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ABSTRACT

This paper is concerned with the problem of model reduction design for continuous
systems in Takagi-Sugeno fuzzy model. Through the defined FF H∞ gain perfor-
mance, sufficient conditions are derived to design model reduction and to assure the
fuzzy error system to be asymptotically stable with a FF H∞ gain performance index.
The explicit conditions of fuzzy model reduction are developed by solving linear ma-
trix inequalities. Finally, a numerical example is given to illustrate the effectiveness of
the proposed method.
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1. INTRODUCTION
In the last few decades, many researchers have investigated model reduction including continuous and

discrete settings as these systems have great applications in engineering fields. The problem is to design a
low-order model to approach a higher order model given according to some specified criteria. Indeed, many
results-based model reduction approach were presented [1]-[10].

In the practical, systems are always more or less disturbed, therefore, model reduction issues for non-
linear systems have been extensively discussed through the T-S fuzzy model approach, see [11]-[16]. Among
the most of the existed literature on model reduction problems, the disturbances are considered in the entire
frequency (EF) domain, which will bring overdesign in the filtering design. While many practical engineering
problems are more suitable to be considered in finite frequency (FF) ranges [17]-[26].

The main objective of this paper is to design a model reduction for continuous T-S fuzzy systems with
disturbance in FF domain. Through the defined FF H∞ gain performance, sufficient conditions are derived to
design model reduction and to assure the fuzzy error system to be asymptotically stable with a FF H∞ gain
performance index. The explicit conditions of fuzzy FF are developed by solving linear matrix inequalities.
A systematic model reduction design scheme is proposed, which could reduce the conservatism of the results
compared to the one considered in EF domain. Finally, a simulation example demonstrates the usefulness of
the proposed method.

Notations: The notation A > 0 (A ≤ 0) means that A is positive definite (positive semi-definite).
A−1, AT , A∗ denote the inverse, the transpose and the complex conjugate transpose of matrix A, respectively.
Symbol ′∗′ represents the term originated by conjugate symmetry in a matrix.
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2. PROBLEM FORMULATION
The plant under consideration is a continuous T-S fuzzy system described by its i-th rule as follows:
Plant Rule i: IF σ1(t) is T i

1,... and σp(t) is T i
p THEN,

ẋ(t) = Aix(t) +Biu(t)

y(t) = Cix(t) (1)

where x(t) ∈ Rn is the state vector; y(t) ∈ Rp is the measured output vector; u(t) ∈ Rm is the external noise
signal of the following frequency sets,

4 ,

 ω ∈ R| |ω| ≤ ω̄l, ω̄l ≥ 0, (LF )
ω ∈ R|ω̄1 ≤ ω ≤ ω̄2 ω̄1, ω̄2 ∈ [0,+∞], (MF )
ω ∈ R| |ω| ≥ ω̄h, ω̄h ≥ 0, (HF )

(2)

where LF, MF and HF stand for low-, middle-, and high- frequency ranges, respectively.
Via using inference product, singleton fuzzifer and center-average defuzzifer, nonlinear system (1)

can be described by:

ẋ(t) = A(ρ)x(t) +B(ρ)u(t)

y(t) = C(ρ)x(t) (3)

where

A(h) =

r∑
i=1

hiAi; B(h) =

r∑
i=1

hiBi;

C(h) =

r∑
i=1

hiCi (4)

and

hi(σ(t)) =

∏p
j=1 µij(σj(t))∑r

i=1

∏p
j=1 µij(σj(t))

(5)

ρi ≥ 0, i = 1, ..., r,

r∑
i=1

ρi = 1. (6)

with h := (h1, h2, ..., hr) ∈ δ.
In this paper, we are interested in approximating the T-S fuzy system (4) by a stable n̂th-order (n̂ < n)

reduced-order T-S model.
Plant Rule i: IF σ1(t) is N i

1,... and σp(t) is N i
p THEN

ˆ̇x(t) = Âix̂(t) + B̂iu(t)

ẑ(t) = Ĉix̂(t) (7)

where x̂(t) ∈ Rn̂(n̂ < n) is the state of the reduced-order model, ŷ(t) ∈ Rp is the output of the reduced-order
model.

Then, the fuzzy reduced-order model as (8),

(Σr) : ˆ̇x(t) = Â(ρ)x̂(t) + B̂(ρ)u(t)

ŷ(t) = Ĉ(ρ)x̂(t) (8)
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where

Â(ρ) =

r∑
i=1

ρi(t)Âi, B̂(ρ) =

r∑
i=1

ρi(t)B̂i,

Ĉ(ρ) =

r∑
i=1

ρi(t)Ĉi (9)

Then, we have the error model:

(Σe) : Ẋ (t) = Ā(ρ, ρ)X (t) + B̄(ρ, ρ)u(t)

E(t) = C̄(ρ, ρ)X (t) + D̄(ρ, ρ)u(t)

(10)

where

Ā(ρ, ρ) =

[
A(ρ) 0

0 Â(ρ)

]
; B̄(ρ, ρ) =

[
B(ρ)

B̂(ρ)

]
;

C̄(ρ, ρ) =
[
C(ρ) −Ĉ(ρ)

]
X (t) =

[
x(t)
x̂(t)

]
; E(t) = y(t)− ŷ(t) (11)

Next, given a scalar γ and a rectangular FF domain, the error system (Σe) is said to have a FF H∞
performance if it satisfies the following inequality holds,

∫
ω∈4

ET (ω)E(ω)dω ≤ γ2
∫
ω∈4

UT (ω)U(ω)dω (12)

where

4 , {w ∈ R : |ω| ≤ ωl; ωl ∈ [0,+∞]} (13)

The following inequalities hold [27]:

Θii < 0; 1 ≤ i ≤ r
1

r − 1
Θii +

1

2
[Θij + Θji] < 0; 1 ≤ i 6= j ≤ r (14)

where
r∑

i=1

r∑
j=1

ρi(t)ρj(t)Θij < 0 (15)

Let4 ∈ Rn, J ∈ Rn×n, X ∈ Rm×n, rank (X ) = r < n and X⊥ ∈ Xn×(n−r) such that XX⊥ = 0
[28], so that the following conditions are equivalent:

− 4∗J4 < 0,∀4 6= 0 : X4 = 0

− X⊥∗JX⊥ < 0

− ∃T ∈ Rn×m : J + T X + X ∗T ∗ < 0

Error system (10) is stable and the FF H∞ performance (12) is satisfied if there exist P = PT , Q = QT > 0
such that [29].

[
Ā(ρ, ρ) B̄(ρ, ρ)
I 0

]T [ −Q P
P ω2

lQ

] [
Ā(ρ, ρ) B̄(ρ, ρ)
I 0

]
+

[
C̄T (ρ, ρ)C̄(ρ, ρ) 0

0 −γ2I

]
< 0 (16)
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3. FF H∞ PERFORMANCE DESIGN
Error model (8) is stable, if P ∈ Hn, 0 < Q ∈ Hn, 0 <W ∈ Hn, F , G, L H such that

Υ =

[
−F − FT W + FĀ(ρ, ρ)− GT
∗ He{GĀ(ρ, ρ)}

]
< 0 (17)

Ω =


−Q−He[F)] P − GT + FĀ(ρ, ρ) FB̄(ρ, ρ)− LT (ρ, ρ) −HT

∗ ω2
lQ+He[GĀ(ρ, ρ)] GB̄(ρ, ρ) + ĀT (ρ, ρ)LT (ρ, ρ) C̄T (ρ, ρ) + ĀT ρ, ρ)HT

∗ ∗ −γ2I +He[LB̄(ρ, ρ)] B̄T ρ, ρ)HT

∗ ∗ ∗ −I

 < 0

(18)

First. Define: [
Ā(ρ, ρ)
I

]T [
0 W
W 0

] [
Ā(ρ, ρ)
I

]
< 0 (19)

J =

[
0 W
W 0

]
; T =

[
F
G

]
; X =

[
−I Ā(ρ, ρ)

]
; X⊥ =

[
Ā(ρ, ρ)
I

]
(20)

then [
0 W
W 0

]
+

[
F
G

] [
−I Ā(h, ĥ)

]
+
[
−I Ā(ρ, ρ)

]T [ F
G

]T
< 0 (21)

which is nothing but (17).
On the other hand, Let:

J =


−Q P 0 0
P ω2

lQ 0 C̄T (ρ, ρ)
0 0 −γ2I 0
0 C̄(ρ, ρ) 0 −I

 ; T =
[
FT GT LT HT

]T
;

X =
[
−I Ā(ρ, ρ) B̄(ρ, ρ) 0

]
then, we obtain (16). Error system in (8) is stable with an H∞ performance bound γ, if there exist

P =

[
P1 P2

∗ P3

]
, Q =

[
Q1 Q2

∗ Q3

]
> 0, W =

[
W1 W2

∗ W3

]
> 0, Ăi, B̆i, C̆i, F1, F2, G1, G2, H1,

E =
[
I 0

]T
and V , such that

Ω̃ii < 0; Υ̃ii < 0; 1 ≤ i ≤ r (22)

1

r − 1
Ω̃ii +

1

2
[Ω̃ij + Ω̃ji] < 0; 1 ≤ i 6= j ≤ r (23)

1

r − 1
Υ̃ii +

1

2
[Υ̃ij + Υ̃ji] < 0; 1 ≤ i 6= j ≤ r (24)
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Ω̃ =



Ω̃11 Ω̃12 P1 − GT1 + F1Aj P2 − GT2 + EĂi F1Bj + EB̆i − LT
1 −HT

1

∗ Ω̃22 P2 − VTET + F2Aj P3 − VT + Ăi G2Bj + Ăi AT
j HT

1

∗ ∗ ω2
lQ1 + G1Aj +AT

j GT1 ω2
lQ2 +AT

j GT2 + EĂi G1Bj + EB̆i +AT
j LT

1 CT
j

∗ ∗ ∗ ω2
lQ3 + Ăi + EĂT

i G2Bj + B̆i −C̆Tj
∗ ∗ ∗ ∗ −γ2I +He[L1Bj ] BT

j HT
1

∗ ∗ ∗ ∗ ∗ −I



Υ̃ =


−F1 −FT

1 −EV − FT
2 P1 − GT1 + F1Aj P2 − GT2 + EĂi

∗ −V − VT W2 + F2Aj − VTET W3 + Ăi − VT

∗ ∗ G1Aj +AT
j GT1 EĂj +AT

j GT2
∗ ∗ ∗ He[Ăi]


Ω̄11 = Q1 −F1 −FT

1 ; Ω̄12 = Q2 − EV − FT
2 ; Ω̄22 = Q3 − V − VT

Built on Th. 3., we pick of parameters F , G, L ,H:

F =

[
F1 EV
F2 V

]
; G =

[
G1 EV
G2 V

]
;

L =
[
L1 0

]
; H =

[
H1 0

]
(25)

and

Ă(ρ) = VÂ(ρ); B̆(ρ) = VB̂(ρ) (26)

Finally, by applying Lemma 2, we have Th. 3.
Moreover, under the above conditions, we can obtain a state-space realization of model reduction (8)

with the following parameters as (27).

Ăi = V−1Âi; B̆i = V−1B̂i; ; C̆i = Ĉi (27)

4. NUMERICAL EXAMPLE
Consider tunnel diode circuit shown in Figure 1 with two rules [30]:

Plant Rule 1: IF x1(t) is M1(x1(t)) THEN

ẋ(t) = A1x(t) +B1u(t)

y(t) = C1x(t) (28)

Plant Rule 2: IF x1(t) is M2(x1(t)) THEN

ẋ(t) = A2x(t) +B2u(t)

y(t) = C2x(t) (29)

where

A1 =


−0.2 100 0 0
−10 −66.6667 3.3333 −66.6667

0 −33.3333 −1.6667 −16.6667
0 −33.3333 −1.6667 −33.3333

 ; B1 = B2 =


0
0

−1.6667
−3.3333

 ;

A2 =


−9.2 100 0 0
−10 −66.6667 3.3333 −66.6667

0 −33.3333 −1.6667 −16.6667
0 −33.3333 −1.6667 −33.3333

 ; C1 = C2 =
[

1 0 0 0
]
. (30)
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The membership functions:

M1(x1(t)) = 1− x21(t)

9
; M2(x1(t)) = 1−M1(x1(t)) (31)

when x1(t) is almost ±3 and 0.

Figure 1. A tunnel diode circuit

As an example, let the disturbance input be the following form (32).

u(t) = 0.1 sin(2t), i.e., .|ω| ≤ 2rad/s. (32)

By Theorem 3, the reduced-order models are given by (33),

[
Â1 B̂1

Ĉ1 −

]
=

 −11.1147 55.2147
−1.2574 −4.1258

−8.7325
−1.0245

−0.2487 0.4175 −

 ;

[
Â2 B̂2

Ĉ2 −

]
=

 −10.4785 56.0147
−1.2104 −4.3301

−9.0147
−0.9782

−0.2501 0.3305 −

 (33)

We propose in Table 1 shows the values of γ obtained in different frequency ranges. We can see from
Table 1 shows the values of γ obtained with the approaches existing in [5], [22], [23] and Theorem 3. We can
see that the proposed method provides better results than the existing ones.

Table 1. H∞ performance bounds γ by different domains
Frequency Methods γmin Max error
0≤ ω ≤ ∞ [5] 1.1457 -
|ω| ≤ 2 [22] 0.3587 0.3245
|ω| ≤ 2 [23] 0.2324 0.2325
|ω| ≤ 2 Th 3. 0.1279 0.0332

Next, let:

µ(t) =

√√√√ ∞∑
t=0

ET (t)E(t)/

∞∑
t=0

uT (t)u(t) (34)

Figures 2(a) and (b) present the estimation error E(t) for different methods and evolution of ratio µ(t)
in (34). From Figure 2(a), the asymptotic stability of the error system can be clearly observed, while under the
zero boundary conditions and the disturbance input (32). From Figure 2(b), the ratio tends to a constant value
0.1234 in |ω| ≤ 2 domains.

Model reduction design for continuous systems with finite frequency specifications (Miloud Koumir)
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(a) (b)

Figure 2. Trajectories of E(t) and µ(t) for |ω| ≤ 2 range; (a) Estimation error E(t) from different methods,
(b) Estimation µ(t)

5. CONCLUSION
This paper has concerned with the problem of the model reduction design for continuous T-S fuzzy

systems with FF disturbances. Assuming the disturbances is dominated in a known FF domain. Through
applying a more general linearization procedure, systematic methods have been proposed for model reduction
design, which guarantees the asymptotic stability and the FF H∞ gain performance of the error system. A
simulation example has been given to illustrate the effectiveness of the proposed method.
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