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Abstract

The effects of oxidative stress occur as a result of peroxidative damage of the 
macromolecule and membranes of the cells and with the disruption of metabolic 
activities in the components of the cells in living organisms. Organ and tissue 
pathologies are known to occur when oxidative stress is excessive in the body. It is 
known that thiols are one of the main protective mechanisms of the body against 
oxidative stress. Thiols have been shown to play important roles in enzymatic 
reactions, apoptosis, detoxification and antioxidant protection in the body. Many 
studies have shown changes in thiol status and thiol/disulphide homeostasis in 
various diseases such as digestive system, respiratory system, reproductive system, 
urinary system, metabolic diseases and cancer. This also shows that the thiol state is 
very important in the pathogenesis of oxidative stress-mediated diseases. Therefore, 
it is thought that interventions that can improve thiol status may contribute to the 
prevention or treatment of oxidative stress-related diseases.

Keywords: antioxidant, glutathione, oxidative stress, oxidative stress-mediated 
disorders, taurine, thiol-disulphide homeostasis, thioredoxin

1. Introduction

Oxygen is a potentially toxic molecule, although the aerobic organisms must 
survive. During biochemical reactions vital to living organisms, oxygen reduced, 
resulting in intermediate metabolic products known as reactive oxygen species 
(ROS), which cause oxidative damage to many tissues. ROS is called “oxidant” or 
“free radical” due to the oxidative destruction they create and form in all living 
organisms that metabolize molecular oxygen [1] Free radicals are very short-lived 
reagents, separating other electrons around high-energy electrons and disrupting 
their structure. Therefore, free radicals are dangerous to the organism [2, 3].

There are many defense mechanisms in the organism to prevent ROS forma-
tion and the damage caused by them. These mechanisms are generally called 
“antioxidant defence systems” or “antioxidants” for shortly [4]. Antioxidants 
serve in the body by controlling the metabolization and levels of free radicals 
formed as a result of normal metabolism or pathological conditions and prevent-
ing or repairing the damage that may occur by these radicals [5, 6]. In the living 
organism, there is a balance between the rate of formation and elimination of free 
radicals. This balance is called the “oxidative balance” that prevents the body from 
being affected by free radicals. If the oxidative balance is disturbed in favor of free 
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radicals, oxidative stress occurs, which is one of the factors that ultimately causes 
damage to cells and tissues [7, 8].

All biomolecules are subject to free radical attack. But among them, lipids are 
the most easily affected [9]. The membranes and cell organelles that surround the 
cells contain a large amount of unsaturated fatty acids (PUFA). Due to the high 
affinity of the oxygen molecule to PUFA in the cell membrane, there is a close 
relationship between the two. Oxygen binds to double ligaments in PUFA found in 
tissues, causing lipid peroxidation [10, 11]. Lipid peroxidation is a harmful chain 
reaction. It can directly damage the membrane structure or damages by producing 
reactive aldehydes. These compounds are either metabolized at the cell or diffuse 
damage from initial domains to other parts. Thus, the structure of lipids in the cell 
membrane is disturbed, permeability for ions increases and cell death occurs [12].

Reactive nitrogen species (RNS) are another reactive species group that is as 
important as ROS. Nitric oxide (NO), a free radical, is the most substantial member 
of this group. It has the ability to directly or indirectly affect cells and tissues. As it 
can directly affect itself, while indirect are mediated RNS produced the interaction 
of NO with superoxide radicals (O2

−•) or oxygen (O2). Most of its direct physiologi-
cal effects are cyclic guanosine 3′,5’monophosphate-mediated (cGMP). It can also 
interact with proteins containing iron and zinc or create S-nitrosothiols through 
nitrosylation [2, 13–17]. Many antioxidants work in the organism to prevent damage 
caused by ROS and RNS. Antioxidants, present in considerably lower concentra-
tions than the substrate, are substances that can protect an oxidation-sensitive 
substrate from peroxidative damage. Biological antioxidants contain all compounds 
that protect cellular lipids, proteins and nucleic acids from peroxidative damage. 
One of these compounds is thiols. Thiols play a crucial biologic role among these 
compounds due to their capacity to react with free radicals and their strong reducing 
capabilities [18].

Thiols are a member of the class of organic compounds containing sulfhydryl 
group (-SH). They consist of a hydrogen atom and a sulfur atom attached to a carbon 
atom [19]. In the organism, in the oxidation created by ROS, excess electrons pass 
to thiols and disulphide bonds are formed. Due to the oxidative balance, electrons 
in these reversible bonds can return to thiols. The antioxidant ability of thiol-
disulphide homeostasis is important in enzymatic reactions, signal transduction, 
detoxification, transcription, regulation of enzymatic activation, cellular signaling 
mechanisms and apoptosis reaction [20–22]. With these in mind, in this chapter, 
reactive oxygen species, nitric oxide, lipid peroxidation, oxidative stress and the role 
of thiols in antioxidant defense is summarized and has been explained how thiol 
status changes in conditions associated with oxidative stress.

2. Biochemistry of reactive oxygen and nitrogen species

Free radicals and non-radical intermediates are commonly referred to as ROS. 
Species that contain unpaired electrons are free radicals. Species with unpaired 
electrons in their structure are free radicals, and because of this unpaired electron 
shell, free radicals have high reactivity. The most important sources of free radicals 
in biological systems are oxygen and nitrogen [23]. In the electron transfer chain, 
cells constantly convert small amounts of O2 to ROS. ROS can be produced in 
many ways in the organism, including the respiratory burst that occurs in active 
phagocytes [24]. Respiratory burst, also known as “oxidative burst”, is the event of 
a rapid release of ROS such as O2

−• and hydrogen peroxide (H2O2) from different 
cell types. Generally, these chemicals are produced by immune system cells such as 
neutrophils and macrophages as a result of infection of the organism by bacteria 
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and fungi [25, 26]. In phagocytes, the respiratory burst that occurs to break down 
bacteria plays an important role in the immune system. O2

−• is produced by nico-
tinamide adenine dinucleotide phosphate (NADPH) oxidase, a family of enzymes 
commonly found in many cells. In neutrophils and monocytes, myeloperoxidase is 
involved in combining H2O2 with CI-to produce hypochlorite, which plays a role in 
destroying bacteria [25].

Reactive oxygen species formation, as natural result of aerobic metabolism, 
has an important role in maintaining tissue oxygen homeostasis. O2

−•, H2O2 and 
hydroxyl (•OH) radicals are produced in mitochondria as normal metabolic 
by-products. Other important intracellular sources of ROS are peroxisomal 
enzymes, flavoprotein oxidases and microsomal cytochrome P450 enzymes [27]. 
ROS also play an important role in various physiological processes such as the 
functioning of normal vascular cells and maintenance of vessel diameter regula-
tion [28]. It is stated that in biological systems, ROS participate in differentia-
tion, proliferation, growth, apoptosis, cytoskeleton, migration and contraction 
regulation and play a role in the control of inflammatory response by stimulation 
of growth factor [29, 30].

Mitochondria are the main source of the O2
−• anion most commonly found under 

physiological conditions. [31]. The O2
−• anion is formed by adding an electron to 

dioxygen. However, it is unstable because it can react spontaneously in aqueous 
solutions and convert into H2O2 and O2. [32]. In the respiratory chain, in particular, 
the O2

−• anion is formed by the leakage of electrons from complex I and III into 
O2. The rate of formation depends on the number of electrons and increases with 
hyperoxia and high glucose concentration. The decrease in oxygen availability, act-
ing as the final electron acceptor for complex IV, causes the accumulation of elec-
trons. Because the O2

−• anion is charged, it cannot pass through the membrane and 
remains in the mitochondrial matrix [23]. O2

−• anion can convert to O2 by reducing 
Fe3+ ion to Fe2+. O2

−• is detoxified with superoxide dismutase (SOD) enzymes and 
converted into H2O2 [32, 33].

Hydrogen peroxide is not a free radical, but it is mentioned in ROS because it is 
closely related to the detoxification or generation of free radicals [32]. It is not polar, 
so it can easily pass through the membranes of cells and organelles and therefore 
acts as a secondary messenger in a wide range of signal transduction pathways. It 
is detoxified into the water by catalase (CAT) and glutathione peroxidase (GPx). 
Imbalances in O2

−• and H2O2 levels can result in the formation of •OH radicals, 
which are far more dangerous than them [4]. The main source of the •OH radical is 
metal-catalyzed Haber-weiss reaction [34] and the second source is the Fenton-type 
reaction [35]. It has been reported that the •OH radical can react with any biological 
molecule in its immediate vicinity and there is no known scavenger because it is 
very reactive [23].

2.1 Nitric oxide

Nitric oxide is produced during the reaction which arginine is converted to citrul-
line catalyzed by nitric oxide synthase (NOS) which is NADPH-dependent enzyme 
[36, 37]. There are three isoforms of NOS: neuronal (nNOS) endothelial (eNOS) and 
inducible (iNOS) and it is known to be present in every cell component [17, 38]. NO 
is an uncharged lipophilic molecule containing unpaired electron. Although NO is 
not a highly reactive radical, it is important in that it can form other reactive inter-
mediates that have an impact on protein function and the function of all organisms, 
as well as trigger nitrosative damage in biomolecules [39]. Therefore; it can function 
as an antioxidant or as an oxidant. NO, blood pressure regulator and a neurotrans-
mitter, can produce powerful oxidants during pathological conditions [28].
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The interaction of excessive amounts of O2
−• anion with NO leads to the forma-

tion of the peroxynitrite anion (ONOO−). ONOO−, a cytotoxic radical, causes 
tissue damage and oxidizes low-density lipoproteins (LDL) [4, 40, 41]. It can also 
directly cause protein oxidation and DNA oxidation. ONOO− can form prooxidant 
nitrogen dioxide (NO2) and •OH by self-decomposition [42]. It is suggested that 
NO can increase the production of reactive oxygen and nitrogen species and inhibit 
cytochrome C oxidase in mitochondria, which can alter the activity of various 
processes such as respiration, mitochondrial biogenesis and oxidative stress [37]. 
It plays a critical role in inflammation-related carcinogenesis by activating the 
redox-sensitive transcription factor with nitrosative stress caused by NO, which has 
an important regulatory role for cellular functions. It is stated that by increasing the 
level of NO in plasma, it can reduce the concentration of uric acid and ascorbic acid 
and cause lipid peroxidation [28].

3. Lipid peroxidation

Reactive oxygen species, produced in mitochondria and extramitochondrial 
regions, react with polyunsaturated fatty acids (PUFA) found in complex lipids and 
lipoproteins, such as phospholipids found in cellular membranes, which are highly 
sensitive to oxidative changes. The process that causes degradation of PUFAs by 
chemically modified by ROS is called lipid peroxidation [43].

Lipid peroxidation in membranes is initiated by the contribution of ROS 
or separation of the hydrogen atom by ROS from the methylene group located 
between two double bonds in the PUFA. Conjugated dienes made up of PUFA 
react with oxygen present in the membranes at a very high rate and form a peroxyl 
radical (ROO•). Since ROO• radicals are particularly highly reactive to neighboring 
PUFA chains, they spread the lipid peroxidation process by removing hydrogen 
from them. In this reaction, carbon centred radicals and lipid hydroperoxide are 
formed. Lipid peroxides can react with transition metal ions (iron, copper ions) to 
form alkoxyl radicals (RO•) [4, 44]. Metal ions can cause the lipid peroxide mol-
ecule to become unstable, leading to its degradation into smaller products. These 
products range from simple hydrocarbons to various ketones and aldehydes. The 
decomposition products of lipid peroxides are aldehydes such as malondialdehyde 
(MDA), acrolein, 4-hydroxy-2-hexenal (HHE) and 4-hydroxy-2-nonenal (HNE) 
[43, 45]. Commonly used lipid peroxidation markers are MDA and HNE. HNE is 
formed as a peroxidation product of omega-6 unsaturated fatty acids, while MDA is 
essentially a PUFA peroxidation product with more than two double bonds such as 
arachidonic acid [4].

Biomolecules undergo a lipoxidation reaction by lipid peroxidation end prod-
ucts such as MDA, 4-HNE and acrolein. Irreversible nonenzymatic modifications 
occur when these products react with lysyl (ε-NH2), histidyl (imidazole) and 
cysteinyl (-SH) groups in the polypeptide chain. MDA-lysine and HNE-protein 
compounds formed by lipoxidation are called advanced lipoxidation end-products 
(ALE) [46–48].

4. Antioxidant defense system

Antioxidants, when present in low concentrations, are generally defined as 
substances that significantly inhibit or delay oxidative processes while they oxidize 
themselves, in relation to oxidizable substrates [49]. They neutralize free radicals 
and oxidize themselves by accepting highly reactive unpaired electrons [4]. Various 
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transcription factors in the human body are activated or inhibited depending on the 
relative oxidant/antioxidant ratio. Thus, many signal paths are controlled by redox 
balance. The endogenous defense system consists of antioxidant compounds and 
specific enzymes that catalyze their antioxidant activities. There are a wide variety 
of powerful antioxidants that cells use, such as vitamins (C, E, A) and enzymes 
(CAT, GPx, SOD and thioredoxin reductase). Other non-enzymatic antioxidants 
available to cells include GSH, α-lipoic acid, taurine and coenzyme Q10, carotenoids 
and polyphenols. Especially GSH and taurine, which are thiol antioxidants, are of 
great importance in maintaining the redox balance [50–53].

4.1 Thiols and some of the important thiol antioxidants

Thiols are biological mercaptans (R-SH), while biological mercaptans are called 
biothiols. Biothiols can be classified as low molecular weight free thiols and large 
molecular weight protein thiols. Thiols found in biological systems play a role in 
the coordination of antioxidant defense systems [54]. It contains protein thiols 
in plasma, protein sulfhydryl groups and protein mix disulphides consisting of 
cysteine, cysteinylglycine, homocysteine and GSH. These thiols are also available in 
the form of low molecular mass disulphides, homocystine, cystinylglycine, cystine 
and GSSG. [19]. While GSH/GSSG, especially in reduced form, consists of the low 
molecular weight sulfhydryl/disulphide pool inside the cell, cysteine/cystine in 
the form of disulphide in plasma and outside the cell as a whole [55]. It has been 
reported that dynamic thiol disulphide balance plays a crucial role in antioxidant 
system [20]. Total thiol (TT), especially protein thiol (-SH) groups in the body are 
considered as the main plasma antioxidants of the living organism. Most of these 
thiol (-SH) groups are found in albumin and constitute the major reducing groups 
found in body fluids [56].

Thiols play important physiological roles in processes requiring sulfur and are 
highly reactive, the -SH groups are readily oxidized or reduced in the presence of a 
catalyst [57–59]. Thiols can act as electron acceptors, reducing unstable free radi-
cals by oxidizing, so they are powerful antioxidants. Despite their high reactivity, 
thiols’ antioxidant potential depends on environmental, structural and catalytic 
factors [60–62].

Cysteine can be synthesized endogenously from methionine. Methionine, an 
essential amino acid in the diet, is endogenously metabolized to homocysteine 
and then to cysteine; Its conversion is rate limited by a few enzymes [63]. As an 
amino acid, cysteine has important structural roles and can bind thiol side chains 
to metals such as zinc, copper and iron, which are crucial for enzymatic functions. 
The thiol side chain of cysteine also allows it to be included in the tri-peptide thiol 
antioxidant GSH. Besides, cysteine metabolism through the cysteine-sulfinic acid 
pathway can generate taurine, although enzymatically the rate is limited, this 
pathway is much more complex than that of GSH [64, 65]. Both GSH and taurine 
are formed from cysteine with bioactive thiol groups. Although intermediate 
levels of cysteine are important for cellular signaling pathways, high plasma levels 
have been associated with cardiovascular and neurological diseases [66–68]. 
Additionally, high intracellular levels can increase oxidative DNA damage through 
the Fenton reaction [69].

4.1.1 Thioredoxin system

Thioredoxin (Trx) was first discovered in E.coli in 1964 [70]. Trx’s are proteins 
that act as regulators in redox reactions and are found in all eukaryotic and prokary-
otic organisms [71]. The Cys-Gly-Pro-Cys division is located in its active region [72]. 



Lipid Peroxidation

6

Cytosolic thioredoxin-1 (Trx1) and mitochondrial thioredoxin-2 (Trx2) are part 
of the thioredoxin system, an essential and important antioxidant system for the 
maintenance of intracellular redox state, and play an important role in cellular redox 
balance and normal cell and tumor cell signaling [73, 74]. Trx exerts its antioxidant 
effects primarily by acting as an electron donor for peroxiredoxins. Trx is a small 
molecular weight protein that functions as an antioxidant by facilitating the reduc-
tion of other proteins containing the thiol (-SH) group via cysteine thiol-disulphide 
(-S-S-) exchange, and ribonucleotide reductase, an essential enzyme in the replica-
tion of deoxyribonucleic acid (DNA) for a hydrogen donor [75].

Thioredoxin reductases (TrxR) is a member of the flavoprotein family of pyri-
dine nucleotide-disulphide oxidoreductases such as glutathione reductase (GSR), 
lipoamide dehydrogenase, mercury ion reductases [75, 76]. Members of this family 
include the active site in each monomer comprising the FAD, NADPH binding site 
and redox-active disulphide. It has a selenocysteine residue in its active site [73]. The 
disulphides in the active part of the TrxR reduce the substrate by catalyzing the elec-
tron transfer from NADPH to FAD. TrxRs reduce the thioredoxin protein containing 
two different cysteine amino acids (Trx1; Cys32 and Cys35, Trx2; Cys31 and Cys34) 
in its catalytic region. TrxRs have been reported to be associated with lipoic acid, lipid 
hydroperoxidase, cytotoxic and antibacterial polypeptide NK-lysin, dehydroascorbic 
acid, vitamin K, ascorbyl free radical, tumor suppressor protein p53 as well as Trx 
protein [71, 76–80]. It has been stated that mammalian thioredoxin reductase has 
three different isoenzymes, cytosolic TrxR1, mitochondrial TrxR2 and TrxR3, which 
is specific to testicles containing glutaredoxin region in the N terminal region [81].

Thioredoxin system has various roles in organisms and reflects the importance 
of the -SH group together with disulphide (-S-S-) in many reactions that are crucial 
in cell regulation [82]. It was previously thought that Trx was mainly involved in 
protecting against oxidative stress, scavenging ROS through its interaction with per-
oxiredoxin and working to control cellular redox balance. As a result of the studies, 
it has been shown that Trx contributes to redox-dependent cellular processes such 
as signal transduction, gene expression, apoptosis and cell growth [83, 84]. The 
reduced Trx binds apoptosis signal kinase-1 (ASK-1) and stops apoptosis [85]. Trx 
is released in response to oxidative stress and extracellular Trx exerts cytoprotective 
effects in inflammatory and oxidative conditions [86].

4.1.2 Glutathione system

Glutathione (GSH = γ-glutamylcysteinylglycine) is abundant in the human 
body. It is a tripeptide synthesized from three amino acids (cysteine, glycine and 
glutamate). It is a low molecular weight intracellular thiol compound and is mostly 
synthesized in the liver and is found in all cell types. As the regulator of intracel-
lular redox homeostasis, most of it is stored in reduced form in the nucleus, endo-
plasmic reticulum, and mitochondria. The thiol group (-SH) of glutathione reduces 
the number of free radicals by binding to the un-shared electrons of free radicals 
formed as a result of oxidative stress. There are two forms in the organism: reduced 
(GSH) and oxidized (GSSG). The thiol-containing cysteine molecule in GSH, which 
is predominantly in the cell, allows ROS to take part in antioxidant roles by taking 
part in both degradation and removal [87–89].

The glutathione system acts as a leading cellular defense mechanism against 
oxidants. GSH is not only a direct ROS scavenger but also an antioxidant that has 
an important act in the regulation of intracellular redox status. The system consists 
of GPx, GSR and GSH. GSH retains its antioxidant ability in its reduced form. GPx 
catalyzes the reduction of H2O2 to water using GSH as a cosubstrate. GSSG is then 
reduced to GSH by GSR using NADPH. The cycle between these two states aids in 
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free radical and toxic substance metabolism. The GSH/GSSG ratio is considered a 
sign of the redox state and relative oxidative stress level. The capability of organisms 
to regenerate GSH (through the synthesis of GSH or through reduction of GSSG) 
means the cell’s success to withstand oxidative stress [90, 91].

The ability of GSH to act as an antioxidant is due to the thiol-containing cysteine 
part. GSH is located on both the first and second lines of ROS defense and requires 
GPx enzymes to catalyze the breakdown of H2O2 through the reduction of GSH to 
GSSG. GPx (GPx1), selenium-dependent, is found in the kidneys and mitochondria 
[92, 93]. Four other GSH peroxidases (GPx2-GPx5) have also been discovered, 
along with evidence of antioxidant properties in vivo [94]. Detoxified metabolites 
resulting from GPx defense are excreted from the cell via a glutathione S-conjugate 
transporter [87]. It has been reported that administration of a GSH enzyme inhibi-
tor in rats reduces vitamin C levels in the kidney, liver, brain and lung [95]. It has 
been noted that GSH administration increases both vitamins C and E [96]. It is 
stated that vitamin C deficiency significantly decreases GSH levels in the blood 
[97], while vitamin C supplementation contributes to the formation of GSH [98].

4.1.3 Taurine

Cysteine can be metabolized to taurine, intracellular sulfonic acid, via cysteine-
sulfinic acid. Taurine or 2-aminoethanesulfonic acid is abundant in the human 
body. Since there is not a carboxyl group in its structure, it is not an amino acid in 
theory, but it is usually referred to as proteins [99, 100]. As a result of this condi-
tion, it is released in the plasma of mammals and inside the cell [101]. Taurine is 
most often found where reduced O2 molecules are produced and in locations where 
potentially toxic substances such as xenobiotics, retinoids and bile acids are found 
[102]. It is also found in high levels in white blood cells and platelets [103].

Although the mechanisms of taurine’s antioxidant effects are not fully 
explained, possible mechanisms include regeneration of thiol groups, interfering 
with ROS activity and scavenging ROS [104]. It has been reported that Taurine 
suppresses superoxide production in mitochondria [105]. In general, taurine causes 
a significant reduction in ROS formation through its stimulatory effect on SOD, 
CAT and GPx enzyme activity [106–108]. Besides, taurine also contributes to the 
regulation of GSH concentrations. [109]. It is thought that taurine has limited or no 
direct scavenging and reaction ability with ROS, and shows its antioxidant effect by 
increasing the activities of antioxidant enzymes such as GPx and SOD [110, 111]. It 
has been recorded that taurine indirectly increases endogenous GSH levels. [112]. 
Studies have shown that taurine supplementation reduces lipid peroxidation and 
maintains GSH levels [113, 114].

Taurine can also inhibit free radical generation. Taurine’s amino group is the 
direct scavenger of hypochlorous acid (HOCl) [105]. In the presence of myeloper-
oxidase, taurine reacts with the acid to form a less toxic oxidant, taurine chloramine 
(TauCl). Since neutrophils contain high levels of taurine, TauCl formation can 
continue as long as there is enough taurine [115]. TauCl not only plays a role in 
antioxidant systems by lowering HOCl levels but also inhibits O2 production and 
proinflammatory mediators in neutrophils and macrophages [115, 116].

5. Thiol status in oxidative stress-related various diseases

Thiol state and thiol-disulphide balance, which is an antioxidant defense system, 
may change due to oxidative stress in some diseases that may occur in various 
systems, organs and tissues in the organism.
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5.1 Thiol status in digestive system diseases

In diseases of the digestive system, significant changes are observed in thiol 
state. For example, ROS formation in the liver increases due to alcohol intake. In this 
situation, serum protein thiol levels of alcohol drinkers decrease [117, 118]. It has 
also been determined that the level of thiol in the gallbladder increases in various 
gastrointestinal diseases [119]. A study showed that serum -SH levels of patients 
with helicobacter pylorus were significantly decreased [120]. Some studies have 
shown that native thiol (NT) and total thiol (TT) levels decrease and disulphide 
levels increase in celiac disease, acute pancreatitis, and inflammatory bowel disease 
[121–123]. In addition, the serum free thiol level has determined that non - alcoholic 
fatty liver disease (NAFLD) is associated with death from all causes in people with 
suspected NAFLD [124]. Impaired thiol-disulphide homeostasis has been reported 
in patients with hepatitis-B-induced chronic hepatitis and liver cirrhosis [125]. 
Again, in liver damage caused by pesticides, the thiol level was decreased, whereas 
black tea extract was found to improve thiol level in the liver tissue [126]. In experi-
mental gastric damage induced by indomethacin, a non-steroidal anti-inflammatory 
drug, it was observed that ellagic acid treatment increased GSH levels and played a 
role in protecting against the harmful effects of indomethacin by reducing oxidative 
stress [127].

5.2 Thiol status in cardiovascular system diseases

Another situation in which thiol status changes is cardiovascular diseases. For 
example, in a study in preeclamptic patients characterized by high blood pressure, 
it was determined that the buffering function of SNO-albumin was impaired in 
patients in which the thiol of albumin acts as a scavenger for NO [128]. It was also 
observed that serum NT and TT levels of patients who had a heart attack decreased 
[129, 130]. In a study, it was determined that the level of mitochondria-specific 
thioredoxin increased, which increases NO bioavailability and reduces oxidative 
stress, thus protecting vascular endothelial cell function and preventing the devel-
opment of atherosclerosis [131]. In rabbits, after experimental ischemia–reperfu-
sion, it has been reported that thiol redox balance is impaired in myocardial cells 
and this causes abnormalities in cell function [132]. It has been reported that in case 
of cardiac damage caused by cyclophosphamide, thiol level decreases, but lupeol 
and its esters increase thiol level [133]. In sheep babesiosis, a tick-borne hemipara-
sitic disease, the parasite settles in the erythrocytes and causes a decrease in GSH 
levels in the blood. Therefore, the decrease in GSH levels indicates that excessive 
amounts of ROS are formed in cells [134].

5.3 Thiol status in nervous system diseases

In Parkinson’s disease, oxidative stress plays an important role in the degen-
eration of dopaminergic neurons in the substantia nigra (SN) of patients. It was 
determined that the thiol antioxidant glutathione (GSH) significantly decreased 
in the neurons present in Substantia nigra and mitochondrial damage occurred as 
a result of this decrease [135, 136]. It has been observed that plasma GSH, C-SH 
and CG-SH levels decrease in patients with schizophrenia. However, it has been 
observed that Curcumin administration caused a significant increase in GSH level 
[137, 138]. It has been determined that TT and NT concentrations are decreased in 
Alzheimer’s patients [139]. In the experimental Parkinson model with 6-hydroxy-
dopamine, it was observed that the thiol level in the brain tissue decreased and the 
application of biarum carduchrum extract increased the thiol level [140]. In another 
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study, hesperidin administration in 6-hydroxydopamine-induced Parkinson’s model 
was reported to improve thiol level in brain tissue [141].

5.4 Thiol status in urinary system diseases

Studies have shown that thiol status changes in excretory system diseases. A 
decrease in thiol status has been reported in chronic kidney disease [142, 143]. 
There was a negative correlation between serum creatine level and protein thiol 
level. This is an indicator that serum protein thiol level will decrease in case of 
renal failure [144]. It has been reported that plasma protein thiol level decreases 
in nephrotic syndrome [145]. In another study, it was revealed that the thiol-
sulphide balance decreased and this balance shifted towards disulphide in patients 
with acute renal failure, and the decrease in total and native thiol concentrations 
was associated with the severity of the disease [146]. In renal damage induced by 
dimethylnitrosamine, thiol level in kidney tissue decreased, whereas Simvastatin 
(SMN) administration improved thiol level in kidney tissue, while Thymoquinone 
administration was found to have no effect on thiol level [147].

5.5 Thiol status in reproductive system diseases

In polycystic ovary syndrome study, it has been observed that native thiol, total 
thiol, disulphide levels in the ovary tissues of patients with polycystic ovary syn-
drome do not change compared to the control group [148]. It has been determined 
that arsenic and imidocarb reduce the total thiol level in the testicular tissue of rats 
with testicular damage [149]. In a study, it was concluded that chemotherapeutic 
agents cause ovarian damage in women and that the reduction of thiol level is very 
important in the mechanism of this damage [150].

5.6 Thiol status in metabolic diseases

In gestational diabetes, it was determined that pregnant women with gestational 
diabetes have higher disulphide/natural thiol and disulphide/total thiol levels 
compared to healthy pregnant women [151]. In addition, in a study, in the case of 
diabetic nephropathy, natural thiol and total thiol levels decreased [152]. In the 
pathogenesis of diabetic ketoacidosis, thiol/disulphide balance changed in favor of 
thiol and significant decreases in disulphide level were observed [153]. Diabetic cats 
have been reported to have lower erythrocyte membrane thiol level than control 
[154]. It has been determined that thiol/disulphide homeostasis is impaired in 
obesity [155].

5.7 Thiol status in respiratory system diseases

In experimental asthma disease, it was determined that inflammation in the lung 
tissue of rats with experimental asthma increased and thiol level decreased, On 
the other hand, it was determined that the application of Hydro-Ethanolic Extract 
of Portulaca oleracea increased thiol level [156]. It has been reported that oxidative 
stress occurs during acute pulmonary inflammation induced experimentally in rats 
and is associated with systemic thiol homeostasis [157].

5.8 Thiol status in cancer

A study in Norway shows that thiols play a preventive role against the devel-
opment of the most common breast, lung, colorectal and prostate cancers [158]. 



Lipid Peroxidation

10

Author details

Abdulsamed Kükürt1*, Volkan Gelen2, Ömer Faruk Başer3, Haci Ahmet Deveci4  
and Mahmut Karapehlivan5

1 Department of Biochemistry, Faculty of Veterinary Medicine, Kafkas University, 
Kars, Turkey

2 Department of Physiology, Faculty of Veterinary Medicine, Kafkas University, 
Kars, Turkey

3 Department of Biochemistry, Faculty of Medicine, Kafkas University, Kars, 
Turkey

4 Department of Nutrition and Dietetics, Faculty of Health Sciences, Gaziantep 
University, Gaziantep, Turkey

5 Department of Biochemistry, Faculty of Medicine, Kafkas University, Kars, 
Turkey

*Address all correspondence to: samedkukurt@gmail.com

It has been determined that thiol/disulphide homeostasis plays a crucial role in 
the pathogenesis of cervical cancer [159]. In one study, it was reported that dis-
ruption of thiol disulphide balance is likely to contribute to the etiopathogenesis 
of endometrial cancer [160]. In addition, it has been stated that irregularities in 
thiol/disulphide homeostasis may act a part in the pathogenesis of gastric cancer, 
and a higher oxidative stress level may cause advanced disease to become wide-
spread and aggressive [161].

6. Conclusion

As a result, oxidative stress can cause serious damage to the cell. Thiol is a very 
important antioxidant in preventing oxidative stress-induced damage and protects 
the cell against oxidative stress. Glutathione and taurine are among the important 
thiols. It is observed that thiol status changes in various diseases and thiol/disulphide 
homeostasis is very important in the pathogenesis of various diseases such as diges-
tive system, respiratory system, reproductive system, urinary system, metabolic 
diseases and cancer. This also shows that thiol state is very important in the patho-
genesis of oxidative stress-mediated diseases. Therefore, it is thought that interven-
tions that can improve thiol status may contribute to the prevention or treatment of 
oxidative stress-related diseases.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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