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Chapter

Insights from Systematic DFT 
Calculations on Superconductors
Ian D.R. Mackinnon, Alanoud Almutairi and Jose A. Alarco

Abstract

We present three systematic approaches to use of Density Functional Theory 
(DFT) for interpretation and prediction of superconductivity in new or existing 
materials. These approaches do not require estimates of free parameters but utilize 
standard input values that significantly influence computational resolution of 
reciprocal space Fermi surfaces and that reduce the meV-scale energy variability 
of calculated values. Systematic calculations on conventional superconductors 
show that to attain a level of resolution comparable to the energy gap, two key 
parameters, Δk and the cut-off energy, must be optimized for a specific compound. 
The optimal level of resolution is achieved with k-grids smaller than the minimum 
reciprocal space separation between key parallel Fermi surfaces. These approaches 
enable estimates of superconducting properties including the transition tem-
perature (Tc) via (i) measurement of the equivalent thermal energy of a phonon 
anomaly (if present), (ii) the distribution of electrons and effect on Fermi energy 
(EF) when subjected to a deformation potential and (iii) use of parabolic, or higher 
order quartic, approximations for key electronic bands implicated in electron–pho-
non interactions. We demonstrate these approaches for the conventional supercon-
ductors MgB2, metal substituted MgB2 and boron-doped diamond.

Keywords: Fermi energy, Fermi level, Fermi surface, reciprocal space,  
density functional theory, parabolic equations, phonon dispersions,  
transition temperature, magnesium diboride

1. Introduction

Design and synthesis of new materials requires translation of reciprocal space 
detail in electronic band structures (EBSs) and phonon dispersions (PDs) to 
equivalent real space representations [1–4]. We have shown that for conventional 
superconductors (SCs), the format and depth of modes in PDs associated with a 
Kohn anomaly are strongly influenced by the computational resolution of DFT 
models [5]. Our view is that EBS calculations, performed with appropriate resolu-
tion, may also provide critical information on the superconducting gap, which for 
many SC materials, is in the meV range.

The Fermi level, Fermi energy (EF), and the density of nearly free-electron 
carriers calculated by DFT are key values that, to date, have been variously reported 
with differences of many hundreds of meV for the same compound. For example, 
the value of EF for a well studied compound such as MgB2 has been variously 
reported as “several eV” [6], 0.55 eV or 0.122 eV [7], and more recently, as 0.428 eV 
[8]. In comparison, many publications on MgB2 and software packages such as 



Real Perspective of Fourier Transforms

2

CASTEP and ADF consistently report a value for EF of ~8.4 eV [9–11]. Calculated 
variations of this magnitude have garnered limited attention [8] for SCs due to an 
underlying assumption that EF/kθ > > 1 (where k is Boltzman’s constant and θ is the 
Debye temperature). Due to this assumption and the deceptive influence of average 
values for phonon frequencies, a value for EF is not considered in the simplified 
McMillan version of the Eliashberg model for superconductivity [12]. However, 
as noted by Malik [8], equations that explicitly include EF and/or critical current 
(jo) values may provide clues on how to increase or modify Tc. Malik suggests that 
regardless of physical attributes, SCs may be distinguished by their values of EF [8].

Approximations to the Eliashberg model that minimize computational cost 
require estimates of the electron–phonon interaction, λ, and the Coulomb strength, 
μ* [13, 14]. For many conventional SCs, these parameters are limited to a narrow 
range of values and provide reasonable estimates for superconducting properties 
of known materials [15–18]. More recently, Sanna et al. [19] show that a fully ab 
initio Eliashberg approach provides good estimates of superconducting properties 
including Tc for a range of compounds without invoking estimates of free param-
eters such as μ*. This work by Sanna et al. [19], as well as development and use of 
the Superconducting Density Functional Theory (SCDFT) [20, 21], are elegant 
computational approaches to the Eliashberg model that have successfully predicted 
superconducting properties of new materials such as H3S [19, 22]. Nevertheless, 
these codes are not universally available to materials researchers particularly if deep 
mathematical rigor is required for implementation.

In our search for new SCs, we have evaluated the computational resolution and 
electron–phonon detail possible with DFT codes readily available in well-known 
software packages such as CASTEP or Quantum Espresso, to name a couple of 
examples. Using MgB2 and similar Bardeen-Cooper-Schrieffer (BCS) compounds, 
we have systematically explored the sensitivity and use of PD and EBS constructs 
to calculate key superconducting properties without recourse to free parameter 
estimates or modification of functionals. We initially explored use of a phonon 
anomaly to estimate Tc [23, 24]; an approach that appears effective for strong pho-
non mediated superconductivity including for metal substituted MgB2 [25]. In other 
work, we extended this systematic approach to evaluate PDs and EBSs for a wide 
range of metal diboride compounds (e.g. ScB2, YB2, TiB2) using DFT at appropriate 
computational resolution [26].

More recently, we have examined the link between PDs and EBSs and, in par-
ticular, the topology of the Fermi Surface (FS) with pressure [27] and the change in 
electron density distributions as MgB2 transitions to the superconducting state [28]. 
In both approaches, we are able to confirm experimentally determined supercon-
ducting properties for a range of conventional (BCS) compounds and then, to 
predict Tc for new metal substituted analogues of MgB2 [23, 25]. These approaches 
are, in essence, empirical methods, which systematically identify regular dispersion 
patterns in calculated PDs and EBSs, based entirely on accepted codification of the 
DFT [9, 10] and, equally, a clear understanding of input parameter limitations that 
determine computational resolution. Thus, this use of DFT software, underpinned 
by elegant formalism and constructs by Kohn and colleagues [29, 30], is a comple-
ment to approximations of the Eliashberg model [19, 20].

In this work, we show why computational resolution for DFT models of EBSs 
and PDs for conventional SCs is critical. In addition, we delineate a third approach 
to estimate the superconducting gap using parabolic, or higher order quartic, 
approximations to key bands in the EBS. This approach requires examination of 
an extended Brillouin zone (BZ) schema and demands lower computational cost 
compared to equivalent PD calculations for similar outcome(s). When applied to 
MgB2, at sufficiently fine k-grid and reciprocal space cut-off, this approach directly 
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estimates the superconducting gap and assists identification of valence bands and 
the origin for EF. In combination, these three approaches provide reliable property 
predictions for unknown, or theoretical, structures for materials researchers.

2. Calculation methods

EBS calculations are undertaken using DFT as implemented in the Cambridge 
Serial Total Energy Package (CASTEP) of Materials Studio (MS) 2017 and 2018 [9, 
10]. All structures are optimized for geometry, including cell parameters, starting 
with crystal information files (.cif) available in standard databases. In general, 
the local density approximation (LDA) and generalized gradient approximation 
(GGA), with norm-conserving pseudopotentials, are used in DFT calculations. 
The typical setup for calculations uses a k-grid ranging from 0.06 Å−1 to 0.02 Å−1 or 
smaller, with a plane wave basis set cut-off of 990 eV, ultra-fine (or better) cus-
tomized setup to ensure total energy convergence of less than 5 × 10−6 eV/atom, a 
maximum force of less than 0.01 eV/Å, a maximum stress of less than 0.02 GPa and 
maximum displacements of less than 5 × 10−4 Å.

All outputs meet convergence criteria at the same fine tolerance level for geom-
etry optimization. The effects of input parameters to DFT calculations described 
in this work are not related to differences in calculation convergence, but critically, 
are due to the discreteness, or the finite number of the reciprocal space points, used 
to select plane waves as basis functions. To illustrate particular points, we also vary 
specific parameters such as basis set cut-off values, Δk values or software versions 
as identified in the text.

We also perform numerical interpolations of EBSs to validate higher order 
trends and to delineate fine structure in computed outcomes. To obtain parabolic, 
or higher order polynomial, approximations to the electronic bands, the DFT calcu-
lated data from MS is exported in csv/excel format. For MgB2, sections of particular 
bands in the energy range − 14 to 4 eV along the Γ-M (and Γ-K) directions are 
selected and mirrored across the vertical axis at Γ. Individual parabolic, or higher 
order quartic, trendline fittings are obtained and used to overlay for comparison 
with the (periodically repeated) extended BZ scheme of the DFT calculated EBS. 
Effective masses are also calculated and evaluated for parabolic approximations of 
different branches of the EBS.

3. Computational resolution

We provide outputs from a series of ab initio DFT calculations on two SC com-
pounds with substantially different experimentally determined Tc values (i.e. MgB2 
Tc ~ 39.5 K; B-doped diamond Tc ~ 4.0–7.5 K depending on level of doping) [31–33]. 
For both compounds, when the value of k-grid is varied in the examples below, all 
other parameters are maintained the same for all calculations. A range of k-grid 
values are exemplified in order to highlight differences in sensitivity of EBS and PD 
outputs for SC compounds. These examples highlight the key role computational 
resolution can play with interpretation of SC properties.

3.1 Band structure – variation with k-grid

We have been intrigued by the potential to directly determine the supercon-
ducting gap energy for a BCS SC using an appropriate resolution EBS. In this 
regard, MgB2 offers good opportunity to evaluate this potential due to well defined 
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crystallography and the key role ascribed to σ bands and superconductivity [12, 34]. 
DFT calculations for a compositional suite, or structure type, produce EBSs that 
show, in general, similar formats even when two different functional approxima-
tions are used [26]. A typical outcome for MgB2 using the LDA approximation in 
the CASTEP module of Materials Studio using a k-grid value of 0.008 Å−1 is shown 
in Figure 1. These band structures convey useful information for elucidation of 
potential for superconductivity. For example, the σ bands appear as approximate 
inverted parabolas (in red and blue lines; green dotted box) near the Γ center point 
and cross the Fermi level on either side of Γ (Figure 1). These bands display a strong 
electron–phonon coupling to the E2g phonon modes and are implicated in supercon-
ductivity for MgB2 via both theoretical and experimental analyses [35–38].

Figure 1. 
Electronic band structure for MgB2 calculated with the LDA approximation for k = 0.008 Å−1 using the 
CASTEP module of materials studio [9]. The green boxes enclose sections of σ bands.

Figure 2. 
Schematic showing the direct relationship between σ bands crossing the Fermi level around Γ and the topology 
of the FS.
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For MgB2, the relationship of these σ bands near the Fermi level on either side of 
Γ is shown in the schematic in Figure 2. The reciprocal space projection of degener-
ate σ bands at the Fermi level correspond to the three-dimensional reciprocal space 
representations of two FSs at Γ parallel with the kz direction. That is, except for 
the direction along kz, the band is a 2D projection at kz = 0 of the 3D Fermi surface 
representation. The region between these two FSs is sensitive to the reciprocal space 
projection(s) at the Fermi level and, as noted in previous work, is key to the super-
conducting mechanism in MgB2 [27, 28].

Variations in the calculated energies of specific bands, for example in MgB2 where 
electron–phonon coupling is predominantly linked to the σ bands [17, 39, 40], are 
strongly influenced by the k-grid value used in DFT computations. Figure 3 demon-
strates the effect of k-grid value, or the sensitivity of DFT calculations, on the EBS 
for MgB2 using the LDA functional for a series of Δk values 0.02 Å−1, 0.04 Å−1 and 
0.06 Å−1. The k-grid value affects calculated energies for bands near the Fermi level 
particularly those σ bands associated with superconductivity highlighted in Figure 1 
for MgB2. The differences in energy at Γ or A between calculations range from tens of 
meV to hundreds of meV for three different k-grid values as shown in Figure 3.

In Table 1, we show substantial meV shifts in enthalpy and EF for MgB2 calcu-
lated at different k-grid values using the same functional and the same ultra-fine 
tolerance for geometry optimization convergence. For MgB2, Table 1 shows the 
difference in energy, ΔEv (in eV), between the Fermi level and the vertex of the 
parabola at Γ for different values of Δk. Differences in lattice parameters (i.e. 
~0.01 Å), enthalpy values (i.e. ~10–20 meV) and EF values (i.e. ~200 meV) are 
evident for geometry optimized calculations with different k-grids. Table 1 also 
shows that as the Δk value is reduced, values for enthalpy achieve a consistent value 
for MgB2.

We also show calculated values for B-doped diamond using different k-grid values 
in Table 1. In this case, k-grid intervals are smaller (0.005 Å−1 < Δk < 0.020 Å−1) than 
those used for MgB2 with corresponding smaller shifts in enthalpy and EF. This lower 
magnitude impact of the k-grid is in part due to fewer degrees of freedom (e.g. cubic 
symmetry compared to hexagonal) and a significantly lower value for Tc [32, 33],  
with corresponding FSs in closer reciprocal space proximity. Nevertheless, the EF value 

Figure 3. 
Electronic band structure for MgB2 calculated with the LDA approximation for k-grid values 0.02 Å−1 (red), 
0.04 Å−1 (blue) and 0.06 Å−1 (black) using the CASTEP module of materials studio. Notice the substantial 
differences in band energies, particularly in regions associated with the σ bands.
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differs by ~35 meV and the difference in energy to the vertex of the band at Γ (i.e. ΔEv) 
differs by up to ~35 meV depending on the Δk value.

We show a more detailed systematic comparison of calculated enthalpies as a 
function of the k-grid value for MgB2 in Figure 4. As noted above, all calculations 
are converged to the same ultra-fine criteria, or tolerance, where self-consistency 
is achieved. The variability of results shown in Figure 4 is due to the discreteness 
of functions and values used to derive the full solution of the Schroedinger equa-
tion. The variability is not due to lack of convergence which in all cases is defined in 
Section 2 above.

Figure 4a shows that the value of enthalpy for MgB2 oscillates around a consis-
tent minimal value of −1,748.502 eV as the k-grid value is decreased to <0.015 Å−1. 
The context for this variation in enthalpy is shown in Figure 4b where the k-grid 
value is extended to 0.2 Å−1– a value that has been used in some DFT calculations 
as criterion for machine learning algorithms [41]. At these higher values for Δk, 
enthalpy calculations do not provide useful information on subtle structural 

Compound k-grid 
value 
[Å−1]

Lattice parameters [Å] Enthalpy 
[eV]

Fermi 
energy [eV]

ΔEv 
[eV]

a c

MgB2

Tc ~ 40 K
0.010 3.038657 3.487973 −1748.5037 8.4055 0.3424

0.018 3.038630 3.487921 −1748.5039 8.4126 0.3975

0.020 3.039107 3.486623 −1748.5046 8.3976 0.4038

0.040 3.042948 3.478367 −1748.5003 8.4704 0.3281

0.060 3.031477 3.514558 −1748.4685 8.2108 0.6365

B-doped 
diamond
Tc ~ 4–7.5 K

0.005 3.582982 −1163.6112 11.0832 1.6164

0.010 3.582982 −1163.6114 11.0844 1.6152

0.015 3.582984 −1163.6121 11.0956 1.6039

0.017 3.582987 −1163.6120 11.0941 1.6056

0.020 3.583024 −1163.6102 11.0579 1.6410

Table 1. 
Parameters calculated for MgB2 and for B-doped diamond.

Figure 4. 
Systematic comparison of calculated enthalpies for MgB2 (a) for fine values of k-grid (i.e. < 0.03 Å−1) and  
(b) for coarser grid values including those utilized for machine learning searches (arrowed) of materials 
databases [41]. Enthalpies shown in Figure 4(a) are reproduced in (b) for reference. The lightly shaded 
region in Figure 2(b) delineates the k-grid values used for EBS calculation in Figure 3.
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variations due to superlattices or of order/disorder. For example, we have shown 
using DFT calculations with appropriate k-grid values for (Mg1-xAlx)B2 that ordered 
motifs with adjacent Al-layers are thermodynamically favored by ~0.15 eV over 
more complex, disordered configuration(s) [42]. A discrepancy of ~0.2 eV due to 
incorrect choice of k-grid value (Figure 4) does not enable such distinction to be 
made with confidence.

3.2 Influence of atom displacements

In a dynamic system, other factors may also influence the position of key 
electronic bands with respect to the Fermi level. For example, atoms in all solids at 
temperatures above absolute zero vibrate [43] and in some cases, the resulting pho-
nons may align with specific crystallographic real space features such as inter-atom 
bonds. This circumstance occurs for MgB2 in which one of the dominant E2g phonon 
modes – shown to be intimately involved in electron–phonon coupling at the onset 
of superconductivity [17, 34] – aligns with B–B bonds in the ab plane [36]. Using 
DFT, we can model the effect of bond deformation along specific planar orienta-
tions by displacing atoms from their structural equilibrium positions consistent 
with the direction of the E2g phonons [26, 28]. Under different extents of displace-
ment, electron density distributions along the B–B bond and the corresponding 
EBS, can be determined [28, 36].

Figure 5 shows the effect on the EBS for MgB2 of atom displacement along the 
B–B bond by ~0.6% (i.e. a shift of ~0.063 Å) from equilibrium [28]. Figure 5  
shows that the E2g phonon, which is degenerate at Γ with a peak parabola at 
398 meV, splits into two separate non-degenerate bands above and below the equi-
librium condition. The upper σ band - which we attribute to the heavy effective 
mass - has a calculated energy 813 meV above the Fermi level. Thus, parallel or 
nearly parallel FSs attributable to the superconducting condition [44], no longer 
exist with a 0.6% shift in atom position(s) [28]. A shift of atom position(s) is also 
reflected in the form and energy of key phonon modes in the corresponding PD 
for MgB2 [26]. An atom displacement of 0.6% along B–B for MgB2 is not unrea-
sonable at temperatures >40 K [28].

Figure 5. 
Enlarged view of EBS around Γ for MgB2 using LDA functional and Δk = 0.018 Å−1 showing (a) degenerate 
σ bands at equilibrium (blue lines) and (b) after atom displacement Dx = 0.063 Å (red lines) along 
the E2g mode direction; note the split of σ bands causing loss of degeneracy which coincides with loss of 
superconductivity [26].
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The σ bands for MgB2 consist of two bands degenerate at the Γ point, but 
degeneracy is lost when the vector k does not equal 0. The two bands thus have 
different effective masses (or curvatures) which appear to vary as a deformation 
potential is applied. In fact, the curvatures become very similar and/or identical 
along Γ–K at the point where a deformation shifts one band tangential to the Fermi 
level as shown in Figure 5. Along Γ–M, the effective masses are shown to cross over, 
where the top band has the curvature of the original light effective mass band, and 
for k-vectors away from the origin, the curvature remains the same as the original 
heavy effective mass band.

The response of the effective masses (i.e. the σ bands) to the deformation 
potential suggests that electronic behavior associated with superconductivity may 
be explained by directly analyzing the reciprocal space trajectories of these effec-
tive masses. Such an interpretation depends on the collective electronic response 
in reciprocal space which may, by inference, transform into localized information 
in real space. This outcome is, again, strongly dependent on the use of a fine k-grid 
value (< 0.015 Å−1) wherein a polynomial approximation to the bands can be cal-
culated [45]. Figure 6 shows this polynomial calculated as an average band (dotted 
line) of the two σ bands for the EBS of MgB2 at an equilibrium position and for the 
degenerate condition arising from a deformation potential shift of 0.063 Å along 
the B–B bond.

The calculated coefficients for the polynomials, fitted to σH, σL and the average 
trend line for these bands, σM, are dependent on the k-grid values used in DFT cal-
culations as shown for the equilibrium condition (Figure 6a) in Table 2. The terms 
of these polynomial coefficients (i.e. for X0 in Table 2) for the σH and σL bands 
show an interesting characteristic with k-grid value. For example, if we assume 
that the term is in eV and describes the intersection of the polynomial trend 
curve with the vertical axis (i.e. along the y axis), then the difference between 
coefficients for the σH and σL bands not only varies with k-grid value but also 
approximates the SC gap energy for MgB2 at finer k-grid values [12, 34, 46]. As 
the k-grid value increases, the notional SC gap energy also changes and is zero for 
Δk = 0.03 Å−1. This trend supports the notion that a higher resolution DFT calcula-
tion (i.e. with Δk < 0.02 Å−1) may provide indicative energy gap values for an SC 
compound directly from an EBS calculation [45]. Table 2 also shows coefficients 
for the polynomials at the displaced condition with boron atom positions along the 
E2g mode direction [28] calculated for different values of Δk. As expected, with σH 

Figure 6. 
Sigma bands (heavy: Red, light: Blue and average: Black dotted) for the EBS of MgB2 along the Γ–K and Γ–M 
directions calculated with the LDA functional using Δk = 0.01 Å−1 (a) for equilibrium boron atom positions 
and (b) for degenerate bands formed by displaced boron atom positions along E2g mode directions by 0.6% 
relative to the equilibrium position. The green dotted region delineates extent of polynomial trend lines matched 
to the EBS.
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and σL tracing parallel bands on either side of Γ, along Γ–K the linear terms show a 
large energy gap, almost constant as a function of Δk, of ~0.78 eV (Figure 6b).

3.3 Brillouin zone schemes and high order quartic approximations

Conceptually, it is generally accepted that two approaches: (a) the free-electron 
theory and (b) the tight binding, or linear combination of atomic orbitals (LCAO), 
offer reasonably good approximations to the conduction and valence bands, respec-
tively, in the electronic structure of materials [1, 2, 47–50]. With increased com-
putational power, the distinction between these two models becomes negligible. In 
general, the actual EBS should be similar to an average of respective contributions 
from these two types of approximations.

The detailed origin of particular bands and that of the zero of EF can be more 
readily appreciated when we examine an extended Brillouin zone scheme, instead 
of a reduced zone scheme [1, 2, 48, 51, 52]. For example, Figures 7a-c show periodi-
cally repeated reciprocal unit cells with reference to the extended Brillouin zone 
schemes for the electronic bands of MgB2 along the Γ-M and Γ-K directions, respec-
tively. Figure 7a shows a 2D representation of multiple reciprocal unit cells viewed 
along c* and identifies reciprocal directions for the calculated EBSs for extended 
BZs in Figure 7b and c.

The origin of EF determined by the parabolic approximation is identified at (i) 
the cross-over of two parabolas “1” at M in Figure 7b and (ii) the inflection point of 
parabola 3 at K + M in Figure 7c. The calculated EF for MgB2 at zero pressure using 
the LDA functional in CASTEP (and Δk =0.01A−1) is 8.4055 eV. Figure 7b and c 
show the location for the origin of EF, at a K + M type reciprocal space position or 
the midpoint between two reciprocal space Γ vectors along Γ–K. This location is 
difficult to infer from a reduced BZ scheme, particularly for complex structures. 
Nevertheless, these two locations at M and ± K ± M nodal points, directly relate to 
the real space B–B hexagonal plane in the MgB2 structure.

For MgB2, sections of the σ bands along the Γ–M and Γ–K directions are approx-
imated by upward facing parabolas, even when inside the valence band region. 

Grid Value 
(Å−1)

Coefficient X4 Coefficient X2 Coefficient X0 Coefficient 
X0

σH- σL

(eV)
σH

* σL
* σH

* σL
* σH

* σL
*

At Equilibrium (Dx = 0.0)

0.005 4.2955 18.572 8.161 14.749 0.3441 0.3266 0.0175

0.008 8.0342 36.301 11.159 20.344 0.3441 0.3287 0.0154

0.010 4.0135 17.807 7.960 14.371 0.3912 0.3745 0.0167

0.022 6.8879 36.014 10.381 19.477 0.3377 0.3289 0.0088

0.030 6.4614 42.492 10.330 20.213 0.3830 0.3830 0.0

Displaced along E2g (Dx = 0.006)

0.005 382.94 36.37 46.15 25.80 0.753 −0.032 0.785

0.008 382.94 36.37 46.15 25.80 0.753 −0.032 0.785

0.010 321.72 19.84 44.98 26.12 0.751 −0.031 0.784
*σH, σL are the heavy and light sigma bands, respectively.

Table 2. 
Calculated polynomial coefficients for sigma bands along Γ–K for MgB2.



Real Perspective of Fourier Transforms

10

Deviations from parabolas occur particularly at zone boundaries where the periodic 
crystal potential primarily influences free-electron like level crossings [49, 52, 53]. 
Along Γ–M, a parabola with convex inflection at Γ occurs at −12.55 eV (parabola 1, 
Figure 7b) and its translated homologs reproduce large sections of the light effec-
tive mass σ band distant from Γ.

Similarly, a parabola with convex inflection at M and at -M at −2.152 eV (parab-
ola 3, Figure 7b) reproduces the heavy effective mass σ band. Along Γ–K, differen-
tiation of the σ bands is less pronounced in the extended zones but is apparent at Γ 
(Figure 7c). In Figure 7c along Γ–K, an additional K–M section is shown because a 
hexagonal boundary edge, equivalent to K–M by symmetry, transects an adjacent 
reciprocal space point outside the first BZ (node M1 in Figure 7a). Both Figure 7b 
and c show the origin of EF for this structure. Table 3 summarizes values of key 
parameters associated with these parabolic approximations to extended BZ schemes 
for the Γ–M and Γ–K directions, respectively.

Figure 7. 
(a) Schematic of Brillouin zones for MgB2 viewed along c* with nodal point nomenclature for primary 
reciprocal space orientations along Γ-M and Γ-K. This schematic shows the orientation of the real space 
asymmetric unit (Mg atoms are yellow; B atoms are gray) as well as nodal points and zones identified 
in Figure 7b and c. Extended Brillouin zone schemes for the EBS of MgB2 along: (b) Γ-M and (c) Γ-K. 
Representative values of energy at the zone boundary and at zone centres are indicated. Energy band 
sections are labeled as types 1 to 4. The red and blue lines in both EBS schemes refer to similar traces in 
Figure 1.
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3.4 Fermi energy values

The value of EF for a particular DFT calculation is not only sensitive to the k-grid 
value as shown above but also to other extrinsic conditions such as compositional 
substitution in a solid-solution and/or changes in applied pressure. Figure 8 
displays the calculated Fermi energies for Al and Sc substitution in Mg1-xAlxB2 and 
Mg1-xScxB2 determined with the LDA and GGA functionals. For each calculated 
series, the value of k-grid is constant (i.e. Δk = 0.02 Å−1). Figure 8 also shows the 
calculated Fermi energies for other end-member compositions with AlB2-type 
structure. Note that NbB2 and ZrB2 are reported superconductors at very low 
temperatures (Tc = 0.6 K and 5.5 K, respectively) albeit non-stoichiometric or 
substituted niobium diboride (e.g. NbB2.5 or Nb0.95Y0.05B2.5) is superconducting at 
6.3 K and 9 K, respectively [54].

Table 4 lists key parameters based on EBS calculations for MgB2 with applied 
external pressure. For each calculation, the LDA functional and k-grid value is 
constant and values are computed after geometry optimization. The value for the 
effective mass, H

effm , is determined from the parabolic approximations described 
below in Section 3.4.

Table 4 shows that as pressure is applied, EF largely conforms to the textbook 
equation:
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by using the volume and heavy effective mass obtained at a particular external 
pressure (assuming that the electron density n does not change with pressure [55] as 
shown in Eq. (2):
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In general, Eq. (2) provides estimates of EF at ~93% or more of the DFT cal-
culated value without corrections for charge redistribution along bond directions 

Orientation Band Type Energy at Γ
(eV)

Energy at M
(eV)

Energy at K
(eV)

Effective Mass

Γ–M 1 −12.5501 −8.4219 1.2821

2 −2.9339 0.17329 1.3145

3 0.3979 −2.1520 1.4598

4 1.5331 4.0308 1.3236

Γ–K 1 −12.5501 — −7.1550 1.3059

2 −2.9339 — — 1.2900

3 — −8.4200 −7.1550 1.4311

Table 3. 
Calculated parameters at Γ and M, K points for MgB2.
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which take place as pressure is applied [55]. Use of parabolic approximations in 
this manner may provide a useful benchmark (or “rule of thumb”) for models of 
predicted new compounds.

3.5 Phonon dispersions – variation with k-grid

As noted in earlier publications [17, 23, 25, 34], the k-grid value also influences 
the form and mode order of phonons in a DFT calculated PD. Figure 6 dem-
onstrates this influence on the MgB2 PD for the range 0.02 Å−1 < Δk < 0.06 Å−1. 
The more regularly shaped phonon anomaly becomes apparent with smaller 
k-grid value and is evident for Δk = 0.02 Å−1 (circled; Figure 8a). For values of 
Δk > 0.05 Å−1, the calculated PD for MgB2 implies that the phase is unstable yet 
we know from experimental evidence that this is not the case. For SC compounds 
with lower values of Tc and/or where Fermi surfaces closely intersect the Fermi 

Figure 8. 
Fermi energy (EF) as function of metal substitution in Mg1-xAlxB2 and Mg1-xScxB2 calculated with the LDA 
and GGA functionals using the CASTEP module of materials studio for Δk = 0.02 Å−1. Calculated Fermi 
energies for end-member compositions of AlB2-type structures are also shown.

Pressure
[GPa]

Unit 
cell 

volume
[A3]

H
effm

[me]*

Fermi 
energy 

[eV]

EF(P)

[eV] ( )1F formula

F DFT calculated

E

E

−

−

[%]

0 27.8912 0.5070 8.4055 8.4055 100.0

2 27.5344 0.5059 8.5368 8.4964 99.5

3 26.5752 0.5035 8.9059 8.7411 98.1

8 25.7498 0.5018 9.2430 8.9572 96.9

9 25.0255 0.5003 9.5549 9.1565 95.8

14 24.3834 0.4990 9.8450 9.3409 94.9

20 23.8050 0.4983 10.1183 9.5049 94.0

38 23.2793 0.4981 10.3776 9.6513 93.0
*me is the electron mass.

Table 4. 
List of calculated Fermi energy (EF) values for MgB2 at pressure using Eq. (2).
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level with minimal difference in reciprocal space, the sensitivity of the PD to 
k-grid value will be shifted towards smaller k-grids compared to the effect 
with MgB2.

Measurement of the parameter, δ, shown in Figure 9a provides a reliable 
estimate of Tc for MgB2 when the PD is calculated with Δk < 0.02 Å−1 [23]. This 
approach, which determines the thermal energy, Tδ, of the key E2g phonon mode 
using an empirical formula [23], precisely tracks the experimentally determined 
reduction of Tc for metal-substituted forms of MgB2 such as (Mg1-xAlx)B2 and 
(Mg1-xScx)B2 [23, 25]. When the value for δ is determined with two sequential DFT 
calculations using the LDA and the GGA functionals, error estimates (in terms of 
the amplitude of the spread of the DFT approximations) for the value of Tδ at each 
level of metal substitution can be obtained.

We have used this approach to estimate the likely value(s) of Tc for other 
metal-substituted forms of MgB2 that have received limited attention or have 
not been identified previously in the literature. For example, we determined the 
PD for (Mg1-xBax)B2, and for (Mg1-xCdx)B2 where x = 0.33, 0.5 or 0.66 [23, 25]. 
Figure 10a shows the PD for (Mg0.5Ba0.5)B2 calculated using the LDA functional 
with Δk = 0.02 Å−1. Measurement of the four values for δ in Figure 10a (i.e. two 
non-degenerate E2g modes each in the Γ–K and Γ–M directions) and conversion to 
Tδ gives an average value of 58.1 ± 3.4 K for (Mg0.5Ba0.5)B2. Figure 10b is adapted 
from the work of Palnichenko et al. [56] in which Ba, Rb and Cs were substituted 
into MgB2 via solid state synthesis. In all cases, the Tc determined experimentally 
using magnetic susceptibility is higher than that for MgB2. Unfortunately, while 
the effects of substitution are evident, the explicit levels of substitution were not 
determined [45].

Figure 9. 
Phonon dispersions for MgB2 calculated using the LDA functional with different k-grids: (a) Δk = 0.02 Å−1, 
(b) Δk = 0.04 Å−1, (c) Δk = 0.05 Å−1 and (d) Δk = 0.06 Å−1. E2g (red) and B2g (blue) phonon modes are 
highlighted. The energy associated with the E2g phonon anomaly in (a) is ~16 meV [23]. Note the negative 
phonon frequencies for Δk = 0.06 Å−1 which, due to insufficient k-grid resolution, implies an unstable 
compound.
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4. Discussion

The calculated EF and Fermi level allow systematic comparison of EBSs from 
a structural family or group of materials with varying properties. Moreover, the 
FS is generally of a well-defined orbital character and topology determined by 
the value of EF as a result of bands that cross the Fermi level. The Fermi level 
determined from DFT calculations is defined as at zero energy while the calcu-
lated value of EF obtained after an accurate DFT calculation is seldom described 
in the published literature. By definition, the Fermi level is determined in the 
ground state by the filling of lower energy electronic states by all the (nearly) free 
electrons up to a highest possible value of the energy, which in practice should 
correspond to EF [49, 50, 55, 57, 58].

4.1 Fermi energy

The superconducting gap in many compounds (e.g. diborides, disilicides, A15 
compounds, B-doped diamond) is in the meV range of energy [59]. For many SC 
materials, the gap is directly linked to the separation of parallel, or nearly parallel, 
FSs that may not be identifiable if the k-grid value is at an insufficient resolution 
[45]. Table 1 also shows that for MgB2 differences in EF and enthalpy of a few tens 
of meV are associated with exceptionally small differences in lattice parameter, of 
the order ~10−5 Å. This attribute highlights the robustness and sensitivity of DFT 
calculations, particularly when represented in reciprocal space. More importantly, 
these differences in EF, attributed to differences in k-grid value, are substantially 
greater than the superconducting gap for MgB2 [60]. Hence, detection of a gap – 
which in an EBS for MgB2 is related to the separation of σ bands crossing the Fermi 
level – may not be achieved with low resolution DFT calculations.

We demonstrate this issue using the EBS for MgB2 as shown in Figure 11. In this 
figure, we have reproduced the EBS for MgB2 as calculated using the LDA func-
tional for Δk = 0.018 Å−1. The Fermi level is set at 0 eV and a notional “Fermi level 
2” is also shown as a red dotted line at −250 meV. As noted in Table 1, a change in 
calculated EF ~ 200 meV may occur with choice of Δk > 0.04 Å−1. The intersection 
of σ bands with the calculated Fermi level are separated by a distance λ1, which also 
defines the separation between Fermi surfaces for MgB2.

However, if the value of Δk, or the calculated value for EF, results in a shift of 
the Fermi level by ~250 meV, the separation of Fermi surfaces, illustrated by λ2, 

Figure 10. 
(a) Phonon dispersion for (Mg0.5Ba0.5)B2 calculated using the LDA functional for Δk = 0.02 Å−1, showing the 
extent, δ, of the E2g phonon anomaly (in red) along the Γ–K and Γ–M directions; (b) magnetic susceptibility 
for MgB2 and metal substituted forms of MgB2 showing experimentally determined Tc values (arrowed); 
adapted from Figure 1 of Palnichenko et al. [56]. Substitution of Ba, Rb and Cs shows a higher Tc than 
for MgB2.
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is different. We estimate that this order of Fermi level or EF shift may result in 
discrepancies between 20% and 35% of the value(s) for λ. As shown in Figure 11, 
the shape of the σ bands around Γ are asymmetric. The difference in value(s) for λ 
with variation in EF, will accordingly be dependent on the form, or shape, of these 
parabolas. Projections of the density of states at the Fermi level will also be affected 
by this shift of EF as will the outcomes of Eliashberg or McMillan equations for the 
determination of Tc.

The apparent discrepancy in determination of the value for EF, noted in the 
Introduction, may be elucidated by examination of Figure 11. For example, we sug-
gest that some researchers define a value for EF as equivalent to the energy shown as d1 
in Figure 11 (i.e. the distance to the vertex of the parabolic band [61]). If this defini-
tion for EF is used, then a shift in the Fermi level as described above would lead to 
an estimate equivalent to d2 in Figure 11. The literature contains calculations of EBS 
where the specific approach to determine EF is not identified; for superconductors, 
this practice provides an unfortunate level of uncertainty. An uncertain position for 
the Fermi level will also result in varying cross-sectional areas of the FS at the Fermi 
level (see Figure 2), which directly determines the period of sensitive quantum oscil-
lation measurements [62]. Discrepancies between DFT predicted values and experi-
mental quantum oscillations may be reconciled by revisiting the choice of k-grid.

4.2 Computational resolution

Table 5 provides a summary of reports on previous DFT calculations for MgB2 
and of systematic calculations from this study. This table highlights the diversity of 
computational methods used to date as well as wide variations in parameters such as 
k-grid value and the cut-off energy. Systematic evaluation of these two parameters 
shows that the value for EF may differ by several hundred meV for the same cut-off 
energy with change in Δk value. For our systematic calculations of these parameters 
shown in Table 5, the LDA functional is used for consistency. Calculations with 
the GGA functional show similar trends albeit at different absolute values (by 
~0.2 eV) for EF.

Table 5 shows that a low value for cut-off energy (i.e. < 500 eV) results in a value 
for EF > 1 eV different to that with cut-off energy >500 eV for calculations using 

Figure 11. 
Representative EBS showing the effect of a change in Fermi level of 250 meV (red dotted line). The values for 
λ1 and λ2, which define the distance between parallel Fermi surfaces, and the values for d1 and d2 (the energy 
above the Fermi level at the vertex of the σ band parabola), are not equivalent. This example is based on the 
EBS for MgB2.
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the same Δk value (e.g. compare Δk = 0.03 Å−1 calculated for MgB2 in Table 5). The 
importance of such parameters has been noted in the literature primarily in relation 
to PD calculations [17, 63]. However, the specific impact of both computational 
parameters on EF and the effect on band structures has not previously been enu-
merated for MgB2 nor for other SCs.

Table 5 also lists the variation in energy, ΔEv (in eV), between the Fermi level 
and the vertex of the parabola at Γ for different values of Δk and for two cut-off 
energies using the LDA functional for the EBS of MgB2 (in Figure 11, this energy 
is represented as d1). As we have noted for EF, there are substantial variations (i.e. 
> 100 meV) in ΔEv with choice of Δk and cut-off energy. Calculated outcomes in 
our systematic study of MgB2 parameters over a wide range of input parameters as 
listed in Table 5, show that for MgB2, Δk < 0.008 Å−1 and a cut-off energy >900 eV, 
provides reliable determination of meV phenomena in this structure and in sub-
stitutional analogues of MgB2. We note that these attributes apply to plane wave 
calculations. We are yet to undertake a systematic evaluation of augmented plane 
wave calculations using similar strategies.

The calculations by de la Pena-Seaman [71] on the transformation of Fermi 
surfaces with substitution of Al and C into MgB2 and recent work by Pesic et al. 
[72] are notable exceptions on the previous studies shown in Table 5 albeit each 
with a low cut-off energy. Note that a cut-off energy of 500 eV in Table 5 results in 
Fermi energies similar to those obtained for molecular fragments obtained by the 
ADF software (data not shown). This suggests that calculations with smaller cut-off 
energy do not adequately capture periodic crystal behavior, but instead, model a set 
of values that are molecule-like. Some DFT studies reveal inherent inconsistencies 
in EBS and PD calculations for known superconductor materials due to insufficient 
computational resolution. This aspect of DFT models also appears to confuse the 
peer review process for some journal papers.

4.3 Phonon dispersions and k-grid

We have examined the changes in PD form and mode order for the substi-
tutional series Mg1-xAlxB2 [23] and Mg1-xScxB2 [25] where 0 < x < 1. For PDs, 
the value of k-grid in a DFT calculation may obscure phenomena that imply 
superconductivity such as the presence or absence of a phonon anomaly [5, 34]. 
We have also demonstrated for MgB2 that the change in the E2g phonon anomaly 
varies with applied pressure and correlates with the experimentally determined 
change in Tc [27]. For these cases, we show that a temperature, calculated from 
the extent of the anomaly, Tδ, is a reliable ab initio indicator of Tc determined by 
experiment [23, 24, 27]. A fine k-grid (or a k-grid value smaller than ~0.025 Å−1 
depending on the structure) is important for PD plots of SCs with AlB2-type 
structures and for estimations of Tc for BCS-type compounds that display a 
phonon anomaly [5, 23].

In an earlier publication [25], we compare for MgB2 the calculation of Tc (i) 
using the McMillan formalism of the Eliashberg model [12] and (ii) using the E2g 
phonon anomaly energy, Tδ, as noted above [23, 27, 28]. In both cases, with suit-
able assumptions for the McMillan formalism, the “predictive” fidelity of either 
method adequately matches experimental data. However, the Eliashberg model 
requires an estimate for two key parameters, λ and μ*, based on average values of 
electron–phonon behavior summed over all orientations. In practice, determina-
tion of λ and/or μ* by a priori methods is non-trivial for compounds with inde-
terminate physical properties [67]. In this regard, we applaud the recent advances 
in mathematical formalism and computational implementation of the Eliashberg 
model by Sanna et al. [19].
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DFT Code Δk value (Å−1) Grid No. of 
k-points

Energy Cut-off 
(eV)

Fermi Energy 
(eV)

ΔEv
# (eV) LDA  

or GGA
Ref.

[64] 0.020 15x15x11 na 500 na na GGA [38]

Eliashberg ~0.022 18x18x12 na 816 na na LDA [65]

Eliashberg+ ~0.018 18x18x18 na 218 na na LDA [17]

Eliashberg+ ~0.050 8x8x8 na 245 na na na [66]

SCDFT ~0.015 24x24x22 na 340 na na GGA [20]

VASP ~0.019 19x19x15 na 503 na na GGA [67]

WIEN2k* ~0.025 14x14x14 144 122 na na GGA [44]

WIEN2k ~0.021 18x18x14 na 82 na na LDA [68]

SIESTA ~0.018 20x20x20 na na na na GGA [69]

QExpr’o ~0.015 24x24x24 na 612 na na GGA [70]

MBPP* ~0.010 36x36x36 na 218 na na Both [71]

QExpr’o+ ~0.007 48x48x48 na 408 na na GGA [72]

CASTEP 0.100 4x4x4 8 990 8.8103 −0.097 LDA **

CASTEP 0.060 6x6x6 21 990 8.2110 0.636 LDA **

CASTEP 0.050 8x8x6 30 990 8.5190 0.419 LDA **

CASTEP 0.040 9x9x8 48 990 8.4706 0.328 LDA [5]

CASTEP 0.030 12x12x10 95 990 8.3773 0.383 LDA [5]

CASTEP 0.020 19x19x14 280 990 8.3976 0.348 LDA [23]

CASTEP 0.015 25x25x20 650 990 8.3991 0.352 LDA [5]

CASTEP 0.008 47x47x36 3744 990 8.4038 0.343 LDA **
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DFT Code Δk value (Å−1) Grid No. of 
k-points

Energy Cut-off 
(eV)

Fermi Energy 
(eV)

ΔEv
# (eV) LDA  

or GGA
Ref.

CASTEP 0.005 75x75x58 14703 990 8.4040 0.343 LDA **

CASTEP 0.005 75x75x58 14703 500 7.3295 0.371 LDA **

CASTEP 0.008 47x47x36 3744 500 7.3285 0.372 LDA **

CASTEP 0.020 19x19x14 280 500 7.3218 0.370 LDA **

CASTEP 0.030 12x12x10 95 500 7.2449 0.475 LDA **

“na” – data not available in publication.**This work; italicized values are estimates by this study.
*Also describes (Mg,Al)B2; grid size of EBS calculation is 18x18x18 for [71].
+Uses a 12x12x12 grid for PD calculations [72].
#Equivalent energy to d1 in Figure 11.

Table 5. 
Comparison of computational settings for MgB2.
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An and Pickett [36] estimate that the influence of the E2g mode is at least a factor 
of 25 times greater than all other phonon modes in MgB2. The E2g mode is predomi-
nantly associated with movement within the boron planes of MgB2; that is, along 
specific orientations [73]. Nevertheless, use of an average value for phonon frequen-
cies integrated over all directions in reciprocal space is a feature of the McMillan 
formalism that provides a reasonable “post facto” estimate of Tc presumably because 
the E2g mode is so dominant. Such coincidence does not enable, nor guarantee, ab 
initio predictive capacity for a priori models, particularly if evaluating structures 
for which experimental data are limited or unavailable. Thus, we advocate an alter-
native approach for superconductivity prediction that complements the McMillan 
formalism. In this alternative approach, appropriate values for Δk and the cut-off 
energy enable ab initio DFT calculations to estimate values for Tδ that correlate with 
experimentally determined values for the Tc of MgB2 [23, 27], for compounds of the 
form (Mg1-xMx)B2 (where M = Al, Sc, Ti) [23–25], and for disilicides [23] and metal 
hexaborides [74].

The predictive value of the approaches we advocate to estimate Tc that utilizes 
calculation of a value for Tδ using a phonon anomaly [23–25, 74] is evident for 
Ba-substitution into MgB2 [56]. Our estimates for (Mg1-xBax)B2 at three levels of Ba 
substitution (x = 0.33, 0.5 and 0.66) and using both LDA and GGA approximations 
suggest that 62.1 K < Tδ < 64.4 K with an error of ±4.9 K. These estimates are higher 
by ~15 K than the experimentally determined value of ~45 K by Palnichenko et al. 
[56]. However, the extent of Ba substitution in MgB2 was not determined in this 
experimental work; albeit 11B NMR analysis shows that the final product has the 
same site symmetry as MgB2 [56]. Substitution of Ba in MgB2 at levels less than 33% 
may result in a lower value for Tc.

The presence of multiple phases in the Rb- and Cs- substituted forms of MgB2 
synthesized by Palnichenko et al. [56] is difficult to verify from the data presented 
due to limited microstructural and compositional characterization. However, we 
note that PD calculations on a nominal 50:50 ratio for Rb:Mg and Cs:Mg for sub-
stituted MgB2 results in asymmetric and multi-level anomalies (data not shown) 
similar to that shown in Figure 11a. By measuring the extent of the anomaly in 
each of these cases, the values for Tδ are similar to the onsets of transitions shown 
for these compositions in Figure 11b. While circumstantial, this combination of 
modeling and experiment suggests that these substituted MgB2 compositions may 
be homogeneous single phase. Further analyses of this compositional suite, and that 
of (Mg1-xCdx)B2 may reveal additional SC compounds in the AlB2-type structural 
group with significantly enhanced superconducting properties to MgB2.

Fully converged PDs are a useful indicator of phase stability [26, 74]. The sensi-
tivity of PDs to changes in stoichiometry, composition or Δk is significantly higher 
than typically encountered in an EBS [26]. The PD calculated at a deliberately 
large k-grid value 0.06 Å−1 in Figure 9d may be interpreted as a dynamic instabil-
ity. MgB2 is a well-studied case and we know that this is not correct; however, for 
unknown or other materials with closer FSs in reciprocal space, we would expect 
similar phenomena to be manifest at smaller k-grids. Thus, sometimes conclusions 
about phase transitions may be artifacts of the DFT calculation if k-grids of insuf-
ficient resolution are used for materials with approximately parallel FSs in close 
reciprocal space proximity [45].

4.4 Fermi surfaces and superconductivity

Electronic bands and FSs of constant energy possess all point symmetries of a 
crystal as a function of position in reciprocal space [48, 51]. The intersections of 
the σ bands with the Fermi level, as shown in Figure 1, determine points that, by 
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construction, belong to the FSs. The FS corresponding to σ bands in the reduced 
BZ become two approximately parallel tubes [28], as schematically represented in 
Figure 12 below. As shown for MgB2 in earlier work [23, 24, 27, 28] and by others 
[65, 75, 76], these σ band FSs are not strictly cylindrical, but form as warped tubes 
with a narrowing in all directions towards Γ (sketched more accurately in Figure 2).

Since the FS tubes represent hole carrier sections, their interior will be empty in 
the ground state, while their exterior will be occupied. In a reduced zone schema, 
this construct creates ambiguous electron/hole character for the inter-tubular 
region. Ambiguity arises because this inter-tubular region should be, in the ground 
state, empty (i.e. without electrons) relative to the outer heavy effective mass σ 
band, but, in the ground state, filled with electrons relative to the inner light effec-
tive mass σ band.

This notion creates an apparent dilemma, although according to Ziman [55], 
“There can be points in the zone where one cannot assign the label ‘hole’ or ‘electron’ 
uniquely to the states”. Further, “the excitations of the superconducting state are peculiar 
quasi-particles which change from being ‘electrons’ to being ‘holes’ as they pass through 
the Fermi level” [53]. Alternatively, we may reconcile this dilemma by considering 
that the reduced BZ scheme merges two different diameter tubes from points in 
reciprocal space within an extended BZ scheme [27, 28].

Given the indeterminate nature of the origin in reciprocal space, specific diam-
eter tubes may be selected interchangeably by the DFT calculation; thus, implying 
a potential resonating behavior [28]. Analysis of electron–phonon behavior deter-
mined by DFT calculations suggests that this inter-tubular region of FSs (or other 
regions enclosed by parallel surfaces of different topology) is a region in reciprocal 
space that reveals the extent of superconductivity in typical BCS-type materials [5, 
23, 24, 26–28]. Our calculations for both MgB2 and B-doped diamond show that this 
inter-tubular region is of meV energy scale from the Fermi energy.

Parallel FSs are common features of superconducting compounds albeit their 
identification is dependent on crystal symmetry and the choice of k-grid value for 
DFT calculations [5, 23, 25]. The “resolution” of reciprocal space calculations using 
DFT (i.e. the value of k-grid) is a critical factor for identification of phenomena 
that may be influenced by changes of a few meV. For example, we show above that 
the value of EF for MgB2 may change by several hundred meV with a difference of 
~0.02 Å−1 for Δk (noting that Tc ~ 40 K). Such changes in EF may shift the apparent 
Fermi level to a position where parallel FSs are not shown in an EBS. For compounds 
with a higher EF value, closer to the parabola vertex (likely associated with lower Tc) 
and with larger difference in effective masses (i.e. the light mass displays a steeper 
EBS variation with k), the impact of this sensitivity to Δk increases.

Figure 12. 
Schematic of the FSs for MgB2 viewed along: (a) the c-axis and (b) perpendicular to the c-axis. In this 
schematic, these FSs are simplified by neglecting warping in the DFT calculated model for MgB2 [28]. Hatched 
section represents the inter-tubular region.
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Thus, the value of k-grid used for DFT calculations is paramount. For PDs, this 
computational requirement has previously been well documented [14, 17, 20, 24] 
and, we suggest, is equally requisite for the use of EBS to predict, or design, new 
superconducting materials.

The recent development of an ML-based scheme to efficiently assimilate the 
function of the Kohn-Sham equation, and to directly and rapidly, predict the 
electronic structure of a material or a molecule, given its atomic configuration [41] 
is of salient interest with regard to k-grid value. This ML approach maps the atomic 
environment around a grid-point to the electron density and local density of states 
at that grid-point. The method clearly demonstrates more than two orders of mag-
nitude improvement in computational time over conventional DFT calculations to 
generate accurate electronic structure details [41]. Utilization of this methodology 
at a k-point spacing <0.2 Å−1 to initialise ML-training for charge density [41] may 
enable very rapid determination of potential SC materials with many hundreds of 
atoms in the base structure. Nevertheless, as we have shown in this article, caution 
in the use of such values for Δk using ML is suggested because “false positives” for 
superconductivity may emerge and valid “hits” may be missed.

Thermal effects on electronic properties are generally included in DFT calcula-
tions as a smearing of electron behavior. However, high structural symmetry, or 
the lack of it, may impose significant anisotropy and/or preferred directionality of 
ionic movement that remains active even as temperature is increased. For refer-
ence, thermal excitation of the free-electron gas is kBT or about 26 meV at ambient 
temperatures [51, 57]. As noted above, variations in EF for superconducting phases 
may be in the meV range depending on the structure. We also note the importance 
of the smearing parameter in DFT calculations. We suggest that for particular 
superconducting cases where the Tc and/or phonon energy is low (i.e. Tc < 10 K) 
default values (~ 0.1–0.2 eV) in software packages for the smearing parameter may 
be misleading [77].

Calculated Fermi energies and Fermi levels are essential attributes for deter-
mination of materials properties in a range of other applications, such as for the 
energy band alignment of components in solar cell materials [78, 79], with solid-
electrolyte interfaces [80], as well as for interface induced phenomena such as the 
substantial increase in Tc of monolayer FeSe on SrTiO3 substrates [81]. Improved 
interpretation and understanding of electronic behavior in SCs and SC systems can 
be achieved with reliable calculated output values determined by ab initio DFT [82]. 
Indeed, Kohn posits that to achieve high accuracy with comprehensible representa-
tions of multi-particle systems, it is necessary to focus on real, three-dimensional 
coordinate space, via electron density distributions calculable using DFT [29].

5. Conclusions

The EBS encapsulates a wealth of information for superconductivity that may be 
misinterpreted due to the quality, or resolution, of DFT computations. A tendency 
to be satisfied with poor or limited computational resolution is evident in super-
conductivity literature unlike other fields that compute electronic properties using 
DFT. Translation of reciprocal space detail to real space periodicity for DFT-based 
design of new materials in an EBS with appropriate k-grid resolution can provide 
evidence for structures that may be viable SCs. As we have shown above, the EF 
value is explicitly determined in DFT computations and, with consistent use of 
k-grid resolution, can provide comparable estimates of SC properties for proposed 
structures of a compositional suite. We encourage inclusion of these DFT calculated 
parameters in reports of SC materials.
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We have described three fundamental approaches, based on ab initio DFT 
calculations to elucidate superconducting properties of existing and new com-
pounds with relatively simple structures such as the AlB2-type. This utilization of 
DFT, without modified functionals or estimates of free parameters, allows precise 
description of SC features in EBSs and PDs provided k-grid value and cut-off 
energy are optimized for high computational resolution. Through this process, we 
have identified a suite of AlB2-type structures by metal substitution into MgB2, 
that are likely to show higher Tc values than for MgB2. These structures include 
compositions such as (Mg1-xMx)B2 where M = Ba, Rb, Cs or Cd. In addition, the use 
of parabolic, or higher order quartic polynomials, to quantify key bands in an EBS 
offers a direct and low computational cost approach to determination of the super-
conducting gap for simple structures.

We are uncertain whether these approaches to DFT calculations apply to all 
SCs recognizing that now hundreds of compounds have been identified. Hardware 
and software limitations may restrict the use of these approaches to small unit cell 
structures of simple composition and higher symmetry. Nevertheless, in combina-
tion, these systematic and simple approaches to use of a well-known theory of 
electron distribution in solids suggest that prediction of properties for unknown, or 
hypothesized, SC structures is well within the reach of many materials researchers.
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