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Effect of Helicobacter pylori 
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Epithelia
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Abstract

Molecular complexes grouped under the names of tight, adherent or gap  
junction regulate the flow of water, ions and macromolecules through epithelium 
paracellular spaces. The main constituents of tight junctions are claudins, a family  
of 26 different proteins whose expression and distribution are tissue specific but 
varies in tumors. A change in claudin 1, 3, 4, 5, 6, 7, 9 and 18 expression, that 
contributes to lose epithelial cohesion, has been associated to enhanced cell prolif-
eration, migration, and invasiveness in gastric neoplastic tissue. Chronic inflam-
mation process induced by H. pylori infection, a major risk factor for gastric cancer 
development, disrupts tight junctions via CagA gene, Cag pathogenicity island, 
and VacA, but the effect upon the epithelial barrier of H. pylori lipopolysaccharides 
or H. pylori-induced up-regulation of mTOR and ERK signaling pathways by 
microRNA-100 establishes new concepts of proof.
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1. Introduction

Disruption of the epithelium apical-junctional complex is an initial step of the 
process which allows many bacteria and/or its toxins to permeate across an otherwise 
tight mucosa. Normally, the most likely target are claudins, a family of 27 different 
molecules [1], essential for the maintenance of intercellular tight junctions, that 
viruses and bacteria such as Hepatitis C virus or Clostridum perfringens enterotoxin, 
bind to mediate their entry in hepatocytes or in human ileum epithelial cells [2, 3]. 
The aim of this review is to recognize the mechanisms that Helicobacter pylori uses to 
disrupt the tight junctions and invade the gastric epithelial mucosa.

2. Helicobacter pylori

Helicobacter pylori (H. pylori) is a 3 micrometer long gram-negative spiral bacteria 
that colonizes the human gastric epithelium’s luminal surface of approximately 50% 
of humans worldwide. Once acquired, it establishes a chronic persistent infection that 
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leads to ulcer, cancer or MALT lymphoma [4]. H. pylori is conformed by BabA, SabA, 
OipA and HopQ bacterial colonization factors, and the effector proteins CagA, VacA, 
urease, catalase, flagellin, mucinase, lipase, neutrophil activating protein, lipopoly-
saccharides, Cholesterol-Glucosyltransferase and HtrA considered as virulence/
pathogenicity factors, and the outer membrane vesicles [5–9]. Figure 1 shows the 
complete structure and components of H. pylori. Although it has been clearly estab-
lished that H. pylori disrupts gastric epithelial barrier function [10, 11] the precise 
mechanism(s) remain elusive. A major structure of H. pylori is the syringe-like Type 
IV secretion system which is found in many species of bacteria [12, 13]; this system 
plays an essential role in the translocation of CagA into host cells [14].

3. Epithelial barrier

The epithelial barrier is a fence composed by intercellular structures termed 
tight junctions, located at the apical border between gastric epithelial cells, formed 
by four different transmembrane proteins [occludin, claudins, junction-adhesion-
molecules, and CAR –Coxsackievirus and Adenovirus Receptor- proteins] anchored 
to actin filaments and myosin light chains (MLC) by the actin cytoskeleton and 
linker proteins zonula occludens ZO-1, ZO-2 and ZO-3 which are members of the 
membrane-associated guanylate kinase cytoplasmic adaptors. Other highly impor-
tant members of the barrier are the Adherens Junctions, the Desmosome, the Gap 
junctions and the Hemidesmosomes. Occludin and claudins interact with adjacent 
cells through their extracellular loops, whereas JAMs and CAR contain extracel-
lular IgG-like domains [15, 16]. Different proteins form the regulatory complex 
(Rac, Cdc42, Par3, Par6, PKC). Figure 2 shows the structural conformation of tight 
junctions1. Claudins, a family of 27 different proteins, are essential to establish 
and maintain the barrier function as they regulate paracellular permeability [18] 
whereas occludin is important for epithelial differentiation but not for establishing 

1 A profound review of the gastric epithelal barrier can be found at Tegtmeyer and Backert [17].

Figure 1. 
Helicobacter pylori components.
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the barrier [19]. Paracellular transport across the tight junctions is achieved through 
the leak pathway which is size-dependent and/or the pore pathway which is size 
and charge-dependent; size-dependance enables transportation of proteins and 
lipopolysaccharides and it is controlled by MLC kinase and occludin [20] whereas 
the pore pathway, controlled by claudins, enables the permeability of cations and 
anions across different epithelia and exclude molecules larger than 4A [21].

Claudins are responsible for watertight stability and transit of cations and 
anions. Claudins expression and regulation is tissue specific and their physi-
ological and regulatory function varies according to the organ where they are 
being expressed [22, 23]. As an example, claudin-4 in ovarian cancer has a pro-
angiogenic function whereas in pancreatic cancer it suppresses invasion [24, 25]. 
The expression of claudins is dysregulated in various cancers, and in gastric tissue 
the expression of claudin-1, −4, −6 and − 17 is modified when cancer develops 
but many other claudins such as −3, −5, −7 and − 18 have also been implicated; 
the loss or gain of claudins is linked to inflammation and inflammatory cytokines 
such as IFNy, IL-1, IL-6, IL-10, IL-17, IL-22, EGF, TGFb and TNF [26], as well as to 
several malignancies, drugs, antibiotics, toxins, pesticides, chemicals, microbiota 
imbalance and stress [27]. The integrity or modifications in tight junctions that 
affect claudin distribution is via the MAPK/ERK1/2 pathway [28–30]. It has been 
postulated that in G. lamblia infection the loss of epithelial barrier function could 
be caspase-3 dependent [31] but it does not seem the case in H. pylori infection.

The effect of the secretory molecules released by of H. pylori known to affect 
gastric mucosa tight junctions is discussed.

4. VacA

Amongst the major toxins that H. pylori possesses, the vacuolating cytotoxin A 
(VacA) contributes to host-pathogen interactions. After the 140 kDa VacA protein 
is translated, an active toxin of 88 kDa emerges after cleavage [32]. The toxin is 
conformed by two domains and three distinct segments: the signal region with 

Figure 2. 
Gastric epithelia tight junction structure.
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two allelic variations (s1, s2), the intermediate region, and the mid-region with 
two alleles (m1, m2) (Figure 3) [35, 36]; mosaicism has been reported for all the 
alleles (s1a, s1b, m1a, m1b) [34]. The relevance of these toxin components lays in 
the fact that s1 causes vacuolation of mammalian cells whereas s2 do not [37]; the 
discrepancy may be attributed to differences in channel-forming properties [38]. 
The combination of different VacA alleles is associated with more virulent strains 
and severe gastric disease: s1a/m2 strains are found in 87.5% of patients with peptic 
ulcer and in 93% of patients with gastric carcinoma [39]; other highly pathogenic 
associations include s1a/m1b, s1b/m1b, and s2/m2 [33]. VacA is involved in bacterial 
colonization of epithelial cells of the gastric mucosa via formation of low conduc-
tance membrane pores that are selective for anions over cations [40], and the induc-
tion of vacuole formation [41]. These vacuoles, once inside the epithelial cells, alter 
the transepithelial resistance but do not alter the localization or abundance of ZO-1 
and occludin [42]. VacA exert other effects, mainly: endosomal, mitochondrial and 
epithelial barrier alterations, autophagy, atypical cell signaling and induction of 
apoptosis in epithelial cells [34]. AGS cells treated with H. pylori culture superna-
tants show rearrangement and disruption of the actin cytoskeleton due to a lack of 
actin stress fibers; these changes were not VacA dependent [43].

5. CagA

Of major relevance for this review is the effector protein CagA, one of the most 
important virulence factors [44, 45]. The cytotoxin-associated gene pathogenic-
ity island (cagPAI) comprises 30 genes [46]. The cytotoxin-associated gene A is a 
125-140 kDa protein encoded by the cag pathogenicity island [47], a chromosomal 
region that simultaneously encodes a type IV secretion system specialized in 
transferring peptidoglycan and CagA to the cytosol of the target cell in an ATP-
dependent manner [45, 48]; once translocated, it interacts with numerous proteins 
in a phosphorylation dependent and independent manner within the epithelial 
cells, stimulating inflammatory responses, perturbing intracellular actin traf-
ficking, and disrupting cellular tight junctions probably via the ERK1/2 signaling 
pathway [49–51]. Phosphorylated CagA interacts with Shp2, a host protein that 
binds to CagA, this complex dephosphorylates the focal adhesion kinase and in 
turn activates a signal pathway that involves ERK proteins [52, 53]. The transferred 
peptidoglycan promotes the activation of the pattern-recognition molecule Nod1 
within the cytosol of the host cell [54] and subsequently induces the expression 
of IL-6 and IL-8 as well as MAPK phosphorylation [55–57]. The phosphorylation 
independent activity of CagA disrupts E-cadherin and ZO-1 and consequently 
cell-to-cell junctions in polarized epithelial cells [10, 49, 58, 59]. CagA modifies the 

Figure 3. 
Organization of VacA p88 protein. From Su et al. [33] and Foegeding et al. [34].
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polarity of the infected cells by interacting with Par1b/MARK-2 [60, 61]. CagA also 
stimulates the expression of NfkB, which subsequently activates the IL-8 promoter 
and stimulates the release of the chemokine IL-8 into the gastric lumen [62], which 
disrupts epithelial tight junctions organization [63].

CagA is known to affect intercellular junctions and disrupt junction-mediated 
functions [64] as it causes an ectopic assembly of tight-junction components by 
recruiting ZO-1 and JAM to sites of bacterial attachment (Amieva 2003), and 
disrupts the epithelial barrier function [10]. CagA colocalizes with ZO-1 and JAM 
proteins, binds Par1b and, by inhibiting atypical PKC-mediated phosphorylation 
of Par1b, disrupts cell polarity and consequently tight junctions. CagA also targets 
Cdx2 and therefore claudin-2 expression thus suggesting a novel mechanism for 
gastric epithelial cells dedifferentiation [65]. Another pathophysiological mecha-
nism by which H. pylori affect the epithelial barrier is by Rho kinase dependent 
manner that induces IL-1R type 1 phosphorylation and claudin-4 expression [66].

6. HtrA

One recently recognized mechanism by which CagA disrupts the barrier is medi-
ated by a HtrA (high-temperature requirement A) serine protease [67]. This enzyme 
is part of a four proteases specific family identified in E. coli, C. jejuni, C. coli and  
H. pylori, all of which enhance adhesion, cellular invasion, and bacterial trans-
migration via the paracellular route [68]. The HtrA family of proteases contain a 
chymotrypsin-like protease domain and at least one C-terminal PDZ domain [69].

HtrA are bacterial proteins that provide tolerance to oxidative and heat stress; they 
undergo oligomerization when denatured proteins are encountered (Figure 4) [70]. 
HtrA can be expressed at the bacterial cell surface, or transported into the extracel-
lular space, or shed in outer membrane vesicles. It favors bacterial paracellular 
transmigration by cleaving cell-to-cell junction factors such as components of tight 
junctions that leads to disruption of the epithelial barrier [71]. It has been shown that 
HtrA1 expression in gastric cancers correlates with better response to cisplatin-based 
 chemotherapy [72].

Although H. pylori-infection and –related gastric diseases are clearly associated 
with downregulation of E-cadherin [73, 74], the mechanism remained elusive. The 

Figure 4. 
Tridimensional modeling of H. pylori trimeric HtrA. From Albrecht et al. [70].
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bacteria disrupts E-cadherin by upregulating the expression of several metallo-
protease-1, −3, −7, −9, −10 and ADAM-10 and -15 all of which cleave E-cadherin 
on the cell surface [6, 68, 75–78]. It has recently been established that HtrA allows 
access of H pylori to the basolateral side of the gastric epithelium through cleav-
age of the N-terminal fragment domain of E-cadherin [79] apparently affecting 
occludin expression on the epithelial cell membrane leading to destruction of 
adherence junctions and downregulation of the barrier function thus facilitat-
ing CagA delivery [80–82]. Phosphorylation of MLC by the specific MLC kinase 
regulates paracellular permeability [83]. It has been shown that certain strains of 
H. pylori induce the rearrangement of claudin-4 and claudin-5 in a MLC Kinase 
dependent but in a CagA- and VacA-independent manner [84]; the exact mecha-
nism was not determined although ammonium produced by H. pylori urease has 
been implicated [85, 86].

7. Lipopolysaccharide

Gut bacterial lipopolysaccharides (LPS) are known to affect intracellular 
signaling as well as tight junctions of the blood brain barrier [87] and the intestinal 
barrier [88]. LPS, an important structural component of bacterial walls´ outer 
membrane, is recognized by the membrane toll-like receptor 4, and alterations in 
permeability induced by LPS are via a TLR-4 dependent process associated to the 
adaptor protein focal adhesion kinase, which has been shown to co-localize with 
claudin-1 [89], and the activation of the MyD88-dependent pathway [90]. H pylori 
LPS has an agonist function upon TLR-2 and not TLR-4 [91, 92]. We have shown 
that H pylori LPS induces the expression of TLR-2 and that the greater expression of 
the receptor was accompanied by an initial increase in claudin-4 followed by clau-
din-6, −7 and − 9; this initial process was STAT3-dependent whereas the expression 
of claudin-6, −7 and − 9 was ERK1/2-dependent (Figure 5) [93]. The same pathway 
has been reported in claudin-1 downregulation in keratinocytes [94].

Figure 5. 
Effect of H. pylori LPS on TLR2 activation and claudin expression. From Chavarría-Velázquez et al. [93].
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8. Inflammation

Persistent H. pylori infection induces chronic inflammation, pro-inflammatory 
cytokines IL-1, Il-6, IL-8, TNF and micro RNAs, especially those of the let-7 family 
[95] that correlates significantly with one or various other pro-inflammatory 
cytokines [96]. Although it would be interesting to determine the role of pro-
inflammatory cytokines in modulating tight junction dysfunction, it is clear that 
H. pylori infection does induce a local inflammatory process by activating nuclear 
transcription factors NFkB and the chemokine AP-1 [97] where IL-8 enhanced 
secretion plays an important role [98]. The phosphorylation of the IL-1 receptor 
after exposure to H. pylori reduces the expression of claudin-4 [66]. IL-8 exposure 
is known to disrupt the organization of epithelial tight junctions leading to “leaky” 
tight junctions due to a reduced expression of claudin-18 [63].

9. N-nitroso compounds

Exposure to N-nitroso compounds (NOCs) is clearly related to development and 
increased mortality of gastric cancer (Figure 6) [99, 100]. It has been established 
that nitrogenous constituents of gastric juice can be reduced and lead to the in situ 
formation of N-nitroso compounds [101] although the involvement of H. pylori 
in the development of NOCs and premalignant lesions was controversial until 
recently [102]. Gastric epithelial cells exposed to N-Nitroso compounds (NOCs) 
such as MNNG (N-methyl-N-nitro-N-nitrosoguanidine), N-nitrosodimetilamine, 
N-nitroso-N-ethylurea, or N-nitrosopiperidine through diet (bacon, smoked 
fish, sausages), high salt consumption, alcoholic beverages, and/or tobacco smoke2, 
which also contains NOCs and favors the prevalence of H. pylori [103], induce 

2 For a complete list of NOCs compounds go to http://ntp. niehs.nih.gov/pubhealth/ roc/roc13

Figure 6. 
Structure of relevant N-nitrosamine carcinogenic compounds. From NTP (National Toxicology Program), 
NIH, USA, 2014.
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the expression of epithelial-mesenchymal transition markers in the presence of 
CagA positive H. pylori strains [104] which is mediated by Akt or ERK activation 
[105], both of which are involved in tight junction assembly [28]. N-etil-N-nitro-
N-nitrosoguanidine, a compound that behaves similar to MNNG [106] and induces 
gastric carcinoma in nonhuman primates [107], synergizes with H. pylori, especially 
CagA+ strains [108] and induces gastric carcinogenesis [109]. Therefore, protago-
nism of these compounds in individuals with H, pylori infection cannot be belittled.

10. Conclusions

Modulation of polarized gastric epithelial cells tight junctions by H. pylori 
involves not only the direct action of some of the most recognized virulence factors 
of the bacteria that target individual TJ components by different pathways, but also 
the effect of some H. pylori-induced secondary or indirect mechanisms. It is clear 
that H. pylori has developed several mechanisms to endure in an organism and that 
invasion of the gastric mucosa is just the beginning of the bacteria survival and 
replicative process where suppression of the immune response is a key component 
that needs to be continuously explored. Nevertheless, the adhesion and invasion of 
the gastric mucosa epithelial cells through mechanism that favor the opening of the 
cell-to-cell tight junction is a bacterial strategy that allows persistent colonization 
and enhances its ability to cause damage to the host.
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