treated with curcumin in human prostate cancer stem cells 
(HuPCaSCs) [42]. Experimental confirmed of miR-145 function in HuPCaSCs 
revealed that miR-145 inhibited cell proliferation by targeting transcription factors 
Oct4 [42]. Another study also reported that miR-181b was up-regulated by curcumin 
and inhibited breast cancer cell proliferation, invasion and induced cell apoptosis 
by targeting CXCL1 and CXCL2 [43]. Inhibitory effect of curcumin on glioblastoma 
cell growth was observed and curcumin also up-regulated miR-378 expression and 
p38 was the target of miR-378 [44]. Curcumin and Pioglitazone combination have a 
potential as therapeutic applications for neurodegenerative disorders by increasing 
of miR-124 and miR-155 expression, thereby inhibiting the inflammatory cytokines 
TNF-α, IL-1β and IL-6 production and inflammation-associated enzymes COX-2, 
iNOS through inhibition of NF-κB activity in animal model [45].

2.5 3,3′-Diindolylmethane

3,3′-diindolylmethane (DIM) is a naturally active compound found in stomach, 
which derived from indole-3-carbinol (I3C) that present in cruciferous vegetables. 
DIM has been reported to regulate several miRNAs expression in cancer. Tumor sup-
pressor miRNAs was upregulated by DIM in prostate cancer cells including let-7, miR-
34a and miR-150-5p by targeting EZH2, Notch1 and AR and Ahr, respectively [46]. 
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DIM also upregulated tumor suppressor miR-200, which led to inhibit the expression 
of FoxM1 in breast cancer cells [47]. miR-212/132 cluster and miR-21 were upregu-
lated by DIM, which downregulated the expression of Sox4 and Cdc25A, respectively 
in breast cancer [48, 49]. Moreover, DIM upregulated let-7b, let-7c, let-7d, let-7e, and 
miR-200b/c expression, which led to inhibit the expression of ZEB-1, E-cadherin in 
pancreatic cancer cells [50]. It has been reported miR-146a was upregulated upon 
treated with DIM and suppressed the expression of MTA2, NF-κB, IRAK1, EGFR in 
pancreatic cancer cells [51].

DIM showed the modulation of miRNAs expression in other inflammatory 
diseases. The expression of miR-106a, miR-20b, and miR-125b-5p were increased 
after treatment with DIM and suppressed the expression of IRAK4 and TNF-α to 
limit responses to TLRs activated by LPS in acute liver failure (ALF) animal model 
[52]. DIM significantly upregulated miR-200c, miR-146a, miR-16, miR-93, and 
miR-22 in brain CD4+ T cells and inhibited the expression of cyclin E1 and B-cell 
lymphoma-2 in experimental autoimmune encephalomyelitis (EAE), a murine 
model of multiple sclerosis [53].

2.6 (−)-Epigallocatechin-3-gallate

(−)-Epigallocatechin-3-Gallate or EGCG is a major polyphenol compound in green 
tea (Camellia sinensis) and derivative of catechin [3, 16]. EGCG is a powerful antioxi-
dant, anticancer and antiangiogenic properties, which has a potential role to influence 
human diseases [54–56]. EGCG suppressed nasopharyngeal carcinoma cell migration 
and invasion through a novel signaling axis of miR-296/STAT3 regulation [57]. Gold 
nanoparticles (AuNPs) have been used for drug delivery as their stability and increase 
drug bioavailability as well as accumulation of drug in cancer cells. EGCG-capped gold 
nanoparticles upregulated the tumor suppressor miRNAs, let-7a and miR34a, which 
consecutively their targeted gene, caspase-3 was upregulated, and c-Myc protein was 
decreased in hepatocellular carcinoma cells [58]. miR-34a is one of the tumor suppres-
sor miRNAs that downregulated, whereas miR-93 is highly up-regulated in prostate 
cancer cells. Co-transfection of miR.34a mimic and miR.93 inhibitor along with 
EGCG significantly decreased androgen receptor (AR) and prostate-specific antigen 
(PSA) expression when compared to the co-transfection without EGCG [59]. In cervi-
cal carcinoma cells, Hela (HPV16/18+), EGCG inhibited cell growth and up-regulated 
miR-29 and miR-210 expression, while down-regulated the expression of miR-125b 
and miR-203 [60]. Up-regulation of let-7 was observed in EGCG treated melanoma 
cells, which led to inhibit the expression of high mobility group A2 (HMGA2) [61].

EGCG showed the protective effect against myocardial ischemia/reperfusion 
(I/R) injury through up-regulation of miR-384-mediated autophagy by targeting 
Beclin-1 via activating the PI3K/Akt signaling pathway [62]. EGCG also demon-
strated the anti-arthritic effects by inhibited IL-1β-induced ADAMTS5 expression 
and up-regulated the expression of miR-140-3p in osteoarthritis chondrocytes [63]. 
EGCG treatment has potential role of preventing toxin-induced fibrosis by sup-
pression of osteopontin expression and up-regulation of miR-10b, miR-181a and 
miR-221 in liver hepatocellular carcinoma cells [64].

2.7 Genistein

Genistein belongs to isoflavone family and presents in soybeans with antiangio-
genic, anti-metastasis, anti-inflammatory, anti-oxidant, cell cycle arrest and induction 
of apoptosis effects [65]. Genistein can regulate the expression of miRNAs in several 
call types [65]. It has been reported that treatment of genistein up-regulated miR-23b 
and inhibited breast cancer cell growth [66]. Genistein also exhibited anti-tumor effect 
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by down-regulated miR-1260b and targeting sRRP1 and Smad4 through DNA meth-
ylation or histone modifications in prostate cancer cells [67]. The same research group 
reported that miR-1260b was highly expressed in renal cancer cells and miR-1260b 
was down-regulated in genistein treated renal cancer cells [68]. The treatment of miR-
1260b inhibitor inhibited the expression of its target genes, sFRP1, Dkk2, Smad4 [68]. 
Treatment with genistein induced non-small lung cancer cell apoptosis, caspase-3/9 
activation and inhibited cell proliferation via up-regulation of miR-27a -mediated 
MET signaling [69]. Co-encapsulate miR-29b with genistein in hybrid nanoparticles 
(GMLHN) has been studied to treat effectively in non-small lung cancer cell and 
GMLHN showed the anti-proliferative effect by down-regulation of phosphorylated 
AKT (pAKT) and phosphorylated phosphoinositide-3 kinase (p-PI3K) [70].

Genistein promoted myoblast proliferation and differentiation through down-
regulated miR-222 expression, resulting in increased expression of its target 
genes, MyoG, MyoD, and ERα [71]. Interestingly, genistein up-regulated miR-451 
expression and inhibited IL1β expression and inflammation in chronic liver disease 
nonalcoholic steatohepatitis (NASH) mice model [72].

2.8 Quercetin

Quercetin is bioactive flavonoids that can be found in fruits and vegetables 
including onion, kale, apple, many berries, citrus fruits and tea [73]. Anti-cancer, 
anti-inflammatory, antioxidant, anti-diabetes, anti-atherosclerosis and anti-viral 
effects have been reported in different in vitro studies for quercetin [74]. Several 
studies have focused on quercetin and miRNAs modulation for therapeutic approaches. 
miR-200b-3p was up-regulated in pancreatic cancer cells when treated with quercetin, 
resulting in inhibition of self-renewal and decrease of proliferation through Notch1 
signaling pathway [75]. Quercetin significantly inhibited breast cancer cell prolifera-
tion and invasion via up-regulated miR-146a expression and targeting EGFR [76]. 
Quercetin inhibited cell viability, migration and invasion by up-regulated miR-16 and 
targeting HOXA10 in oral cancer cells [77]. In addition, quercetin decreased oral cancer 
cell viability and increased cell apoptosis via miR-22/WNT1/β-catenin pathway [78].

Recently, quercetin modulated 34 miRNAs expression (5 upregulated and 29 
downregulated) and novel miR-97, miR-298, miR-2218, miR-1502, and miR-2117 
were identified in pheochromocytoma of the rat adrenal medulla that responded for 
protective effect against oxidative stress through PI3K-AKT signaling pathway [79]. 
Treatment of quercetin inhibited proliferation of endometriosis through up-regu-
lated miR-503-5p, miR-1283, miR-3714 and miR-6867-5p by targeting CCND1 [80]. 
TGFβ1 is a fibrosis inducer and quercetin significantly down-regulated miR-21 and 
TGFβ1 and up-regulated miR-122 in liver fibrosis [81]. Protection of cardiomyocyte 
against hypoxia caused insults of quercetin has been reported by up-regulation of 
miR-199 mediated sirt1 expression and AMPK phosphorylation [82].

2.9 Silymarin

Silymarin is a flavonolignans extracted from the milk thistle Silybum marianum 
(L.) gaernt and recent studies have demonstrated the anti-cancer, anti-inflammatory, 
vascularization inhibitory, antioxidant, hepatoprotective, cardioprotective and anti-
metastasis activities of silymarin [83]. Several miRNAs have been implicated in the 
invasive potential of cancer cells. Tumor suppressor miRNA, miR-203, was up-regulated 
and class 1 HDAC proteins and ZEB1 were repressed with silymarin treatment, resulted 
in inhibition of non-small cell lung cancer migration [84]. Silibinin, the major active 
constituent of silymarin extract, induced apoptosis and ERβ expression, inhibited cell 
proliferation, and reduced pro-inflammatory cytokines expression including IL-17 and 
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TNF-α, through ERβ binding and down-regulated miR-155 in rheumatoid arthritis [85]. 
miR-122 is liver-specific miRNA and was down-regulation upon silymarin treatment 
in rat model for hepatoprotective and radio protective effects via increased superoxide 
dismutase (SOD), glutathione (GSH) and reduced lipid peroxidation (MDA) [86]. It has 
been reported the hepatoprotective activity of silymarin on thioacetamide-induced liver 
damage by restored miR-122, miR-192, and miR-194 expression levels [87].

2.10 β-Sitosterol-d-glucoside

β-Sitosterol-d-glucoside is bioactive compounds that has been isolated from 
Agave angustifolia and sweet potato [88, 89]. Pharmacological activity of β-Sitosterol-
d-glucoside has been reported including immunomodulatory, anti-inflammatory, 
cytotoxic, and antiparasitic activities [88]. β-Sitosterol-d-glucoside exhibited cytotoxic 
effect in breast cancer cells by up-regulated miR-10a expression and decreased the 
PI3K/Akt signaling pathway [89]. Treatment of β-Sitosterol-d-glucoside can down-reg-
ulate miR-322-5p, miR-301a-3p, miR-129-5p, miR-322-3p, and miR-129-2-3p in neural 
stem cell and their targets are related to the regulation of proliferation [90]. Therefore, 
β-Sitosterol-d-glucoside could be developed for further therapeutic applications.

2.11 Sulforaphane

Sulforaphane is dietary compounds in broccoli (Brassica oleracea) and cruciferous 
plants. It has been demonstrated the capability of sulforaphane for anti-inflam-
matory, antiaging, antidiabetic, antioxidant, anti-tumor, hepatoprotective and 
cardioprotective effects [91]. Plant-derived phytochemicals including sulforaphane 
are potentially affected miRNAs expression. Sulforaphane inhibited breast cancer 
cell cycle arrest and senescence via down-regulation of miR-23b, miR-92b, miR-381 
and miR-382 [92]. Anti-tumor effect of sulforaphane also reported in non-small 
cell lung cancer by down-regulation of miR-616-5p and targeting GSK3β/β-catenin 
signaling pathway [93]. Sulforaphane inhibited the progression of pancreatic 
cancer through down-regulated miR30a-3p with the increasing of its target, Cx43 
expression and upregulated miR-135b-5p mediated RASAL2 expression [94, 95]. In 
addition, sulforaphane treatment significantly increased the expression of tumor 
suppressor miRNA, miR-200c, resulted in inhibited the cancer stemness and tumor-
initiating properties in oral squamous cell carcinomas and cancer stem cells both in 
vitro and in vivo [96]. Anti-proliferative and apoptotic effects of sulforaphane have 
been reported in gastric cancer cells, which leading to alter the expression of miR-9 
and miR-326 [97]. Up-regulation of miR-124-3p and inhibition of its target, STAT3 
by sulforaphane treatment were observed and thereby induced apoptosis, inhibited 
proliferation and decreased the stemness of nasopharyngeal cancer cell [98].

Sulforaphane has potential to inhibit hepatic fibrosis by downregulating miR-
423-5p in hepatic stellate cell [99]. Sulforaphane showed the protective effect in 
microglia-mediated neurotoxicity by inhibited LPS-induced expression of inflam-
matory miRNA, miR-155 [100].

3. Dietary miRNA and human gene regulation

Several evidences demonstrated the direct modulation of cellular signaling 
pathways by dietary compounds could decrease the risk of chronic diseases [101]. 
Interestingly, it has been reported that small non-coding RNA including miRNAs can 
be transferred across Kingdoms, for example dietary miRNAs have been found in 
human body fluids and these circulating miRNAs are likely to regulate human gene 
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expression [15, 102–107]. The uptake of plant derived miRNAs could be in the form of 
raw and cooked plants in capable of stability forms [107, 108]. Due to high temperature 
cooking process, low pH and enzymes in digestive tract as well as enzymes in blood 
circulation, miRNAs might be destroyed before their functions with target mRNAs 
[15]. Strikingly, GC base content, 2’-O-methylation on the 3′-terminal, unique nucleo-
tide sequence of dietary miRNAs and extracellular vesicles (exosome and microvesicle) 
are preventive features of plant derived miRNAs in harmful conditions [109–114].

There are numerous studies to support the functional roles of dietary miRNAs in 
cross kingdom gene regulation. Rice miR156a and miR168a were detected in human 
serum and miR168a down-regulated low-density lipoprotein receptor adapter protein 
1 (LDLRAP1) expression, resulted in an increase of plasma LDL cholesterol level, 
Table 2 [105]. miR2910 from Populus euphratica was identified in human plasma and 
targeting Sprouty RTK Signaling Antagonist 4 (SPRY4) gene of the Janus kinase/
signal transducers and activators of transcription (JAK–STAT) signaling pathway 
[115]. Based on the computationally predicted miRNAs from Camptotheca acuminate, 
14 potential miRNAs were found to be regulated 152 target human genes such as 
miR4723–3p, miR5780d, and miR548d-3p targeting discs large MAGUK scaffoldpro-
tein 2 (DLG2), NUMB endocytic adaptor protein (NUMB) and glycogen synthase 
kinase-3B (GSK3B) genes which were related to cancers such as breast cancer, lung 
cancer and leukemia [116]. Ocimum basilicum is a medicinal plant and its bioactive 
compounds have potential for therapeutic approaches. miRNA target prediction 
analysis revealed the target of O. basilicum miRNAs, miR156, miR531, miR160, 
miR529b, and miR1118 were 87 human target genes associated with the Ras-mitogen-
activated protein kinase (Ras-MAPK) signaling pathway, Alzheimer disease, breast 
cancer, cardiomyopathy, HIV, lung cancer, and several neurological disorders [117].

Plants Plant  

derived-miRNAs

Human target gene/ Disease References

Oryza sativa osa-miR156a

osa-miR166a

osa-miR168a

LDLRAP1 [105]

Populus euphratica peu-miR2910 JAK–STAT pathway [115]

Camptotheca acuminata 14 miRNAs Cancer (breast, lung and leukemia) [116]

Ocimum basilicum miR156

miR531

miR160

miR529b

miR1118

Ras-MAPK signaling pathway, 

Alzheimer disease,

breast cancer, cardiomyopathy,  

HIV, lung cancer,

several neurological disorders

[117]

Curcuma longa miR14 Rheumatoid arthritis [120]

cabbage, spinach and lettuce miR156a Cardiovascular disease [118]

Oryza sativa miR156-5p

miR164-5p

miR168-5p

miR395-3p

miR396-3p

miR396-5p

miR444-3p

miR529-3p

miR1846-3p

miR2907-3p

Cancer, cardiovascular and 

neurodegenerative diseases

[119]

Table 2. 
Dietary miRNAs and human gene regulation.
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The abundantly expressed miRNA in dietary green vegetable, miR156a which 
was detected in human serum and targeted the junction adhesion molecule-A  
(JAM-A) [118]. The JAM-A was up-regulated in atherosclerotic lesions from 
cardiovascular disease patients and miR156a could suppressed inflammatory 
cytokine-induced monocytes adhesion by targeting JAM-A [118]. The very recently 
report using a computational approach to predict the potential target of rice 
miRNAs including miR156-5p, miR164-5p, miR168-5p, miR395-3p, miR396-3p, 
miR396-5p, miR444-3p, miR529-3p, miR1846-3p, miR2907-3p, which can bind to 
the human mRNA [119]. Most of these target genes were associated with cancer, 
cardiovascular and neurodegenerative diseases [119]. miR14 derived from Curcuma 
longa was detected and remarkably stable in human serum for 48 h. The potential 
targets of miR14 were associated with inflammation in rheumatoid arthritis such 
as Phosphotidylinositol-specific-phospholipase C (PLCXD3), Adenylate cyclase 9 
(ADCY9), and 3′ (2′), 5′-bisphosphate nucleotidase (BPNT1) [120].

4. Conclusion

It has been widely known that functional foods and their bioactive compounds 
have the capacity for human health benefits. To date, miRNAs have been shown a 
significant effect on gene expression and modulate the cellular biological functions 
in physiological and pathological conditions. There is emerging evidence suggest-
ing that dietary bioactive compounds can be effective in human diseases as a result 
of altering miRNAs expression levels, resulting in modulation of cellular signaling 
pathway. Additional research the possibility of bioactive compounds for develop-
ing as novel drugs with less side effects is required in vitro and in vivo. Recently, it 
has been revealed in several studies that dietary derived-miRNAs are bioavailable 
and alter human gene expression. The cross-kingdom gene regulations of dietary 
miRNAs from plants to human have raised our expectations for evaluating the 
active therapeutic potential and dietary supplements.
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