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Chapter

Electrochemical and Optical 
Methods for the Quantification of 
Lead and Other Heavy Metal Ions 
in Liquid Samples
Samrat Devaramani, Banuprakash G., Doreswamy B.H.  

and Jayadev

Abstract

Minerals and elementary compounds of heavy metals are part of the ecosystem. 
Because of their high density and property to accumulate in stable forms, they are 
considered to be highly toxic to animals, plants and humans. Continuous mining 
activities and industrial effluents are the major sources which are adding toxic heavy 
metal ions into ecosystem and biota. Hence it is of utmost importance to quantify 
the levels of heavy metal ions in environmental and biological samples. On the other 
hand, it is equally important to remove the heavy metal ions and their compounds 
from the environmental and biological samples. That facilitates the environmental 
samples to be fit for using, consumption. In this regard, promising quantification 
methods such as electrochemical, spectrophotometric, naked eye sensing, test 
strips for spot analysis of heavy metal ions are considered for discussion. The main 
objective of this chapter is to give the overview of the most practiced quantification 
approaches available in the literature. Please note that reader cannot find the pin to 
pin publications regarding the same and that is not the aim of this book chapter.

Keywords: heavy metal ions, quantification, electrochemical and optical

1. Introduction

Metals possess higher density, atomic numbers are considered as heavy  metals. 
They are part of the ecosystem present in the form of minerals and also in the 
elemental form. Heavy metal ions [HMIs] are proved to be toxic to humans, animals 
and even to plants as they accumulate to form stable compounds. Over a period 
of exposure or accumulation to HMIs lead to serious health issues with respect to 
[w.r.t.] skin, neurological system, kidney etc. [1]. HMIs toxicity and its adverse 
effects are magnified due to the human activities such as mining, rigorous industrial 
activities adding HMIs to the various ecological system. Once it happens then ani-
mals and humans are prone to HMIs that is really disaster. Considering these facts 
seriously world health organization and environmental protection agency set the 
permissible levels for the HMIs in various samples [2]. Above that level that par-
ticular sample is not fit for usage or consumption. In this scenario there is a pressing 
need for the analytical methods through which the exact quantity of the HMI[s] 
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can be measured. There is a scope for the analysis of HMIs in the wide variety of 
samples such as water, air, food, and biological samples etc.

It is well known fact that, there exist efficient methods either individual or 
coupled with detection techniques for the quantification of HMIs. Atomic absorption 
spectroscopy, inductively coupled mass spectroscopy, inductively coupled atomic 
emission spectroscopy, Ion selective high-performance liquid chromatography etc. 
All the mentioned methods possess good linear range, sensitive down to ppb level 
concentration and accurate. At the same time, they are expensive, needs to be oper-
ated by skilled person, cannot be carried to field, and may require greater volume of 
sample. Hence, even today researchers are putting their efforts to develop analytical 
methods to overcome the mentioned shortcomings. There exist few techniques such 
as electrochemical, optical, methods based on electrical conductivity, refractive 
index etc. Compared to the earlier mentioned methods latter are less expensive, easy 
to handle and smaller in size. But there are few challenges with the latter mentioned 
methods such as sensitivity and selectivity. Thrust to achieve these goals is still alive, 
hence, one can witness lot of publications on the same topic. But, it does not mean 
that electrochemical, spectroscopic methods are failure. Researchers are striving 
to match the sensitivity and selectivity of the electrochemical and spectroscopic 
methods with that of earlier mentioned methods. Another improved aspect is the 
size. True size of both i.e. instrument and sample [volume] required for the analysis 
are significantly minimized. Naked eye sensing of heavy metal ions is made pos-
sible. Just addition of sample containing HMI to the reagent system in a culture tube 
results the color [change] that can be recognized with naked eyes. Moving a step 
ahead electrochemical and spectroscopic methods are miniaturized down to small 
paper strip. Paper based electrochemical and colorimetric methods are trending now. 
Important Analytical parameters for all the above discussed methods have been sum-
marized with broader perspective in the Table 1 for the comparison purpose [3, 4]. 

Flame 

AAS

Graphite 

Furnace 

AAS

ICP-MS ICP-OES EC* 

Methods

SP* 

Methods

SF*

Methods

Sample 
volume 
required

Large Small Medium Medium Small Medium
to Small

Medium
to Small

Detection 
Range

nM nM pM to nM pM to nM nM to μM μM pM to μM

Detection 
limits

nM nM pM pM nM to μM nM pM to nM

Interference few few few More few few few

Spot 
analysis

Not 
possible

Not 
possible

Not 
possible

Not 
possible

Possible** Possible** Not
possible

Cost Expensive Expensive Expensive Expensive Affordable Affordable Affordable

Accuracy Good High Very High Very High Good High High

Precision Good High Very High Very High Good High High

Recovery Good High Very High Very High Good High High
*EC-Electrochemical, SP -Spectrophotometric, SF-Spectrofluorimetric.
**Classical Potentiostat and Spectrophotometers are miniaturized to portable and handy devises with customized 
facilities especially for the spot analysis [5–7].

Table 1. 
Generalized comparison of the parameters of analytical significance of widely followed methods for HMIs 
quantification.
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Because of this solid background HMIs quantification by electrochemical and optical 
methods will be a topic of interest for large group of readers. Keeping the beginners 
in mind discussion is focused on the fundamentals of electrochemical approaches, 
types of materials and strategies used for the quantification of HMIs by both electro-
chemical and optical methods. It must be noted that exhaustive literature citation is 
avoided because of the page limits and also to avoid the monotony.

2. Electrochemical sensing of heavy metal ions

2.1 Different electrochemical techniques

2.1.1 Voltammetry

Generally, in this case resultant current due to faradaic reaction [s] of the ana-
lyte is recorded by sweeping the potential between the two chosen potentials. As a 
result, the graph of current vs. voltage will be obtained that is referred to as voltam-
mogram. Below are the various Voltammetric techniques commonly followed to 
measure the heavy metal ion[s] concentration.

2.1.1.1 Cyclic voltammetry [CV]

Current is recorded in the forward and backward directions by sweeping the 
potential in the fixed potential window. Faradaic reaction of the metal ion will 
result the oxidation and [or] reduction peaks at a particular potential where it 
underwent redox reaction. By referring to cyclic voltammogram

• potential required to oxidize/reduce the metal ion can be found. That infor-
mation is helpful in performing amperometric measurement of metal ion 
samples, to decide the potential window in the other voltammetric techniques 
such as differential pulse voltammetry, square wave voltammetry etc.

• reversibility of the faradaic reaction can be understood.

In this three-electrode system platinum wire is used as counter electrode, 
calomel or Ag/AgCl electrode is used as reference electrode and glassy carbon 
electrode (GCE)/gold or platinum electrode/carbon paste electrode etc. is used 
as working electrode. Devi et al. used gold nanoparticles modified GCE as the 
working electrode for the quantification of Hg2+ ions using CV [8]. Authors 
exploited the well-known interaction of thiol and gold for the functionalization of 
gold on the GCE. Micro molar concentration of Hg2+ can be quantified using this 
CV method.

2.1.1.2 Pulse voltammetry

In this technique series of super imposing pulse of voltage are generated to result 
the potential sweep. Because of the applied voltage, HMI will undergo redox reac-
tion to result the faradaic current and that is measured. Differential pulse voltam-
metry (DPV) is more opted out of various pulse voltammetric techniques such 
as normal pulse voltammetry and reverse pulse voltammetry. Xia et al. proposed 
DPV method for the simultaneous determination of Pb2+, Cd2+ and Cu2+. Wherein 
they used carbon paste electrode modified with hexagonal mesoporous silica and 
quercetin [9].
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2.1.1.3 Square wave voltammetry [SWV]

SWV is another voltammetric technique which is also very often used to 
quantify the HMIs with some advantages like fast scan rate, less adsorption on the 
working electrode and reduced measurement time over DPV.

In the case of CV, DPV and SWV more than one HMI can be detected 
simultaneously.

Generally, HMIs quantification by voltammetric techniques is performed in 
conjunction with electrochemical deposition followed by stripping. Hence, few 
examples for the above mentioned voltammetric techniques are discussed under 
stripping voltammetry section.

2.1.1.4 Stripping voltammetry

It is a two-step procedure. First step involves the electrodeposition of the HMI[s] 
from the electrolyte solution onto the working electrode surface. Second, by applying 
any of the voltammetric techniques [discussed above], HMI[S] on the electrode will be 
stripped off into electrolyte solution. Based on the applied scan i.e. anodic or cathodic 
or during which stripping take place technique is named as anodic stripping or 
cathodic stripping voltammetry [10]. Following cases can be considered as an example 
for how stripping step is combined with various voltammetric techniques. Yao et al. 
proposed square wave anodic stripping voltammetry [SWASV] for the quantifica-
tion of Zn2+, Cd2+, Pb2+, Cu2+and Hg2+. Fe3O4 nanocrystals of two different shapes are 
used as a modifier to obtain a sensitive and selective signal for the HMI [11]. Figure 1 
depicts the nature of SWASV. Serious interference of Cu2+ ions in the electrochemical 
detection of Cd2+ ions was effectively overcome by introducing Bi film on the GCE. 
As a result, stripping peaks were found to be intact even in the presence of Cu2+ ions 
for SWASV [12]. Raghu et al. developed DPASV method to achieve the quantifica-
tion of Hg2+ ions down to picomolar concentration. Multiwalled carbon nanotubes 
[MWCNT] were functionalized with Fast Violet B salt through diazotization. 
Functionalized MWCNT then drop casted onto GCE to sense Hg2+ ions by DPASV in 
drinking water and industrial effluents [13]. Pandurangappa Malingappa and cowork-
ers have published few exemplary works in which stripping voltammetric analysis has 
been systematically utilized for the analysis of HMIs from the various samples [14–16].

2.1.2 Amperometry

It is a potentiostatic technique. Electrochemical measurements are carried out 
at a fixed potential to measure the resultant current due to the redox reaction at the 

Figure 1. 
SWASV recorded for the (A) octahedral and (B) cubic Fe3O4 modified electrodes in the presence of varied 
concentration of Pb2+ion (reprinted with permission from [11] copyright 2014 American Chemical Society).



5

Electrochemical and Optical Methods for the Quantification of Lead and Other Heavy Metal…
DOI: http://dx.doi.org/10.5772/intechopen.95085

electrode electrolyte interface. Based on the analyte, here a particular metal ion, 
to be detected value of the potential needs to be applied will be decided. Hence, 
the measured current will be exclusively due to faradaic reaction of that particular 
analyte. To quote the recent example, Sannegowda and his coworkers developed 
iminephthalocyanine based amperometric sensor for the quantification of Pb2+ 
ions. That exhibited the linear range and detection limit in the nanomolar Pb2+ ion 
concentration [17]. Amperometric biosensor based on the urease was developed for 
the detection of Pb2+ and Hg2+ ions in river water samples also exhibited the analyti-
cal figures of merits closer to nanomolar levels [18]. Simultaneous quantification of 
more than one HMI is not possible i.e. the drawback of this method.

Another similar work can be quoted here. This case acridono-crown ether played 
a role of ionophore and. Poly(vinyl chloride) membrane again acted as a host. The 
potentiometric sensor works in a range of pH 4-7 but suffered a much-required 
sensitivity [19].

2.1.3 Potentiometry

Developed potential or electromotive force (EMF) is measured without 
applying external current. Experimental setup required for the potentiometric 
measurements is inexpensive. But, sensitivity of this technique is not appreciable 
when the routine electrodes are used. Efforts are in progress to improve the sensi-
tivity by making use of electrodes constructed out of advanced materials such as 
graphene, CNT, and nanomaterials or reducing the size of the electrode itself i.e. 
nanoelectrodes [20, 21]. Ionophore is a corner stone of the potentiometric experi-
mental setup that decides the selectivity and sensitivity of the procedure. Xin-Gui 
Li et al. developed a ionophore based on conducting copolymer microparticles. 
Poly[vinyl chloride] membrane acted as a platform to host the ionophore. Presence 
of functional molecules such as –NH–, –N, –NH2, and –SO3H in the microparticles 
resulted high selectivity towards Pb2+ ions. It’s worth mentioning that potentio-
metric sensor exhibited sub micromolar detection limit towards Pb2+ ions [22]. 
Another similar work can be quoted here. This case acridono-crown ether played 
a role of ionophore and poly[vinyl chloride] membrane again acted as a host. The 
potentiometric sensor works in a range of pH 4-7 but suffered a much-required 
sensitivity [23].

2.2 Electrochemical preconcentration

Generally, concentration of HMIs is very low in drinking water, food and 
biological samples. In addition to that, sample matrices will be complex in nature 
and many other ions and molecules will be present. In this regard it is very impor-
tant to separate the HMI[S] from the sample matrix by enriching the same on to the 
working electrode surface. There by the interference from various electrochemically 
active species can be overcome and sensitivity can be significantly enhanced. Below 
two important electrochemical preconcentration methods are discussed in brief.

2.2.1 Electrochemical deposition

Electrochemical deposition is done by taking sample solution containing the 
HMI[s]in a three-electrode electrochemical cell. Then, suitable potential is applied 
to working electrode (most of the times modified working electrode) w.r.t. refer-
ence electrode. As a result of the applied potential metal ion will get reduced to 
metal atom and simultaneously deposited onto the working electrode. Prior to 
electrochemical deposition cyclic voltammetric experimental data will be helpful in 



Heavy Metals - Their Environmental Impacts and Mitigation

6

deciding the deposition potential. Suitable buffer solution and pH are necessary to 
fine tune the selective deposition of the particular HMI(S) [24].

2.2.2 Electrochemical adsorption

As the HMs exist as ions in the solution same nature can be exploited to achieve 
the electrochemical adsorption. It works on the electrostatic force of attraction 
principle. Basically, the working electrode will be modified with a material which 
has got sufficient opposite charges w.r.t. HMIs or its compounds. In addition to 
this material which also got greater surface area, hence, more charges on it will be 
preferred. It is obvious that nanomaterials are the competent candidates for this 
purpose. First comes the carbon nano substrates such as graphene, CNT, graphite 
flakes etc. Reason is twofold; Inertness of the carbon substrate hence it can just act 
as a platform for the HMIs adsorption and for the same reason it can be used for the 
construction of electrode as well. Ease with which the charge bearing functional 
groups can be covalently bonded on to it. There exist well-established procedures 
to introduce various functional groups such as carboxylic acid, amine etc. onto the 
carbon substrates. Now the materials, functionalized graphene or CNT, having 
greater surface area and also charge on it are suitable for the electrodeposition of the 
HMIs. Apart from these qualities, defects introduced during the functionalization 
process and their inherent good electrical conductivity have the added advantage 
for this application [25–27]. Likewise, nanomaterials other than carbon substrate 
can also be used. Positive or negative potential is applied to the electrode to enhance 
the rate of adsorption.

2.3 Different materials based electrochemical sensors

2.3.1 Carbon substrates

Graphitic carbon, glassy carbon, can be considered as the bulk form, itself has 
got good conductivity, stability have been used as an electrode material for a long 
time. Nanomaterials (NMs) derived out of graphite’s single or few layers resulted in 
graphene, CNT, fullerene, carbon nanoflakes, etc. possessed extraordinary con-
ductivity, excellent electrocatalytic property. Each carbon NM has been extensively 
studied for the electrochemical sensing of HMIs either in their pristine or modified 
form or as composite. Considering few examples out of large number of articles 
each carbon NM is discussed below.

2.3.1.1 Graphene

Two-dimensional single atomic thick monolayer is metallic in nature which 
inherited large surface area and very high conductivity [28]. In addition, hydroxyl 
and carboxylic groups originally present to a more or less extent depending on how 
the material is synthesized. If not present, those functional groups can be intro-
duced on its surface with ease by following well established methods. Mentioned 
functional groups facilitate the interaction between the graphene and HMIs through 
either coordination or electrostatic or both. On the other hand, these inherent func-
tional groups are exploited to introduce organic molecules, NMs etc. to enhance the 
sensitivity and selectivity. Li et al. reviewed the synthesis protocols and analytical 
applications of the graphene with exhaustive literature [29]. GCE modified with 
fluorinated graphene oxide was used to detect four HMIs such as Cu2+, Pb2+, Cd2+, 
and Hg2+simultaneously [30]. Nafion is used in many of the reported works to 
assemble the graphene onto the electrode i.e. it acts as a binder. At the same time, 
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it also plays a role of ion exchange membrane hence, interference can be consider-
ably overcome. Combination of the duo lead to many methods for the simultaneous 
determination of HMIs [31–33]. Simultaneous analysis of Zn2+, Cd2+, Pb2+, and 
Cu2+ was exhibited by a composite nafion, graphene and in situ prepared mercury 
film. Distinct SWASV peaks were observed for the mentioned HMIs [34]. It is 
worth mentioning that despite the mentioned synergetic advantages of the nafion 
& graphene there is problem of restacking of the graphene layers due to van der 
Waals force of attraction and also irreversible adsorption of HMIs onto the film 
was observed [35]. Gong et al. developed a strategy to overcome the restacking a 
graphene layers by introducing Au nanoparticles in between them. In addition, Au 
nanoparticles improved the analytical figures of merit for the sensing of Hg2+ions 
[36]. In a similar approach SnO2 and reduced graphene oxide composite lead to 
simultaneous determination of Cd2+, Pb2+, Cu2+, and Hg2+ as shown in Figure 2 
[37]. Composite of reduced graphene oxide with cysteic acid lead to highly sensitive 
DPASV method for Ag+ ion with detection limit of 1 nM [38]. Jingbo Chang et al. 
exclusively reviewed the sensing strategies of HMIs using graphene and its compos-
ites their more examples on this topic can be found [35].

2.3.1.2 CNTs

Properties, modification strategies discussed w.r.t. graphene holds good for CNTs. 
Since CNTs can be considered as rolled up structure of graphene and carbon atom 
is sp3 hybridized in both the cases. CNTs are supposed to be equally competent for 
the analysis of HMIs compared to graphene but there are minor differences [39]. 
But, hybrid of graphene and CNTs yielded much better results compared to CNTs 
alone. Three-dimensional structure of graphene and CNT was able to simultaneously 
analyze pb2+ and Cd2+ions [40]. CNTs are used in combination with bismuth film for 
the detection of HMIs [41]. CNTs and Pt nanoparticle together resulted in a highly 
sensitive electrochemical method for the ppb to ppt level As3+ determination [42].

2.3.2 Nanoparticles

As is well known, large surface area, more exposed catalytic sites, enhanced con-
ductivity, greater electron & mass transport and faster electrode kinetics attracts 

Figure 2. 
SWASV peaks recorded in the presence of HMIs for SnO2-reduced graphene oxide modified electrodes 
(reprinted with permission from [37] copyright 2002 American Chemical Society).
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the scientists to modify the working electrode with nanomaterials (NMs) for the 
better electrochemical sensing of HMIs. Though wide verity of NMs have been 
reported in the literature but metal and metal oxide nanoparticles are considered 
for discussion as their contribution is major among other NMs.

2.3.2.1 Metal nanoparticles

Gold nanoparticles and its derivatives have been extensively investigated as 
a transducer material for sensing HMIs because of its excellent conductivity, 
catalytic properties and inertness. There is a one more property i.e. affinity of 
gold towards thiol. This one property lead to plenty of works which all played 
around the triangular interaction between gold-thiol molecules-HMIs. As it can 
be observed gold component is common in below discussed cases but based on the 
material with which it is composed, capping agent, functionalized molecule and 
other experimental conditions sensitivity and selectivity towards HMIs will be 
totally different. Bin Zhang et al. modified carbon nanofibers with gold nanopar-
ticles’ size around 15 nm. That material was used on the GCE to simultaneously 
detect Cd2+, Pb2+ and Cu2+ by SWASV [43]. Whereas the same Au nanoparticles 
capped with tannic acid modified GCE lead to highly sensitive and selective elec-
trochemical sensor for Hg2+down to 100 fM in the presence of Zn2+, Al3+etc. [44]. 
Handful number of articles can be found in which Au nanoparticles are used for 
the estimation of HMIs [45–47]. Inspired by the excellent electrochemical results 
two noble metals are combined to obtain the bimetallic composite. Same has shown 
promising results for the estimation of Hg2+ ions in the ppb range with the limit of 
detection down to ppt [48].

Earlier mercury electrodes were used to detect the HMIs because of the amal-
gamation reaction between the two. Thanks to the multicomponent alloy forma-
tion property of the bismuth and antimony with the HMIs. Because, highly toxic 
mercury electrodes were successfully replaced by the bismuth and antimony film 
modified electrodes. Nanoparticles of bismuth and antimony are proved to be an 
environmentally friendly and efficient platform for the quantification of HMIs 
[49–52]. Even the experiments were carried out to understand the effect of different 
morphology of the bismuth nanoparticles on the HMIs detection [53].

2.3.2.2 Metal oxide nanomaterials (MONMs)

Come into focus as a result of finding an inexpensive alternative for the noble 
metal nanoparticles in spite of their excellent electrochemical results as the 
latter are highly expensive. Other technical reasons are being as same as that any 
nanomaterials such as greater surface area and hence greater adsorption of HMIs, 
enhanced electrocatalytic activity etc. Oxides of iron, nickel, magnesium, manga-
nese, zirconium etc. have been extensively studied for the quantification of HMIs. 
Majority of the reported methods are focused on experimenting with the mor-
phology of the MONMs. Generally wide variety of morphologies can be achieved 
through hydrothermal synthesis. Then the MONM powder will be drop casted 
onto GCE for the electrochemical sensing of HMIs. Problem with this approach is 
modified electrode will not be sufficiently robust. Abdul Waheed et al. discussed 
the same with detailed literature in their review [54]. To overcome this, Lie 
et al. electrochemically deposited Co3O4 nanoparticles onto the indium tin oxide 
electrode followed by annealing. As prepared modified electrode is further used 
for the electrochemical sensing of Pb2+ ions in the presence of various divalent 
ions [55].
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2.3.3 Mesoporous materials

Ordered mesoporous silicas (OMSs) can be considered as a representative candi-
date for mesoporous materials and their application in HMIs sensing. Because OMS 
exhibit uniform pore size, highly ordered pore, high volume and surface area which 
was explored by Mobil oil corporation [56, 57]. OMS provide a better platform for the 
physisorption of HMIs. As the OMS can be synthesized through various approaches 
different functional groups are inherently present on their surface. Out of which 
silanol is often present and most useful because of its reactive nature. Wide variety 
of organic molecules can be introduced through silanol group to result hybrid OMS. 
Because of the newly introduced organic molecules chemisorption of HMIs is achieved 
in addition to physisorption onto the hybrid OMS [58]. In majority of the reported 
methods particular OMS is combined with graphitic powder and mineral oil to obtain 
the modified carbon paste electrode to sense the HMIs. Thiol self-assembled monolay-
ers on mesoporous supports [SAMMS]are used to prepare the carbon paste electrode 
for simultaneous analysis of Pb2+ and Hg2+ ion in 0.2 M HNO3 [59]. Glycinylurea-
SAMMS lead to SWASV method for the detection of Pb2+ with a detection limit down 
to 1 μg/L. It must be noted that detection can be performed over a wide range of 
pH 4.5 to 6.5 without using any specific buffer solution [60]. Yantasee et al. developed 
advanced remote accessible automated DPASV coupled with flow injection analysis of 
Pb2+ ions using Phosphonic-SAMMS [61]. Detailed literature on synthetic approaches 
and analytical applications of mesoporous materials can be found elsewhere [62].

3. Optical sensing of heavy metal ions

3.1 Spectrophotometric/ Fluorometric methods

Wide range of materials including organic molecules, nanomaterials, hybrid of 
earlier two, and quantum dots are used to sense HMIs by generating either color or 
fluorescence signal. Simultaneous signal generation for multiple HMIs is more often 
observed in electrochemical sensing. Whereas in case of optical methods, generally, 
signal will be generated exclusively due to target HMI. Hence, below are the sections 
categorized w.r.t. type of the material used for sensing. Lead i.e. Pb is considered as an 
example to explain the commonly followed strategies for the optical sensing of HMIs.

3.1.1 Cyclodextrins

In the year 1996 Czarnik et al. proposed a bench mark work for the fluorescence 
sensing of Pb2+ ions using a small molecule, heteroatom containing ligands. On 
complexation with Pb2+ ions proposed ligand exhibited enhanced fluorescence sig-
nal for about 15-fold [63]. Cyclodextrin molecule in binary solvent system exhibited 
20-fold enhancement in the fluorescence signal after the addition of Pb2+ ions [64]. 
Similar cyclodextrin molecules are proposed by Chen et al. and Hayashita et al. for 
fluorometric sensing of the HMI as shown in Figure 3 [65, 66].

3.1.2 Organic molecules

Color resulting dibromo-p-methyl-methylsulfonazo molecule was explored 
by Li et al. for spectrophotometric detection of the Pb2+ions [67]. Inspired by this 
strategy Meng et al. worked out similar organic molecule for the colorimetric  
sensing of HMI [68].
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Figure 3. 
(A) Representation of the structure of the ligand. (B) Image of the fluorescence response of the proposed 
ligand. (C) Binding mechanism of the Pb2+ ions with the proposed ligand (reprinted with permission from [65] 
copyright 2002 American Chemical Society).

3.1.3 Rhodamines

Rhodamine family molecules and its derivatives have been utilized extensively 
for the optical sensing of not only Pb2+ ions but most of the HMIs. Majority of 
such works result the optical signal through spirolactum ring opening or forming 
mechanism after interaction between the rhodamine and HMI. Yoon et al. reported 
rhodamine B derivative for both fluorometric and colorimetric sensing of Pb2+ ion 
in methyl cyanide medium [69].

3.1.4 Calixarenes

Calixarene family molecules are another category contributed significantly for 
the HMIs sensing. Calixarene structures generally from a dative bond with HMI 
through the functional groups to result an optical signal. Calix [4]arene derivatives 
are reported for the Pb2+ ion sensing can be observed as a regular method [70]. 
Switchable i.e. on–off–on fluorescent sensor observed due to the binding capacity 
of the calixarene molecule with two different cations i.e. Pb2+ and K+ as shown in 
Figure 4. Observed phenomenon is due to the interaction of the K+ ions with the 
molecular orbitals whereas that is absent in the Pb2+ ions case [71].

Apart from the above-mentioned categories there exist another variety of 
organic and bioorganic molecule extensively studied for the HMI. To name a few 
polymers based, peptide based, DNAzyme based sensors.

3.1.5 Carbon quantum dots

Carbon quantum dots (CQDs): Again, inherent functional groups on its sur-
face and their deceptive role in anchoring desired molecules, nanoparticles etc. 
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made CQDs as emerging optosensors for HMIs. It is prerequisite to understand 
the mechanism of sensing of HMIs using CQDs before considering the individual 
articles on the same. Interaction between the light (electromagnetic radiation) of 
suitable wavelength and CQDs leads to the generation of charge carriers i.e. due to 
the excitation of electron from valence band to the conduction band. Generated 
charge carriers are utilized in the sensing of HMIs depending on the interaction of 
HMI with the ligand on the CQDs surface. Photo induced charge transfer, fluores-
cence enhancing/quenching, inner filter effects, phosphorescence etc. [72]. Sodium 
citrate and polyacrylamide sodium citrate resulted blue fluorescent CQDs which 
was quenched upon the addition of Pb2+ ion. By adding pyrophosphoric acid to the 
quenched solution, fluorescence was regenerated. This fluorescence off–on method 
was able to detect the Pb2+ of the order of 4.6 nM [73]. CQDs synthesized from the 
green approach using Lantana camara berries were exhibited sensitive and wide 
linear range up to 200 nM Pb2+ ion concentration [74]. CQDs synthesized from 
chocolate source also exhibited nanomolar HMI detection [75]. Household sugar 
was used to prepare the CQDs and found to be sensitive and selective for the naked 
eye sensing of Pb2+ ions in water [76].

3.1.6 Nanoparticles

Nanoparticles forms an interesting domain for the HMIs sensing. Though there 
exist a wide range of metal nanoparticles majority of the work has been done on Ag 
and noble metals Pt, Au nanoparticles in spite of their costly affair. Surface plasmon 
resonance is the corner stone of the optical sensing of HMIs using Ag, Au, and Pt. 
Hupp et al. used 11-mercaptoundecanoic acid capped Au nanoparticles as color 
generating agent for the detection of Pb2+, Cd2+, and Hg2+ ions [77]. Thomas et al. 
proposed quite a different approach wherein they started with Au3+/Ag+ ions and 
gallic acid solution. After the addition of Pb2+ Au/Ag nanoparticles are formed to 
result pink or red color respectively [78]. Non-aggregation-based sensor is devel-
oped by Huang et al. Originally Gold nanoparticles surrounded by thiosulphate and 

Figure 4. 
Representation of the switchable fluorescence of the calix [4] arene derivative and its binding mechanism with 
Pb2+ and K+(reprinted with permission from [71] copyright 2004 American Chemical Society).
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2-mercaptoethanol in a solution. After the addition of Pb2+ due to the formation 
of Pb-Au alloy gold nanoparticles dissolved into solution and hence Surface plas-
mon resonance is decreased [79]. Opposite to that, i.e. aggregation based, sensing 
method was developed by Su et al. using glutathione modified Au nanoparticles. 
Upon the addition of HMI Au nanoparticles aggregate to result a color change from 
red to blue [80]. Theme of this work is summarized in the Figure 5.

Above discussed category of organic molecules, bioorganic molecules, nanopar-
ticles have also been extensively used for the sensing of remaining HMIs. Functional 
moieties in the sensing molecules are different for different HMIs. But, conceptual 
wise it will be a repetition if the discussion is extended for the other HMIs. Ha Na 
Kim et al. has reviewed all the above discussed type of materials except CQDs for 
HMIs with an exhaustive literature survey and detailed discussion [81]. One can  
get more details and literature on CQDs for HMIs sensing in the review article 
presented by Pooja Devi et al. [72].

4. Paper based optical and electrochemical sensing of HMIs

It is striking from the above discussions that both electrochemical and opti-
cal methods are good enough to quantify HMIs from various sample matrices. 
Selectivity, sensitivity and reproducibility of the most of the methods are sufficient 
enough i.e. can be used to quantify the HMIs within the permissible limits fixed 
by the world health organization. Apart from this there are some shortcomings for 
both the methodologies. It must be noted that both the instruments i.e. classical 
potentiostat and spectrophotometer cannot be carried away to the place at which 
the samples have to be analyzed. Hence, spot analysis of the HMIs is quite not pos-
sible using these methods. Also, both the instruments are expensive. Keeping these 
shortcomings in mind researchers are working out nonconventional methods. As it 
is already mentioned in Table 1 miniaturized potentiostat and spectrophotometers 
are developed for spot analysis. Affordable and mobile phone installable softwares 
are developed to readout the color intensity on the spot [82]. On the other hand, 
sample holders i.e. electrochemical cells and cuvettes are replaced by paper strips. 
Below is the glimpse of such non-trivial methods.

Figure 5. 
(A) Scheme represents the preparation of glutathione capped Au nanoparticles. (B) Uv–Vis spectra, inset 
shows the images, (C) TEM images of Au nanoparticles in the absence (a) and presence of Pb2+ ions (b). 
(D) Images of the Au nanoparticle in the presence of various metal cations and Pb2+ ions (reprinted with 
permission from [80] copyright 2010 American Chemical Society).
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4.1 Paper/strip

Making use of paper for the spot analysis of copper can be observed way back to 
1945 [83]. Lateral flow through capillary action is the basis for the development of 
test strips not only for HMIs but various analytes. Pioneering work was published 
by Whiteside’s group in the year 2007. In which photolithography was used to 
pattern the paper for the bioanalysis on the spot [84]. Paper based analytical device 
(PAD) is modified with resorufin thionocarbonate-based dye and it can detect 
μM concentration Hg2+ ions by using buffer solution of pH 8 [85]. 3,3′,5,5′-tetra-
methylbenzidine (TMB) and gold nanoparticles were used to develop a PAD for 
semiquantitative analysis of Hg 2+ ions. Based on the enzyme like action of the 
gold and mercury nanoparticles TMB will give blue color [86]. In a similar work, 
platinum nanoparticles and TMB combination is used to detect Hg2+ ion using 
PAD. In this case decrease in the color intensity indicates the concentration of HMI. 
Enzymatic activity of the platinum nanoparticles to turn the TMB to blue is inhib-
ited by the Hg2+ ions in this case [87]. Many such PAD based naked eye detection 
of HMIs can be found in literature [88–90]. Paper based electrochemical sensors 
(PESs) are coined as they inherit the simplicity and advantages of the PADs with 
better sensitivity. Whiteside’s group developed PES by adopting the commercial 
electrochemical readers [91]. In case of PES electrodes are printed on a paper with 
carbon inks (working and counter electrodes), silver-silver chloride inks (reference 
electrode). These electrodes connected to a respective terminal of the electrochemi-
cal reader to measure a signal. Mariana Medina-Sánchez et al. developed PES for the 
quantification of Pb2+ and Cd2+ ion in a range 10 to 100 ppb. Developed sensor was 
reagent free and ecofriendly [92]. Two substrates i.e. plastic film and paper were 
used to coat graphene and polyaniline composite for the simultaneous detection of 
Zn2+, Cd2+, and Pb2+ ions [93]. Going one step ahead Poomrat Rattanarat et al. came 
up with a multi-layer-based device capable of producing both optical and electro-
chemical signal for iron, nickel, copper, chromium, lead and cadmium ions [94]. 
Iron, nickel, copper, chromium can be detected using optical signal whereas lead 
and cadmium ions are detected by electrochemical output as shown in Figure 6.

Figure 6. 
(A) Image of the multilayer paper-based device’s color changing response for the given HMIs. (B) Flow 
diagram details the preparation, electrochemical, and colorimetric response of the multilayer device (reprinted 
with permission from [94] copyright 2014 American Chemical Society).
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5. Conclusions

Importance of HMIs quantification is stated followed by efficient methods and 
their drawbacks. No doubt that electrochemical and optical methods are promis-
ing alternatives. Because of the advantages such as user friendly, economical and 
competency, electrochemical and optical methods are further considered for the 
discussion. Different electrochemical techniques followed for the HMIs quantifica-
tion are described with the fundamentals and reasoning in brief. Among them 
stripping voltammetric techniques are found to be efficient. Many electrochemical 
methods are reported to be capable of sensing HMIs down to ppb level and few can 
detect down to pico molar concentration. Another advantage of the electrochemical 
methods is the simultaneous analysis of multiple HMIs. Electrochemical methods are 
yet to be adopted for the field [spot] analysis. On the other hand, optical methods in 
particular colorimetric methods are metamorphosed to naked eye sensing of HMIs 
which will help in field analysis. PADs are coined to further simplify and miniaturize 
both electrochemical and optical methods. Alternatives for the often-used expensive 
color inducing materials such as gold, platinum and silver are still need to be explored 
in case of PADs for optical sensing of HMIs. It can be concluded that PESs are highly 
sensitive and selective but cannot be carried to field. Whereas PADs used for optical 
sensing are sensitive and can be used for field analysis are semiquantitative.
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