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Abstract: Micro-perforated plates (MPPs) are acoustically important
elements in micro-electro-mechanical systems (MEMS). In this work an
analytical solution for perforated plates is combined with finite element
method (FEM) to develop formulas for the reactive and resistive end
effects of the perforations on the plate. The reactive end effect is found
to depend on the hole radius and porosity. The resistive end effect is
found to depend on hole radius only. FEM is also used to develop an
understanding of the loss mechanism that corresponds to the resistive
end effects. The developed models can be used in optimization studies
of the MEMS and MPPs.
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1. Introduction

Many micro-electro-mechanical systems (MEMS) devices include a fixed micro-
perforated plate. In MEMS devices, such as microphones and accelerometers, the per-
forations are designed to minimize damping between the moving and the fixed plates.
This damping phenomenon, often called squeezed-film damping, is typically one of the
major sources of noise in MEMS sensors (Kuntzman et al., 2018) and has been a sub-
ject of study in MEMS research (Younis, 2011). The squeezed-film damping includes
the damping of the squeezed air between two plates as well as the damping of the air
moving in and out through the perforations. The damping of the perforations includes
losses inside the holes as well as the so-called “end effects.” As air flows into and out
of the perforations, the air adjacent to the ends of the holes will be disturbed on both
sides of the plate, which is called the end effect.

Micro-perforated plates (MPPs) are widely used as sound absorption materials
in many noise control applications (Maa, 1998). Therefore, several research studies
have been conducted on the acoustic properties of the perforations over the past few
decades, for the MPP applications. Maa (1998) developed a solution for MPP imped-
ance based on a model of oscillatory, viscous flow in cylindrical tubes which included
end corrections for both resistive and reactive parts of the impedance. Several models
for the impedance of the MPPs have been proposed after Maa. Although most of the
models are in agreement about the hole impedance, there is not a general consensus on
the end corrections, especially the resistive end correction.

FEM can be used to study the acoustic behavior of MEMS devices. However,
using FEM simulations for the calculations of the total response of the system is com-
putationally expensive, time consuming, and inconvenient. Hence, analytical formulas
are desirable to use in calculations for optimizing the MEMS. In the present work, we
utilize the analytical solutions and FEM to derive formulas for the impedance of the
perforated plate component of the MEMS. First, an analytical solution for the imped-
ance of the perforated plates is derived using the low reduced-frequency (LRF)
method. Then FEM is used to calculate the resistive and reactive end corrections for
micro-perforated plates for a wide range of porosities applicable to both MEMS stud-
ies and MPP studies.

2. Impedance of micro-perforated plates

Here we use the LRF method for visco-thermal sound propagation in cylindrical pores
developed by Tijdeman (1975) to solve for the specific acoustic impedance of the
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micro-perforated plates. A schematic cross-section view of the perforated plate is
shown in Fig. 1(a).

For a cylindrical hole with an acoustic plane wave incident from the bottom,
if we assume the length (l) is large enough compared to the hole radius (so that the
end effects are negligible) and assume continuous pressure and volume velocity bound-
ary conditions at the interface, using the LRF method we find the intrinsic specific
acoustic impedance to be

Zs ¼
1

/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f kð Þ c� c� 1ð Þf kTð Þ

� �q ; (1)

where k ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0x=l

p
is the dimensionless shear wave-number, kT ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0cpx=j

p
is the

dimensionless thermal wave-number, r is the hole radius, q0 is the air density, x is the
angular frequency, l is the viscosity, cp is the specific heat at constant pressure, j is
the thermal conductivity, / is the porosity (ratio of the holes area to the total plate
area including the holes area), and we have defined

f ðkÞ ¼ 1� 2 J1
ffiffi
i
p

k
� �

ffiffi
i
p

k J0
ffiffi
i
p

k
� � ; (2)

where J0 and J1 are Bessel functions of the first kind of zeroth and first order, respec-
tively. Then using the impedance-translation theorem (Pierce, 1981), the dimensionless
specific acoustic impedance of the perforated plate is calculated

Z ¼ Zs
cosðklÞ � iZs sinðklÞ
Zs cosðklÞ � i sinðklÞ

� �
� 1; (3)

where c0 is the velocity of sound and

k ¼ ðx=c0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc� c� 1ð Þf ðkTÞÞ=f ðkÞ

p
: (4)

This solution includes both viscous and thermal losses. End effects are not included in
this solution. For plates with finite thickness, the end effects are significant and have to
be incorporated into the solution.

Maa’s solution which does not include the thermal losses is

Z ¼ ixl
/c0

ffiffi
i
p

kJ0
ffiffi
i
p

k
� �

ffiffi
i
p

kJ0
ffiffi
i
p

k
� �

� 2 J1
ffiffi
i
p

k
� �

" #
: (5)

It has been widely used by researchers for the impedance of perforated plates. For the
range of the parameters used in the present study, the LRF solution, Eq. (3), is very
close to Maa solution, Eq. (5). Equations (3) and (5) do not include the end effects.
The main difference in the different MPP impedance solutions presented in the litera-
ture is the way that the end corrections have been treated.

2.1 Reactive end correction

When the mass of air oscillates within the hole it travels a distance further than the
geometric thickness of the hole. The actual mass of the moving air is more than the
mass of the air inside the hole. This effect has been taken into account by adding a
correction length to the actual thickness of the hole (reactive end correction). Rayleigh
(1877) calculated the reactive end correction to be 16r=3p, including both sides of the

Fig. 1. (Color online) (a) Schematic cross-section view of a perforated plate. (b) Velocity at 1000 Hz in the 3 D
FEM domain for two adjacent cells.
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hole. Sivian (1935) proposed using Rayleigh’s value for both reactive and resistive end
corrections. However, he used two different values for the viscosity of the air inside
the hole with thermally conducting surface and for the end correction region with a
non-thermally conducting medium.

At high porosities when the spacing between the holes is small, the flows on
sides of the plate can interfere with each other. This interaction effect leads to a reduc-
tion in the total reactive end effect. Fok (Melling, 1973), assuming an infinitely thin
plate, developed a formula for the interaction effect

WFok /ð Þ ¼ 1� 1:409
ffiffiffiffi
/

p
þ 0:338

ffiffiffiffiffiffi
/3

q
þ 0:068

ffiffiffiffiffiffi
/5

q
� 0:023

ffiffiffiffiffiffi
/6

q
þ � � � : (6)

Melling (1973) multiplied the Rayleigh’s formula by the Fok function to take into
account the interaction effect.

Schultz et al. (2009) used Rayleigh’s value multiplied by the Fok function for
both reactance and resistance end corrections. Mechel and Munjal (2008) proposed
another variant of the interaction function

WMechel /ð Þ ¼ 1� 1:323
ffiffiffiffi
/
p

0 < / < 0:23;

0:786� 0:825
ffiffiffiffi
/
p

0:23 < / < 0:91:

(
(7)

In this work, we use Thermoviscous Acoustics module of the COMSOL FEM simulation
software to calculate the end effects for a hexagonal pattern of holes in the frequency
domain. Due to the uniform repetitive pattern of the holes only a single cell (a hole and
the hexagonal area surrounding it) is modeled. Also, due to the hexagonal symmetry of
the cell, a 3 D model that includes one-sixth of a cell is modeled. Symmetry boundary
condition is applied to the side edges of the cell to represent an infinite periodic arrange-
ment of holes. On the bottom side of the plate, an inlet velocity is applied to a surface
far enough from the plate to ensure a uniform plane wave incidence to the plate. On the
top side of the plate and far from the plate a perfectly matched layer (PML) is placed
which mimics infinite open air with no reflections. Isothermal and no-slip boundary con-
ditions are applied to all surfaces of the plate. Finite elements with quadratic velocity
and temperature shape functions, and linear pressure shape functions are used
(Kampinga, 2010). Figure 1(b) shows a cross-section of the velocity at 1000 Hz in the
FEM domain for two adjacent cells where the plate thickness is 3 lm, porosity is 0.5,
the air layer thickness on each side is 30 lm, and the thickness of the PML is 10 lm.

The specific acoustic impedance from the FEM is calculated from

ZFEM ¼
Pt � Pb

q0c0Q
; (8)

where Pt � Pb is the pressure difference between the top and bottom of the hole, and
Q is the mean velocity in the hole. Then an additional thickness (lei) is added to the
actual thickness of the plate (l) in Eq. (3) to take into account for the end effects. The
reactive end length correction (lei) is determined by varying it to fit the imaginary part
of the theoretical impedance [Eq. (3)] to the impedance calculated from the FEM.

A set of numerical simulations were conducted for porosities from 0.01 to 0.7,
the pitch values from 8 to 24 lm, and for plate thicknesses from 1 to 3 lm. Pitch is
defined as the center-to-center distance between adjacent holes. The reactive end length
correction was found to be a function of hole radius and porosity. The data were
found to fit the form

lei ¼
16r
3p

1�
ffiffiffiffi
/

p	 

(9)

using a least square method (R2 ¼ 0:98). At very low porosities, where the interaction
effects are negligible, this solution converges to Rayleigh’s solution. The interaction
effect was found to be a simple function of the porosity

W /ð Þ ¼ 1�
ffiffiffiffi
/

p
: (10)

In Fig. 2 the proposed interaction function, Eq. (10), is compared with Fok’s function
and Mechel’s function.

As shown in the figure, the correction function tends to unity as the porosity
tends to zero. At larger porosities as the holes get closer to each other the interaction
effects on both sides of the plates reduce the total end effect, so the interaction func-
tion decreases as porosities increases. The proposed simple function predicts smaller
correction values compared to the other two models.
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In Fig. 3 the reactive part of the normalized impedance calculated using the
Rayleigh’s end correction without any interaction correction, using the Fok function
for the interaction corrections, and also using the proposed model [Eq. (9)] are com-
pared with the results of COMSOL FEM simulations for a perforated plate with 3 lm
thickness and 16 lm pitch at 1000 Hz. As can be seen, all models are in a good agree-
ment at low porosities. They deviate from each other as the porosity increases. The
result given by the proposed formula is in a good agreement with the numerical results
in the whole range of porosities.

2.2 Resistive end correction

In previous studies, the source of the resistive end effect has been hypothesized to be
due to the surface energy dissipation due to the friction of the air at the surface of the
plate on both sides of the hole, as air moves in and out of the hole. This end effect
adds additional resistance to the resistance inside the holes. Prediction of this dissipa-
tion effect is not trivial. Sivian (1935) used Rayleigh’s length correction value (pro-
posed for the reactive part) for both reactive and resistive end corrections. Ingard
(1953) defined Rs ¼ 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lq0x

p
as the surface resistance, and calculated a resistance

correction of Re ¼ 2Rs to be added to the hole resistance. However, his experimental
results suggest using 4Rs instead. Melling (1973) and Schultz et al. (2009) used the
same end correction used for the reactive part (Rayleigh’s value multiplied by the Fok
function) for the resistive end length correction also. Guo et al. (2008) suggested using
2aRs where a ¼ 2 for holes with round edges and a ¼ 4 for holes with sharp edges.
Bolton and Kim (2010) used a time-domain incompressible computational fluid
dynamics model to numerically calculate a. They showed that a exhibits a dependence
on frequency, plate thickness, hole radius, and porosity. However, the dependence on
porosity was negligible and using curve fitting to the numerical results a was defined as

a ¼ ð14:1ðl=2rÞ þ 117Þ
ffiffi
f
p
; (11)

where f is the frequency. Temiz et al. (2014) used a similar approach for an incom-
pressible fluid in the frequency domain to calculate a formula for the end corrections

Fig. 2. (Color online) Comparison of the interaction functions.

Fig. 3. (Color online) Comparison of the perforated-plate reactance models.
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by curve fitting to the numerical results for 1 < k < 14, where k is defined following
Eq. (1). They calculated the resistive end corrections to be mainly a function of the
shear wave-number as

a ¼ � 0:12=k3
� �

þ 2:3=k2
� �

þ 2:76=kð Þ þ 1:48: (12)

There seems to be a lack of general agreement on the resistive end correction. Here,
using the same approach used for the reactive part, but now for the real part of the
impedance, we use the FEM results to calculate the resistive end length correction.
The resistive length correction was determined by curve fitting and using a least square
method (R2 ¼ 0:96). The resistive length correction was found to be dependent on the
radius of the hole only and the effect of other parameters was negligible

ler ¼ 0:94r: (13)

We find the resistive end correction to be independent of the porosity. Hence the inter-
action effects are found to be negligible for the resistive part of the impedance.

In Fig. 4(a), different models for the resistive part of the impedance with dif-
ferent end corrections are compared with the results of COMSOL FEM simulations and
with the proposed model for a perforated plate with 3 lm thickness and 16 lm pitch at
1000 Hz. Since the solutions of Ingard (1953), Guo et al. (2008), and Bolton and Kim
(2010) give very similar results for this case, they are represented with only one curve.
Similar to the reactive part, all models are in a good agreement at low porosities. The
models deviate from each other as the porosity increases. The result given by the pro-
posed formula is in a good agreement with the numerical results in the whole range of
porosities.

In order to understand the dissipation mechanism, the power dissipation den-
sity (with the unit of W=m3) in the FEM domain for two adjacent cells is shown in
Fig. 4(b). Most of the interior losses occur along the walls of the holes. The losses

Fig. 4. (Color online) (a) Comparison of the perforated-plate resistance models. (b) Power dissipation density.
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corresponding to the end effects occur in the caps within the flow immediately on top
and bottom of the holes [noted in Herdtle et al. (2013) also] not on the planar surfaces
on each side of the holes. This is in contradiction with the assumptions made in the lit-
erature over the past few decades, that assume the resistive end effects are due to the
friction losses at the planar surfaces on sides of the plates.

3. Conclusions

In this work, the acoustic end effects in micro-perforated plates are studied. Numerical
results of thermoviscous acoustic FEM are combined with the analytical solution for
cylindrical tubes to calculate the resistive and reactive end effect corrections. The reac-
tive end correction is found to depend on hole radius and porosity. The interaction
effect function is found to be a simple function of the porosity, different from previ-
ously proposed functions. The resistive end length correction is also calculated and
found to be a function of the hole radius only. The resistive end correction is found to
be approximately half of the reactive end correction at low porosities. Utilizing FEM,
it is shown that the resistive end effects are mostly due to the losses in the area imme-
diately on the top and bottom of the holes and not the friction on the planar surfaces.
This is in contradiction with the common hypotheses in the literature. The analytical
solution with the proposed end effect corrections matches the FEM results over a wide
range of porosities. The proposed model can be used in modeling and optimization
studies of MPP and MEMS.
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