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45École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015

46P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
47Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana

48Ludwig Maximilians University, 80539 Munich
49Luther College, Decorah, Iowa 52101

50University of Malaya, 50603 Kuala Lumpur
51University of Maribor, 2000 Maribor

52Max-Planck-Institut für Physik, 80805 München
53School of Physics, University of Melbourne, Victoria 3010
54University of Mississippi, University, Mississippi 38677

55University of Miyazaki, Miyazaki 889-2192
56Moscow Physical Engineering Institute, Moscow 115409

57Moscow Institute of Physics and Technology, Moscow Region 141700
58Graduate School of Science, Nagoya University, Nagoya 464-8602
59Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602
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Using data samples of eþe− collisions collected at the ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ resonances with the
Belle detector, we search for the three-body decay of the Ωð2012Þ baryon to KπΞ. This decay is predicted
to dominate for models describing the Ωð2012Þ as a KΞð1530Þ molecule. No significant Ωð2012Þ signals
are observed in the studied channels, and 90% credibility level upper limits on the ratios of the branching
fractions relative to KΞ decay modes are obtained.

DOI: 10.1103/PhysRevD.100.032006

I. INTRODUCTION

Very recently a new state, the excited Ωð2012Þ
baryon, has been observed by the Belle collaboration [1]
in the ΞK invariant mass spectra using data samples
collected at the ϒð1S; 2S; 3SÞ energies, with measured
mass M ¼ ½2012.4� 0.7ðstatÞ � 0.6ðsystÞ� MeV=c2 and
width Γ¼ ½6.4�2.5ðstatÞ�1.6ðsystÞ�MeV. The observed
spacing in the Ω mass spectrum between the ground state
and this excited state (∼340 MeV=c2) is smaller than that
for other Ω− excited states [2], and is more similar to the
negative-parity orbital excitations of many other baryon
pairs such as Λ and Λð1405Þ or Λþ

c and Λþ
c ð2595Þ.

After the initial observation of the Ωð2012Þ, several
theoretical interpretations of that state were offered [3–11].
Although it is generally accepted that Ωð2012Þ is a 1P
orbital excitation of the ground-state Ω baryon with quark
content sss and quantum numbers JP ¼ 3

2
−, Refs. [7–10]

propose an alternative interpretation as a KΞð1530Þ had-
ronic molecule. These models predict a large decay width
for Ωð2012Þ → KπΞ. In Ref. [7], the decay Ωð2012Þ →
KπΞ is predicted to dominate over Ωð2012Þ → KΞ, while
in Refs. [8–10], the production rates of the Ωð2012Þ are
almost similar in KπΞ and KΞ decay channels. The authors
in Ref. [11] also discuss the three-body decay of the
Ωð2012Þ. They regard Ωð2012Þ as a member of the
compact decuplet states only if the sum of branching
fractions of the Ωð2012Þ → KπΞ and Ωð2012Þ → Ωππ
is not too large (< 70%).

In this paper, we report on a search for Ωð2012Þ →
KΞð1530Þ → KπΞ using ϒð1S; 2S; 3SÞ data samples col-
lected by the Belle experiment at the KEKB asymmetric-
energy eþe− collider [12,13]. Note that charge-conjugate
modes are implied throughout, unless explicitly stated
otherwise.

II. THE DATA SAMPLE AND BELLE DETECTOR

The Belle data used in this analysis correspond to
5.7 fb−1 of integrated luminosity at the ϒð1SÞ resonance,
24.9 fb−1 at the ϒð2SÞ resonance, and 2.9 fb−1 at the
ϒð3SÞ resonance. The Belle detector [14,15] is a large
solid-angle magnetic spectrometer consisting of a silicon
vertex detector (SVD), a 50-layer central drift chamber
(CDC), an array of aerogel threshold Cherenkov counters
(ACC), a barrellike arrangement of time-of-flight scintilla-
tion counters (TOF), and an electromagnetic calorimeter
comprised of CsI(Tl) crystals (ECL) located inside a
superconducting solenoid coil providing a 1.5 T magnetic
field. An iron flux-return yoke instrumented with resistive
plate chambers (KLM) located outside the coil is used to
detect K0

L mesons and to identify muons.
Large signal Monte Carlo (MC) samples (1 million

events for each studied process) are generated using the
EVTGEN [16] code to simulate the expected signal event
topology and estimate the signal detection efficiency.
The processes ϒð1S; 2S; 3SÞ → Ωð2012Þ þ anything →
KΞð1530Þ þ anything → KπΞþ anything are simulated;
the mass and width ofΩð2012Þ are fixed at 2.0124 GeV=c2

and 6.4 MeV [1], respectively. To assess possible back-
grounds arising from the continuum (eþe− → qq̄ with
q ¼ u, d, s, c), we generate such events at center-of-mass
energies of ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ resonances using the
Lund fragmentation model in PYTHIA [17]. Inclusive ϒð1SÞ
and ϒð2SÞ MC samples, corresponding to four times the
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luminosity of the data, are produced using PYTHIA and are
used to identify possible peaking backgrounds from ϒð1SÞ
and ϒð2SÞ decays.

III. SEARCH FOR Ωð2012Þ → KΞð1530Þ → KπΞ

A. Event selection

The combined information from the CDC, TOF, and
ACC is used to identify charged kaons and pions based on
the kaon likelihood ratio, RK ¼ LK=ðLK þ LπÞ, where LK
and Lπ are the likelihood values for the kaon and pion
hypotheses, respectively. Tracks with RK ¼ LK=ðLK þ
LπÞ < 0.4 are identified as pions with an efficiency of
96%, while 8% of kaons are misidentified as pions; tracks
with RK > 0.6 are identified as kaons with an efficiency of
95%, while 6% of pions are misidentified as kaons.
An ECL cluster is treated as a photon candidate if it does

not match the extrapolation of any charged track recon-
structed by the tracking systems (CDC and SVD) into the
calorimeter. The π0 candidates are reconstructed from two
photons having energy exceeding 50 MeV in the barrel or
100 MeV in the endcaps. To avoid contamination from
neutral hadrons, we reject neutral showers if the ratio of the
energy deposited in the central array of 3 × 3 ECL cells to
that deposited in the surrounding array of 5 × 5 cells is less
than 0.8. The π0 → γγ candidates are also required to have
an energy balance parameter jE1 − E2j=ðE1 þ E2Þ smaller
than 0.8, where E1 (E2) is the energy of the first (second)

photon in the laboratory frame. To further reduce the
combinatorial background, the momentum of the π0

candidate is required to exceed 200 MeV=c. We define
the π0 signal region as jMγγ −mπ0 j < 12 MeV=c2 (∼2σ),
where mπ0 is the π

0 nominal mass [2]. For each selected π0

candidate a mass-constrained fit is performed to improve its
momentum resolution.
The K0

S candidates are reconstructed via the K
0
S → πþπ−

decay, and the identification is enhanced by selecting on the
outputs of a neural network [18]. The network uses the
following input variables [19]: the K0

S momentum in the lab
frame, the distance along the z axis between the two track
helices at their closest approach, the K0

S flight length in the
r − ϕ plane, the angle between the K0

S momentum and the
vector joining the interaction point (IP) to the K0

S decay
vertex, the angle between the pion momentum and the lab
frame direction in the K0

S rest frame, the distances of closest
approach in the r − ϕ plane between the IP and the two
pion helices, the number of hits in the CDC for each pion
track, and the presence or absence of hits in the SVD for
each pion track.
Candidate Λ decays are reconstructed from pπ− pairs

with a production vertex significantly separated from the IP.
For the Ξ−ð→ Λπ−Þ and Ξ0ð→ Λπ0Þ candidates, the vertex
fits are performed and the positive Ξ− and Ξ0 flight
distances are required. The selected Ξ−ð→ Λπ−Þ and Ξ0ð→
Λπ0Þ candidates are the same as those in Ref. [1]. The Ξ−
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FIG. 1. Distributions of (a) MðΞð1530Þ0K−Þ versus MðΞ−πþÞ, (a) MðΞð1530Þ−K0
SÞ versus MðΞ−π0Þ, (a) MðΞð1530Þ−K0

SÞ versus
MðΞ0π−Þ, and (d) MðΞð1530Þ0K−Þ versus MðΞ0π0Þ from signal MC samples. The dotted lines bound the Ξð1530Þ signal region.
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and Ξ0 are kinematically constrained to their nominal
masses [2], and then combined with a π� or π0 to form
a Ξð1530Þ− or Ξð1530Þ0 candidate. Finally, the selected
Ξð1530Þ candidate is combined with a K− or K0

S to form
the Ωð2012Þ candidate. In this last step, a vertex fit is
performed for the KπΞ final state to improve the momen-
tum resolutions and suppress the backgrounds, requiring
χ2vertex < 20, corresponding to an estimated selection
efficiency exceeding 95%. Reconstruction spans the
Ωð2012Þ− → Ξ−πþK−, Ξ−π0K0

S, Ξ0π−K0
S, and Ξ0π0K−

three-body decay modes of Ωð2012Þ.
Before searching for Ωð2012Þ → KΞð1530Þ → KπΞ, a

cross-check on the previously reconstructed Ωð2012Þ →
ΞK decay mode is performed. Selection of Ωð2012Þ− →
Ξ−K0

S=Ξ0K− candidates uses well-reconstructed tracks,
particle identifications, and vertex fitting technique in a
way similar to the methods in Ref. [1]. As a result, the
signal yields from the simultaneous fit of the Ωð2012Þ− →
Ξ−K0

S and Ωð2012Þ− → Ξ0K− are 283� 72 and 239� 47,
respectively. The obtained mass and width for the Ωð2012Þ
areM ¼ ð2012.1� 0.7Þ MeV=c2 and Γ ¼ ð6.9þ2.5

−2.0Þ MeV,
where the uncertainties are statistical only. Our results are
consistent with those in Ref. [1] within errors.

B. The distributions from signal MC samples

After all event selection requirements, Fig. 1 shows the
distributions of the ΞπK invariant mass versus the Ξπ
invariant mass from signal MC samples. Due to phase

space limitations, events at high Ξπ and/or low ΞπK
mass are kinematically forbidden. We define the opti-
mized Ξð1530Þ signal region as 1.49 GeV=c2 < MðΞπÞ <
1.53 GeV=c2 (discussed below), between the blue dashed
lines in Fig. 1.
The invariant mass distributions from MC

signal simulations of Ξð1530Þ0ð→ Ξ−πþ=Ξ0π0ÞK− and
Ξð1530Þ−ð→ Ξ−π0=Ξ0π−ÞK0

S are shown in Fig. 2. The
signal shape of the Ωð2012Þ is described by a Breit-Wigner
(BW) function convolved with a Gaussian function, where
the BW mass and width are fixed to 2.0124 GeV=c2 and
6.4 MeV [1], respectively, and the mass-resolution, i.e.,
Gaussian width is determined in the fit.

C. Ξð1530Þ signals in ϒð1S;2S;3SÞ data
After imposing our selection criteria, the invariant mass

spectra of Ξð1530Þ0→Ξ−πþ;Ξ0π0, and Ξð1530Þ−→Ξ−π0;
Ξ0π− candidates are shown in Figs. 3(a)–3(d). Clear signals
of Ξð1530Þ0 and Ξð1530Þ− are observed in the modes
Ξð1530Þ0 → Ξ−πþ and Ξð1530Þ− → Ξ−π0, Ξ0π−.
We fit all the invariant mass distributions, modeling

the Ξð1530Þ peaks with the convolution of a BW and a
Gaussian function and the background as a second-order
polynomial. In the fits, the BW parameters are uncon-
strained, while the Gaussian widths are fixed according to
MC simulations. The fit values are consistent with the
world averages within their respective errors [2]. For
Ξð1530Þ0 → Ξ0π0, the mass and width of Ξð1530Þ0 are
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FIG. 2. The distributions of the invariant mass of (a) Ξð1530Þ0ð→ Ξ−πþÞK−, (b) Ξð1530Þ−ð→ Ξ−π0ÞK0
S, (c) Ξð1530Þ−ð→ Ξ0π−ÞK0

S,
and (d) Ξð1530Þ0ð→ Ξ0π0ÞK− in the signal MC samples. The solid curves show the fitted results.
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fixed to the Particle Data Group (PDG) values [2] since the
signal is not clear due to large combinatorial backgrounds.
The results of the fits are listed in Table I.

D. Ωð2012Þ → ΞπK mass distributions
in ϒð1S;2S;3SÞ data

Considering phase space limitations and our finite
mass resolution, we require 1.49 GeV=c2 < MðΞπÞ <
1.53 GeV=c2 to select Ξð1530Þ signals as efficiently as
possible, as indicated by the red arrows in Fig. 3. We
optimize this requirement by maximizing the figure
of merit Nsig=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsig þ Nbkg

p
value with the mode

Ωð2012Þ− → Ξð1530Þ0ð→ Ξ−πþÞK−, where Nsig is num-
ber of fitted signal events in the signal MC sample
assuming Bðϒð1S; 2S; 3SÞ → Ωð2012Þ− þ anythingÞ ×
BðΩð2012Þ− → Ξð1530Þ0K−Þ ¼ 10−6 and Nbkg is the
number of estimated background events in the Ωð2012Þ−

signal region using inclusive MC samples. The candidate
signal region for the Ξð1530Þ coincides with the predicted
mass interval from Ref. [9].
After application of the above selection criteria, Fig. 4

shows the invariant mass distributions of Ξð1530Þ0ð→
Ξ−πþ=Ξ0π0ÞK− and Ξð1530Þ−ð→ Ξ−π0=Ξ0π−ÞK0

S. From
these distributions, no obvious Ωð2012Þ− signal is
observed. The shapes of the Ωð2012Þ signals in the fits
are described by BW functions convolved with Gaussian
resolution functions; the background shapes are described
by a threshold function. The parameters of the BW functions
are fixed to the mass and width of the Ωð2012Þ [1], and
the mass resolutions are fixed to those from fits to
signal MC samples (1.5, 2.6, 1.7, and 2.8 MeV for the
Ωð2012Þ→Ξð1530Þ0ð→Ξ−πþÞK−, Ξð1530Þ−ð→Ξ−π0ÞK0

S,
Ξð1530Þ−ð→ Ξ0π−ÞK0

S, and Ξð1530Þ0ð→ Ξ0π0ÞK− decay
modes, respectively). The threshold function has the form
ðMðΞKπÞ−xÞα exp½c1ðMðΞKπÞ−xÞþc2ðMðΞKπÞ−xÞ2�,
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FIG. 3. Invariant mass distributions for (a) Ξð1530Þ0 → Ξ−πþ, (b) Ξð1530Þ− → Ξ−π0, (c) Ξð1530Þ− → Ξ0π−, and
(d) Ξð1530Þ0 → Ξ0π0 candidates from the ϒð1S; 2S; 3SÞ data samples. Solid curves are the best fits, and dashed lines represent
backgrounds. Red arrows indicate the Ξð1530Þ signal region for the Ωð2012Þ search, which is offset from the peak owing to the very
limited allowed phase space.

TABLE I. Mass resolution from MC simulations, and the mass and width for inclusive Ξð1530Þ signals from fits to the Belle data.

Mode Resolution (MeV=c2) Mass (MeV=c2) Width (MeV)

Ξð1530Þ0 → Ξ−πþ 2.34� 0.14 1532.47� 0.03 9.0� 0.3
Ξð1530Þ− → Ξ−π0 2.96� 0.17 1535.07� 0.37 12.9� 1.8
Ξð1530Þ− → Ξ0π− 2.44� 0.15 1535.11� 0.09 10.6� 0.2
Ξð1530Þ0 → Ξ0π0 4.14� 0.26 1531.80 (PDG value) 9.1 (PDG value)
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where the parameters α, c1, and c2 are free; the
threshold parameter x is fixed at 1.97 GeV=c2 from the
MC simulations. The yields of Ωð2012Þ signal events
from the unbinned extended maximum-likelihood fits
are obtained; they are listed in Table II, together with
the reconstruction efficiency, signal significance, and the
upper limit at 90% credibility level [20] (C.L.) on the
signal yield for each Ωð2012Þ decay mode. In addition,
no peaking backgrounds are found from the inclusive MC
samples.

E. The ratios of the branching fractions
for Ωð2012Þ → KπΞ relative to KΞ

We define the ratios RΞ−πþK−

Ξ−K̄0 , RΞ−π0K̄0

Ξ−K̄0 , RΞ0π−K̄0

Ξ0K− ,
RΞ−πþK−

Ξ0K− , RΞ0π−K̄0

Ξ−K̄0 , and RΞ0π0K−

Ξ0K− and determine their values
as follows:

RΞ−πþK−

Ξ−K̄0 ¼BðΩð2012Þ→Ξð1530Þ0ð→Ξ−πþÞK−Þ
BðΩð2012Þ→Ξ−K̄0Þ

¼Nfit
1 ×ε5×BðK0

S→πþπ−Þ×BðK̄0→K0
SÞ

Nfit
5 ×ε1

; ð1Þ

RΞ−π0K̄0

Ξ−K̄0 ¼ BðΩð2012Þ → Ξð1530Þ−ð→ Ξ−π0ÞK̄0Þ
BðΩð2012Þ → Ξ−K̄0Þ

¼ Nfit
2 × ε5

Nfit
5 × ε2 × Bðπ0 → γγÞ ; ð2Þ

RΞ0π−K̄0

Ξ0K− ¼BðΩð2012Þ→Ξð1530Þ−ð→Ξ0π−ÞK̄0Þ
BðΩð2012Þ→Ξ0K−Þ

¼ Nfit
3 ×ε6

Nfit
6 ×ε3×BðK0

S→πþπ−Þ×BðK̄0→K0
SÞ
; ð3Þ
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FIG. 4. The distributions of the invariant mass for (a) Ξð1530Þ0ð→ Ξ−πþÞK−, (b) Ξð1530Þ−ð→ Ξ−π0ÞK0
S, (c) Ξð1530Þ−ð→ Ξ0π−ÞK0

S,
and (d) Ξð1530Þ0ð→ Ξ0π0ÞK− from the ϒð1S; 2S; 3SÞ data samples. The solid curves are the best fits, and the dashed lines represent the
backgrounds.

TABLE II. The reconstruction efficiency (ε), signal significance (σ), signal yield (Nfit), and the upper limit at 90% C.L. (NUL) on the
signal yield for each Ωð2012Þ decay mode.

Mode ε (%) σ Nfit NUL

Ωð2012Þ− → Ξð1530Þ0ð→ Ξ−πþÞK− 8.71� 0.06 1.8 22.5� 12.9 41.0
Ωð2012Þ− → Ξð1530Þ−ð→ Ξ−π0ÞK0

S 1.26� 0.01 … −3.5� 11.6 16.6
Ωð2012Þ− → Ξð1530Þ−ð→ Ξ0π−ÞK0

S 2.06� 0.02 … −1.0� 3.6 7.2
Ωð2012Þ− → Ξð1530Þ0ð→ Ξ0π0ÞK− 0.75� 0.01 … −12.0� 9.8 13.2
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RΞ0π0K−

Ξ0K− ¼ BðΩð2012Þ → Ξð1530Þ0ð→ Ξ0π0ÞK−Þ
BðΩð2012Þ → Ξ0K−Þ

¼ Nfit
4 × ε6

Nfit
6 × ε4 × Bðπ0 → γγÞ ; ð4Þ

RΞ−πþK−

Ξ0K− ¼ BðΩð2012Þ → Ξð1530Þ0ð→ Ξ−πþÞK−Þ
BðΩð2012Þ → Ξ0K−Þ

¼ Nfit
1 × ε6 × BðΞ0 → Λπ0Þ × Bðπ0 → γγÞ

Nfit
6 × ε1 × BðΞ− → Λπ−Þ ; ð5Þ

RΞ0π−K̄0

Ξ−K̄0 ¼ BðΩð2012Þ → Ξð1530Þ−ð→ Ξ0π−ÞK̄0Þ
BðΩð2012Þ → Ξ−K̄0Þ

¼ Nfit
3 × ε5 × BðΞ− → Λπ−Þ

Nfit
5 × ε3 × BðΞ0 → Λπ0Þ × Bðπ0 → γγÞ ; ð6Þ

where the errors are statistical only; Nfit
1 , N

fit
2 , N

fit
3 , N

fit
4 , N

fit
5 ,

and Nfit
6 are the fitted signal yields in the modes

Ωð2012Þ−→Ξð1530Þ0ð→Ξ−πþÞK−,Ξð1530Þ−ð→Ξ−π0ÞK̄0,
Ξð1530Þ−ð→ Ξ0π−ÞK̄0, Ξð1530Þ0ð→ Ξ0π0ÞK−, Ξ−K0

S, and
Ξ0K−, respectively; ε1, ε2, ε3, ε4, ε5, and ε6 are the
corresponding efficiencies for each mode. The values
of Nfit

1 , Nfit
2 , Nfit

3 , Nfit
4 , ε1, ε2, ε3, and ε4 are listed in

Table II. The values of Nfit
5 , N

fit
6 , ε5, and ε6 are 279� 71,

242� 48, ð15.7� 0.2Þ%, and ð4.0� 0.1Þ%. In our calcu-
lations, we use the standard value of BðK̄0 → K0

SÞ ¼ 0.5.
Finally, the values of the RΞ−πþK−

Ξ−K̄0 , RΞ−π0K̄0

Ξ−K̄0 , RΞ0π−K̄0

Ξ0K− ,

RΞ0π0K−

Ξ0K− ,RΞ−πþK−

Ξ0K− , andRΞ0π−K̄0

Ξ−K̄0 are obtained; they are listed
in Table III.

F. Simultaneous fit results

Considering that the branching fractions of Ωð2012Þ− →
Ξ−K̄0 and Ωð2012Þ− → Ξ0K− and the ratios of branching
fractions of the three-body decay modes of Ωð2012Þ are
known, the ratio of expected signal yields between
each Ωð2012Þ three-body decay mode can be calculated.
With such constraints, we perform a simultaneous fit

to obtain the upper limit on RΞπK
ΞK ¼ BðΩð2012Þ →

Ξð1530Þð→ ΞπÞKÞ=BðΩð2012Þ → ΞKÞ.
Taking BðΩð2012Þ−→Ξ−K̄0Þ∶BðΩð2012Þ−→Ξ0K−Þ¼

1.0∶1.2 [1] and BðΩð2012Þ− → Ξð1530Þ0ð→ Ξ−πþÞK−Þ∶
BðΩð2012Þ− → Ξð1530Þ−ð→ Ξ−π0ÞK̄0Þ∶BðΩð2012Þ− →
Ξð1530Þ−ð→Ξ0π−ÞK̄0Þ∶BðΩð2012Þ−→Ξð1530Þ0ð→ Ξ0π0Þ
K−Þ ¼ 2∶1∶2∶1 according to isospin symmetry, we derive
that RΞ−πþK−

Ξ−K̄0 ∶RΞ−π0K̄0

Ξ−K̄0 ∶RΞ0π−K̄0

Ξ0K− ∶RΞ0π0K−

Ξ0K− ¼ 1∶ 1
2
∶ 1
1.2 ∶

1
2.4.

Thus, according to Eqs. (1)–(4), we have:

Nfit
1 ∶Nfit

2 ∶Nfit
3 ∶Nfit

4 ¼ 87.2%∶2.2%∶7.0%∶3.6%: ð7Þ

An unbinned extended maximum-likelihood simultane-
ous fit to all three-body decay modes is now performed. In
the simultaneous fit, the ratios of the expected observed
Ωð2012Þ signals between each decay channel are fixed
according to Eq. (7). The functions used to describe the
signal and background shapes are parametrized as before.
The fit result is shown in Fig. 5 from the combined
ϒð1S; 2S; 3SÞ data samples, corresponding to a total fit
yield of 22.4� 14.0. The statistical significance of the
Ωð2012Þ signal is 1.6σ. Finally, we determine

RΞπK
ΞK ¼ BðΩð2012Þ → Ξð1530Þð→ ΞπÞKÞ

BðΩð2012Þ → ΞKÞ
¼ ð6.0� 3.7ðstatÞ � 1.3ðsystÞÞ%; ð8Þ

where BðΩð2012Þ→Ξð1530Þð→ΞπÞKÞ¼BðΩð2012Þ−→
Ξð1530Þ0ð→Ξ−πþÞK−Þ þ BðΩð2012Þ−→Ξð1530 Þ−ð →
Ξ−π0 ÞK̄0 Þ þ BðΩð2012Þ− → Ξð1530 Þ−ð→Ξ0π−ÞK̄0Þþ
BðΩð2012Þ−→Ξð1530Þ0ð→Ξ0π0ÞK−Þ and BðΩð2012Þ→
ΞKÞ¼BðΩð2012Þ−→Ξ−K̄0ÞþBðΩð2012Þ−→Ξ0K−Þ. In
the calculations, each branching fraction is determined
individually. Systematic uncertainties are detailed below.

TABLE III. The values of the RΞ−πþK−

Ξ−K̄0 , RΞ−π0K̄0

Ξ−K̄0 , RΞ0π−K̄0

Ξ0K− ,
RΞ0π0K−

Ξ0K− , RΞ−πþK−

Ξ0K− , and RΞ0π−K̄0

Ξ−K̄0 .

The ratio The value

RΞ−πþK−

Ξ−K̄0
ð5.0� 2.9Þ%

RΞ−π0K̄0

Ξ−K̄0
ð−15.8� 52.3Þ%

RΞ0π−K̄0

Ξ0K−
ð−2.3� 8.4Þ%

RΞ0π0K−

Ξ0K−
ð−26.8� 21.9Þ%

RΞ−πþK−

Ξ0K− ð4.2� 2.5Þ%
RΞ0π−K̄0

Ξ−K̄0
ð−2.8� 10.0Þ% 2K) GeV/cπΞM(
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FIG. 5. The final simultaneous fit result to all three-body
Ωð2012Þ decay modes from the combined ϒð1S; 2S; 3SÞ data
samples. The solid curve is the best fit, and the dashed line
represents the backgrounds.
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G. Systematic uncertainties

We now discuss the systematic uncertainties inherent in
our measurements of the ratiosRΞ−πþK−

Ξ−K̄0 ,RΞ−π0K̄0

Ξ−K̄0 ,RΞ0π−K̄0

Ξ0K− ,
RΞ0π0K−

Ξ0K− , RΞ−πþK−

Ξ0K− , RΞ0π−K̄0

Ξ−K̄0 , and RΞπK
ΞK . These include

detection efficiency (tracking efficiency, kaon and pion
particle ID, Λ, K0

S, and π0 reconstruction), the statistical
error in theMCefficiency, the branching fractions of possible
intermediate states, the Ωð2012Þ resonance parameters, any
possible bias in reconstructed mass (as evaluated from the
difference between the reconstructed Ξ0 mass and the world
average value), as well as the overall fit uncertainty.
Based on a study of D�þ → D0ð→ K0

Sπ
þπ−Þπþ, the

uncertainty in tracking efficiency is taken to be 0.35% per
track. The uncertainties in particle identification are studied
via a low-background sample of D� decay for charged
kaons and pions. The studies show uncertainties of 1.3%
for each charged kaon and 1.1% for each charged pion. The
uncertainty in Λ selection is 3% [21]. Differences in K0

S
selection efficiency determined from data and MC simu-
lation give a relation of 1 − εdata=εMC ¼ ð1.4� 0.3Þ% [22];
1.7% is taken as a conservative systematic uncertainty.
For π0 reconstruction, the efficiency correction and sys-
tematic uncertainty are estimated from a sample of
τ− → π−π0ν. We find a 2.25% systematic uncertainty
on π0 reconstruction efficiency. In the measurements
of RΞ−πþK−

Ξ−K̄0 , RΞ−π0K̄0

Ξ−K̄0 , RΞ0π−K̄0

Ξ0K− , RΞ−πþK−

Ξ0K− , RΞ0π−K̄0

Ξ−K̄0 , and

RΞ0π0K−

Ξ0K− , the common sources of systematic uncertainties
such as Ξ selection cancel; the individual errors are
summed in quadrature to obtain the total detection effi-
ciency uncertainty. For the measurement of RΞπK

ΞK , to
determine the total detection efficiency, the systematic
errors for each final state and the errors from tracking,
particle identification, Λ, K0

S, and π
0 reconstruction are first

summed in quadrature to obtain σi. Then, the total
systematic uncertainty for detection efficiency (σDE) is
determined using standard error propagation as follows:

σDE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣiðWi × σiÞ2
ðΣiWiÞ2

þ ΣjðWj × σjÞ2
ΣjðWjÞ2

s
¼ 7.3% ð9Þ

Here, Wi is the weight factor of the branching fraction in
the ith (i ¼ 0, 1, 2, 3) mode of the Ωð2012Þ → ΞπK decay;
Wj (j ¼ 0, 1) is the relative weight for the jth mode of
Ωð2012Þ → ΞK decay.
The statistical uncertainty in the determination of the

efficiency from MC simulations is less than 1.0%. In the
calculation of RΞπK

ΞK , only the branching fractions of
intermediate states BðK0

S → πþπ−Þ and Bðπ0 → γγÞ are
included; the corresponding uncertainties are 0.072% and
0.035% [2], respectively, which are sufficiently small to be
neglected. The uncertainty in the Ωð2012Þ resonance
parameters is estimated by toggling the values of resonance
mass and width by �1σ and refitting. The largest
differences compared to the nominal fit results are taken
as the systematic uncertainties associated with the Ωð2012Þ
resonance parameters. The uncertainty in the Ξ0 mass is
estimated by comparing the numbers of the signal yields of
the Ωð2012Þ for the case where the mass of the recon-
structed Ξ0 is fixed at the found peak value versus the case
where the mass is fixed to the nominal mass [2]. According
to the Ξð1530ÞK invariant mass distributions in inclusive
MC samples, we find that the threshold mass value falls
within the ½1.96; 1.98� GeV=c2 interval. The systematic
error in the background parametrization is estimated by
comparing the yields when the threshold mass is changed
by �10 MeV=c2 relative to the nominal fit (for which the
threshold is fixed at 1.97 GeV=c2). By extending the fitted
region of the MðΞπKÞ, e.g., 2.2 to 2.3 GeV=c2, the upper
limits at 90% C.L. on the Ωð2012Þ signal yields are not
changed. Such systematic uncertainty due to the fit region
can be neglected.
All the uncertainties are summarized in Table IV, and,

assuming all errors are independent, summed in quadrature
to give the total systematic uncertainty.

H. 90% C.L. upper limits

In the absence of any significant observed signals, upper
limits at 90% C.L. on the RΞ−πþK−

Ξ−K̄0 , RΞ−π0K̄0

Ξ−K̄0 , RΞ0π−K̄0

Ξ0K− ,

RΞ0π0K−

Ξ0K− , RΞ−πþK−

Ξ0K− , RΞ0π−K̄0

Ξ−K̄0 , and RΞπK
ΞK modes are deter-

mined by solving the equation

TABLE IV. Relative systematic errors (%) on the measurements of RΞ−πþK−

Ξ−K̄0 , RΞ−π0K̄0

Ξ−K̄0 , RΞ0π−K̄0

Ξ0K− , RΞ0π0K−

Ξ0K− , RΞ−πþK−

Ξ0K− , RΞ0π−K̄0

Ξ−K̄0 ,
and RΞπK

ΞK .

Source RΞ−πþK−

Ξ−K̄0 RΞ−π0K̄0

Ξ−K̄0 RΞ0π−K̄0

Ξ0K− RΞ0π0K−

Ξ0K− RΞ−πþK−

Ξ0K− RΞ0π−K̄0

Ξ−K̄0
RΞπK

ΞK

Detection efficiency 2.5 3.4 2.6 3.0 3.3 3.3 7.3
MC statistics 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Ωð2012Þ resonance parameters 10.7 33.5 41.3 27.8 10.7 41.3 6.1
Ξ0 mass … … 17.4 3.3 … 17.4 4.5
Background parameter 7.9 23.4 30.0 17.2 7.9 30.0 18.1

Sum in quadrature 13.6 41.0 54.0 33.0 13.7 54.1 21.0
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Z
tUL

0

F likelihoodðtÞdt=
Z þ∞

0

F likelihoodðtÞdt ¼ 90%; ð10Þ

where t is the assumed ratio of branching fractions, and
F likelihoodðtÞ is the corresponding maximized likelihood of
the data. To take into account systematic uncertainties, the
likelihood is convolved with a Gaussian function whose
width equals the corresponding total systematic uncer-
tainty. Finally, we obtain

RΞ−πþK−

Ξ−K̄0 ¼BðΩð2012Þ→Ξð1530Þ0ð→Ξ−πþÞK−Þ
BðΩð2012Þ→Ξ−K̄0Þ < 9.3%;

ð11Þ

RΞ−π0K̄0

Ξ−K̄0 ¼BðΩð2012Þ→Ξð1530Þ−ð→Ξ−π0ÞK̄0Þ
BðΩð2012Þ→Ξ−K̄0Þ < 81.1%;

ð12Þ

RΞ0π−K̄0

Ξ0K− ¼BðΩð2012Þ→Ξð1530Þ−ð→Ξ0π−ÞK̄0Þ
BðΩð2012Þ→Ξ0K−Þ < 21.3%;

ð13Þ

RΞ0π0K−

Ξ0K− ¼BðΩð2012Þ→Ξð1530Þ0ð→Ξ0π0ÞK−Þ
BðΩð2012Þ→Ξ0K−Þ < 30.4%;

ð14Þ

RΞ−πþK−

Ξ0K− ¼BðΩð2012Þ→Ξð1530Þ0ð→Ξ−πþÞK−Þ
BðΩð2012Þ→Ξ0K−Þ < 7.8%;

ð15Þ

RΞ0π−K̄0

Ξ−K̄0 ¼BðΩð2012Þ→Ξð1530Þ−ð→Ξ0π−ÞK̄0Þ
BðΩð2012Þ→Ξ−K̄0Þ < 25.6%;

ð16Þ
and

RΞπK
ΞK ¼BðΩð2012Þ→Ξð1530Þð→ΞπÞKÞ

BðΩð2012Þ→ΞKÞ < 11.9% ð17Þ

at 90% C.L.

IV. RESULTS AND DISCUSSION

In summary, using the data samples of 5.7 fb−1 ϒð1SÞ,
24.9 fb−1 ϒð2SÞ, and 2.9 fb−1 ϒð3SÞ collected by the
Belle detector, we have searched for the three-body
KπΞ decay of Ωð2012Þ for the first time. No significant
signals are observed, and we determine upper limits at
90% C.L. on the ratios of RΞ−πþK−

Ξ−K̄0 , RΞ−π0K̄0

Ξ−K̄0 , RΞ0π−K̄0

Ξ0K− ,

RΞ0π0K−

Ξ0K− , RΞ−πþK−

Ξ0K− , RΞ0π−K̄0

Ξ−K̄0 , and RΞπK
ΞK to be 9.3%, 81.1%,

21.3%, 30.4%, 7.8%, 25.6%, and 11.9%, respectively. Our
result strongly disfavors the molecular interpretation

proposed by Ref. [7], and is in tension with the predictions
of Refs. [8–11], also based on molecular interpretations.
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