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Abstract

Million cases of campylobacteriosis and complications of post-Campylobacter 
jejuni infection occur every year around the world with huge life losses and eco-
nomic burdens of billions of dollars. Few therapy options, such as antibiotics, 
are available to relieve severe cases of the enteritis. The slow progression on new 
intervention discovery and application is partially resulted from limited mecha-
nistic understanding on campylobacteriosis pathogenesis. As a type of intestinal 
disorders, campylobacteriosis shares many common features with other intestinal 
diseases such as inflammatory bowel diseases (IBD) and Clostridium difficile 
infection. In pace with the advancement of the gastroenterology field, a large 
body of knowledge is accumulating on the factors influencing campylobacteriosis 
onset, development, and outcomes, including host immune response, intestinal 
microbiota, and its metabolites. In this chapter, we review the intestinal immune 
system, intestinal microbiome, and microbiome modulation of inflammation in the 
development of campylobacteriosis. The interplay between immunity, microbiota, 
and its metabolites may play essential roles on campylobacteriosis pathogenesis and 
the finding on the interaction may lead to new prevention and treatment options. 
The purpose of this chapter is to provide updated knowledge on the role of host–
microbe interaction and the therapeutic potential on campylobacteriosis.

Keywords: colitis, infection, adaptive immunity, innate immunity,  
microbial metabolite, bile acids

1. Introduction

Campylobacter enteritis (also known as campylobacteriosis) is defined as an 
infection of the intestines that is manifested in the form of acute diarrhea followed 
by pain in abdomen, fever as well as other constitutional clinical indications [1]. 
Campylobacteriosis is a common foodborne pathogen disease worldwide caused 
by Campylobacter jejuni [2]. C. jejuni is a Gram-negative, microaerobic bacterium. 
Because of the large consumption and industrialized production of animal meat, 
the main reservoir of C. jejuni is food animals such as chickens and turkeys. 
Campylobacter is one of the most frequent causes of foodborne bacterial pathogen, 
particularly in developed countries. C. jejuni and C. coli are the foremost causes of 
infections in the vast majority of population [3]. According to CDC’s report, 24% 
raw chicken meat carried C. jejuni [4]. Around 1.5 million cases reported in USA 
every year [5] and causing $6.9 billion losses annually [6].
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C. jejuni is able to establish infection in the intestine with ingestion of minimum 
500 viable bacteria, but the infection efficiency is influenced by host antibacterial 
defenses such as gut immune system and the intestinal commensal microbes [7]. 
The innate and adaptive immunity in gut actively surveils the luminal microbes, 
processes the intestinal cues, and establishes defense actions, resulting in constant 
gastrointestinal homeostasis [8]. The complex gut resident microbes live on and 
inside the host including bacteria, fungi, protozoa, viruses, and their metabolic 
products [9]. The gut microbes are important participants for food digestion, 
fermentation, and energy accommodation of intestinal tract [10]. During physi-
ological process, metabolites, such as short chain fatty acid, bile acid, vitamins, and 
amino acids, are produced. The microbes, along with their metabolites play impor-
tant roles in keeping the homeostasis of gastrointestinal immunity, and affecting 
their resistance to the invasion of pathogens [11]. In the following sections, we will 
have a detailed discussion on gut immunity, resident microbes, and their role on 
campylobacteriosis.

2. Intestinal immunity on campylobacteriosis

The immune system is comprised of a complex network of biological molecules 
and activities in organs, tissues, and cells to protect an organism against foreign 
substances or microbes (Figure 1). The immunity is generally categorized into 
two subsystems of innate and adaptive immunity [12]. The innate immunity 
initiates a quick immune response [13], while the adaptive immunity generates a 
comprehensive and long-lasting immune defense [12]. These two immune branches 
work closely together to defense host against the encountered foreign substances 
or microbes. The intestinal immunity is highly involved with C. jejuni-induced 
colitis. C. jejuni–induced severe campylobacteriosis in Il10−/− mice as showed by 
extensive intestinal immune cell infiltration, epithelial damage, goblet cell deple-
tion and crypt hyperplasia and abscesses compared with uninfected mice [14]. In 
this section, we will briefly review recent advancement of intestinal immunity and 
campylobacteriosis.

Figure 1. 
Schematic illustration of the role of innate (left side) and adaptive (right side) immunity in 
campylobacteriosis.
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2.1 Intestinal immunity and campylobacteriosis

In the gastrointestinal tract, the innate immunity is consisted of innate cells 
and soluble molecules, which are an important defense mechanism against foreign 
substances or microbes. The cellular innate immunity is consisted of various types 
of cells, including intestinal epithelial cell (IEC), granulocyte (neutrophil, baso-
phil, and eosinophil,) dendritic cell (DC), macrophage, natural killer cell (NK), 
master cell, and innate lymphoid cell (ILC), and γδ T cell [15]. Only a single layer 
of IEC separates nearly sterile internal intestinal tissue from microbe-rich intes-
tinal lumen, hence the integrity of IEC is essential for intestinal health. Notably, 
IEC line breakdown is often implicated in various intestinal disorders such as IBD 
[16], irritable bowel syndrome (IBS) [17], colorectal cancer [18], and C. difficile 
infection [19]. The destruction of IEC line and tissue upon invasion of C. jejuni 
[20] clearly demonstrates the important role of the epithelial cells. The innate 
effector cell of scavenging macrophage phagocytoses microbes and secretes both 
pro-inflammatory and antimicrobial mediators [21]. In addition, macrophage is 
essential for eliminating diseased and damaged cells through its programmed cell 
death. Macrophage uptakes and kills C. jejuni in vitro [22], although the role of 
macrophage in campylobacteriosis remains to be determined. Neutrophil is the 
most abundant type of granulocytes and consists of 40% to 70% of all white blood 
cells in humans [23]. Although neutrophil eliminates invaded microbes, the over-
inflammatory response of neutrophil is responsible for the campylobacteriosis in 
a Il10−/− mouse model [24]. C. jejuni-induced colitis increases ILC1 (50% vs. 18%) 
but decreases NCR − ILC3 (13% vs. 43%) in the colonic lamina propria of germ free 
Il10−/− mice, compared to uninfected mice [25]. Effort is needed to investigate the 
role of various innate cells on campylobacteriosis pathogenesis.

At the molecular level, the innate cells recognize the microbes of their microbial-
associated molecular patterns (MAMPs), such as lipopolysaccharides (LPS) and 
flagellin. MAMP is a component of a microbe and is sensed by innate cellular patho-
gen recognition receptors (PRRs), such as toll-like receptors (TLRs), nucleotide 
oligomerization domain (NOD) like receptors (NLRs), and retinoic acid inducible 
gene-I (RIG-I) like receptors (RLRs) [26, 27]. Previous articles have comprehen-
sively reviewed the interaction between MAMP and PRR [28], hence we will not 
devote too much on them. Relevant to the topics of this chapter, LPS is expressed on 
the surface of Gram-negative bacteria such as E. coli, and it is recognized by TLR4 
at the innate cell surface. C. jejuni expresses lipo-oligosaccharide (LOS) instead of 
LPS [29] and LOS is possibly recognized by TLR4 in DC and Il10−/− mouse model 
[20, 30]. Muramyl dipeptide (MDP) is the minimal bioactive peptidoglycan motif 
common to all bacteria and is sensed by NOD2 in innate cytoplasm. Microbiota-
disturbed Il10−/−; Nod2−/− mice are susceptible to C. jejuni-induced colitis compared 
to Il10−/− mice [31], suggesting the role of NOD2 in host shown preventive mecha-
nism against the pathogen. It is much needed to investigate various PRRs on detect-
ing C. jejuni infection and to elicit immune response.

After trigged by PRRs detecting MAMP, innate response of a network of sig-
naling pathways are activated, including TLR-MyD88/TRIF and inflammasome. 
MyD88 is a downstream adaptor protein of TLR and is essential for the signal 
transduction of the TLR signaling pathway [32]. The TLR signaling pathway is 
classified into either MyD88-dependent or MyD88-independent. With the excep-
tion of TLR3, all downstream signaling pathways of TLRs mediate through MyD88 
[33]. For MyD88 dependent pathway, TLR signaling recruits and activates a number 
of molecules, including IRAK, TRAF6, TAK1, IKK, and NF-κB [32]. The TLR/
Myd88/NF-κB signaling pathway then induces proinflammatory and cell survival 
responses. NF-κB signaling is activated in C. jejuni-induced colitis using germ free 
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Il10−/−; NF-κBEGFP mouse model. mTOR signaling is a downstream target of MyD88 
and mediates C jejuni-induced colitis in Il10−/− and Il10−/−; Rag2−/− mice, suggesting 
independence of T-cell activation [14, 24]. Blocking mTOR signaling with pharma-
cological inhibitor rapamycin attenuates C jejuni-induced intestinal inflammation, 
immune cell infiltration and the pathogen invasion, while rapamycin increases 
splenocyte autophagy [14]. In addition, C. jejuni–induced MyD88 downstream 
target PI3K-γ signaling mediates intestinal inflammation in Il10−/− mice through 
modulating neutrophil migration/infiltration into intestinal lamina propria [24]. 
During inflammation, damaged or dying cells release endogenous danger molecules 
called damage-associated molecular pattern (DAMP) such as high-mobility group 
box 1 (HMGB1), S100 proteins, and heat shock proteins (HSPs). The DAMP is 
sensed by TLR and inflammasome and is investigated extensively in non-infectious 
inflammation disorders [34]. Inflammasome is responsible for processing proIL1β 
and proIL18 into active forms [35]. It would not be surprised to find that DAMP-
induced inflammation in C. jejuni-induced colitis, hence such work would yield 
important leads to understanding campylobacteriosis pathogenesis.

2.2 Intestinal adaptive immunity and campylobacteriosis

Despite the effective, fast, and general/non-specific response of innate immu-
nity against infection, adaptive immunity is often developed in vertebrate animals, 
particularly in the case of unresolved innate response. With the assistance of innate 
immunity, the adaptive immunity of lymphocytes recognize and remember a 
foreign substance’s or pathogen’s unique antigens and builds an antigen-specific 
response to eliminate it [12]. Two major lineages of T and B lymphocytes are 
generated in the thymus and the bone marrow or the avian bursa of Fabricius [36]. 
The adaptive immunity mounts two types of activities: B cell mediated antibody 
responses, and T cell mediated immune response. DC, B-cell, and macrophage 
express specific “co-stimulatory” ligands recognized by co-stimulatory receptors 
on T cells, and are named antigen-presenting cells (APCs) for T cell activation. 
During the early developmental stages, B lymphocyte progenitor cells make somatic 
hypermutation for specific antibody, while T and B cells rearrange different sets of 
immunoglobulin (Ig) variable (V), diversity (D), and joining (J) gene segments to 
make the antigen binding regions of the T cell receptors (TCRs) and B cell receptors 
(BCRs) [37]. Campylobacter infection-induced Guillain-Barré syndrome (GBS), 
an autoimmune disease, demonstrates the implication of adaptive immunity in the 
pathogen infection.

T cells are grouped into two types based on the surface antigens: CD4-expressing 
T-helper cells, and CD8-expressing cytotoxic T-cells [38]. It remains elusive the 
role of CD8 cells in campylobacteriosis, but accumulating evidence supports the 
notion on the important role of CD4 cells in campylobacteriosis pathogenesis. 
The major intestinal CD4+ T cells are T help cell 1 (Th1), Th17, and regulatory T 
cell (Treg, Foxp3-expressing) cells, although Th2, Th9, Th22, follicular helper T 
(Tfh), iTreg, and type 1 regulatory T cell (Tr1) are present [39, 40]. The adaptive 
immunity is actively influenced by innate immunity. In gut lamina propria, intesti-
nal innate tolerogenic CD103+ DCs induce FoxP3+ Tregs by stimulating CCR7 and 
integrin-αIVβ7 on T cells resided in mesenteric lymph nodes [41–43]. The differential 
interaction between Campylobacter LOS and siglec-7 receptors on APC cell-surface 
influences the fate of naïve CD4 cells into different type of effector Th cells [44, 45]. 
Specifically, siglec-7 receptors on APC binds with α2, 8-linked sialylated LOS 
induces the Th1 polarization, while its interaction with α2, 3-linked sialic acid 
induces a Th2 development [45]. Generally, Th1 cells activate more cytotoxic CD8 
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cells and macrophages to enhance immunity against the invading or intracellular 
microbes, while Th2 cells mediate class switching of B-cells to eliminate the extra-
cellular microbes [38]. Besides Th1 and Th2 cells, Th17, Th22, and Treg may also 
be induced in campylobacteriosis as evidenced by the elevated cytokine markers 
of IL-17, IL-18, IL-22, IL-23, and IL-10 in patients’ serum following infection with 
Campylobacter [26, 46].

After Th2 cell activation, B-cells are induced to produce antibody (Ab) against 
Campylobacter infection. At 7 days post-infection (acute phase), blood Abs, IgA and 
IgM increase in serum [47]. From 1 week up to 1-year post-infection (convalescent 
phase), anti-Campylobacter Ab is detectable in serum and saliva of campylobacteri-
osis patients and could protect the subjects against subsequent Campylobacter infec-
tion [48, 49]. Similarly, IgA and IgM are persistent in campylobacteriosis patients 
for up to 20 days or 2 months post-infection. The downside to the adaptive humoral 
response is the incidence of GBS. Campylobacter often alters its LOS outer core to 
mimic human neuronal gangliosides for escaping from the host immune system but 
resulting in GBS [50]. α2, 3-linked sialic acid in C. jejuni LOS is one of the culprits. 
Developing effective vaccine or monoclonal antibody to control C. jejuni infection 
is, therefore, imminent.

3. Intestinal microbiome and campylobacteriosis

Human body, particularly gastrointestinal tract, inhabits trillions of diverse 
microbes including bacteria, archaea, virus, and eukarya [51]. These microbes 
called microbiota (Figure 2), and their metabolic activities and metabolites are 
collectively named microbiome [52]. The microbiota demonstrates a complex and 
diverse phylogeny of notable microbial species [53–55]. The human microbiota 
is comprised of 2172 prokaryotic species and the main phyla are Bacteroidetes, 
Firmicutes, Proteobacteria, and Actinobacteria [56]. The inhabitant gut microbiota 
influences important biological processes, such as metabolism of food, produc-
tion of fat and vitamins, activation of angiogenesis as well as safeguard against 
adversary pathogens [53, 54]. Relevant to the topic of this chapter, the colonization 
of gut microbiota effectively inhibits the colonization and excessive growth of 

Figure 2. 
Schematic illustration of the role of microbiota and its metabolites in campylobacteriosis.
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potential pathogenic microbes, called colonization resistance [55]. The coloniza-
tion resistance is through various mechanisms including direct competition of 
spatial and nutrients, production of antimicrobial defensin and metabolites, and 
indirect inhibition via stimulation of innate and adaptive immunity [57]. Certain 
microbiota phyla reduction is associated with an abolished biological coloniza-
tion resistance [7, 58]. The colonization resistance, therefore, prevents pathogen 
attachment to the respective target site, depletes nutrients, and blocks virulence 
expression.

During its metabolism of nutrients, microbiota synthesizes varied range of 
metabolites and related small molecules [59–62]. It is recognized that the micro-
biota metabolites are absorbed across the gastrointestinal tract in circulation and 
impact host physiology [63–65]. Accumulating findings strongly support the 
important role of microbiota metabolites against gut pathogens. One example of 
the metabolite is short-chain fatty acids (SCFA). SCFA is fermented from carbo-
hydrates (e.g., starch and fiber) and influences the gut microbiota community by 
reducing luminal pH level [66–69]. Another abundant microbiota metabolite is bile 
acid. Bile acids produced in the liver are excreted into the intestine as conjugated 
(taurine or glycine) forms to facilitate in digestion of dietary lipids. The bile acids 
are deconjugated in small intestine by bile salt hydrolases (BSH) [70] and absorbed 
up to 95% along intestinal line through enterohepatic cycle [71]. Furthermore, 
microbiota produces bacterial toxic and short peptides (e.g. bacteriocin) and 
bacterial toxins to inhibit the growth and colonization of other species [72]. The 
bacterial toxic peptides are categorized into those produced by Gram-negative 
bacteria (mostly by Enterobacteriaceae) and those produced by Gram-positive 
bacteria (lactic acid bacteria and some Streptococcus species) [73, 74]. The peptides 
are further classified into subgroups based on molecular weight, such as microcins 
(lower molecular weight peptides) and colicins (higher molecular weight proteins). 
The inhibition mechanism of bacteriocin is to change nucleic acid metabolism and 
to form cell membrane pores for eliminating other bacteria [75–78]. In this section, 
we will briefly review recent advancement on the interaction of microbiome and 
campylobacteriosis.

3.1 Microbiota and campylobacteriosis

To colonize in the gut, C. jejuni has to overcome numerous hurdles and endures 
in diverse environments. With minimum 500 viable bacteria, the pathogen has to 
establish in the intestine against host antibacterial defenses such as the intestinal 
bile acids and the intestinal microbiota [7]. The pathogenesis of Campylobacter-
induced enteritis remains elusive because of lacking reliable animal models. 
Notably, C. jejuni is often colonized in birds without any pathological symptom 
[79, 80], while specific pathogen free mice, but not germ-free mice, are resistant 
to the pathogen colonization [24, 81]. Humans are susceptible to C. jejuni-induced 
enteritis, but the pathogen is often cleared within 1 to 2 weeks [82]. The reason why 
C. jejuni colonizes animals differentially remains elusive. Because the intestinal 
microbiota is different between animals, it is possible the gut microbiota influences 
bacterial pathogen colonization [55].

Chickens are susceptible to C. jejuni asymptomatic colonization and their 
microbiota could be friendly to C. jejuni infection. In 35-day old broiler chickens, 
families Lactobacillaceae and Clostridiaceae in the ileum and Lachnospiraceae and 
Ruminococcaceae in ceca are dominant, while genera Ruminococcus and Oscillospira 
account for 35% in ceca operational taxonomic units (OTUs) [80]. In a field study 
of 35-day old broiler chickens at four farms in Italy, the relative abundance of 
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class Clostridiales is higher in caeca of Campylobacter-negative farms than positive 
farms, while Bacteroidales is the opposite (80.0% vs. 65.7%) [83]. In 56-day old 
broiler chickens, C. jejuni colonization is associated with reduced genera abun-
dance of Corynebacterium and Lactobacillus but increased genera Ruminococcaceae 
and Streptococcus [84]. The authors also found that C. jejuni colonization is 
positively associated with genera Escherichia, Alistipes, Enterococcus, Bacteroides, 
Shigella, Gallibacterium, Campylobacter, Faecalibacterium, Blautia, Enterobacter 
and Clostridium. In mice, two genera of Clostridium sensu stricto and Enterococcus 
are associated with mice susceptible to C. jejuni-induced colitis in a microbiota 
transplantation model [85]. Ampicillin treatment increases cecal genus Barnesiella 
but reduced Clostridium XIVa in the microbiota of C. jejuni-susceptible mice [86]. 
The abundance of E. coli is positive associated with C. jejuni colonization in mice 
[87]. Human campylobacteriosis patients have an increased abundance of genera 
Escherichia, Bacteroidetes, Phascolarctobacterium, and Streptococcus in stool [3]. 
Comparably, microbiota sequencing data from cross-sectional IBD patients showed 
that IBD is associated with dysbiosis characterizing by reduced gut bacterial diver-
sity, together with increased genera Fusobacterium, Escherichia, Faecalibacterium, 
Roseburia, Ruminococcaceae, Peptostreptococcaceae, Christensenellaceae, and Collinsella 
[88]. The changes in the gut microbiota of IBD patients show an increase in fac-
ultative anaerobes, including Escherichia coli [89], and a decrease in obligately 
anaerobic [90]. IBD patients with active disease have increased gut Enterococcus, 
Fusobacterium, Haemophilus, Megasphaera, Campylobacter, while Roseburia, 
Christensenellaceae, Oscillibacter, and Odoribacter are enriched in the gut of IBD 
patients with inactive disease [88]. Although increasing evidence supports the role 
of microbiota promoting C. jejuni infection or other enteritis, additional studies are 
much needed.

On the other hand, SPF mice are resistant to C. jejuni colonization and their 
microbiota could be hostile to C. jejuni colonization. Through mining 16S DNA 
sequencing datasets, the core microbiota of healthy mice in cecum is found to be 
comprised of 37 genera, including Anaerostipes, Parabacteroides, Anaerotruncus, 
Oscillibacter, Clostridium XlVb, Flavonifractor, Bacteroides, Barnesiella, Alistipes, Heli
cobacter, Saccharibacteria, Prevotella, Lachnoanaerobaculum, Lactobacillus, 
Intestinimonas, Roseburia, Alloprevotella, Rikenella, Enterorhabdus, Erysipelotric
haceae_incertae_sedis, Eggerthella, Allobaculum, Lachnospiracea_incertae_sedis, 
Pseudoflavonifractor, Bifidobacterium, Marvinbryantia, Mucispirillum, Clostridium 
XIVa, Blautia, Anaerofilum, Parasutterella, Odoribacter, Olsenella, Turicibacter, 
Gordonibacter, Ruminococcus, and Acetatifactor [91]. Eight genera of Clostridium 
XI, Oscillibacter, Bifidobacterium, Butyricicoccus, Hydrogenoanaerobacterium, 
Lactobacillus, Roseburia, and Coprobacillus are increased in the microbiota of C. 
jejuni-resistant mice [85]. Supplementation of Bifidobacteria and Lactobacillus spe-
cies has been shown to reduce the colonization of Campylobacter in birds [92–95]. 
The probiotics against Campylobacter colonization are through promotion of immu-
nological defense mechanisms such as stimulation of defensins and interleukins as 
well as alteration of integrity of epithelial cell barrier [96].

In human subjects with Campylobacter-negative, the abundance of genera 
Clostridiales, unclassified Lachnospiraceae, and Anaerovorax are increased [3]. 
Comparably, the Campylobacter-negative individuals showed increased abundance 
of family Lachnospiraceae, particularly its two genera Dorea and Coprococcus [97]. 
People who consume plant-based low fat and polysaccharide rich diet are more 
resistant to C. jejuni infection compared to individuals consuming western diet [98]. 
Hence, increasing studies are being performed to investigate the role of microbiota 
against C. jejuni infection.



Campylobacter

8

3.2 Microbial metabolites and campylobacteriosis

The questions following section 3.2 are how microbiota facilitates or reduces 
C. jejuni infection. Besides direct inhibition by competition of space and nutrients 
[53, 54], microbiota metabolites may exert indirect antagonism against C. jejuni. 
The intestinal microbiota generates a variety of bioactive metabolites after metabo-
lizing nutrients from diets and host secretions. A few data are available on the 
relationship of microbiota metabolites and C. jejuni infection, but accumulating 
data are present in the field of IBD (Crohn’s Disease-CD and Ulcerative Colitis-UC), 
a close enteritis to campylobacteriosis. The metabolomics of IBD patients is shifted 
from healthy subjects with characterization of increased bile acids, taurine, and 
tryptophan [99]. Out of the 2,729 differentially abundant metabolites, the major-
ity (71%) are significantly depleted in IBD relative to non-IBD controls; 8% are 
significantly elevated in both CD and UC; 19% are specifically elevated in CD; and 
only 3% are specifically elevated in UC [100]. Specifically, IBD enriches lactate, 
sphingolipids, and primary bile acids of cholate (CA) and chenodeoxycholate 
(CDCA) but with reduction of triterpenoids, pantothenate, long-chain fatty acids, 
phenylbenzodioxanes, cholesterols (including cholestenone), triacylglycerols 
(TAGs), and secondary bile acids deoxycholic acid (DCA) and lithocholic acid 
(LCA). Interestingly, IBD patients show a decrease in obligately anaerobic produc-
ers of short-chain fatty acids [90].

Furthermore, IBD patients have increased polyunsaturated fatty acids (e.g., 
adrenate and arachidonate) but reduced pantothenate and nicotinate [101]. CD 
patients have increased levels of conjugated and sulfated bile acids in the feces 
[102]. In a functional analysis with shotgun metagenomics data, sulfur metabolism 
is identified with an enrichment of sulfonate, methionine, cysteine and taurine 
transport systems in mice colonized with microbiota from active IBD patients 
[88]. These metabolic changes are consistent with the increased abundance of 
sulfate-reducing bacteria (e.g., Desulfovibrio, Clostridia, Bilophila, and Bacteroides 
fragilis), some of which use sulfate as a terminal electron acceptor for respiration 
and concomitantly produce hydrogen disulfide, a toxic metabolic byproduct [88]. In 
accordance with IBD, secondary bile acid DCA, but not LCA and ursodeoxycholic 
acid, reduces C. jejuni counts and moderates intestinal microbiota composition 
in broiler birds [79]. DCA also reduces C. jejuni-induced colitis in ex-germ free 
Il10−/− mice [85]. Together, microbiota metabolites play an essential role on enteritis 
such as campylobacteriosis and IBD, and finding additional metabolites will assist 
development of therapeutic agents.

One specific and well-studied bacteria-bacteria interaction through microbial 
metabolites is called quorum sensing (QS) [103]. When the number of bacteria 
in the surrounding environment reaches certain level, bacteria activate QS and 
release specific signaling molecules of autoinducers (AIs) to modulate the expres-
sion of themselves and surrounding others on virulence, the ability for invasion 
and colonization, and the formation of biofilm [104]. Two types of AIs have been 
studied. AI-1 is produced by N-acyl-homoserine lactones (AHL) synthase and 
mediates intraspecies communication in Gram-negative bacteria. AI-2 is produced 
by S-ribosylhomocysteine lyase (LuxS) and mediates both intra- and interspecies 
communication in Gram-positive or Gram-negative bacteria [103, 104]. LuxS/AI-2 
system plays important roles in cell–cell interactions in C. jejuni [105, 106]. Because 
biofilm is crucial for C. jejuni survive outside of hosts and facilitates its transmission 
from chicken reservoirs to humans, LuxS-mutant strains show deficient in biofilm 
formation and possible reduction of their transmission [107]. C. jejuni 81176 luxS 
mutant shows significant decreased colonization in chickens [108]. Deletion of luxS 
gene in C. jejuni NCTC IA3902 strain completely inactivates its colonization in the 
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intestinal of chickens [109] or guinea pig [110], while the complemented strain with 
luxS gene restores the colonization ability comparable to the wildtype. It remains 
largely elusive what is the role of QS in the interaction of microbiota and C. jejuni 
and on the pathogen infectious capacity of colonization and induction of intestinal 
inflammation.

4. Microbiome-modulated immunity and campylobacteriosis

Because of their proximity, microbiome and gut immune system are actively 
interact with each other against the foreign substances and pathogens [11]. Gut 
microorganisms form a microbial community co-existed with the gut-associated 
lymphoid tissue [111], which is the largest immune organ in our body. Under 
normal circumstances, the intestinal epithelium and resident flora are separated 
by mucus layer, which not only provides static shielding, but also limits normal 
microbiomes’ immunogenicity by imprinting dendritic cells [112, 113] that have 
ability to distinguish antigens present by normal microbiota and invaded pathogens 
[114]. Thus, the normal flora can live along with the host without causing damage, 
or getting removed by the host immunity [115]. The elimination of microbiomes 
results in a deficiency function of immunity, as a fact, antibiotics treated mice can 
be used as a model for the study of pathogen colonization [116]. Infectious patho-
gens often break gut microenvironment’s equilibrium to generate ill effects, which 
may cause the gastrointestinal illnesses like campylobacteriosis. The normal flora 
have the capacity to induce lymphoid tissue’s immune response to protect host from 
pathogens infection [117].

As one of the enteritis, campylobacteriosis has a common feature of leading 
extensive intestinal inflammation driven by Th1 and Th17 lymphocytes and TLR4 
when homeostatic is perturbed [118], sharing typical pathology at cellular levels, 
such as neutrophils infiltration, leukocytes existence in fecal, and crypt abscesses. 
However, the pathogenesis of campylobacteriosis is not well studied. C. jejuni is 
commensalism with chickens [111], but causes diseases in humans [119]. Increasing 
data show that microbiomes play a pivotal role in modulating host immunity against 
campylobacteriosis and other enteritis. Better understanding the complex interac-
tion between gut microbiome, pathogen C. jejuni, and host immune response is 
crucial for discovering new therapies to prevent and treat campylobacteriosis.

4.1 Immunity, microbiota, and C. jejuni interaction

The gut homeostasis is dependent on the symbiotic relationship interacts 
between microbiota and immunity, with the occasional breaks by intestinal diseases 
such as IBD and campylobacteriosis (Figure 3). Signals derived from gut microbiota 
are essential for the development of the immune system. Germ-free mice display 
impaired immunity maturation such as defective Peyer’s patches (PPs), plasma 
cells, intraepithelial lymphocytes (IELs), antimicrobial peptide, IgA secretion, 
epithelial barrier function, and CD4+ T cell maturation [120–122]. Comparably, 
manipulating microbiota by antibiotic treatment or microbiota reconstitution (fecal 
microbiota transplantation, FMT) shows the essential role of the microbiota in 
immune homeostasis. FMT reduces dextran sulfate sodium (DSS)-induced mouse 
colitis with reduced CD4+ T, CD8+ T cells expressing, CD107a, MHC II-expressing, 
professional antigen present cells (APCs) expressing, while innate lymphocytes 
ILC2 and ILC3 are increased [123]. Human FMT to mice fails to resist Salmonella 
infection and restore the low levels of CD4+ and CD8+ T cells, proliferating T cells, 
dendritic cells, and antimicrobial peptide expression compared to mouse FMT 
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[124], suggesting that gut immune maturation is dependent on colonization with a 
host-specific microbiota. Fecal Microbiota Transplantation (FMT) is successfully 
conducted on Clostridium difficile infection (CDI) patients by providing them with 
microbiomes from healthy donors to rebuilt the gut immunity [125] by inhibit-
ing the activity of T cells and Th1 differentiation, preventing leukocyte adhe-
sion, and production of inflammatory factors [126]. Consistently, ILC2-secreted 
IL-33 is essential for eosinophilia and tissue repair and survival, and its secretion 
is dependent on microbiota and can be rescued with FMT therapy to reduce 
Clostridium difficile infection (CDI) [127]. FMT of mouse anaerobic microbiota 
to germ free Il10−/− mice prevents C. jejuni-induced intestinal inflammation with 
reduced inflammatory genes of Cxcl2, Il17 and Il1β as well as massive immune cell 
infiltration into gut lamina propria [85]. DCA-modulated anaerobes could attenu-
ate chicken transmission exacerbated campylobacteriosis in mice by reduction of 
inflammatory genes, Il17a, Il1β, and Cxcl1 expression in cellular level and inhibiting 
mTOR signaling pathway [128].

Beside microbiota transplantation, individual or groups of probiotics 
have been studied to reduce enteric pathogens, such as Lactobacillus helveticus 
[129], Lactobacillus rhamnosus LGG [130], Lactobacillus gasseri SBT2055 [131], 
Lactobacillus strains N8, N9, ZL4 and ZL5 [132], Bifidobacterium longum infantis 
[133]. Lactobacillus enhances macrophage elimination of C. jejuni in vitro and 
increases the expression of Il1β, Il12p40, Il10, and Cxcl2 and the co-stimulatory 
molecules CD40, CD80, and CD86 [134]. Oral gavage of Lactobacillus johnsonii 
CJLJ103 inhibits LPS-induced NF-κB activation and Tnfα and Il1β expression, while 
expression of IL-10 and tight-junction proteins was increased [135]. Lactobacillus 
plantarum LC27 and Bifidobacterium longum LC67 inhibits LPS, or 2,4,6-trini-
trobenzesulfonic acid (TNBS)-induced colitis by suppress of NF-κB activation, 
CXCL4 expression and restored Th17/Treg balance [136]. Studies have shown that 
filamentous bacilli closely adhered to intestinal epithelium can induce Th17 reaction 
and increase the number of the anti-inflammatory Treg cells in the colon, and single 
colonization of Bacillus fragilis possesses immunomodulatory molecule-polysac-
charide A (PSA), facilitates IL-10 producing through the conversion of CD4+ T cells 
into Foxp3+ Treg cells [137], and plays an important role in preventing and treat-
ment of colitis in animals [138]. Faecalibacterium prausnitzii was reduced in patients 
with Crohn’s disease [139]. F. prausnitzii supplementation prevents dinitrobenzene 
sulfonic acid (DNBS)-induced mouse colitis with inactivation of NF-κB signal 

Figure 3. 
Schematic illustration of the interaction of microbiota and immunity in campylobacteriosis.
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pathway, down-regulation of MPO, pro-inflammatory cytokines, and T-cell levels 
[140]. With the advanced research on microbiota and immunity, it is expected that 
individual bacteria or groups of bacteria will be used to control C. jeuni infection in 
the near future.

4.2 Immunity, microbial metabolite, and C. jejuni interaction

In addition to the direct talk between microbiota and gut immunity, microbiota 
metabolites influence intestinal immune homeostasis, which is dependent on the 
balance of pro- and anti-inflammatory response (Figure 4). As discussed in section 
2.2, Treg is the key ant-inflammatory T cell with its signature cytokine IL-10. IBD 
patients show reduced SCFAs in stool compared to healthy people, a consistent 
observation with reduced butyrate-producing bacterial taxa [141]. SCFAs, such 
as butyrate, acetate, and propionate, are microbial fermentation products of 
polysaccharides [142]. SCFAs are the energy source for colonocytes that lining the 
gastrointestinal tract [143], which have antiproliferative and anti-inflammatory 
features [144, 145]. SCFAs promotes the differentiation of Treg cells and their anti-
inflammatory IL-10 secretion [146]. Butyrate or mixtures of SCFAs in enemas show 
clinical and histological improvement in active UC patients and diversion colitis 
[147, 148]. At the molecular level, butyrate in enemas decrease NF-κB activation 
in macrophages from distal colon tissue of UC patients [149], and reduce LPS-
induced cytokine expression, NF-κB activation in lamina propria, and the number 
of peripheral blood monocytes in CD patients [150]. C. jejuni expresses the highest 
levels of the SCFA-related genes (ggt, peb1c, and Cjj0683) and colonizes efficiently 
in SCFAs-rich chicken ceca compared to other intestinal segments [151]. It remains 
elusive what is the role of SCFAs on C. jejuni-induced campylobacteriosis.

Besides microbiota metabolites regulation immune cells, they also modulate 
immune signaling pathways. Caffeic acid (CaA) is a hydrolyzed metabolite of 
chlorogenic acid by gut microbial esterase. CaA reduces DSS-induced in C57BL/6 
mice colitis through blocking NF-κB signaling pathway, suppressing the secretion 
of IL-6, TNFα, and IFNγ, and inhibiting the infiltration of CD3+ T cells, CD177+ 
neutrophils and F4/80+ macrophages [152]. L-arabinose, the digestion production 
of fiber, inhibits DSS-induced colitis by downregulating p38−/p65-dependent 
inflammation activation [153]. β-glucan is a polysaccharide naturally appeared 
in the cell walls of cereals, bacteria, and fungi. β-glucan reduces DSS-induced 
IBD by downregulating pro-inflammatory cytokines (TNFα, IL-6 and IL-8) and 

Figure 4. 
Schematic illustration of the role of microbiota metabolites and immunity in campylobacteriosis.
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inflammatory mediators (iNOS, COX-2 and PEG2) [154]. Oxyberberine, a gut 
microbiota metabolite of berberine, shown anti-colitis effect through the inhibition 
of TLR4-MyD88-NF-κB signaling pathway with reducing phosphorylation of IκBα 
and translocation of NF-κB p65 from cytoplasm to nucleus [155]. Notably, micro-
biota metabolic product DCA reduces C. jejuni-induced intestinal inflammation 
in Il10−/− mice with reduced inflammatory genes of Cxcl2, Il17 and Il1β as well as 
massive immune cell infiltration into gut lamina propria [85]. Increasing microbiota 
metabolites will be discovered to attenuate C. jejuni-induced campylobacteriosis.

Furthermore, microbiota mediated metabolites are the important nutrients for 
host growth and immunity. Germ-free mice are usually more susceptible to infec-
tion diseases and show deficient to Vitamin K and B6 [156, 157]. Gut microbiota-
synthesized Vitamins B12 and folate are vital for red blood cells synthesis, and red 
blood cells are crucial for supplying oxygen to immune cells and participating in 
the defensive process against pathogens [158]. Vitamin E delta-tocotrienol and its 
metabolite 13′-carboxychromanol inhibit tumor-associated colitis by reduction of 
pro-inflammatory cytokines GM-CSF, MCP-1, and IL-1β, respectively [159].

5. Conclusion

Given the fast research advancement on mucosal immunology, microbiota, and 
metabolomics recently in gastroenterology field, it is better than ever to investigate 
the mechanism of immunity-microbiota interaction and to use the knowledge to 
prevent and treat campylobacteriosis. The gut adaptive and innate system is the key 
for the permission or resistance to enteric pathogens and their induction of intestinal 
inflammation. Microbiota and its metabolic products or metabolites are essential for 
preventing gut pathogen invasion and the enteritis. Together, the development and 
function of the intestinal immunity is modulated by intestinal microbiota and its 
metabolic activities and products. Indeed, microbiota reconstitution by FMT is able 
to prevent or treat a number of intestinal disorders such as human CDI and mouse 
campylobacteriosis. Consistently, supplementing microbial metabolite of secondary 
bile acid DCA prevents campylobacteriosis in mice. Based on the successful or failed 
examples of the microbiome intervention on intestinal diseases, it is reasonable to 
conclude that a better knowledge on disease etiology and microbiome status during 
health and the diseases are essential for specifically targeting the pathogenic driving 
factors to prevent and treat the enteritis. Additional research will open new avenues 
to elucidate the in-depth understanding of the role of immunity and microbiota and 
to develop therapeutic approaches to control enteritis such as campylobacteriosis.
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