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Morse–Bott split symplectic homology

Lúıs Diogo and Samuel T. Lisi

Abstract. We associate a chain complex to a Liouville domain (W, dλ)
whose boundary Y admits a Boothby–Wang contact form (i.e. is a pre-
quantization space). The differential counts Floer cylinders with cas-
cades in the completion W of W , in the spirit of Morse–Bott homology
(Bourgeois in A Morse–Bott approach to contact homology, Ph.D. The-
sis. ProQuest LLC, Stanford University, Ann Arbor 2002; Frauenfelder
in Int Math Res Notices 42:2179–2269, 2004; Bourgeois and Oancea in
Duke Math J 146(1), 71–174, 2009). The homology of this complex is
the symplectic homology of W (Diogo and Lisi in J Topol 12:966–1029,
2019). Let X be obtained from W by collapsing the boundary Y along
Reeb orbits, giving a codimension two symplectic submanifold Σ. Under
monotonicity assumptions on X and Σ, we show that for generic data,
the differential in our chain complex counts elements of moduli spaces
of cascades that are transverse. Furthermore, by some index estimates,
we show that very few combinatorial types of cascades can appear in
the differential.

Mathematics Subject Classification. 53D40, 53D42.
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1. Introduction and statement of main results

In this paper, we define Morse–Bott split symplectic homology theory for
Liouville manifolds W of finite-type whose boundary Y = ∂W is a prequan-
tization space. This is inspired by the construction of Bourgeois and Oancea
for positive symplectic homology, SH+ [8]. Our main result is that we obtain
transversality for all the relevant moduli spaces and thus have a well-defined
theory. This is obtained by means of generic choice of the geometric data, as
opposed to using abstract perturbations. This is an important preliminary
step in the computation of this chain complex in [13]. Furthermore, in [13], we
justify that the homology of this complex is indeed the symplectic homology
of W .

The main purpose of this definition of a split version of symplectic
homology is to enable computations in certain examples. For instance, we
expect to be able to compute symplectic homology for completions W of X\Σ,
where both X and Σ are smooth projective complete intersections. Many of
these examples fit in our framework and additionally enough is known about
their Gromov–Witten invariants for the computation to be possible. In [13,
Part 4], we illustrate our results by computing the well-known symplectic
homology of T ∗S2.

In the following, we consider a 2n-dimensional Liouville domain (W,dλ)
with ∂W = Y . Denoting by α = λ|Y the contact form on the boundary
induced by the Liouville form λ, we require that α is a Boothby–Wang con-
tact form, i.e. its Reeb vector field induces a free S1 action. Such a contact
manifold is also called a prequantization space. We let Σ2n−2 denote the quo-
tient by the Reeb vector field, and we note that dα descends to a symplectic
form ωΣ on the quotient. It follows that there exists a closed symplectic man-
ifold (X,ω) for which Σ is a codimension 2 symplectic submanifold, Poincaré
dual to a multiple of ω, with the property that (X\Σ, ω) is symplectomorphic
to (W\Y,dλ). See Proposition 2.1 for a more detailed description of this, or
see [21, Proposition 5]. We can think of X as the symplectic cut of W along Y .

We let (W,dλ) be the completion of W , obtained by attaching a cylin-
drical end R

+ × Y , and take a Hamiltonian H : R × Y → R with a growth
condition (see Definition 3.1 for details). This Hamiltonian will have Morse–
Bott families of 1-periodic orbits, and we then use the formalism of cascades
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(similar in style to the Morse–Bott theories of [5,19,27]) to construct a Morse–
Bott Floer homology associated with H. We also consider configurations that
interact between R × Y and W , as in [8].

In Sect. 3, we introduce the chain complex for split symplectic homol-
ogy, and in Sect. 4 we describe the moduli spaces that are relevant to the
differential. The chain complex will be generated by critical points of aux-
iliary Morse functions associated with our Morse–Bott manifolds of orbits.
The differential will be obtained from moduli spaces of Floer cylinders with
cascades together with asymptotic boundary conditions given in terms of the
auxiliary Morse functions.

We then prove three main results. The first is a transversality theorem
for “simple cascades”. These are elements of the relevant moduli spaces that
are also somewhere injective when projected to Σ. This result holds without
any monotonicity assumptions. A more precise formulation is provided in
Proposition 5.9.

Theorem 1.1. Simple Floer cylinders with cascades in W and R×Y are trans-
verse for a co-meagre set of compatible, Reeb-invariant and cylindrical almost
complex structures on (W,dλ).

Theorem 1.1 builds on a transversality theorem for moduli spaces of
spheres in X and in Σ, which may be of independent interest. This construc-
tion is somewhat analogous to the strings of pearls that Biran and Cornea
study in the Lagrangian case [3]. Our result builds essentially on results from
[29]. A more precise formulation is given in Proposition 5.26.

Theorem 1.2. For a generic compatible almost complex structure, moduli
spaces of somewhere injective spheres in Σ and of somewhere injective spheres
in X with order of contact constraints at Σ, connected by gradient trajecto-
ries, are transverse assuming no two spheres have the same image.

The third result builds on these two to describe the moduli spaces that
are relevant under suitable monotonicity assumptions on X and Σ. In par-
ticular, the differential is computed from only four types of simple cascades.
See Propositions 6.2 and 6.3 for more details.

Theorem 1.3. Assume that (X,ω) is spherically monotone with monotonic-
ity constant τX and assume that Σ ⊂ X is Poincaré dual to Kω with
τX > K > 0.

Then the split Floer homology of W is well defined, and does not depend
on the choice of Hamiltonian or of compatible, Reeb-invariant and cylindrical
almost complex structure on W (in a co-meagre set of such almost complex
structures).

The only moduli spaces of split Floer cylinders with cascades that count
in the differential are the following:
(0) Morse trajectories in Y or in W ;
(1) Floer cylinders in R×Y , projecting to non-trivial spheres in Σ, and with

asymptotics constrained by descending/ascending manifolds of critical
points in Y ;
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(2) holomorphic planes in W that converge to a generic Reeb orbit in Y ;
(3) holomorphic planes in W constrained to have a marked point in the

descending manifold of a Morse function in W and whose asymptotic
limit is constrained by the auxiliary Morse function on the manifold of
orbits in Y .

We remark that Cases (2) and (3) are non-trivial cascades, but their
components in R × Y lie in fibres of R × Y → Σ. This is formulated more
precisely in Propositions 6.2 and 6.3. See Figs. 4, 5 and 6 for a depiction of
Cases (1)–(3).

The paper concludes with a discussion of orientations of the moduli
spaces of cascades contributing to the differential, in Sect. 7.

2. Setup

We now provide details of the classes of Liouville manifolds for which we
prove transversality in split Floer homology.

We begin by summarizing some constructions from [13], specifically

Proposition 2.1 [13, Lemma 2.2]. Let (W,dλ) be a Liouville domain with
boundary Y = ∂W . Assume that α := λ|Y has a Reeb vector field generating
a free S1 action.

Then if Σ is the quotient of Y by the S1 action, and ωΣ is the symplectic
form induced from dα, there exists a symplectic manifold (X,ω) with Σ ⊂ X
so that ω|Σ = ωΣ, with the following properties:

(i) (X\Σ, ω) is symplectomorphic to (W\∂W,dλ);
(ii) [Σ] ∈ H2n−2(X; Q) is Poincaré dual to [Kω] ∈ H2(X; Q) for some

K > 0;
(iii) if NΣ denotes the symplectic normal bundle to Σ in X, equipped with

a Hermitian structure (and hence symplectic structure), there exist a
neighbourhood U of the 0-section in NΣ and a symplectic embedding
ϕ : U → X. By shrinking U as necessary, we may arrange that ϕ extends
to an embedding of U . �

Definition 2.2. Let X,ω, Σ, ωΣ and NΣ be as in Proposition 2.1.
Fix a Hermitian line bundle structure on the symplectic normal bundle

π : NΣ → Σ. A Hermitian connection on NΣ can be encoded in terms of a
connection 1-form Θ ∈ Ω1(NΣ\Σ) with the property that dΘ = −Kπ∗dωΣ.
Fix such a Hermitian connection 1-form Θ.

Since NΣ is a Hermitian line bundle, we have the action of U(1) on the
bundle by rotation in the C-fibres. The infinitesimal generator of this action
is a vector field on which Θ evaluates to 1.

Let ρ : NΣ → [0,+∞) denote the norm in NΣ measured with respect to
the Hermitian metric. Then, for each x ∈ NΣ\Σ, let ξx = (ker Θx ∩ ker dρ) ⊂
TxNΣ. We may then extend the distribution ξx smoothly to the 0-section by
defining ξx = TxΣ if x ∈ Σ.

Notice that this gives a splitting TxNΣ = ker dπ ⊕ ξx and dπ|ξ : ξx →
Tπ(x)Σ is a symplectic isomorphism.
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Any almost complex structure JΣ on Σ can then be lifted to an almost
complex structure on NΣ by taking it to be the linearization of the bundle
complex structure on ker dπ and to be the pull-back of JΣ to ξx by the
isomorphism dπ : ξx → Tπ(x)Σ.

We refer to any almost complex structure obtained in this way as a
bundle almost complex structure on NΣ.

Define the open set V = X\ϕ(U). We will later perturb our almost
complex structures in V.

Proposition 2.3 [13, Lemma 2.6]. Let W , Y , λ, α, X, Σ and ϕ : U → X be
as in Proposition 2.1.

Then there exists a diffeomorphism ψ : W → X\Σ with the following
properties:

(i) if JX in a compatible almost complex structure on X that restricts to
ϕ(U) as the push-forward by ϕ of a bundle almost complex structure,
then ψ∗JX is a compatible almost complex structure on W that is cylin-
drical and Reeb-invariant on W\W ;

(ii) if JW is a compatible almost complex structure on W , cylindrical and
Reeb invariant on W\W , then the push-forward ψ∗JW extends to an
almost complex structure JX on X and JΣ := JX |Σ is also given by
restricting JW to a parallel copy of {c} × Y for some c > 0, and taking
the quotient by the Reeb S1 action.

Furthermore, ψ may be taken to be radial, in the sense that for (r, y) ∈
[r0,+∞)×Y in the cylindrical end of W , r0 sufficiently large, then ψ(r, y) =
(ρ(r), y) ∈ NΣ\Σ. �

Note that the diffeomorphism ψ is not symplectic.
In Sect. 6.1, we impose additional conditions of monotonicity. These will

also be relevant to the grading given in Definition 3.4.

Definition 2.4. Given a symplectic manifold (X2n, ω) and a codimension-2
symplectic submanifold Σ2n−2 ⊂ X, say that (X,Σ, ω) is a monotone triple
if

(i) X is spherically monotone: there exists a constant τX > 0 so that for
each spherical homology class A ∈ HS

2 (X), ω(A) = τX〈c1(TX), A〉;
(ii) [Σ] ∈ H2n−2(X; Q) is Poincaré dual to [Kω] for some K > 0 with

τX > K.
In this case, we write ωΣ = ω|Σ.

Observe that Condition (ii) implies that (Σ, ωΣ) is spherically monotone,
monotonicity constant τΣ = τX − K.

We then obtain the following useful characterization of JW -holomorphic
planes in W (see also [23]):

Lemma 2.5 [13, Lemma 2.6]. Under the diffeomorphism of Proposition 2.3,
finite energy JW -holomorphic planes in W correspond to JX-holomorphic
spheres in X with a single intersection with Σ. The order of contact gives the
multiplicity of the Reeb orbit to which the plane converges.
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Proof. Under the map ψ, a finite energy JW -plane in W gives a JX -plane in
X\Σ. By the fact that ψ is radial, the restriction of ψ∗λ to the cylindrical
end [r0,+∞) × Y takes the form g(r)α for some function g with g′ > 0 and
limr→∞ g(r) = 1. It follows then that the integral of ψ∗dλ over the plane is
dominated by its Hofer energy as given in [10, Section 5.3]. Hence, the image
of the plane under the map is a plane in X\Σ with finite ω-area.

It follows then that the singularity at ∞ is removable by Gromov’s
removal of singularities theorem, and thus the plane admits an extension to
a JX -holomorphic sphere. The order of contact follows from considering the
winding around Σ of a loop near the puncture. �

We now formalize the class of almost complex structures that will be
relevant to this paper.

Definition 2.6. An admissible almost complex structure JX on X is compat-
ible with ω and its restriction to ϕ(U) is the push-forward by ϕ of a bundle
almost complex structure on NΣ.

An almost complex structure JW on (W,dλ) is admissible if JW =
ψ∗JX for an admissible JX . In particular, such almost complex structures
are cylindrical and Reeb-invariant on W\W .

A compatible almost complex structure JY on the symplectization R×Y
is admissible if JY is cylindrical and Reeb-invariant.

In the following, we will identify W with X\Σ by means of the diffeo-
morphism ψ and identify the corresponding almost complex structures. By an
abuse of notation, we will both write πΣ : Y → Σ to denote the quotient map
that collapses the Reeb fibres, and πΣ : R×Y → Σ to denote the composition
of this projection with the projection to Y .

Definition 2.7. Denote the space of almost complex structures in Σ that are
compatible with ωΣ by JΣ.

Let JY denote the space of admissible almost complex structures on
R × Y . Then the projection dπΣ induces a diffeomorphism between JY and
JΣ.

Let JW denote the space of admissible almost complex structures on
W . By Proposition 2.3, for any JW ∈ JW , we obtain an almost complex
structure JΣ.

Denote this map by P : JW → JΣ. This map is surjective and open by
Proposition 2.3. For any given JΣ ∈ JΣ, P−1(JΣ) consist of almost complex
structures on W that differ in W , or equivalently, can be identified (using ψ)
with almost complex structures on X that differ in V = X\ϕ(U).

3. The chain complex

We will now describe the chain complex for the split symplectic homology
associated with W .

Definition 3.1. Let h : (0,+∞) → R be a smooth function with the following
properties:
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Figure 1. An admissible Hamiltonian and the graphical
procedure for computing the action of a periodic orbit

(i) h(ρ) = 0 for ρ � 2;
(ii) h′(ρ) > 0 for ρ > 2;
(iii) h′(ρ) → +∞ as ρ → ∞;
(iv) h′′(ρ) > 0 for ρ > 2.

An admissible Hamiltonian H : R × Y → R is given by H(r, y) = h(er).
Since this Hamiltonian H(r, y) = 0 for all r � ln 2, we will also take H = 0
on W when considering cascades with components in W . See Fig. 1.

Since ω = d(er α) on R+ × Y , the Hamiltonian vector field associated
with H is h′(er)R, where R is the Reeb vector field associated with α. The
fibres of Y → Σ are periodic Reeb orbits. Their minimal periods are T0 :=∫

π−1
Σ (p)

α, for p ∈ Σ. The 1-periodic orbits of H are thus of two types:

(1) constant orbits: one for each point in W and at each point in
(−∞, log 2] × Y ⊂ R × Y ;

(2) non-constant orbits: for each k ∈ Z+, there is a Y -family of 1-periodic
XH -orbits, contained in the level set Yk := {bk} × Y , for the unique
bk > log 2 such that h′(ebk) = kT0. Each point in Yk is the starting
point of one such orbit.

Remark 3.2. Notice that these Hamiltonians are Morse–Bott non-degenerate
except at {log 2}×Y . These orbits will not play a role because they can never
arise as boundaries of relevant moduli spaces (see [13, Lemma 4.8]).

Recall that a family of periodic Hamiltonian orbits for a time-dependent
Hamiltonian vector field is said to be Morse–Bott non-degenerate if the con-
nected components of the space of parametrized 1-periodic orbits form man-
ifolds, and the tangent space of the family of orbits at a point is given by
the eigenspace of 1 for the corresponding Poincaré return map. (Morse non-
degeneracy requires the return map not to have 1 as an eigenvalue and hence
such periodic orbits must be isolated.)

We also fix some auxiliary data, consisting of Morse functions and vector
fields. Fix throughout a Morse function fΣ : Σ → R and a gradient-like vector
field ZΣ ∈ X(Σ), which means that 1

c |dfΣ|2 � dfΣ(ZΣ) � c|dfΣ|2 for some
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constant c > 0. Denote the time-t flow of ZΣ by ϕt
ZΣ

. Given p ∈ Crit(fΣ),
its stable and unstable manifolds (or ascending and descending manifolds,
respectively) are

W s
Σ(p) :=

{
q ∈ Σ| lim

t→∞ ϕ−t
ZΣ

(q) = p
}

, Wu
Σ(p) :=

{

q ∈ Σ| lim
t→−∞ ϕ−t

ZΣ
(q) = p

}

.

(3.1)
Notice the sign of time in the flow, so that these are the stable/unstable man-
ifolds for the flow of the negative gradient. We further require that (fΣ, ZΣ)
be a Morse–Smale pair, i.e. that all stable and unstable manifolds of ZΣ

intersect transversally.
The contact distribution ξ defines an Ehresmann connection on the

circle bundle S1 ↪→ Y → Σ. Denote the horizontal lift of ZΣ by π∗
ΣZΣ ∈

X(Y ). We fix a Morse function fY : Y → R and a gradient-like vector field
ZY ∈ X(Y ) such that (fY , ZY ) is a Morse–Smale pair and the vector field
ZY − π∗

ΣZΣ is vertical (tangent to the S1-fibres). Under these assumptions,
flow lines of ZY project under πΣ to flow lines of ZΣ.

Observe that critical points of fY must lie in the fibres above the critical
points of fΣ (and these are zeros of ZY and ZΣ, respectively). For notational
simplicity, we suppose that fY has two critical points in each fibre. In the
following, given a critical point for fΣ, p ∈ Σ, we denote the two critical
points in the fibre above p by p̂ and p̌, the fibrewise maximum and fibrewise
minimum of fY , respectively.

We will denote by M(p) the Morse index of a critical point p ∈ Σ of fΣ,
and by M̃(p̃) = M(p) + i(p̃) the Morse index of the critical point p̃ = p̂ or
p̃ = p̌ of fY . The fibrewise index has i(p̂) = 1 and i(p̌) = 0.

Fix also a Morse function fW and a gradient-like vector field ZW on W ,
such that (fW , ZW ) is a Morse–Smale pair and ZW restricted to [0,∞) × Y
is the constant vector field ∂r, where r is the coordinate function on the first
factor. We denote also by (fW , ZW ) the Morse–Smale pair that is induced
on X\Σ by the diffeomorphism in Lemma 2.5. Denote by M(x) the Morse
index of x ∈ Crit(fW ) with respect to fW .

We now define the Morse–Bott symplectic chain complex of W and H.
Recall that for every k > 0, each point in Yk := {bk} × Y ⊂ R

+ × Y is the
starting point of a 1-periodic orbit of XH , which covers k times its underlying
Reeb orbit.

For each critical point p̃ = p̂ or p̃ = p̌ of fY , there is a generator
corresponding to the pair (k, p̃). We will denote this generator by p̃k. The
complex is then given by

SC∗(W,H) =

⎛

⎝
⊕

k>0

⊕

p∈Crit(fΣ)

Z〈p̌k, p̂k〉
⎞

⎠ ⊕
⎛

⎝
⊕

x∈Crit(fW )

Z〈x〉
⎞

⎠ . (3.2)

Definition 3.3. The Hamiltonian action of a loop γ : S1 → R × Y is

A(γ) =
∫

γ∗(λ − Hdt).
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In particular, A(γ) = 0 for any constant orbit γ, and for any orbit
γk ∈ Yk, we have

A(γk) = ebk h′(ebk) − h(ebk) > 0, (3.3)
where bk is the unique solution to the equation h′(ebk) = kT0, as above. The
action of γk is the negative of the y-intercept of the tangent line to the graph
of h at ebk . See Fig. 1. The convexity of h implies that A(γk) is monotone
increasing in k.

3.1. Gradings

We will now define the gradings of the generators. For this, we will assume
that (X,Σ, ω) is a monotone triple as in Definition 2.4.

Definition 3.4. For a critical point p̃ of fY , and a multiplicity k, we define

|p̃k| = M̃(p̃) + 1 − n + 2
τX − K

K
k ∈ R, (3.4)

where we recall that τX is the monotonicity constant of X and c1(NΣ) =
[KωΣ].

For a critical point x of fW , we define

|x| = n − M(x). (3.5)

Finally, for convenience, we introduce an index similar to the SFT grad-
ing for the Reeb orbits to which a split Floer cylinder converges at augmen-
tation punctures. If γ is such a Reeb orbit, it is a k-fold cover of a fibre of
Y → Σ for some k. We then define its index to be

|γ|0 = −2 + 2
(

τX − K

K

)

k. (3.6)

The justifications of these gradings comes from analyzing the Conley–
Zehnder indices of the 1-periodic Hamiltonian orbits. These are defined for
Morse non-degenerate Hamiltonian/Reeb orbits, using a trivialization of TW
or of T (R×Y ) over the orbit. See Definition 5.19 for the Morse–Bott analogue,
and also [2, Section 3]; [22]. The first key observation is that the Conley–
Zehnder index of an orbit only depends on the trivialization of the complex
line bundle L := Λn

C
TW over the orbit.

For a constant orbit, we may take a constant trivialization, and applying
Definition 5.19, we obtain the Conley–Zehnder index of the constant orbit to
be −n + (2n − M(x)) = n − M(x).

A non-constant orbit γ in R × Y projects to a point in Σ. From this,
we may take a “constant” trivialization of γ∗ξ by taking the horizontal lift
of a constant trivialization of Tπ(γ)Σ. Then by considering the linearized
Hamiltonian flow in the vertical direction, we obtain the Conley–Zehnder
index of the corresponding generator p̃k to be

CZ0(p̃k) = M̃(p̃) + 1 − n. (3.7)

The Conley–Zehnder index is computed using the splitting of T (R × Y ) =
(R ⊕ RR) ⊕ ξ. The contribution to the index is given by i(p̃) in the vertical
R ⊕ RR direction, and by M(p) + 1 − n in the horizontal ξ direction. Notice
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that this index does not explicitly depend on the covering multiplicity k of
the orbit.

Notice also that Y may be capped off by the normal disk bundle over
Σ, and each orbit bounds a disk fibre. The trivialization induced by the
fibre differs from the constant trivialization only in a k-fold winding in the
R∂r ⊕ RR direction. The resulting Conley–Zehnder index of p̃k for this triv-
ialization induced by the disk fibre is then M̃(p̃) + 1 − n − 2k. We refer to
this trivialization as the normal bundle trivialization.

Now, suppose that γk is the k-fold cover a simple Reeb orbit γ, and
suppose it is contractible in W . Denote by Ḃ a disk in W whose boundary
is γk. As we pointed out, γk is also the boundary of a k-fold cover of a fibre
of the normal bundle to Σ in X. This cover of a fibre can be concatenated
with Ḃ to produce a spherical homology class B ∈ HS

2 (X) such that the
intersection B • Σ = k > 0. Conversely, note that any B ∈ HS

2 (X) such that
B • Σ = k gives rise to a disk Ḃ bounding γk. The complex line bundle L|Ḃ
is trivial since Ḃ is a disk. This induces a trivialization of L over γk, which
can be identified with a trivialization of L⊗k over γ. We refer to this as the
trivialization induced by Ḃ.

The relative winding of the trivialization of L over γk induced by Ḃ and
the normal bundle trivialization considered above is given by 〈c1(L), B〉 since
this represents the obstruction to extending the trivialization of L over Ḃ to
all of B. Recall that c1(L) = c1(TX).

Putting this together, we obtain that the Conley–Zehnder index of the
orbit with respect to the trivialization induced by the disk Ḃ is given by

CZW
H (p̃k) = M̃(p̃) + 1 − n − 2k + 2〈c1(TX), B〉. (3.8)

Finally, we obtain the grading from Eq. (3.4) using the spherical monotonicity
of X and the fact that k = B • [Σ] = Kω(B).

CZW
H (p̃k) = M̃(p̃) + 1 − n + 2(τX − K)ω(B)

= M̃(p̃) + 1 − n + 2
(

τX − K

K

)

k.

Note that this expression does not depend on the choice of spherical class B.
This formula holds when k ∈ ω(π2(X)), and we extend it as a fractional

grading for all k ∈ Z. (This corresponds to the fractional SFT grading from
[16, Section 2.9.1].)

Finally, we compare our gradings with those described by Seidel [38] and
generalized by McLean [30] (the latter considers Reeb orbits, but there is an
analogous construction for Hamiltonian orbits) in the case that c1(TW ) ∈
H2(W ; Z) is torsion, so Nc1(TW ) = 0 for a suitable choice of N > 0. Note
that in our setting, this holds if X is monotone (and not just spherically
monotone) and Σ is Poincaré dual to a multiple of ω.

First, we describe the Seidel–McLean approach. Recall that L = ΛnTW .
We choose a global trivialization of L⊗N over W . This exists since c1(L) is
N -torsion in H2(W ; Z). Then for any orbit γ, we consider the (complex) rank
nN bundle over γ given by γ∗TW ⊕ · · · ⊕ γ∗TW . Denote this by γ∗(TWN ).
Notice that the determinant of this bundle is precisely γ∗(L⊗N ) and thus has
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a trivialization already chosen. We now choose any trivialization of TWN

whose determinant matches the trivialization of γ∗(L⊗N ). For any such triv-
ialization, the linearized flow dφt ⊕ dφt ⊕ · · · ⊕ dφt : TWN → TWN gives a
path of symplectic matrices. This gives a a Conley–Zehnder index, which we
denote by CZL⊗N (γ). Notice that this Conley–Zehnder index depends only
on the trivialization of L⊗N and not on the further trivialization of TWN .
The Seidel–McLean grading is then defined to be

SM(γ) =
1
N

CZL⊗N (γ).

We now observe some immediate consequences of this construction. First
of all, given a null-homologous orbit in W , a capping surface induces a trivi-
alization of L over the orbit, unique up to homotopy, namely a trivialization
that extends across the surface. This implies that there is a homotopically
unique trivialization of L⊗N over the orbit, hence the Seidel–McLean grading
matches the Conley–Zehnder index induced by the trivialization coming from
the capping surface, for null-homologous orbits. (Notice that because c1(L)
is torsion, it does not matter which surface we use.) Thus, if γ is an orbit
such that γk bounds a disk Ḃ, (as discussed above, see notably Eq. (3.8)),

CZW
H (p̃k) = SM(p̃k).

We now consider an orbit γm that is an m-fold cover of a simple orbit
γ. We may trivialize TW over γ by the constant trivialization discussed
previously. This induces a trivialization of L over γ. By taking the N -fold
tensor power, we obtain a trivialization of L⊗N over γ. This has some winding
w ∈ Z relative to the reference trivialization of L⊗N over all of W (used above
to define the Seidel–McLean grading). Under iteration of the orbit, we obtain
a relative winding of mw between the constant trivialization and the reference
trivialization. From this, we obtain

N CZ0(p̂m) = CZL⊗N (γm) + 2mw.

Now, it follows from this that

CZW
H (p̃m) = CZ0(p̃m) + 2

(
τX − K

K

)

m

= SM(p̃m) + 2
(

τX − K

K
+

w

N

)

m.

As previously observed, CZW
H and SM are equal whenever m is in the image

of c1(TX) : π2(X) → Z, so it follows that

CZW
H (p̃m) = SM(p̃m)

for all m, as claimed.
The index (3.6) of the Reeb orbit was introduced for convenience in writ-

ing formulas for expected dimensions of moduli spaces. It comes from similar
considerations for the Conley–Zehnder index of the Reeb orbit, together with
the n − 3 shift coming from the grading of SFT. In particular, the Fredholm
index for an unparametrized holomorphic plane in W asymptotic to the closed
Reeb orbit γ0 (free to move in its Morse–Bott family) will be given by |γ0|.
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Remark 3.5. Even though the idea of a fractional grading may seem unnatu-
ral at first, it can be thought of as a way of keeping track of some information
about the homotopy classes of the Hamiltonian orbits.

Indeed, there can only be a Floer cylinder connecting two Hamiltonian
orbits if the difference of their degrees is an integer. Hence, one could write
the symplectic homology as a direct sum indexed by the fractional parts of
the degrees. Alternatively, one could also decompose it as a direct sum over
homotopy classes of Hamiltonian orbits, as done, for instance, in [9].

4. Split symplectic homology moduli spaces

In this section, we describe the moduli spaces of cascades that contribute to
the differential in the Morse–Bott split symplectic homology of W .

We also define auxiliary moduli spaces of spherical “chains of pearls”
in Σ and in X. (These are familiar objects, reminiscent of ones considered in
the literature for Floer homology of compact symplectic manifolds [3,32,33].)

4.1. Split Floer cylinders with cascades

We now identify the moduli spaces of split Floer cylinders with cascades we
use to define the differential on the chain complex (3.2).

First, we define the basic building blocks: split Floer cylinders. We
consider two types of basic split Floer cylinders: one connecting two non-
constant 1-periodic Hamiltonian orbits and one that connects a non-constant
1-periodic orbit to a constant one (in W ).

Notice that we may identify a 1-periodic orbit of H with its starting
point, and in this way, we have an identification between Yk and the set of
(parametrized) 1-periodic orbits of H that have covering multiplicity k over
the underlying simple periodic orbit.

Definition 4.1. Let x± ∈ Yk± be 1-periodic orbits of XH in R × Y . A split
Floer cylinder from x− to x+ consists of a map ṽ = (b, v) : R×S1\Γ → R×Y ,
where Γ = {z1, . . . , zk} ⊂ R×S1 is a (possibly empty) finite subset, together
with equivalence classes [Ui] of JW -holomorphic planes Ui : C → W for each
zi ∈ Γ, such that

• ṽ satisfies Floer’s equation

∂sṽ + JY (∂tṽ − XH(ṽ)) = 0; (4.1)

• lims→±∞ ṽ(s, .) = x±;
• if Γ 
= ∅, then, for conformal parametrizations ϕi : (−∞, 0] × S1 →

R × S1\{z1, . . . , zk} of neighbourhoods of the zi, lims→−∞ ṽ(ϕi(s, .)) =
(−∞, γi(.)), where the γi are periodic Reeb orbits in Y ;

• for each Reeb orbit γi above, Ui : C → W is asymptotic to (+∞, γi).
We consider Ui up to the action of Aut(C).

Call ṽ the upper level of the split Floer cylinder.

See Figs. 4 and 5 for an illustration (ignore the horizontal segments in
the figures, which represent gradient flow lines).
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Definition 4.2. Let x+ ∈ Yk+ for some k+, and let x− ∈ W . A split Floer
cylinder from x− to x+ consists of ṽ1 = (b, v) : R × S1\Γ → R × Y (where
Γ = {z1, . . . , zk} ⊂ R × S1 is a (possibly empty) finite subset), ṽ0 : R × S1 →
W , and equivalence classes [Ui] of JW -holomorphic planes Ui : C → W for
each zi ∈ Γ, such that

• ṽ1 solves Eq. (4.1);
• ṽ0 is JW -holomorphic;
• lims→+∞ ṽ1(s, .) = x+;
• lims→−∞ ṽ1(s, .) = (−∞, γ(·)), for some Reeb orbit γ in Y ;
• lims→+∞ ṽ0(s, .) = (+∞, γ(·)), where γ is the same Reeb orbit;
• lims→−∞ ṽ0(s, .) = x−;
• if Γ 
= ∅, then, for conformal parametrizations ϕi : (−∞, 0] × S1 →

R × S1\{z1, . . . , zk} of neighbourhoods of the zi, lims→−∞ ṽ(ϕi(s, .)) =
(−∞, γi(.)), where the γi are periodic Reeb orbits in Y ;

• for each Reeb orbit γi above, Ui : C → W is asymptotic to (+∞, γi).
We consider Ui up to the action of Aut(C).

Call ṽ1 the upper level of this split Floer cylinder.

See Fig. 6 for an illustration.
For the upper levels of split Floer cylinders in R × Y , we introduce

a suitable form of energy, a hybrid between the standard Floer energy and
the Hofer energy used in symplectizations. Recall that the Hofer energy of
a punctured pseudoholomorphic curve ũ in the symplectization of Y with
contact form α is given by

sup
{∫

ũ∗d(ψα) |ψ : R → [0, 1] smooth and non-decreasing
}

.

In a symplectic manifold either compact or convex at infinity, the standard
Floer energy of a cylinder ṽ : R × S1 → W is given by

∫
ṽ∗ω − ṽ∗dH ∧ dt.

In our situation, however, the target manifold is R × Y , which has a concave
end. We, therefore, need to combine these two types of energy.

Definition 4.3. Consider a Hamiltonian H : R × Y → R so that dH has sup-
port in [R,∞) × Y , for some R ∈ R.

Let ϑR be the set of all non-decreasing smooth functions ψ : R → [0,∞)
such that ψ(r) = er for r � R.

The hybrid energy ER of ṽ : R×S1\Γ → R×Y solving Floer’s equation
(4.1) is then given by

ER(ṽ) = sup
ψ∈ϑ

∫

R×S1
ṽ∗ (d(ψα) − dH ∧ dt) . (4.2)

Notice that this is equivalent to partitioning R × S1\Γ = S0 ∪ S1, so
that S0 = ṽ−1([R,+∞)×Y ) and S1 = S\S0. Then ṽ has finite hybrid energy
if and only if ṽ|S0 has finite Floer energy and ṽ|S1 has finite Hofer energy.
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Equivalently, ṽ has finite hybrid energy if and only if the punctures
{±∞} ∪ Γ can be partitioned into ΓF and ΓC (with +∞ ∈ ΓF , Γ ⊂ ΓC and
−∞ either in ΓF or in ΓC), such that in a neighbourhood of each puncture in
ΓF , the map ṽ is asymptotic to a Hamiltonian trajectory and in a neighbour-
hood of each puncture in ΓC , the map is proper and negatively asymptotic
to an orbit cylinder in R×Y . This follows from a variation on the arguments
in [10, Proposition 5.13, Lemma 5.15]. We will use the following notation
to denote the Hamiltonian orbits to which such a punctured cylinder ṽ is
asymptotic:

ṽ(+∞, t) = lim
s→∞ ṽ(s, t)

ṽ(−∞, t) = lim
s→−∞ ṽ(s, t) if − ∞ ∈ ΓF .

Instead, if −∞ ∈ ΓC , we will write v(−∞, t) = lims→−∞ v(s, t) for the Reeb
orbit in Y that the curve converges to. Notice that since the cylinder is
parametrized, the asymptotic limit is parametrized as well. Since there is
an ambiguity of the S1 parametrization of the Reeb orbits to which v is
asymptotic at punctures z ∈ Γ, we will avoid using the analogous notation
at punctures in Γ.

We now define a split Floer cylinder with cascades between two genera-
tors of the chain complex (3.2).

Definition 4.4. Fix N � 0. Let S0, S1, . . . , SN be a collection of connected
spaces of orbits, with S0 = Yk0 or S0 = W , and Si = Yki

for 1 � i � N . Let
(fi, Zi), i = 0, . . . , N be the pair of Morse function and gradient-like vector
field of fi = fY , Zi = ZY if Si = Yki

and fi = −fW , Zi = −ZW if Si = W .
Let x be a critical point of f0 and y a critical point of fN (so x and y

are generators of the chain complex (3.2)).
A Floer cylinder with 0 cascades (N = 0), from x to y, consists of a

positive gradient trajectory ν : R → S0, such that ν(−∞) = x, ν(+∞) = y
and ν̇ = Z0(ν).

A Floer cylinder with N cascades, N � 1, from x to y, consists of the
following data:

(i) N − 1 length parameters li > 0, i = 1, . . . , N − 1;
(ii) two half-infinite gradient trajectories, ν0 : (−∞, 0] → S0 and νN :

[0,+∞) → SN with ν0(−∞) = x, νN (+∞) = y and ν̇i = Zi(νi) for
i = 0 or N ;

(iii) N−1 gradient trajectories νi defined on intervals of length li, νi : [0, li] →
Si for i = 1, . . . , N − 1 such that ν̇i = Zi(νi);

(iv) N non-trivial split Floer cylinders from νi−1(li−1) ∈ Si−1 to νi(0) ∈ Si,
where we take l0 = 0.

In the case of a Floer cylinder with N � 1 cascades, we refer to the non-trivial
Floer cylinders ṽi as sublevels. Notice that if S0 (and thus all Si) is of the
form Yk, all the split Floer cylinders are as in Definition 4.1. If S0 = W , then
the bottom-most level is a split Floer cylinder as in Definition 4.2.

See Fig. 2 for a schematic illustration.
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Figure 2. A split Floer cylinder with three cascades

Definition 4.5. We refer to the punctures Γ appearing in Definitions 4.1
and 4.2 as augmentation punctures. The corresponding JW holomorphic
planes, Ui : C → W are referred to as augmentation planes. This terminology
is by analogy to linearized contact homology, where rigid planes of this type
give an (algebraic) augmentation of the full contact homology differential.

Remark 4.6. Notice that the hybrid energy of each sublevel must be non-
negative. Since we require that the sublevels are non-trivial, it follows that any
such cascade with collections of orbits Si = Yki

, i = 1, . . . , N and S0 = Yk0 ,
or, if S0 = W , with k0 = 0, we must have that the sequence of multiplicities
is monotone increasing k0 < k1 < · · · < kN .

By a standard SFT-type compactness argument, the Floer–Gromov–
Hofer compactification of a moduli space of split Floer cylinders with cascades
will consist of several possible configurations. The length parameters can go
to 0 or to ∞ (in the latter case, corresponding to a Morse-type breaking of
the gradient trajectory). The split Floer cylinders can break at Hamiltonian
orbits, thus increasing the number of cascades but with a length parameter
of 0. They can also split off a holomorphic building with levels in R × Y
and in W . We will see that this latter degeneration cannot occur in low-
dimensional moduli spaces, at least under our monotonicity assumptions. For
energy reasons, these Floer cylinders with cascades will not break at constant
Hamiltonian trajectories in (−∞, log 2] × Y (see [13, Lemma 4.8]).

We now define the split Floer differential ∂ on the chain complex (3.2).
Given generators x, y, denote by

MH,N (x, y;JW )

the space of split Floer cylinders with N cascades from x to y (with negative
end at x and positive end at y).
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For N � 1, this moduli space MH,N (x, y;JW ) has an R
N action by

domain automorphisms corresponding to R-translation of the domain cylin-
ders R × S1. When N = 0, this moduli space is of gradient trajectories, and
also admits an R reparametrization action.

When |x| = |y| − 1, these moduli spaces will be rigid modulo these
actions. See Remark 5.10.

We now define

∂ y =
∑

|x|=|y|−1

#(MH,0(x, y;JW )/R) x

+
∑

|x|=|y|−1

∞∑

N=1

#
(MH,N (x, y;JW /R

N
)
x. (4.3)

We call ∂ the split Floer differential on (3.2).

5. Transversality for the Floer and holomorphic moduli spaces

In this section, we will build the transversality theory needed for the Floer
cylinders with cascades that appear in the split Floer differential as in Eq.
(4.3). In the process, we will also discuss transversality for pseudoholomorphic
curves in X and in Σ, which will be necessary for the proof of our main result.

5.1. Statements of transversality results

Before stating the main result of this section, we will introduce some defini-
tions allowing us to relate transversality for split Floer cylinders with cascades
to transversality problems for spheres in Σ and in X with various constraints.

Lemma 5.1. Let ṽ : R×S1\Γ → R×Y be a finite hybrid energy Floer cylinder
in R × Y (as in Definition 4.3), converging to a Hamiltonian orbit in the
manifolds Y+ at +∞ and converging at −∞ either to a Hamiltonian orbit
in the manifold Y− or to a Reeb orbit at {−∞} × Y , and with finitely many
punctures at Γ ⊂ R × S1 converging to Reeb orbits in {−∞} × Y . Then the
projection πΣ◦ṽ extends to a smooth JΣ-holomorphic sphere πΣ◦ṽ : CP

1 → Σ.

Proof. The projection πΣ ◦ ṽ is JΣ-holomorphic on R × S1 since H is admis-
sible (as in Definition 3.1). The result now follows from Gromov’s removal of
singularities theorem together with the finiteness of the energy of πΣ ◦ ṽ. �

To describe the projection to Σ of the levels of a split Floer cylinder
with N cascades that map to R × Y , we introduce the following:

Definition 5.2. A chain of pearls from q to p, where p and q are critical points
of fΣ, consists of the following:

• N � 0 parametrized JΣ-holomorphic spheres wi in Σ with two distin-
guished marked points at 0 and ∞ and a possibly empty collection of
additional marked points z1, . . . , zk on the union of the N domains (dis-
tinct from 0 or ∞ in each of the N spherical domains); the spheres are
either non-constant or contain at least one additional marked point;
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Figure 3. A chain of four pearls from q to p with three
marked points

• if N = 0, an infinite positive flow trajectory of ZΣ from q to p; if N ≥ 1,
a half-infinite trajectory of ZΣ from q to w1(0), a half-infinite trajectory
of ZΣ from wN (∞) to p;

• if N � 1, positive length parameters li, i = 1, . . . , N − 1, so that
ϕli

ZΣ
(wi(∞)) = wi+1(0), i = 1, . . . , N − 1.

See Fig. 3. If such a chain of pearls is the projection to Σ of the com-
ponents in R × Y is a split Floer cylinder, then the additional marked points
in the pseudoholomorphic spheres correspond to augmentation punctures in
the Floer cylinders, where they converge to cylinders over Reeb orbits that
are capped by planes in W .

Notice that the geometric configuration of two spheres touching at a
critical point of fΣ admits an interpretation as a chain of pearls in Σ since
the critical point is the image of any positive length flow line with that initial
condition.

Definition 5.3. A chain of pearls with a sphere in X from x to p, where x is
a critical point of fW and p is a critical point of fΣ, consists of the following:

• N � 1 parametrized JΣ-holomorphic spheres wi in Σ with two dis-
tinguished marked points at 0 and ∞ and a possibly empty collection
of additional marked points z1, . . . , zk on the union of the N domains
(distinct from 0 or ∞);

• a parametrized non-constant JX -holomorphic sphere v in X;
• a half-infinite trajectory of ZΣ from wN (∞) to p, a half-infinite trajec-

tory of −ZX from x to v(0) (where ZX is the push-forward of ZW by
the inverse of the map from Lemma 2.5);

• positive length trajectories of ZΣ from wi(∞) to wi+1(0) for i =
1, . . . , N − 1;

• the sphere in X touches the first sphere in Σ: w1(0) = v(+∞);
• the spheres w2, . . . , wN satisfy the stability condition that they are

either non-constant or contain at least one of the additional marked
points (v is automatically non-constant and w1 is allowed to be con-
stant and unstable).

Definition 5.4. An augmented chain of pearls [or an augmented chain of pearls
with a sphere in X] is a chain of pearls [or chain of pearls with a sphere
in X] together with k equivalence classes [Ui] of JX -holomorphic spheres
Ui : CP

1 → X, i = 1, . . . , k, with the following additional properties:
• for each z ∈ CP

1, Ui(z) ∈ Σ if and only if z = ∞;
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• if the puncture zi is in the domain of the holomorphic sphere wji
: CP

1 →
Σ, then wji

(zi) = Ui(∞);
• each Ui is considered up to the action of Aut(CP

1,∞) = Aut(C), that
is, as an unparametrized sphere.

From Lemmas 5.1 and 2.5 and the fact that the trajectories of ZY cover
trajectories of ZΣ, it follows that a Floer cylinder with N cascades projects
to a chain of pearls or a chain of pearls with a sphere in X. Additionally,
again by Lemma 2.5, if any of the sublevels have augmentation planes, then
those correspond to spheres in X passing through Σ at the images of the
corresponding marked points in the chain of pearls.

Observe that we allow the sphere w1 to be unstable in the definition of
a chain of pearls in Σ with a sphere in X. The case in which w1 is a constant
curve without marked points corresponds to the situation in which the cor-
responding Floer cascade contains a non-trivial Floer cylinder ṽ1 contained
in a single fibre of R × Y → Σ, and has the asymptotic limits ṽ1(+∞, t) on
a Hamiltonian orbit and ṽ1(−∞, t) on a closed Reeb orbit in {−∞} × Y .
The Floer cylinder ṽ1 in R × Y is non-trivial and hence stable, whereas the
corresponding sphere w1 in Σ is unstable. Since we do not quotient by auto-
morphisms (yet), this does not pose a problem. (See Fig. 6 and Proposition 6.3
below, where this situation is analysed.)

Definition 5.5. A chain of pearls in Σ is simple if each sphere is either simple
(i.e. not multiply covered, [29, Section 2.5]) or is constant, and if the image
of no sphere is contained in the image of another. If the chain of pearls has
a sphere v in X, we require v to be somewhere injective (but the first sphere
in Σ is allowed to be constant, with image contained in the image of v).

An augmented chain of pearls is simple if the chain of pearls is simple
and the augmentation spheres in X are somewhere injective, none has image
contained in the fixed open neighbourhood ϕ(U) and no sphere in X has
image contained in the image of another sphere in X.

Remark 5.6. Recall that a chain of pearls with a sphere in X has a distin-
guished sphere v in X for which v(0) is on the descending manifold of a
critical point x of fW . By the construction of fW , this forces the image of v
to intersect the complement of the tubular neighbourhood of Σ. As we revisit
in Remark 6.7, Fredholm index considerations related to monotonicity will
force the augmentation planes/spheres to leave the tubular neighbourhood.

Remark 5.7. Notice that our condition on a simple chain of pearls is slightly
different than the condition imposed in [29, Section 6.1], with regard to con-
stant spheres. For a chain of pearls to be simple by our definition, constant
spheres may not be contained in another sphere, constant or not. In [29],
there is no such condition on constant spheres.

Definition 5.8. Given a finite hybrid energy Floer cylinder with N cascades,
we obtain an augmented chain of pearls (possibly with a sphere in X) by the
following construction:
(1) cylinders in R × Y are projected to Σ: by Lemma 5.1 these form holo-

morphic spheres in Σ;



Vol. 21 (2019) Morse–Bott split symplectic homology Page 19 of 77 77

(2) planes in W are interpreted as spheres in X by Lemma 2.5;
(3) flow lines of the gradient-like vector field ZY are projected to flow lines

of ZΣ.
We refer to this augmented chain of pearls in Σ (possibly with a sphere in
X) as the projection of the Floer cylinder with N cascades.

A finite hybrid energy Floer cylinder with N cascades is simple if the
projected chain of pearls is simple.

Given generators x, y of the chain complex (3.2), denote by

M∗
H,N (x, y;JW )

the space of simple split Floer cylinders with N cascades from x to y. Recall
that if x or y is in R×Y , the corresponding generator is described by a critical
point p̃ of fY (which can be either p̌ or p̂), together with a multiplicity k. If
instead, x or y is in W , it corresponds to a critical point of fW . Note that
when both x, y are generators in R × Y , the moduli space M∗

H,N (x, y;JW )
will depend on JW only insofar as augmentation planes appear, otherwise it
depends only on JY .

Proposition 5.9. There exists a residual set J reg
W ⊂ JW of almost complex

structures such that for each JW ∈ J reg
W , M∗

H,N (x, y;JW ) is a manifold.
If N = 0, and thus x, y are generators in R × Y , then x = q̃k, y = p̃k

for the same multiplicity k, and

dimR M∗
H,0(q̃k, p̃k;JW ) = |p̃k| − |q̃k|.

If N � 1, and x, y are generators in R×Y , then x = q̃k− , y = p̃k+ and

dimR M∗
H,N (q̃k− , p̃k+ ;JW ) = |p̃k+ | − |q̃k− | + N − 1.

Finally, if x ∈ W and y ∈ R × Y , then x ∈ Crit(fW ), y = p̃k and

dimR M∗
H,N (x, p̃k;JW ) = |p̃k| − |x| + N.

Furthermore, the image P (J reg
W ) ⊂ JΣ (recall Definition 2.7) is residual

and consists of almost complex structures that are regular for simple pseudo-
holomorphic spheres in Σ.

The two different formulas involving N reflect the fact that N counts
the number of cylinders in R×Y . In the case of a Floer cascade that descends
to W , there are, therefore, N + 1 cylinders in the cascade.

Remark 5.10. These index formulas justify that the moduli spaces are rigid
(modulo their R, R

N and R
N+1 actions) when the index difference is 1,

which then justifies the definition of the differential given in Eq. (4.3). Indeed,
observe that the case N = 0 corresponds to a pure Morse configuration and
does not depend on any almost complex structure. We count rigid flow lines
modulo the R action, and thus require |y| − |x| = 1. For generators x, y in
R×Y , we consider these N cylinders modulo the R action on each one, giving
an R

N action. From this, a rigid configuration has |y| − |x|+N − 1 = N . For
the case with x ∈ W , we have N +1 cylinders in the Floer cascade, so we have
a rigid configuration modulo the R

N+1 action when N + 1 = |y| − |x| + N .
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The split Floer differential ∂, introduced in Eq. (4.3) was defined by
counting elements in MH,N (x, y;JW ). We will see in Propositions 6.2 and 6.3
that our monotonicity assumptions imply that this is equivalent to counting
simple configurations in M∗

H,N (x, y;JW ).
The rest of this section will be devoted to the proof of Proposition 5.9.

It will proceed in the following steps:
• Section 5.2 describes the Fredholm setup for Floer cylinders with cas-

cades. On a first reading, it can be skipped and used as a reference. In
Sect. 5.2.1, we discuss the necessary function spaces and linear theory
for the Morse–Bott problems. Then Sect. 5.2.2 splits the linearization
of the Floer operator in such a way as to split the transversality prob-
lem into two problems. The first is a Cauchy–Riemann operator acting
on sections of a complex line bundle, and it is transverse for topolog-
ical reasons (automatic transversality). The second is a transversality
problem for a Cauchy–Riemann operator in Σ.

• Section 5.3 adapts the transversality arguments from [29] to obtain
transversality for chains of pearls in Σ.

• Section 5.4 shows transversality for the components of the cascades con-
tained in W . This problem is translated into the equivalent problem of
obtaining transversality for spheres in X with order of contact condi-
tions at Σ, together with evaluation maps. The main technical point is
an extension of the transversality results from [12].

• Finally, Sect. 5.5 uses the splitting from Sect. 5.2.2 to lift the transversal-
ity results in Σ to obtain transversality for Floer cylinders with cascades,
and to finish the proof of Proposition 5.9.

5.2. A Fredholm theory for Floer cylinders with cascades

5.2.1. A Fredholm theory for Morse–Bott asymptotics. In this section, we
collect some facts about Cauchy–Riemann operators on Hermitian vector
bundles over punctured Riemann surfaces, specifically in the context of degen-
erate asymptotic operators. These facts can mostly be found in the literature,
but not in a unified way. The main reference for these results is [37]. Addi-
tional references include [1, Sections 2.1–2.3], [7,25,37,41].

We begin by introducing some Sobolev spaces of sections of appropriate
bundles. Let Γ ⊂ R × S1 be a finite set of punctures and denote R × S1\Γ
by Ṡ. Write Γ+ = {+∞} and Γ− = {−∞} ∪ Γ. Consider, for each puncture
z ∈ Γ, exponential cylindrical polar coordinates of the form (−∞,−1]×S1 →
R × S1\Γ: ρ + iη �→ z0 + ε e2π(ρ+iη). Choose ε > 0 sufficiently small; these
are embeddings and that the image of these embeddings for any two different
punctures are disjoint.

Let E → Ṡ be a (complex) rank n Hermitian vector bundle over Ṡ
together with a preferred set of trivializations in a small neighbourhood of
Γ ∪ {±∞}. While the bundle E over Ṡ is trivial if there is at least one punc-
ture, this is no longer the case once we specify these preferred trivializations
near Γ ∪ {±∞}. We, therefore, associate a first Chern number to this bundle
relative to the asymptotic trivializations. There are several equivalent defini-
tions. One approach is to consider the complex determinant bundle Λn

C
E. The
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trivialization of E at infinity gives a trivialization of this determinant bundle
at infinity, and we can now count zeros of a generic section of Λn

C
E that is

constant (with respect to the prescribed trivializations) near the punctures.
We denote this Chern number by c1(E), but emphasize that it depends on
the choice of these trivializations near the punctures.

Since we cannot specify where an augmentation puncture appears when
we stretch the neck on a Floer cylinder, we should have the punctures in Γ
free to move on the domain R × S1. This creates a problem when we try
to linearize the Floer operator in a family of domains where the positions
of the punctures are not fixed. We will instead consider a 2#Γ parameter
family of almost complex structures on R × S1, but fix the location of the
punctures. Specify a fixed collection Γ of punctures on R × S1 and, for any
other collection of augmentation punctures, choose an isotopy with compact
support from the new punctures to the fixed ones. We take the push-forward
of the standard complex structure in R × S1 by the final map of the isotopy,
to produce a family of complex structures on R × S1, which can be assumed
standard near Γ and outside of a compact set.

For each z ∈ Γ, let βz : Ṡ → [0,+∞) be a function supported in a small
neighbourhood of z, with βz(ρ, η) = −ρ near the puncture (where (ρ, η) are
cylindrical polar coordinates near z, as above). Similarly, let β+ : R × S1 →
[0,+∞) be supported in a region where s is sufficiently large and β+(s, t) = s
for s large enough. Let β− : R × S1 → [0,+∞) have support near −∞, and
β−(s, t) = −s for s sufficiently small.

In many situations, it will be convenient to consider the function

β :=
∑

z∈Γ

βz + β− + β+. (5.1)

Finally, on the punctured cylinder Ṡ, we take the measure induced by
an area form on Ṡ that has the form ds ∧ dt for |s| large and that has the
form dρ∧dη in the cylinder polar coordinates near each puncture in Γ. Notice
that pairing this with the domain complex structure induces a metric on Ṡ
for which the vector field ∂η, defined near a puncture in Γ by the exponential
cylindrical polar coordinates, has norm comparable to 1.

Given a vector of weights δ : Γ ∪ {±∞} → R, we define W 1,p,δ(Ṡ, E) to
be the space of sections u of E for which

u e
∑

δzβz+δ−β−+δ+β+ ∈ W 1,p(Ṡ, E)

(with respect to the measure and metric described above). Note that these
sections decay exponentially fast at the punctures where δ > 0 and are
allowed to have exponential growth at punctures where δ < 0. We can simi-
larly define Lp,δ(Ṡ, E). While these definitions involve making various choices,
the resulting metrics are strongly equivalent. In practice, we will typically
take p > 2 to obtain continuity of the sections. By a similar construction, we
may define Wm,p,δ as well.

We will say that a differential operator D : Γ(E) → Γ(Λ0,1T ∗Ṡ ⊗ E) is
a Cauchy–Riemann operator if it is a real linear Cauchy–Riemann operator
[29, Definition C.1.5] such that, near ±∞, it takes the form:
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(Dσ)
∂

∂s
=

∂

∂s
σ + J(s, t)

∂

∂t
σ + A(s, t)σ, (5.2)

where J(s, t) is a smooth function on R
± ×S1 with values in almost complex

structures on C
n compatible with the standard symplectic form, and A(s, t)

takes values in real matrices on R
2n ∼= C

n. We further impose that these
functions converge uniformly as s → ±∞, J(s, t) → Jz(t) and A(s, t) →
Az(t), where Az(t) is a loop of self-adjoint matrices. We impose the same
conditions near punctures z ∈ Γ, using the local coordinates (ρ, η) instead of
(s, t) in (5.2).

A Cauchy–Riemann operator D : Γ(E) → Γ(Λ0,1T ∗Ṡ ⊗ E) acting on
smooth sections induces an operator on various Sobolev spaces of sections.
Of particular importance for us will be that for any vector of weights δ : Γ ∪
{±∞} → R, D induces an operator

D : W 1,p,δ(Ṡ, E) → Lp,δ(Ṡ,Λ0,1T ∗Ṡ ⊗ E)

as well as operators D : W k,p,δ → W k−1,p,δ. In the following, we will not
emphasize the distinction and refer to the operators W 1,p,δ → Lp,δ as
Cauchy–Riemann operators. For generic weight vectors, these operators will
be Fredholm as formulated precisely in Theorem 5.16 below.

Associated with a Cauchy–Riemann operator D, we obtain asymptotic
operators at each puncture in Γ ∪ {±∞} by

Az := −Jz(t)
d
dt

− Az(t).

This is a densely defined unbounded self-adjoint operator on L2(S1, R2n).
Let σ(Az) ⊂ R denote its spectrum. This will consist of a discrete set of
eigenvalues. If an asymptotic operator Az does not have 0 in its spectrum, we
say the asymptotic operator is non-degenerate. If all the asymptotic operators
are non-degenerate, we say D itself is non-degenerate.

Note that we obtain a path of symplectic matrices associated with the
asymptotic operator Az by finding the fundamental matrix Φ to the ODE
d
dtx = Jz(t)Az(t)x. The asymptotic operator is non-degenerate if and only
if the time-1 flow of the ODE does not have 1 in the spectrum. We will
consider a description of the Conley–Zehnder index in terms of properties of
the asymptotic operator itself [24, Lemmas 3.4, 3.5, 3.6, 3.9].

Remark 5.11. An asymptotic operator induces a path of symplectic matrices,
and this identification (understood correctly) is a homotopy equivalence. This
will allow us to associate a Conley–Zehnder index to a periodic orbit of a
Hamiltonian vector field, given a trivialization of the tangent bundle along
the orbit. To do so, we take the linearized flow map, which defines a path
Φ: [0, 1] → Sp(2n) with respect to the fixed trivialization. If we fix a path
of almost complex structures, this path of symplectic matrices satisfies an
ODE as in the previous paragraph, which in turn specifies an asymptotic
operator. The Conley–Zehnder index of the Hamiltonian orbit is by definition
the Conley–Zehnder index of this asymptotic operator. This is homotopic to
the asymptotic operator coming from the linearized Floer operator.
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Proposition 5.12. Suppose Az is non-degenerate and E is a rank 1 vector
bundle.

If u : S1 → C is an eigenfunction of Az corresponding to the eigenvalue
λ, it must be nowhere vanishing. The winding number of u is then the degree
of the map u

|u| : S1 → S1. Any two eigenfunctions corresponding to the same
eigenvalue λ have the same winding number. This is then referred to as the
winding number of the eigenvalue, and is denoted by w(λ).

The function w : σ(Az) → Z is non-decreasing in λ and is surjective. If
λ± are eigenvalues so that λ− < 0 < λ+ and there are no eigenvalues in the
interval (λ−, λ+), then

CZ(Az) = w(λ−) + w(λ+).

�

This formulation will be the most useful for our calculations. Further-
more, in the case of a higher rank bundle, we use the axiomatic description,
see, for instance, [24, Theorem 3.1] to observe that CZ(Az) is invariant under
deformations for which 0 is never in the spectrum, and that if the operator
can be decomposed as the direct sum of operators, then the Conley–Zehnder
index is additive.

The following computation is useful at several points in the paper. It
can often be combined with Proposition 5.12 to compute Conley–Zehnder
indices of interest.

Lemma 5.13. Given a constant C ≥ 0, the spectrum σ(AC) of the operator

AC := −i
d
dt

−
(

C 0
0 0

)

: W 1,p(S1, C) → Lp(S1, C)

is the set
{

1
2

(
−C −

√
C2+16π2k2

)
| k ∈ Z

}

∪
{

1
2

(
−C+

√
C2 + 16π2k2

)
| k ∈ Z

}

.

If λ is an eigenvalue associated with k ∈ Z, then the winding number of the
corresponding eigenvector is |k| if λ ≥ 0 and −|k| if λ ≤ 0. If C = 0, then all
eigenvalues have multiplicity 2 (see Table 1). If C > 0, then the same is true
except for the eigenvalues −C and 0, corresponding to k = 0 above, both of
which have multiplicity 1 (see Table 2).

In particular, the σ(A0) = 2πZ and the winding number of 2πk is k.

Proof. An eigenvector v : S1 → C of AC with eigenvalue λ solves the equa-
tion

−
(

0 −1
1 0

)

v̇ −
(

C 0
0 0

)

v = λv ⇔ v̇ =
(

0 −λ
C + λ 0

)

v.

Computing the eigenvalues of the matrix on the right, and requiring that
they be of the form 2πik, k ∈ Z (since v(t+1) = v(t)), yields the result. �
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Table 1. Eigenvalues of A0

Table 2. Eigenvalues of AC in increasing order, if C > 0

Corollary 5.14. Take C ≥ 0 and δ > 0 such that [−δ, δ]∩σ(AC) = {0}. Then

CZ(A + δ) =

{
0 if C > 0
−1 if C = 0

and CZ(AC − δ) = 1.

For any n ≥ 0, taking

−i
d
dt

: W 1,p(S1, Cn) → Lp(S1, Cn),

we have

CZ
(

−i
d
dt

± δ

)

= ∓n.

Proof. The case n = 1 follows from Proposition 5.12 and Lemma 5.13. The
case of general n uses the additivity of CZ under direct sums. �

Definition 5.15. A key observation for our computations of Fredholm indices
(as noted, for instance, in [25]) is that a Cauchy–Riemann operator

D : W 1,p,δ(Ṡ, E) → Lp,δ(Ṡ,Λ0,1T ∗Ṡ ⊗ E)

with asymptotic operators Az is conjugate to the Cauchy–Riemann operator

Dδ : W 1,p(Ṡ, E) → Lp(Ṡ,Λ0,1T ∗Ṡ ⊗ E)

Dδ = e
∑

δzβz(s) D e− ∑
δzβz(s) .

This has asymptotic operators Aδ
z = Az ± δz, which are non-degenerate and

where the sign is positive at positive punctures and negative at negative
punctures. We refer to these as the δ-perturbed asymptotic operators.

Notice that the operator Dδ depends on the choice of cut-off functions
βz, z ∈ Γ ∪ {±∞}. A different choice of cut-off function will give an operator
that differs only by a compact operator. This is thus of secondary importance
for what we discuss here.

Note that with the sign conventions that we have chosen, a positive
weight δz > 0 always corresponds to the constraint of exponential decay
at the puncture. A negative weight δz < 0 always corresponds to allowing
exponential growth.
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Theorem 5.16. Let δ : Γ ∪ {±∞} → R such that −δz /∈ σ(Az) for positive
punctures z ∈ Γ+ and such that +δz /∈ σ(Az) for negative punctures z ∈ Γ−.

Then the Cauchy–Riemann operator

D : W 1,p,δ(Ṡ, E) → Lp,δ(Ṡ,Λ0,1T ∗Ṡ ⊗ E)

with asymptotic operators Az, z ∈ Γ ∪ {±∞} is Fredholm and its index is
given by

Ind(D, δ) = nχṠ + 2c1(E) +
∑

z∈Γ+

CZ(Az + δz) −
∑

z∈Γ−

CZ(Az − δz).

This observation about the conjugation of the weighted operator to the
non-degenerate case, combined with Riemann–Roch for punctured domains
(see, for instance, [25, Theorem 2.8], [37, Theorem 3.3.11], [42, Theorem 5.4])
gives the following.

Now, a useful fact for us is a description of how the Conley–Zehnder
index changes as a weight crosses the spectrum of the operator:

Lemma 5.17. Let δ > 0 with [−δ,+δ] ∩ σ(Az) = {0}. Then

CZ(Az − δ) − CZ(Az + δ) = dim(kerAz).

�

For a proof (using the spectral flow idea of [35]), see, for instance, [40,
Proposition 4.5.22].

To obtain a result that is useful for our moduli spaces of cascades asymp-
totic to Morse–Bott families of orbits, we consider the following modification
of our function spaces.

To each puncture, we associate a subspace of the kernel of the corre-
sponding asymptotic operator, which we denote by Vz, z ∈ Γ, V−, V+ and
write V for this collection. Then for each puncture z ∈ Γ and also ±∞, we
associate a smooth bump function μz, μ±, supported near and identically 1
even nearer to its puncture. We then define

W 1,p,δ
V (Ṡ, E) = {u ∈ W 1,p

loc (Ṡ, E) | ∃ cz ∈ Vz, z ∈ Γ, c− ∈ V−, c+ ∈ V+

such that u −
∑

czμz − c−μ− − c+μ+ ∈ W 1,p,δ(Ṡ, E)}.

(5.3)
We remark that we are using the asymptotic cylindrical coordinates near

Γ and the asymptotic trivialization of E to define the local sections czμz.
In this paper, we are primarily concerned with Cauchy–Riemann opera-

tors defined on Ṡ = R×S1 and on Ṡ = R×S1\{P} (a cylinder with one addi-
tional negative puncture). In the case of R ×S1, we will write V = (V−;V+),
and in the case of R×S1\{P}, we will write V = (V−, VP ;V+). (The negative
punctures are enumerated first, and separated from the positive puncture by
a semicolon.)

Observe that since the vector spaces Vz are in the kernel of the corre-
sponding asymptotic operators, for any choice of V and any vector of weights
δ, we have that the Cauchy–Riemann operator D can be extended to

D : W 1,p,δ
V (Ṡ, E) → Lp,δ(Ṡ,Λ0,1T ∗Ṡ ⊗ E).
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Let dim Vz denote the dimension of the vector space Vz and let
codim Vz = dim (kerAz/Vz). Combining Theorem 5.16 with Lemma 5.17,
we have

Theorem 5.18. Let δ > 0 be sufficiently small that, for each puncture z ∈
Γ∪{±∞}, [−δ, δ]∩σ(Az) ⊂ {0}. For each z ∈ Γ, fix a subspace Vz ⊂ kerAz.
Denote the collection of all Vz by V.

Then the operator

D : W 1,p,δ
V (Ṡ, E) → Lp,δ(Ṡ,Λ0,1T ∗Ṡ ⊗ E)

is Fredholm, and its Fredholm index is given by

Ind(D) = nχṠ + 2c1(E) +
∑

z∈Γ+

(CZ(Az + δ) + dim(Vz))

−
∑

z∈Γ−

(CZ(Az + δ) + codim(Vz)) .

In applications where there are Morse–Bott manifolds of orbits, we will
typically take Vz to be the tangent space to the descending manifold of a
critical point pz on the manifold of orbits at a positive puncture, and Vz will
be the tangent space to ascending manifold of a critical point pz at a negative
puncture. In either case, the contribution to Ind(D) of dimVz or of codim Vz

will be the Morse index of the appropriate critical point. This motivates the
following definition.

Definition 5.19. Let δ > 0 be sufficiently small. If pz is a critical point of an
auxiliary Morse function on the manifold of orbits associated with z, then
the Conley–Zehnder index of the pair (Az, pz) is

CZ(Az, pz) = CZ(Az + δ) + M(pz),

where M(pz) is the Morse index of pz.

In this case, we can write the Fredholm index as

Ind(D) = nχṠ + 2c1(E) +
∑

z∈Γ+

CZ(Az, pz) −
∑

z∈Γ−

CZ(Az, pz).

We conclude with a lemma that is particularly useful when applying
the automatic transversality result [41, Proposition 4.22]. The lemma states
that the Fredholm index of an operator with a small negative weight at a
puncture is the same as that of the corresponding operator with a small
positive weight at that puncture, if the puncture is decorated with the kernel
of the corresponding asymptotic operator. The former indices are used in [41,
Proposition 4.22], whereas the latter can be computed using Theorem 5.18.
Additionally, the latter arises naturally in the linearization of the nonlinear
problem.

We first learned this result from Wendl [40]. We give a proof of this for-
mulation since it is slightly stronger than what we have found in the literature
(and is still not as strong as can be proved.)
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Lemma 5.20. Let D be a Cauchy–Riemann operator. Fix a puncture z0 ∈
Γ ∪ {±∞}.

Let δ and δ′ be vectors of sufficiently small weights so that the differential
operator induces a Fredholm operator on W 1,p,δ and on W 1,p,δ′

, and δz0 > 0
and δ′

z0
< 0, the interval [δ′

z0
, δz0 ]∩σ(Az0) = {0}, and for each z ∈ Γ∪{±∞}

with z 
= z0, the weights δz = δ′
z.

Let V be the trivial vector space at each puncture other than z0 and let
Vz0 be the kernel of the asymptotic operator Az0 at z0.

Then the induced operators

Dδ : W 1,p,δ
V (Ṡ, E) → Lp,δ(Ṡ,Λ0,1T ∗Ṡ ⊗ E)

Dδ′ : W 1,p,δ′
(Ṡ, E) → Lp,δ′

(Ṡ,Λ0,1T ∗Ṡ ⊗ E)

have the same Fredholm index and their kernels and cokernels are isomorphic.

Proof. The main idea of the lemma is contained in [40, Proposition 4.5.22],
which contains a proof of the equality of Fredholm indices. See also the very
closely related [43, Proposition 3.15].

Note that W 1,p,δ
V (Ṡ, E) is a subspace of W 1,p,δ′

(Ṡ, E), and thus the
kernel of Dδ is contained in the kernel of Dδ′ .

Now, by a linear version of the analysis done in [25,39], any element of
the kernel of Dδ′ converges exponentially fast at z0 to an eigenfunction of
the asymptotic operator, with exponential rate governed by the eigenvalue
(in this case 0). Therefore, any element of the kernel of Dδ′ must converge
exponentially fast to an element of the kernel of the asymptotic operator at
z0. Hence, the kernel of Dδ′ is contained in the kernel of Dδ.

We conclude that the kernels of the two operators may be identified.
Since their Fredholm indices are the same, their cokernels are also isomorphic.

�
5.2.2. The linearization at a Floer solution. The first step in the proof of
Proposition 5.9 is to set up the appropriate Fredholm problem. Given a Floer
solution ṽ : R × S1\Γ → R × Y , we consider exponentially weighted Sobolev
spaces of sections of the pull-back bundle ṽ∗T (R × Y ) since the asymptotic
limits are (Morse–Bott) degenerate. For δ > 0, we denote by W 1,p,δ(R ×
S1\Γ, v∗T (R × Y )) the space of sections that decay exponentially like e−δ|s|

near the punctures (also in cylindrical coordinates near the punctures Γ), as
in the previous section.

We similarly define Wm,p,δ sections with exponential decay/growth. The
following results will not depend on m except in the case of jet conditions
considered in Sect. 5.4, where m will need to be sufficiently large that the
order of contact condition can be defined.

To consider a parametric family of punctured cylinders in which the
asymptotic limits move in their Morse–Bott families, we let V be a collection
of vector spaces, associating with each puncture z ∈ Γ ∪ {±∞} a vector
subspace Vz of the tangent space to the corresponding Morse–Bott family
of orbits. For δ > 0, we then consider the space of sections W 1,p,δ

V (R ×
S1\Γ, v∗T (R×Y )) that converge exponentially at each puncture z to a vector
in the corresponding vector space Vz.
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Remark 5.21. In this paper, we will not always be careful to specify how
small δ has to be. It is worth pointing out that there is no value of δ that
works for all moduli spaces. The reason is that we need |δ| to be smaller
than the absolute value of all eigenvalues in the spectra of the relevant lin-
earized operators. Lemma 5.13 computes the spectrum of a number of these
relevant asymptotic operators, and as we see in Table 2, the smallest posi-
tive eigenvalue 1

2

(−C +
√

C2 + 16π2
)

becomes arbitrarily small as C → ∞.
As will become clear from Lemma 5.22 and Eq. (5.5), the relevant value for
C here is h′′(ebk)ebk , which can become arbitrarily large as the multiplicity
k → ∞. Since the relevant moduli spaces in the differential involve connecting
orbits of bounded multiplicities, for any given moduli space, we may choose
δ sufficiently small.

We now adapt an observation first used in [6,15] to show that the lin-
earization of the Floer operator is upper triangular with respect to the split-
ting of T (R × Y ) as (R ⊕ RR) ⊕ ξ. We then describe the non-zero blocks in
this upper triangular presentation of the operator. The two diagonal terms
are of special importance: one will be a Cauchy–Riemann operator acting on
sections of a complex line bundle, and the other can be identified with the
linearization of the Cauchy–Riemann operator for spheres in Σ.

We now explain this construction in more detail. Let ṽ : R × S1\Γ →
R × Y be a Floer solution with punctures Γ. The Hamiltonian need not be
admissible, but needs to be radial (i.e. depending only on r, the symplectiza-
tion variable). The almost complex structure JY is assumed to be admissible.
We consider three possible cases for the asymptotics of such a curve.

In the first case, ṽ is asymptotic to a closed Hamiltonian orbit at
ṽ(+∞, t), to a closed Hamiltonian orbit at ṽ(−∞, t), and with negative ends
converging to Reeb orbits at the punctures in Γ. The second case has ṽ
asymptotic to a closed Hamiltonian orbit at ṽ(+∞, t), but with negative
ends converging to Reeb orbits in {−∞} × Y at {−∞} ∪ Γ. These two cases
correspond to an upper level of a split Floer cylinder as in Definitions 4.1
and 4.2, respectively.

The third case we consider is most directly applicable to studying holo-
morphic curves in R×Y : ṽ has a positive cylindrical end at +∞ converging to
a Reeb orbit in {+∞}×Y , and has negative cylindrical ends at the punctures
{−∞}∪Γ. For such a curve, we may assume that H is identically 0, and thus
this example includes JY -holomorphic curves. This is of independent interest,
and is useful in [13]. Part of this was sketched in [16, Section 2.9.2].

Let w = πΣ ◦ ṽ : CP
1 → Σ be the smooth extension of the projection

of ṽ to the divisor (as given by Lemma 2.5). The linearized projection dπΣ

induces an isomorphism of complex vector bundles

ṽ∗ (T (R × Y )) ∼= (R ⊕ RR) ⊕ w∗TΣ.

To see this, note that for each point p ∈ Y , dπΣ induces a symplectic iso-
morphism (ξp,dα) ∼= (TπΣ(p)Σ,KωΣ). By the Reeb invariance of the almost
complex structure (and thus S1-invariance under rotation in the fibre), this
then gives a complex vector bundle isomorphism.
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Let V associate with each puncture z ∈ Γ ∪ {±∞} the tangent space
to Y if the corresponding limit of ṽ is a closed Hamiltonian orbit and the
tangent space to R × Y if the corresponding limit of ṽ is a closed Reeb orbit.
As will be clearer shortly, this is associating with each puncture the entirety
of the kernel of the corresponding asymptotic operator.

Let

Dṽ : W 1,p,δ
V (ṽ∗T (R × Y )) → Lp,δ(Hom0,1(T (R × S1\Γ), ṽ∗T (R × Y )))

(5.4)
be the linearization of the nonlinear Floer operator at the solution ṽ, for
δ > 0 sufficiently small. The vector spaces V correspond to allowing the
asymptotic limits to move in their Morse–Bott families. We have then a
linearized evaluation map at the punctures with values in ⊕z∈{±∞}∪ΓVz.
Let

DΣ
w : W 1,p(w∗TΣ) → Lp(Hom0,1(TCP

1, w∗TΣ))

be the linearized Cauchy–Riemann operator in Σ at the holomorphic sphere
w. We also have the linearized Cauchy–Riemann operator ḊΣ

w at the holo-
morphic cylinder s + it �→ w(e2π(s+it)) = πΣ(ṽ(s, t)). Then (πΣ ◦ ṽ)∗TΣ =
w∗TΣ|R×S1\Γ is a Hermitian vector bundle over R × S1\Γ. Let VΣ be the
kernels of the asymptotic operators of ḊΣ

w at each of the punctures, ±∞ and
Γ. (These are explicitly given by VΣ(−∞) = Tw(0)Σ, VΣ(+∞) = Tw(∞)Σ,
VΣ(z) = Tw(z)Σ for each marked point z ∈ Γ.) We consider this operator
acting on the space of sections

ḊΣ
w : W 1,p,δ

VΣ
(w∗TΣ|R×S1\Γ) → Lp,δ(Hom0,1(T (R × S1\Γ), w∗TΣ|R×S1\Γ)).

The operator DΣ
w is Fredholm independently of the weight, but ḊΣ

w is only
Fredholm when the weight δ is not an integer multiple of 2π. Furthermore,
by combining [43, Proposition 3.15] with Lemma 5.20, for 0 < δ < 2π, these
operators have the same Fredholm index and their kernels and cokernels
are isomorphic by the map induced by restricting a section of w∗TΣ to the
punctured cylinder.

Finally, define DC
ṽ by

DC

ṽ : W 1,p,δ
V0

(R × S1\Γ, C) → Lp,δ(Hom0,1(T (R × S1\Γ), C))

(DC

ṽ F )(∂s) = Fs + iFt +
(

h′′(eb) eb 0
0 0

)

F,
(5.5)

where V0 associates the vector space iR with the punctures at which ṽ con-
verges to a closed Hamiltonian orbit and associates the vector space C at
punctures at which ṽ converges with a closed Reeb orbit. Notice that again
these are chosen so that they precisely give the kernels of the corresponding
asymptotic operators of DC

ṽ .

Lemma 5.22. The isomorphism ṽ∗T (R × Y ) ∼= (R ⊕ RR) ⊕ w∗TΣ induces a
decomposition:

Dṽ =
(

DC
ṽ M

0 ḊΣ
w,

)
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where M is a multiplication operator that evaluates on ∂s to a fibrewise linear
map M : w∗TΣ → R ⊕ RR, decaying at the punctures. (In particular, M is
compact.) Furthermore, if w = πΣ ◦ ṽ is non-constant, then M is pointwise
surjective except at finitely many points.

Proof. In our setting, the nonlinear Floer operator takes the form of the
left-hand side of the equation:

dṽ + JY (ṽ)dṽ ◦ i − h′(er)R ⊗ dt + h′(er)∂r ⊗ ds = 0.

Write ṽ = (b, v) : R × S1\Γ → R × Y . If we apply dr to the previous
equation, and use the fact that dr ◦ JY = −α, we get

db − v∗α ◦ i + h′(eb)ds = 0.

Denoting by πξ : TY → ξ the projection along the Reeb vector field, we
get

πξdṽ + JY (ṽ)πξdṽ ◦ i = 0. (5.6)
Let g be the metric on R × Y given by g = dr2 + α2 + dα(·, JY ·). This

metric is JY -invariant. Let ∇̃ be the Levi-Civita connection for g. Let ∇ be
the Levi-Civita connection on TΣ for the metric ωΣ(·, JΣ·).

Then it follows that the linearization Dṽ applied to a section ζ of
ṽ∗T (R × Y ) satisfies

Dṽζ (∂s) = ∇̃sζ + JY (ṽ)∇̃tζ +
(
∇̃ζJY (ṽ)

)
∂tṽ − ∇̃ζ(JY XH)(ṽ)

= ∇̃sζ + JY (ṽ)∇̃tζ +
(
∇̃ζJY (ṽ)

)
∂tṽ + ∇̃ζ(h′(er)∂r)r=b. (5.7)

Notice that ∇̃∂r = 0 since g is a product metric. We have then

∇̃ζ(h′(er)∂r)|r=b = h′′(eb) eb dr(ζ)∂r.

Observe also that for any vector field V in TΣ, there is a unique hori-
zontal lift Ṽ to Y with the property α(Ṽ ) = 0. For any two vector fields V

and W in TΣ since dα(Ṽ , W̃ ) = KωΣ(V,W ), we have the following:

[Ṽ , W̃ ] = [̃V,W ] − KωΣ(V,W )R.

From this, it follows that the Levi-Civita connection ∇̃ satisfies the
following identities:

∇̃Ṽ W̃ = ∇̃V W − K

2
ωΣ(V,W )R

∇̃RR = 0

∇̃RṼ = −1
2
JY Ṽ .

A simple computation using the Reeb-flow invariance of JY and the
torsion-free property of the connection gives

∇̃∂r
JY = 0 = ∇̃RJY .

We will now compute Dṽζ (∂s), first when ζ = ζ1∂r +ζ2R = (ζ1+iζ2)∂r,
and then when ζ is a section of ṽ∗ξ.
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For the first computation, it suffices to notice the following two identi-
ties:

Dṽ∂r (∂s) = h′′(eb) eb ∂r

DṽR (∂s) = 0.

It follows then from the Leibniz rule that we have

Dṽ(ζ1 + iζ2) ∂r (∂s) = (ζs + iζt) +
(
h′′(eb)ebζ1

)
∂r = DC

ṽ (ζ1 + iζ2) ∂r(∂s).

Now consider the case when ζ is a section of ṽ∗ξ, and is thus the lift
ζ = η̃ of a section η of w∗TΣ. We compute

∇̃sR = ∇̃πξvs
R = −1

2
JY πξvs

∇̃sζ = ∇̃ws
η − K

2
ωΣ(ws, η)R − 1

2
α(vs)JY ζ,

and similarly for ∇̃t. We then obtain the following covariant derivatives of
JY , where W̃ is a section of ṽ∗ξ:

(∇̃ζJY )∂r = ∇̃ζR − JY ∇̃ζ∂r = −1
2
JY ζ

(∇̃ζJY )R = −∇̃ζ∂r − JY ∇̃ζR = −1
2
ζ

(∇̃ζJY )W̃ = ∇̃ζ(JY W̃ ) − JY ∇̃ζW̃

= ∇̃ηJΣW − K

2
ωΣ(η, JΣW )R − JY

(

∇̃ηW − K

2
ωΣ(η,W )R

)

= ˜(∇ηJΣ)W − K

2
ωΣ(η, JΣW )R − K

2
ωΣ(η,W )∂r.

It follows then

Dṽζ (∂s) = ∇̃sζ + JY ∇̃tζ + (∇̃ζJY )ṽt

= ∇̃sη − 1
2
α(vs)JY ζ − K

2
ωΣ(ws, η)R + JY ∇̃tη +

1
2
α(vt)ζ

+
K

2
ωΣ(wt, η)∂r − 1

2
btJY ζ − 1

2
α(vt)ζ + ˜(∇ηJΣ)wt

− K

2
ωΣ(η, JΣwt)R − K

2
ωΣ(η, wt)∂r

= ˜̇
DΣ

wη + KωΣ(wt, η)∂r − KωΣ(ws, η)R.

(Note that we use the fact that ṽs +JY ṽt +h′(eb)∂r = 0 in the cancellations.)
Writing ζ = (ζa, ζb) under the isomorphism ṽ∗T (R × Y ) ∼= (R ⊕ RR) ⊕

w∗TΣ, we obtain the decomposition:

Dṽ(ζa, ζb)(∂s) =
(

Daa Dab

Dba Dbb

)(
ζa

ζb

)

(∂s).

Our calculations now establish that Daa = DC
ṽ and Dba = 0, Dbb =

ḊΣ
w, and Dabζ(∂s) = KωΣ(wt, πΣζ)∂r − KωΣ(ws, πΣζ)R. Observe that in

particular, Dab is a pointwise linear map from ṽ∗ξ|p to R∂r ⊕ RR. The map
is surjective except at critical points of the pseudoholomorphic map w, of
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which there are finitely many if w is non-constant. The decay claim follows
since w converges to a point, and thus its derivatives decay exponentially
fast. �

Remark 5.23. Notice that for each puncture z ∈ {±∞} ∪ Γ, if γ(t) denotes
the corresponding asymptotic Hamiltonian or Reeb orbit, the previous result
allows us to identify Vz with Tγ(0)Y at a Hamiltonian orbit and with R ×
Tγ(0)Y at a Reeb orbit.

Lemma 5.24. Let ṽ : R×S1\Γ → R×Y be a finite hybrid energy Floer cylinder
with punctures Γ.

Then the operator DC
ṽ defined in Eq. (5.5) is Fredholm for δ > 0 suffi-

ciently small.
The restriction

DC

ṽ |W 1,p,δ : W 1,p,δ(R × S1\Γ, C) → Lp,δ(Hom0,1(T (R × S1\Γ), C))

has Fredholm index −1 − 2#Γ if the positive puncture at +∞ converges to
a closed Hamiltonian orbit and has Fredholm index −2 − 2#Γ if the positive
puncture converges to Reeb orbit at +∞ × Y .

If ṽ converges at both ±∞ to closed Hamiltonian orbits, then

DC

ṽ : W 1,p,δ
V0

(R × S1\Γ, C) → Lp,δ(Hom0,1(T (R × S1\Γ), C))

has Fredholm index 1 and is surjective.
If, instead, ṽ converges at +∞ to a closed Hamiltonian orbit, and at

−∞ to a closed Reeb orbit in {−∞}×Y , then DC
ṽ has Fredholm index 2 and

is surjective.
Finally, if ṽ converges at ±∞ to closed Reeb orbits in {±∞} × Y , then

DC
ṽ has Fredholm index 2 and is surjective.

In all three cases, the kernel of DC
ṽ contains the constant section i, which

can be identified with the Reeb vector field.

Proof. We will apply the punctured Riemann–Roch Theorems 5.16 and 5.18.
For this, we need to compute the Conley–Zehnder indices of the appropri-
ately perturbed asymptotic operators. We will first identify the (Morse–Bott
degenerate) asymptotic operators at each of the punctures, and then apply
Corollary 5.14 to obtain the Conley–Zehnder indices of the ±δ-perturbed
operators.

Recall from Remark 5.21 that we have |δ| > 0 smaller than the spectral
gap for any of these punctures.

To consider the operator DC
ṽ : W 1,p,δ

V0
→ Lp,δ, it will be convenient to

consider a related operator with the same formula, but on the much larger
space of functions with exponential growth. By a slight abuse of notation, we
will use the same name:

DC

ṽ : W 1,p,−δ → Lp,−δ

(DC

ṽ F )(∂s) = Fs + iFt +
(

h′′(eb) eb 0
0 0

)

F.
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Then the kernel and cokernel of the operator acting on the spaces of sections
with exponential growth can be identified with the kernel and cokernel of the
operator acting on W 1,p,δ

V0
, by Lemma 5.20.

First, consider the case when ṽ converges to a closed Hamiltonian orbit
in {b±} × Y as s → ±∞. Then the asymptotic operator associated with DC

ṽ

at ±∞ is given by

A± = −i
d
dt

−
(

h′′(eb±) eb± 0
0 0

)

.

In the case of δ-exponential decay, the relevant asymptotic operators are
given by A+ + δ at the positive puncture +∞ and by A− − δ at the negative
puncture −∞. In the case of δ-exponential growth, the relevant asymptotic
operators are A+ − δ and A− + δ, respectively.

For the case of exponential decay, Corollary 5.14 then gives the Conley–
Zehnder index of 0 for A+ + δ and of 1 for A− − δ.

In the case of exponential growth, Corollary 5.14 gives instead that the
Conley–Zehnder index of A+ − δ is 1 and that of A− + δ is 0.

Associated with a Reeb puncture at ±∞ or at P ∈ Γ, we have the
asymptotic operator

−i
d
dt

.

Writing ṽ = (b, v) : R × S1\Γ → R × Y , we have b → −∞ at both types of
negative punctures and b → +∞ at the positive puncture.

As above, in the case of exponential decay, the relevant asymptotic
operators are −i d

dt + δ at a positive puncture and −i d
dt − δ at a negative

puncture. Again, by Corollary 5.14, we obtain a Conley–Zehnder index of −1
at +∞ and a Conley–Zehnder indices of 1 at a negative puncture (−∞ or
P ∈ Γ).

If, instead, we consider exponential growth, we obtain Conley–Zehnder
indices of +1 at positive punctures and −1 at negative punctures.

Applying now the punctured Riemann–Roch theorem 5.16, and using
the fact that the Euler characteristic of the punctured cylinder is −#Γ, we
obtain that the Fredholm index of

DC

ṽ |W 1,p,δ : W 1,p,δ(R × S1\Γ, C) → Lp,δ(Hom0,1(T (R × S1\Γ), C))

is given by

−#Γ − c − 1 − #Γ = −c − 1 − 2#Γ,

where c = 0 if the positive puncture converges to a Hamiltonian orbit, and
c = 1 if the positive puncture converges to a Reeb orbit at +∞, as claimed.

The injectivity of DC
ṽ restricted to W 1,p,δ follows from automatic

transversality, applying [41, Proposition 2.2]. The criterion involves the
adjusted Chern number [41, Equations (2.4) and (2.5)]. In our situation,
there are 1 − c punctures with even Conley–Zehnder index. This adjusted
Chern number then becomes
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c1(E, l,AΓ) =
1
2
(Ind(DC

ṽ |W 1,p,δ) − 2 + #Γ0)

=
1
2
(−c − 1 − 2#Γ − 2 + (1 − c)) = −#Γ − 1 − c < 0

as necessary to apply [41, Proposition 2.2].
Now, applying Theorem 5.18, we compute that the Fredholm index of

DC

ṽ : W 1,p,δ
V0

(R × S1\Γ, C) → Lp,δ(Hom0,1(T (R × S1\Γ), C))

is given by

−#Γ+1 − (−#Γ) −
{

0 if ṽ(−∞) converges to a Hamiltonian orbit
−1 if ṽ(−∞) converges to a Reeb orbit

= 1 or 2, depending on the negative end of ṽ.

Furthermore, the fact that the curve has genus 0 and one puncture with
even Conley–Zehnder index precisely if lims→−∞ ṽ is a Hamiltonian orbit
implies that

c1(E, l,AΓ)

=

{
1
2 (1 − 2 + 1) = 0 if ṽ(−∞) converges to a Hamiltonian orbit
1
2 (2 − 2) = 0 if ṽ(−∞) converges to a Reeb orbit.

In either case, the adjusted Chern number is less than the Fredholm index.
Therefore, DC

ṽ satisfies the automatic transversality criterion and is thus sur-
jective, as wanted.

It follows immediately from the expression for DC
ṽ that the constant i

is in the kernel. Recalling that C = ṽ∗(R ⊕ RR) in the splitting given by
Lemma 5.22, we then may identify this constant with the Reeb vector field
R. �

To summarize the results of this section, by Lemma 5.22, a punctured
Floer cylinder in R×S1 is regular if the operators DC

ṽ and ḊΣ
w are surjective.

Surjectivity of the latter is equivalent to surjectivity of DΣ
w. Lemma 5.24

gives the surjectivity of DC
ṽ . It thus remains to study transversality for DΣ

w,
specifically with respect to the evaluation maps that will allow us to define
the moduli spaces of chains of pearls in Σ (see Sect. 5.3). Additionally, we
need to consider transversality for moduli spaces of planes in W asymptotic
to Reeb orbits in Y , or equivalently, the moduli spaces of spheres in X with
an order of contact condition at Σ (see Sect. 5.4).

5.3. Transversality for chains of pearls in Σ

In this section and the next, we show that for generic almost complex struc-
ture (in a sense to be made precise), the moduli spaces of chains of pearls
and moduli spaces of chains of pearls with spheres in X (possibly augmented
as well) are transverse. We begin with the definition of several moduli spaces
that will be useful.
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Definition 5.25. Let JΣ ∈ JΣ be an almost complex structure compatible
with ωΣ. Given p, q ∈ Crit(fΣ) and a finite collection A1, . . . , AN ∈ H2(Σ; Z),
let

M∗
k,Σ((A1, . . . , AN ); q, p;JΣ)

denote the space of simple chains of pearls in Σ from q to p (see Definition 5.5),
such that (wi)∗[CP

1] = Ai, with k marked points.
Let

M∗
k,Σ((A1, . . . , AN );JΣ)

denote the moduli space of N parametrized JΣ-holomorphic spheres in Σ,
representing the classes Ai, i = 1, . . . , N , with k marked points, also satis-
fying the simplicity criterion of Definition 5.5, i.e. so each sphere is either
somewhere injective or constant, each constant sphere has at least one aug-
mentation marked point, and no sphere has image contained in the image of
another.

For JW ∈ JW , let JΣ = P (JW ) be the corresponding almost complex
structure in JΣ and JX the corresponding almost complex structure on X.
Define

M∗
k,(X,Σ)((B;A1, . . . , AN );x, p, JW )

to be the moduli space of simple chains of pearls in Σ with a sphere in
X (as in Definitions 5.3 and 5.5), where x is a critical point of fW and
p is a critical point of fΣ, and representing the spherical homology classes
[wi] = Ai ∈ H2(Σ; Z), i = 1, . . . , N and [v] = B ∈ H2(X; Z)\0. In the
following, we will write

l = B • Σ = Kω(B)

which is the order of contact of v with Σ.
Let

M∗
k,(X,Σ)((B;A1, . . . , AN );JW )

denote the moduli space of N parametrized JΣ-holomorphic spheres in Σ, rep-
resenting the classes Ai, and of a JX -holomorphic sphere in X representing
the class B with order of contact l = B •Σ = Kω(B), also satisfying the sim-
plicity criterion of Definition 5.5, i.e. so each sphere in Σ is either somewhere
injective or constant (if constant, it has at least one augmentation marked
point), no image of a sphere in Σ is contained in the image of another and
the image of the sphere in X is not contained in the tubular neighbourhood
ϕ(U) of Σ. Furthermore, the spheres in Σ have k marked points.

Let

M∗
X((B1, B2, . . . , Bk);JW )

denote the moduli space of k unparametrized JX -holomorphic spheres in X,
where each sphere is somewhere injective, no image of a sphere is contained
in the image of another sphere, and so the image of each sphere is not con-
tained in the tubular neighbourhood ϕ(U) of Σ, and such that each sphere
intersects Σ only at ∞ ∈ CP

1 with order of contact Bi • Σ. We can think of
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an unparametrized sphere as an equivalence class of parametrized spheres,
modulo the action of Aut(CP

1,∞) = Aut(C) on the domain.
Finally, let

Ma
k,Σ((A1, . . . , AN ), (B1, . . . , Bk); q, p;JW )

denote the moduli space of simple augmented chains of pearls in Σ with k
unparametrized augmentation planes, and let

Ma
k,(X,Σ)((B;A1, . . . , AN ); (B1, . . . , Bk);x, p;JW )

denote the moduli space of simple augmented chains of pearls with a sphere
in X. (See Definitions 5.4 and 5.5.)

To apply the Sard–Smale Theorem, we need to consider Banach spaces
of almost complex structures, so we let J r

Σ,J r
W be the space of Cr-regular

almost complex structures otherwise satisfying the conditions of being in JΣ,
JW . We impose r � 2 and in general will require r to be sufficiently large
that the Sard–Smale theorem holds (this will depend on the Fredholm indices
associated with the collection of homology classes and will also depend on
the order of contact to Σ for the spheres in X).

For each of these moduli spaces, we also consider the corresponding uni-
versal moduli spaces as we vary the almost complex structure. For instance,
we denote by M∗

k,Σ((A1, . . . , AN ),J r
Σ) the moduli space of pairs ((wi)N

i=1, JΣ)
with JΣ ∈ J r

Σ and (wi)N
i=1 ∈ M∗

k,Σ((A1, . . . , AN ), JΣ).
The main goal of this section and of the next is to prove that these

moduli spaces of simple chains of pearls are transverse for generic almost
complex structures. This is analogous to [29, Theorem 6.2.6], and indeed, the
transversality theorem of McDuff–Salamon will be a key ingredient of our
proof. Their Theorem 6.2.6 is about transversality of the universal evalua-
tion map to a specific submanifold ΔE of the target, whereas our work in
this section establishes transversality to some other submanifolds. We will,
furthermore, require an extension of the results from [12] (see Sect. 5.4), and
an additional technical transversality point needed to be able to consider the
lifted problem in R × Y .

Proposition 5.26. There is a residual set J reg
W ⊂ JW such that J reg

Σ :=
P (J reg

W ) is a residual set in JΣ and such that for all JΣ ∈ J reg
Σ and

JW ∈ J reg
W , p ∈ Crit(fΣ), q ∈ Crit(fΣ) and x ∈ Crit(fW ), the mod-

uli spaces M∗
k,Σ((A1, . . . , AN ); q, p;JΣ), M∗

k,(X,Σ)((B;A1, . . . , AN );x, p, JW ),
Ma

k,Σ((A1, . . . , AN ), (B1, . . . , Bk); q, p;JW ) and Ma
k,(X,Σ)((B;A1, . . . , AN );

(B1, . . . , Bk);x, p;JW ) are manifolds. Their dimensions are

dim M∗
k,Σ((A1, . . . , AN ); q, p;JΣ) = M(p)

+
N∑

i=1

2 〈c1(TΣ), Ai〉 − M(q) + N − 1 + 2k,

dim M∗
k,(X,Σ)((B;A1, . . . , AN );x, p, JW )

= M(p) +
N∑

i=1

2 〈c1(TΣ), Ai〉 + 2(〈c1(TX), B〉 − B • Σ) + M(x)
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− 2(n − 1) + N − 1 + 2k,

dim Ma
k,Σ((A1, . . . , AN ), (B1, . . . , Bk); q, p;JW )

= M(p) +
N∑

i=1

2 〈c1(TΣ), Ai〉 − M(q) + N − 1

+
k∑

i=1

(2 〈c1(TX), Bi〉 − 2Bi • Σ) ,

dim Ma
k,(X,Σ)((B;A1, . . . , AN ); (B1, . . . , Bk);x, p;JW )

= M(p)+
N∑

i=1

2 〈c1(TΣ), Ai〉+2(〈c1(TX), B〉 − B • Σ) + M(x) − 2(n − 1)

+ N − 1 +
k∑

i=1

(2 〈c1(TX), Bi〉 − 2Bi • Σ) ,

where M(p) and M(q) are the Morse indices of p, q ∈ Crit(fΣ) and M(x) is
the Morse index of x ∈ Crit(fW ).

Proposition 5.27. [29, Proposition 6.2.7] M∗
k,Σ((A1, . . . , AN );J r

Σ) is a
Banach manifold.

We will also make use of the following definition and proposition, the
latter of which we prove in the next section.

Definition 5.28. There is a universal evaluation map

evΣ : M∗
k,Σ((A1, . . . , AN );J r

Σ) → Σ2N

(w1, . . . , wN ) �→ (w1(0), w1(∞), w2(0), w2(∞), . . . , wN (∞)).

Similarly, we have

evX,Σ : M∗
k,(X,Σ)((B;A1, . . . , AN );JW ) → X × Σ2N+1

(v, w1, . . . , wN ) �→ (v(0), v(∞), w1(0), w1(∞), w2(0), . . . , wN (∞)),

where v is the holomorphic sphere in X and the wi are the spheres in Σ.
We have an evaluation map coming from simple collections of spheres

in X:

eva
Σ : M∗

X((B1, B2, . . . , Bk);J r
W ) → Σk

(v1, . . . , vk) �→ (v1(∞), v2(∞), . . . , vk(∞)).

For spheres in Σ, we also obtain evaluation maps at the augmentation punc-
tures

eva
Σ : M∗

k,Σ((A1, . . . , AN );J r
Σ) → Σk

and

eva
Σ : M∗

k,(X,Σ)((B;A1, . . . , AN );J r
W ) → Σk.

We refer to these three maps denoted eva as augmentation evaluation maps.



77 Page 38 of 77 L. Diogo, S. T. Lisi JFPTA

Proposition 5.29. Let B0, . . . , Bk be spherical classes in H2(X; Z). Let

r � max
i

Bi • Σ + 2.

The universal moduli space M∗
X((B1, . . . , Bk);J r

W ) is a Banach mani-
fold and the evaluation maps

eva
Σ : M∗

X((B1, . . . , Bk);J r
W ) → Σk : (f1, f2, . . . , fk) �→ (f1(∞), . . . , fk(∞))

evX,Σ : M∗
X((B0);J r

W ) → X × Σ : f �→ (f(0), f(∞))

are submersions.

Recall that we have chosen a Morse function fΣ : Σ → R and a corre-
sponding gradient-like vector field ZΣ, such that (fΣ, ZΣ) is a Morse–Smale
pair. The time-t flow of ZΣ is denoted by ϕt

ZΣ
and the stable (ascending)

W s
Σ(q) and unstable (descending) manifolds Wu

Σ(p) were defined in Eq. (3.1).
(Note that these are the stable/unstable manifolds for the negative gradient
flow.)

Definition 5.30. The flow diagonal in Σ×Σ associated with the pair (fΣ, ZΣ)
is

ΔfΣ :=
{

(x, y) ∈ (Σ\ Crit(fΣ))2 | ∃t > 0 so y = ϕt
ZΣ

(x)
}

,

where Crit(fΣ) is the set of critical points of fΣ.

We will now establish transversality of the evaluation maps to appropri-
ate products of stable/unstable manifolds, critical points, diagonals and flow
diagonals. By [29, Proposition 6.2.8], the key difficulty will be to deal with
constant spheres. For this, we will need the following lemma about evaluation
maps intersecting with the flow diagonals.

Lemma 5.31. Suppose f0 : M0 → Σ and f1 : M1 → Σ are submersions.
Then

F : M0 × M1 → Σ3

(m0,m1) �→ (f0(m0), f1(m1), f1(m1))

is transverse to ΔfΣ × {p} for each point p ∈ Σ.

Proof. Suppose F (m0,m1) = (x, p, p) ∈ ΔfΣ × {p}. Then there exists t so
that φt

ZΣ
(x) = φt

ZΣ
(f0(m0)) = f1(m1) = p.

Notice that

E := {(dφ−t
ZΣ

(p)v, v) | v ∈ TpΣ} ⊂ T(x,p)ΔfΣ .

For notational simplicity, we write Φ = dφ−t
ZΣ

(p).
It follows then that

dF (m0,m1) · T (M0 × M1) + (E ⊕ 0)

= {(df0|m0v0 + Φw,df1|m1v1 + w, df1|m1v1) | v0 ∈ Tm0M0,

v1 ∈ Tm1M1, w ∈ TpΣ}
= TΣ ⊕ TΣ ⊕ TΣ

using the surjectivity of df0, df1. This then establishes the result since E ⊂
T(x,p)ΔfΣ . �
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From this, we now obtain the following:

Lemma 5.32. Suppose M0 and B are manifolds and there is a map

ev = (ev−, ev+) : M0 → B × Σ

that is transverse to A × pt, for a submanifold A of B and for all points
pt ∈ Σ. Suppose also that M1 is a manifold with a submersion e : M1 → Σ.

Then the map

êv : M0 × M1 → B × Σ3

(m,n) �→ (ev−(m), ev+(m), e(n), e(n))

is transverse to A × ΔfΣ × pt, for all points pt ∈ Σ.

Proof. We apply the previous lemma, using f0 = ev+ and f1 = e. Then
êv(m,n) = (ev−(m), F (m,n)). The transversality to A×ΔfΣ ×pt follows by
the transversality of F to ΔfΣ × pt together with the transversality of ev−
to A. �

Lemma 5.33. Let N � 1, and let A1, . . . , AN be spherical homology classes
in Σ and let B be a spherical homology class in X.

Suppose that S ⊂ Σ2N−2 is obtained by taking the product of some
number of copies of ΔfΣ ⊂ Σ2 and of the complementary number of copies
of {(p, p) | p ∈ Crit(fΣ)} ⊂ Σ2, in arbitrary order. Let Δ ⊂ Σ2 denote the
diagonal.

Then if
∑N

i=1 Ai 
= 0, the universal evaluation map

evΣ : M∗
k,Σ((A1, . . . , AN );J r

Σ) → Σ2N

is transverse to the submanifold {x} × S × {y} for all x, y ∈ Σ.
If B 
= 0, the universal evaluation map

evX,Σ : M∗
k,(X,Σ)((B;A1, . . . , AN );J r

W ) → X × Σ2N+1

is transverse to the submanifold {x} × Δ × S × {y} for any x ∈ X, y ∈ Σ.

Proof. We consider the case of M∗
k,Σ in detail since the argument is essentially

the same for M∗
k,(X,Σ), though notationally more cumbersome.

Suppose that ((v1, . . . , vN ), J) ∈ M∗
k,Σ((A1, . . . , AN );J r

Σ) is in the pre-
image of {x}×S ×{y}. Write S = S1 ×S2 ×· · ·×SN−1, where each Si ⊂ Σ2

is either the flow diagonal or the set of critical points.
Notice that the simplicity condition then requires that if some sphere

vi is constant, 1 < i < N , we must have that Si−1 and Si are flow diagonals.
If v1 is constant, then S1 is a flow diagonal and if vN is constant, SN−1 is a
flow diagonal.

We will proceed by induction on N . The case N = 1 follows from [29,
Proposition 3.4.2].

Now, for the inductive argument, we suppose the result holds for any
S ⊂ Σ2(N−1)−2 of the form specified, and for any k � 0, for any collection of
N − 1 spherical classes, not all of which are zero.
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Let now A1, . . . , AN be spherical homology classes, not all of which
are zero. Notice that each of these homology classes is represented by a JΣ-
holomorphic sphere, and thus has ωΣ(Ai) � 0 for each i. In particular then,
for such spherical classes, for any 1 � a � b � N , Aa, Aa+1 . . . , Ab are not
all zero if and only if

∑b
i=a Ai 
= 0. Then at least one of A1, . . . , AN−1 or

A2, . . . , AN is a collection of spheres satisfying the hypotheses of the lemma.
For simplicity of notation, let us assume that A1 + · · · + AN−1 
= 0. Let
S0 = S1 × S2 × · · · × SN−2. Let k = k0 + kN where kN is the number of
marked points we consider on the last sphere. By the induction hypothesis,
we have that the evaluation map

M∗
k0,Σ((A1, . . . , AN−1);J r

Σ) → Σ2(N−1)

is transverse to pt × S0 × pt. Denote this map by ev0.
Notice that M∗

k,Σ((A1, . . . , AN );J r
Σ) ⊂ M∗

k0,Σ((A1, . . . , AN−1);J r
Σ) ×

M∗
kN ,Σ(AN ;J r

Σ). Let then evN : M∗
k,Σ((A1, . . . , AN );J r

Σ) → Σ2 be the eval-
uation at 0 and ∞ in the Nth sphere. We, therefore, have

evΣ : M∗
k,Σ((A1, . . . , AN );J r

Σ) → Σ2N

given by evΣ = (ev0, evN ).
If AN 
= 0, the result follows again from [29, Proposition 3.4.2].
If, instead, AN = 0, we have from above that SN−1 = ΔfΣ . Notice that

the evaluation map of constant spheres on Σ has image on the diagonal in
Σ × Σ. The result now follows by applying Lemma5.32.

The case with a sphere in X follows a nearly identical induction argu-
ment, though the base case consists of a single sphere in X. The required
submersion to X × Σ now follows from Proposition 5.29, and the induction
proceeds as before. �

Proposition 5.34. Let N � 0. Suppose that S ⊂ Σ2N−2 is obtained by taking
the product of some number of copies of ΔfΣ ⊂ Σ2 and of the complementary
number of copies of {(p, p) | p ∈ Crit(fΣ)} ⊂ Σ2, in arbitrary order.

Let Δ ⊂ Σ × Σ denote the diagonal and let Δk denote the diagonal Σk

in Σk × Σk.
Let p, q be critical points of fΣ and let x be a critical point of fW .
Then the universal evaluation maps together with augmentation evalu-

ation maps

evΣ × eva
Σ × eva

Σ : M∗
k,Σ((A1, . . . , AN );J r

Σ) × M∗
X((B1, . . . , Bk);J r

W )

→ Σ2N × Σk × Σk

evX,Σ×eva
Σ×eva

Σ : M∗
k,(X,Σ)((B;A1, . . . , AN );J r

W )×M∗
X((B1, . . . , Bk);J r

W )

→ X × Σ2N+1 × Σk × Σk

are transverse to, respectively,

W s
Σ(q) × S × Wu

Σ(p) × Δk

Wu
X(x) × Δ × S × Wu

Σ(p) × Δk.
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Proof. We will consider only the first case, the second being analogous. Notice
first that by Proposition 5.29 the augmentation evaluation map

eva
Σ : M∗

X((B1, . . . , Bk);J r
W ) → Σk

is a submersion. It suffices, therefore, to prove that

evΣ : M∗
k,Σ((A1, . . . , AN );J r

Σ) → Σ2N

is transverse to W s
Σ(q) × S × Wu

Σ(p).
The proposition follows immediately if at least one of the Ai, i =

1, . . . , N is non-zero, or if we are considering the case of a chain of pearls
with a sphere in X, by applying Lemma 5.33.

The only case then that must be examined is that of a chain of pearls
entirely in Σ with all spheres constant. In this case, the evaluation map from
the moduli space M∗

k,Σ((0, 0, . . . , 0),J r
W ) factors through the evaluation map

{(z1, . . . , zN ) ∈ ΣN | zi = zj =⇒ i = j} × J r
W → Σ2N .

Transversality follows from the Morse–Smale condition on the gradient-
like vector field ZΣ. This gives that the intersection of W s

Σ(q) and Wu
Σ(p) is

transverse, and hence that the diagonal in Σ × Σ is transverse to W s
Σ(q) ×

Wu
Σ(p), which is what we need when N = 1. The case of N � 2 is similar,

using the description of the tangent space to the flow diagonal at (x, y) ∈ ΔfΣ ,
such that ϕt

ZΣ
(x) = y for some t > 0, as

T(x,y)ΔfΣ = {(v,dϕt
ZΣ

(x)v + cZΣ(y)) | v ∈ TxΣ, c ∈ R} ⊂ TxΣ ⊕ TyΣ.

�

Proposition 5.34 can be combined with standard Sard–Smale arguments,
the fact that P : J r

W → J r
Σ is an open and surjective map and Taubes’s

method for passing to smooth almost complex structures (see for instance
[29, Theorem 6.2.6]) to give the following proposition:

Proposition 5.35. There exist residual sets of almost complex structures
J reg

W ⊂ JW and J reg
Σ = P (J reg

W ), so that for fixed JW ∈ J reg
W and

JΣ = P (JW ), the restrictions of the evaluation maps evΣ × eva
Σ × eva

Σ and
evX,Σ × eva

Σ × eva
Σ to

M∗
k,Σ((A1, . . . , AN );JΣ) × M∗

X((B1, . . . , Bk);JW ) and

M∗
k,(X,Σ)((B;A1, . . . , AN );JW ) × M∗

X((B1, . . . , Bk);JW ),

respectively, are transverse to the submanifolds of Proposition 5.34.

The transversality statement of the main result of this section, Proposi-
tion 5.26 now follows. The dimension formulas follow from usual index argu-
ments, combining Riemann–Roch with contributions from the constraints
imposed by the evaluation maps.
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5.4. Transversality for spheres in X with order of contact constraints in Σ
We will now consider transversality for a chain of pearls with a sphere in X.
We will extend the results from Section 6 in [12]. In that paper, Cieliebak
and Mohnke prove that the moduli space of simple curves not contained in Σ,
with a condition on the order of contact with Σ, can be made transverse by
a perturbation of the almost complex structure away from Σ. We will extend
this result to show that additionally the evaluation map to Σ at the point of
contact can be made transverse. This can be useful, for instance, to define
relative Gromov–Witten invariants with constraints on homology classes in
Σ.

Recall that Σ is a symplectic divisor and NΣ is its symplectic normal
bundle equipped with a Hermitian structure. Keeping in mind the discussion
in Sect. 2 (in particular the identification of X\Σ with W in Lemma 2.5),
we will by an abuse of notation identify an almost complex struture on W
with the corresponding almost complex structure on X. We have fixed a
symplectic neighbourhood ϕ : U → X where ϕ : U → X is an embedding.
From Definition 2.7, we require that all JX ∈ JW have that JX is standard
in the image ϕ(U) ⊂ X of this neighbourhood.

Fix an almost complex structure J0 ∈ JW . We may suppose that
P (J0) ∈ JΣ is an almost complex structure in the residual set J reg

Σ given by
Proposition 5.26, though this is not strictly speaking necessary.

Let V := X\ϕ(U). Following Cieliebak–Mohnke [12], let J (V) be the
set of all almost complex structures on X compatible with ω that are equal
to J0 on ϕ(U). Similarly, we will let J r(V) be the compatible almost complex
structures of Cr regularity.

To define the order of contact, consider an almost complex structure
JX ∈ JW and a JX -holomorphic sphere f : CP

1 → X with f(0) ∈ Σ, an
isolated intersection. Choose coordinates s + it = z ∈ C on the domain and
local coordinates near f(0) ∈ Σ on the target, such that f(0) ∈ Σ ⊂ X
corresponds to 0 ∈ C

n−1 = C
n−1 × {0} ⊂ C

n−1 × C. Write πC : C
n → C for

projection onto the last coordinate (which is to be thought of as normal to
Σ). Assume also that JX(0) = i. Then f has contact of order l at 0 if the
vector of all partial derivatives of orders 1 through l (denoted by dlf(0)) has
trivial projection to C. We can write this condition as dlf(0) ∈ Tf(0)Σ. We
define then the order of contact at an arbitrary point in CP

1 by precomposing
with a Möbius transformation. (This is well defined, by [12, Lemma 6.4].)

Define the space of simple pseudoholomorphic maps into X that have
order of contact l at ∞ to a point in Σ to be

M∗
∞,l,(X,Σ)(JW ) := {(f, JX) ∈ Wm,p(CP

1,X) × JW | ∂JX
f = 0,

f(∞) ∈ Σ, dlf(∞) ∈ Tf(∞)Σ,

f simple, f−1(V) 
= ∅},

where we require m � l + 2. Note that our notation differs somewhat from
the notation in [12].

In this section, we need to have a higher regularity on our Sobolev spaces
to make sense of the order of contact condition. For the remaining moduli
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spaces, for simplicity of notation, we have taken m = 1, where this is not a
problem. Notice that by elliptic regularity, the moduli spaces themselves are
manifolds of smooth maps, and are independent of the choice of m. This only
affects the classes of deformations we consider in setting up the Fredholm
theory.

In this section, we will prove Proposition 5.29, which was stated and
used above:
Proposition 5.29. Let B0, . . . , Bk be spherical classes in H2(X; Z). Let

r � max
i

Bi • Σ + 2.

The universal moduli space M∗
X((B1, . . . , Bk);J r

W ) is a Banach mani-
fold and the evaluation maps

eva
Σ : M∗

X((B1, . . . , Bk);J r
W ) → Σk : (f1, f2, . . . , fk) �→ (f1(∞), . . . , fk(∞))

evX,Σ : M∗
X((B0);J r

W ) → X × Σ : f �→ (f(0), f(∞))

are submersions.
Notice that it suffices to prove this when considering only pairs (f, JX) ∈

M∗
X((B0);J r

W ) with the additional condition that JX ∈ J r(V).
We also observe that if l = B0 • Σ, we have that M∗

X((B0);JW ) ⊂
M∗

∞,k,(X,Σ)(JW ) for each k � l. Furthermore, M∗
X((B0);JW ) is a connected

component of M∗
∞,l,(X,Σ)(JW ). This observation will enable us to obtain the

result by inducting on k.
The proposition will follow by a modification of the proof given in [12,

Section 6]. Instead of reproducing their proof, we indicate the necessary mod-
ifications. To be as consistent as possible with their notation, we consider the
point of contact with Σ to be at 0.

Consider a JX -holomorphic map f : CP
1 → X such that f(0) ∈ Σ with

order of contact l. In the notation of [12], we are interested in the case of only
one component Z = Σ. We will obtain transversality of the evaluation map
at 0 by varying JX freely in the complement of our chosen neighbourhood of
the divisor, V = X\ϕ(U).

The linearized Cauchy–Riemann operator at f with respect to a torsion-
free connection is

(Dfξ)(z) = ∇sξ(z) + JX(f(z))∇tξ(z) + (∇ξ(z)JX(f(z))) ft(z).

At a coordinate chart around z = 0, we can specialize to the standard
Euclidean connection in R

2n = C
n (which preserves C

n−1 along C
n−1), we

get

(Dfξ)(z) = ξs(z) + JX(f(z))ξt(z) + A(z)ξ(z),

where

A(z)ξ(z) = (Dξ(z)JX(f(z))) ft(z)

(see also page 317 in [12]).
We need the following adaptation of Corollary 6.2 in [12].
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Lemma 5.36. Suppose (f, JX) ∈ M∗
∞,l,(X,Σ)(J r

W ) with JX ∈ J r(V), r � m.
After choosing local coordinates, suppose f(0) ∈ Σ and in coordinates

around f(0), Σ is mapped to C
n−1 and is thus preserved by JX .

Denote the unit disk by D2 and let ξ : (D2, 0) → (Cn, 0) be such that
Dfξ = 0. Given 0 < k ≤ l, if ξ(0) ∈ C

n−1, dk−1ξ(0) ∈ C
n−1 and ∂kξ

∂sk (0) ∈
C

n−1, then dkξ(0) ∈ C
n−1.

Proof. We need to show that ∂kξ
∂sk−i∂ti (0) ∈ C

n−1 for all 0 ≤ i ≤ k. It will be
convenient to use multi-index notation for partial derivatives, and denote the
previous expression by D(k−i,i)ξ(0). The case i = 0 is part of the hypotheses
of the lemma. For the induction step, note that Dfξ = 0 combined with the
product rule implies that

D(k−i,i)ξ(z) = JX(f(z))

⎛

⎝D(k−i+1,i−1)ξ(z) +
∑

α,β

Dα(JX(f(z))Dβξ(z)

+
∑

α′,β′
Dα′

A(z)Dβ′
ξ(z)

⎞

⎠ .

Here, α and β are multi-indices such that α = (a1, a2) for 0 ≤ a1 ≤ k − i, 0 ≤
a2 ≤ i − 1, α 
= (0, 0) and α + β = (k − i, i). Similarly, α′ and β′ are multi-
indices such that α′ = (a′

1, a
′
2) for 0 ≤ a′

1 ≤ k − i, 0 ≤ a′
2 ≤ i − 1 and

α′ + β′ = (k − i, i − 1). The hypotheses of the lemma and the induction
hypothesis imply that the derivatives of ξ on the right-hand side take values
in Tf(0)Σ. The fact that JX and ∇ preserve C

n−1 along C
n−1, and that

dlf(0) ∈ Tf(0)Σ, implies the induction step. �

We now prove the key property of the linearized evaluation map:

Proposition 5.37. For m − 2/p > l, r � m, the universal evaluation map

evX,Σ : M∗
∞,l,(X,Σ)(J r

W ) → Σ

(f, JX) �→ f(0)

is a submersion.

Proof. We show that for every 0 � k � l, and (f, JX) ∈ M∗
∞,k,(X,Σ)(J r(V)),

(d evX,Σ)(f,JX) : T(f,JX)M∗
∞,k,(X,Σ)(J r(V)) → Tf(0)Σ

(ξ, Y ) �→ ξ(0)

is surjective. By Lemma 6.5 in [12],

T(f,JX)M∗
∞,k,(X,Σ)(J r(V)) = {(ξ, Y ) ∈ TfWm,p(CP

1,X) × TJX
J r(V) |

Dfξ +
1
2
Y (f) ◦ df ◦ j = 0,

ξ(0) ∈ Tf(0)Σ, dkξ(0) ∈ Tf(0)Σ}.

We argue by induction on k. The case k = 0 is a special case of Proposition
3.4.2 in [29]. We assume that the claim is true for k − 1 and prove it for k.
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Take any v ∈ Tf(0)Σ. By induction, there is (ξ1, Y1) ∈ T(f,JX)

M∗
∞,k−1,(X,Σ)(J r(V)) such that (d evX,Σ)(f,JX)(ξ1, Y1) = v and dk−1ξ1(0) ∈

Tf(0)Σ. Let now ξ̃ ∈ TfWm,p(CP
1,X) be given by

ξ̃(z) = −zk

k!
β(z)πC

(
∂k

∂sk
ξ1

)

(0),

where β : C → [0, 1] is a smooth function that is identically 1 near 0 and has
compact support contained in C\f−1(V). Writing

(Dfξ)(z) = ξs(z) + iξt(z) + (JX(f(z)) − i)ξt(z) + A(z)ξ(z),

we have (Df ξ̃)(0) = 0 and dk−1(Df ξ̃)(0) = 0 (this follows the fact that
ξ̃s+iξ̃t ≡ 0 near 0). By Lemma 6.6 in [12], there is (ξ̂, Ŷ ) ∈ TfWm,p(CP

1,X)×
TJX

J (V) such that ξ̂(0) = 0, dk(ξ̂)(0) = 0 and

Df ξ̂ +
1
2
Ŷ (f) ◦ df ◦ j = −Df ξ̃.

Let now ξ2 = ξ1 + ξ̃ + ξ̂ and Y2 = Y1 + Ŷ . We have

Dfξ2 +
1
2
Y2(f) ◦ df ◦ j = 0

as well as ξ2(0) = v, dk−1(ξ2)(0) ∈ Tf(0)Σ and πC

(
∂k

∂sk ξ2

)
(0) = 0.

Lemma 5.36 implies that dk(ξ2)(0) ∈ Tf(0)Σ; hence, (ξ2, Y2) ∈ T(f,JX)

M∗
∞,l,(X,Σ)(J r

W ). This completes the proof. �

Observe now that by combining this with standard arguments (see, for
instance, [29, Proposition 3.4.2], which is also used in the proof of Proposi-
tion 5.26 above), we obtain the transversality for the evaluation at a point,
taking values in X. This finishes the proof of Proposition 5.29.

5.5. Proof of Proposition 5.9

We are now ready to complete the proof of Proposition 5.9. To this end, we
will show that the transversality problem for a cascade reduces to the already
solved transversality problem for chains of pearls. The two key ingredients of
this are the splitting of the linearized operator given by Lemma 5.22 and a
careful study of the flow diagonal in Y × Y .

Recall from Definition 2.7 that JY denotes the space of compatible,
cylindrical, Reeb–invariant almost complex structures on R × Y . These are
obtained as lifts of the almost complex structures in JΣ. Let J reg

Y be the set
of almost complex structures on R × Y that are lifts of the almost complex
structures in J reg

Σ (see Proposition 5.35).
Recall from Definition 2.7 and from Proposition 2.3, if JW ∈ JW is an

almost complex structure on W that is of the type we consider, it induces
an almost complex structure P (JW ) = JΣ ∈ JΣ. The restriction of JW to
the cylindrical end of W , JY , is then a translation and Reeb-flow invariant
almost complex structure on R × Y that has dπΣJY = JΣdπΣ.

Recall that the biholomorphism ψ : W → X\Σ given in Lemma 2.5
allows us to identify holomorphic planes in W with holomorphic spheres in
X. In the following, we will suppress the distinction when convenient.
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Recall also that by the definition of an admissible Hamiltonian (Defini-
tion 3.1), for each non-negative integer m, there exists a unique bm so that
h′(ebm) = m. Then Ym = {bm}×Y ⊂ R×Y is the corresponding Morse–Bott
family of 1-periodic Hamiltonian orbits that wind m times around the fibre
of Y → Σ.

We now define moduli spaces of Floer cylinders, from which we will
extract the moduli spaces of cascades by imposing the gradient flow line
conditions. First, we define the moduli spaces relevant to the differential
connecting two generators in R × Y . Then, we will define the moduli spaces
relevant to the differential connecting to a critical point in W .

Definition 5.38. Let N � 1, let A1, . . . , AN ∈ H2(Σ; Z) be spherical homology
classes. Let JY ∈ JY .

Define M∗
H,k,R×Y ;k−,k+

((A1, . . . , AN );JY ) to be a set of tuples of punc-
tured cylinders (ṽ1, . . . , ṽN ) with the following properties:
(1) There is a partition of Γ = Γ1 ∪ · · · ∪ ΓN of k augmentation marked

points with

ṽi : R × S1\Γi → R × Y

so that ṽi is a finite hybrid energy punctured Floer cylinder. For each
zj ∈ Γ, there is a positive integer multiplicity k(zj). Let vi denote the
projection to Y .

(2) There is an increasing list of N + 1 multiplicities from k− to k+:

k− = k0 < k1 < k2 < · · · < kN = k+

such that, for each i, the cylinder ṽi has multiplicities ki and ki−1 at
±∞, i.e. ṽi(+∞, ·) ∈ Yki

, ṽi(−∞, ·) ∈ Yki−1 .
(3) The Floer cylinders ṽi are simple in the sense that their projections to

Σ are either somewhere injective or constant, if constant, they have at
least one augmentation puncture, and their images are not contained
one in the other.

(4) For each i, and for every puncture zj ∈ Γi, the augmentation puncture
has a limit whose multiplicity is given by k(zj); i.e. limρ→−∞ vi(zj +
e2π(ρ+iθ)) is a Reeb orbit of multiplicity k(zj).

(5) The projections of the Floer cylinders to Σ represent the homology
classes Ai, i = 1, . . . , N ; i.e. (πΣ(ṽi))N

i=1 ∈ M∗
k((A1, . . . , AN ), JΣ).

Let B ∈ H2(X; Z) be a spherical homology class, B 
= 0. Let JW be an
almost complex structure on W as given by Lemma 2.5, matching JY on the
cylindrical end.

Definition 5.39. Define the moduli space

M∗
H,k,W ;k+

((B;A1, . . . , AN );JW )

to consist of tuples

(ṽ0, ṽ1, . . . , ṽN )

with the properties
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(1) The map ṽ0 : R × S1 → W is a finite energy holomorphic cylinder with
removable singularity at −∞.

(2) There is a partition of Γ = Γ1 ∪ · · · ∪ ΓN of k augmentation marked
points with

ṽi : R × S1\Γi → R × Y, i ≥ 1,

so that each ṽi is a finite hybrid energy punctured Floer cylinder. For
each zj ∈ Γ, there is a positive integer multiplicity k(zj). Denote by vi

the projection of ṽi to Y .
(3) There is an increasing list of N + 1 multiplicities:

k0 < k1 < k2 < · · · < kN = k+.

(4) For each i ≥ 1, and for every puncture zj ∈ Γi, the augmentation punc-
ture has a limit whose multiplicity is given by k(zj), i.e. limρ→−∞ vi(zj+
e2π(ρ+iθ)) is a Reeb orbit of multiplicity k(zj).

(5) The Floer cylinders ṽi for i ≥ 1 are simple, in the strong sense that the
projections to Σ are somewhere injective or constant, and have images
not contained one in the other. The cylinder ṽ0 is somewhere injective
in W .

(6) The projections of the Floer cylinders to Σ represent the homology
classes Ai, i = 1, . . . , N ; i.e. πΣ(ṽi))N

i=1 ∈ M∗
k((B;A1, . . . , AN ), JW ).

(7) After identifying ṽ0 with a holomorphic sphere in X, ṽ0 represents the
homology class B ∈ H2(X; Z).

(8) The cylinder ṽ1 has multiplicity k1 at +∞ and ṽ1(+∞, ·) ∈ Yk1 . At
−∞, ṽ1 converges to a Reeb orbit in {−∞} × Y . This Reeb orbit has
multiplicity k0.

(9) For each i � 2, the cylinder ṽi has multiplicities ki and ki−1 at ±∞:
ṽi(+∞, ·) ∈ Yki

, ṽi(−∞, ·) ∈ Yki−1 .
(10) The cylinder ṽ0 converges at +∞ to a Reeb orbit of multiplicity k0.

Observe that these moduli spaces are non-empty only if for each i =
1, . . . , N ,

Kω(Ai) = ki − ki−1 −
∑

z∈Γi

k(z).

Furthermore, for M∗
H,k,W , we must also have

B • Σ = Kω(B) = k0.

Note also that these moduli spaces have a large number of connected compo-
nents, where different components have different partitions of Γ or different
intermediate multiplicities.

Identifying holomorphic spheres in X with finite energy JW -planes in W ,
we consider also the moduli space of holomorphic planes M∗

X((B1, . . . , Bk);
JW ) as in Definition 5.25.

The space M∗
H,k,R×Y ((A1, . . . , AN );JY ) consists of N -tuples of some-

where injective punctured Floer cylinders in R×Y . Similarly, M∗
H,k,W consist

of N -tuples of punctured Floer cylinders in R × Y together with a holomor-
phic plane in W (which we can, therefore, also interpret as a holomorphic
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sphere in X). The cylinders and the eventual plane have asymptotics with
matching multiplicities, but are otherwise unconstrained. These two moduli
spaces, M∗

H,k,R×Y and M∗
H,k,W fail to be simple split Floer cylinders with

cascades (as in Definition 5.8) in two ways: they are missing the gradient tra-
jectory constraints on their asymptotic evaluation maps, and they are missing
their augmentation planes. To impose these conditions, we will need to study
these evaluation maps and establish their transversality.

Proposition 5.40. For JY ∈ J reg
Y , M∗

H,k,R×Y ((A1, . . . , AN );JY ) is a mani-
fold of dimension

N(2n − 1) +
N∑

i=i

2 〈c1(TΣ), Ai〉 + 2k.

For JW ∈ J reg
W , M∗

H,k,W ((B;A1, . . . , AN );JW ) is a manifold of dimen-
sion

N(2n − 1) + 2n + 1 +
N∑

i=i

2 〈c1(TΣ), Ai〉 + 2(〈c1(TX), B〉 − B • Σ) + 2k.

Proof. Consider first the case of cylinders in R × Y . Let

(ṽ1, . . . , ṽN ) ∈ M∗
H,k,R×Y ((A1, . . . , AN );JY ) .

Recall from Proposition 5.26 that for JΣ ∈ J reg
Σ , we have transversality

for DΣ
wi

for each sphere wi = πΣ(vi).
Let δ > 0 be sufficiently small. For each i = 1, . . . , N , by Lemma 5.24,

DC
ṽi

is surjective when considered on W 1,p,−δ (with exponential growth), and
has Fredholm index 1. The operator considered instead on the space W 1,p,δ

V ,
with V−∞ = V+∞ = iR and VP = C for any puncture P on the domain of ṽi,
has the same kernel and cokernel by Lemma 5.20. Thus, the operator, acting
on sections free to move in the Morse–Bott family of orbits, is surjective and
has index 1.

Since the operator Dṽi
is upper triangular from Lemma 5.22, and its

diagonal components are both surjective, the operator is surjective. Since the
Fredholm index is the sum of these, each component ṽi contributes an index
of 1 + 2n − 2 + 2 〈c1(TΣ), Ai〉 + 2ki = 2n − 1 + 2 〈c1(TΣ), Ai〉 + 2ki, where ki

is the number of punctures.
We now consider the case of a collection

(ṽ0, ṽ1, . . . , ṽN ) ∈ M∗
H,k,W ((B;A1, . . . , AN );JW ) .

The same consideration as previously gives that ṽ2, . . . , ṽN are transverse and
each contributes an index of 2n − 1 + 2 〈c1(TΣ), Ai〉 + 2ki, where ki is the
number of punctures. For the component ṽ1, again applying Lemma 5.22 and
applying Lemma 5.24 in the case where the −∞ end of the cylinder converges
to a Reeb orbit at {−∞}×Y , we obtain that the vertical Fredholm operator
is surjective and has index 2. The linearized Floer operator at ṽ1 is then
surjective and has index 2n+2 〈c1(TΣ), A1〉+2k1. By Lemma 2.5, the plane
ṽ0 can be identified with a sphere in X with an order of contact l = B • Σ
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with Σ. Its Fredholm index is 2n + 2(〈c1(TX), B〉 − l). The total Fredholm
index is, therefore,

(N − 1)(2n − 1) + 2n + 2n +
N∑

i=i

2 〈c1(TΣ), Ai〉

+2(〈c1(TX), B〉 − B • Σ) + 2k.

For both cases, the result now follows from the implicit function theo-
rem. �

It now suffices to prove the transversality of evaluation maps to the
products of stable/unstable manifolds and flow diagonals, and also transver-
sality of the augmentation evaluation maps, to obtain the constraints com-
ing from pseudo-gradient flow lines. Indeed, let (ṽ1, . . . , ṽN ) be a collec-
tion of N cylinders in M∗

H,k,R×Y ;k−,k+
((A1, . . . , AN );JY ). Write each of the

ṽi : R×S1 → R×Y as a pair ṽi = (bi, vi). We then have asymptotic evaluation
maps

ẽvY : M∗
H,k,R×Y ;k−,k+

((A1, . . . , AN );JY ) → Y 2N

(ṽ1, . . . , ṽN ) �→ (lims→−∞ v1(s, 1), lims→+∞ v1(s, 1), . . . ,
lims→−∞ vN (s, 1), lims→+∞ vN (s, 1)) . (5.8)

If (ṽ0, ṽ1, . . . , ṽN ) ∈ M∗
H,k,W ((B;A1, . . . , AN );JW ), we have

ẽvW,Y : M∗
H,k,W ;k+

((B;A1, . . . , AN );JW ) → W × Y 2N+1

(ṽ0, ṽ1, . . . , ṽN ) �→
(

ṽ0(0), lim
r→+∞ πY ṽ0(r + i0), lim

s→−∞ v1(s, 1), . . . ,

lim
s→+∞ vN (s, 1)

)

.

(5.9)
These maps are C1 smooth, which follows from exploiting the asymp-

totic expansion of a Floer cylinder near its asymptotic limit, as described by
[39]. Details for this are given in [17].

We also have augmentation evaluation maps. For each puncture z0 ∈ Γ,
there exists an index i ∈ {1, . . . , N} so that the augmentation puncture z0

is a puncture in the domain of vi. For this augmentation puncture, we have
the asymptotic evaluation map vi �→ limz→z0 πΣ(vi(z)) ∈ Σ. Combining all
of these evaluation maps over all punctures in Γ, we obtain

ẽva
Σ : M∗

H,k,R×Y ;k−,k+
((A1, . . . , AN );JY ) → Σk

ẽva
Σ : M∗

H,k,W ;k+
((B;A1, . . . , AN );JW ) → Σk.

Note that these maps are C1 smooth, either by [17] or by combining [43,
Proposition 3.15] with the smoothness for the evaluation map for closed
spheres.

Define the flow diagonal in Y × Y to be

Δ̃fY
:=

{
(x, y) ∈ (Y \ Crit(fY ))2 : ∃t > 0 s.t. ϕt

ZY
(x) = y

}
,

where Crit(fY ) is the set of critical points of fY .
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Let p̃, q̃ ∈ Y be critical points of fY and let Wu
Y (p̃), W s

Y (q̃) be the
unstable/stable manifolds of p̃, q̃, as in (3.1).

We may now describe the moduli space of simple split Floer cylinders
from q̃k− to p̃k+ as the unions of the fibre products of these moduli spaces
under the asymptotic evaluation maps and augmentation evaluation maps.
For notational convenience, we write

ẽv : M∗
H,k,R×Y ;k−,k+

((A1, . . . , AN );JY ) × M∗
X((B1, . . . , Bk);JW )

→ Y 2N × Σk × Σk

(ṽ,v) �→ (ẽvY (ṽ), ẽva
Σ(ṽ), eva

Σ(v)) .

(5.10)

Write ΔΣk ⊂ Σk × Σk to denote the diagonal Σk. Then define

M∗
H(q̃k− , p̃k+ ; (A1, . . . , AN ), (B1, . . . , Bk);JW )

= ẽv−1

(

W s
Y (q̃) ×

(
Δ̃fY

)N−1

× Wu
Y (p̃) × ΔΣk

)

.

From this, we have

M∗
H,N (q̃k− , p̃k+ ;JW )

=
⋃

(A1,...,AN )

⋃

k�0

⋃

(B1,...,Bk)

M∗
H(q̃k− , p̃k+ ; (A1, . . . , AN ), (B1, . . . , Bk);JW ).

(5.11)
Similarly, if x ∈ W is a critical point of fW , and letting Wu

W (x) be the
descending manifold of x in W for the gradient-like vector field −ZW , we
define

ẽv : M∗
H,k,W ;k+

((B;A1, . . . , AN );JW ) × M∗
X((B1, . . . , Bk);JW )

→ W × Y 2N+1 × Σk × Σk

((ṽ0, ṽ),v) �→ (ẽvW,Y (ṽ0, ṽ), ẽva
Σ(ṽ), eva

Σ(v)) .

Then define
M∗

H(x, p̃k+ ; (B;A1, . . . , AN ), (B1, . . . , Bk);JW )

= ẽv−1

(

Wu
W (x) × Δ̃ ×

(
Δ̃fY

)N−1

× Wu
Y (p̃) × ΔΣk

)

.

Finally, we obtain

M∗
H,N (x, p̃k+ ;JW )

=
⋃

(B;A1,...,AN )

⋃

k�0

⋃

(B1,...,Bk)

M∗
H(x, p̃k+ ; (B;A1, . . . , AN ), (B1, . . . , Bk);JW ).

(5.12)
To establish transversality for our moduli spaces, it then becomes nec-

essary to show transversality of the evaluation maps to these products of
descending/ascending manifolds, diagonals and flow diagonals. Recall the
space of almost complex structures J reg

W given in Proposition 5.35. We
denoted by J reg

Y the space of cylindrical almost complex structures on R×Y
obtained from restrictions of elements in J reg

W . The following result will pro-
vide the final step in the proof of Proposition 5.9.
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Proposition 5.41. Let JW ∈ J reg
W and let JY ∈ J reg

Y be the induced almost
complex structure on R × Y .

Let q̃, p̃ denote critical points of fY , and let x be a critical point of fW

in W . Let k+ and k− be non-negative multiplicities, k+ > k−.
Let A1, . . . , AN be spherical homology classes in Σ, let B,B1, . . . , Bk be

spherical homology classes in X, k � 0.
Let Δ̃ ⊂ Y × Y and ΔΣk ⊂ Σk × Σk be the diagonals.
Then

(1) the evaluation map

ẽvY × ẽva
Σ × eva

Σ : M∗
H,k,R×Y ;k−,k+

((A1, . . . , AN );JY )

×M∗
X((B1, . . . , Bk);JW ) → Y 2N × Σk × Σk

is transverse to the submanifold

W s
Y (q̃) ×

(
Δ̃fY

)N−1

× Wu
Y (p̃) × ΔΣk ;

(2) the evaluation map

ẽvW,Y × ẽva
Σ × eva

Σ : M∗
H,k,W ;k+

((B;A1, . . . , AN );JW )

×M∗
X((B1, . . . , Bk);JW ) → W × Y 2N+1 × Σk × Σk

is transverse to the submanifold

Wu
W (x) × Δ̃ ×

(
Δ̃fY

)N−1

× Wu
Y (p̃) × ΔΣk .

To prove this proposition, we will need a better description of the rela-
tionship between the moduli spaces of spheres in Σ, and the moduli spaces
of Floer cylinders in R × Y (or in W ).

Lemma 5.42. The maps

πM
Σ : M∗

H,k,R×Y ;k−,k+
((A1, . . . , AN );JY ) → M∗

k,Σ((A1, . . . , AN );JΣ)

πM
Σ : M∗

H,k,W ;k+
((B;A1, . . . , AN );JW ) → M∗

k,X,Σ((B;A1, . . . , AN );JW )

induced by πΣ : R × Y → Σ are submersions. The fibres have a locally free
(S1)N torus action by constant rotation by the action of the Reeb vector field.

Proof. We will study the case of

πM
Σ : M∗

H,k,R×Y ((A1, . . . , AN );JY ) → M∗
k,Σ((A1, . . . , AN );JΣ)

in detail. The case with a sphere in X follows by the same argument with a
small notational change. It also suffices to consider the case with N = 1 since
moduli spaces with more spheres are open subsets of products of these.

Suppose πΣ(ṽ) = w with ṽ ∈ M∗
H,k,R×Y ;k−,k+

(A;JY ) and w ∈
M∗

k,Σ(A;JΣ). Recall the splitting of the linearized Floer operator at ṽ, given
in Lemma 5.22 as

Dṽ =
(

DC
ṽ M

0 DΣ
w

)

.

By definition, TwM∗
k,Σ(A) = ker DΣ

w and TṽM∗
H,k,R×Y ;k−,k+

(A;JY ) =
ker Dṽ. By Lemma 5.24, DC

ṽ is surjective. It follows then that any section
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ζ0 of w∗TΣ that is in the kernel of DΣ
w can be lifted to a section (ζ1, ζ0) of

ṽ∗TΣ ∼= (R ⊕ RR) ⊕ w∗TΣ that is in the kernel of Dṽ.
Notice now that dπΣ(ζ1, ζ0) = ζ0, establishing that the evaluation map

is a submersion.
Also observe that S1 acts on the curve ṽ by the Reeb flow. By the Reeb

invariance of JY and of the admissible Hamiltonian H, the rotated curve is in
the same fibre of πM

Σ . Furthermore, for small rotation parameter, the curve
will be distinct (as a parametrized curve) from ṽ. �

The next result justifies why it was reasonable to assume k+ > k− in
Proposition 5.41. The fact that k+ 
= k− will also be used below.

Lemma 5.43. Let A := [w] ∈ H2(Σ; Z), where w : CP
1 → Σ is the continuous

extension of πΣ ◦ ṽ. Assume that either A 
= 0 or Γ 
= ∅. Then k+ > k−.

Proof. Denote by w∗Y the pull-back under w of the S1-bundle Y → Σ. The
map ṽ gives a section s of w∗Y , defined in the complement of Γ ∪ {0,∞}.
By [11, Theorem 11.16], the Euler number

∫
CP1 e(w∗Y ) (where e is the Euler

class) is the sum of the local degrees of the section s at the points in Γ∪{0,∞}.
Denote the multiplicities of the periodic XH -orbits x±(t) =

lims→±∞ v(s, t) by k±, respectively, and denote the multiplicities of the
asymptotic Reeb orbits at the punctures z1, . . . , zm ∈ Γ by k1, . . . , km, respec-
tively. The positive integers k± and ki are the absolute values of the degrees
of s at the respective points. Taking signs into account, we get

∫

CP1
e(w∗Y ) = k+ − k− − k1 − · · · − km.

We will show that this quantity is non-negative. We have
∫

CP 1
e(w∗Y ) =

∫

CP1
w∗e(Y → Σ) =

∫

CP1
w∗e(NΣ),

where NΣ is the normal bundle to Σ in Y . Now, e(NΣ) = s∗ Th(NΣ),
where s : Σ → NΣ is the zero section and Th(NΣ) is the Thom class of
NΣ [11, Proposition 6.41]. If j : NΣ → X is a tubular neighbourhood, then
j∗ Th(NΣ) = PD([Σ]) = [Kω] ∈ H2(X; R) [11, Equation (6.23)]. If ι : Σ ↪→
X is the inclusion, then

∫

CP1
w∗e(NΣ) =

∫

CP1
w∗s∗ Th(NΣ) =

∫

CP1
w∗ι∗j∗ Th(NΣ)

=
∫

CP1
w∗ι∗Kω = Kω(A) ≥ 0

since K > 0 and w is a JΣ-holomorphic sphere. We conclude that

k+ − k− − k1 − · · · − km = Kω(A) ≥ 0.

If A 
= 0, we get a strict inequality. If A = 0, we get an equality, but the
assumptions of the lemma imply that

∑m
i=1 ki > 0. In either case, we get

k+ > k−, as wanted. �
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Recall that the gradient-like vector field ZY has the property that
dπΣZY = ZΣ. Also recall that we may use the contact form α as a con-
nection to lift vector fields from Σ to vector fields on Y , tangent to ξ. If V is
a vector field on Σ, we write π∗

ΣV := Ṽ to be the vector field on Y uniquely
determined by the conditions α(V ) = 0, dπΣṼ = V . This extends as well to
lifting vector fields on Σ × Σ to vector fields on Y × Y .

Lemma 5.44. The flow diagonal in Y satisfies

πΣ(Δ̃fY
) ⊂ ΔfΣ ∪ {(p, p) | p ∈ Crit(fΣ)}.

Let (x̃, ỹ) ∈ Δ̃fY
and x = πΣ(x̃), y = πΣ(ỹ). Let t > 0 be so that

ỹ = ϕt
ZY

(x̃). Then if x = y, we have x ∈ Crit(fΣ) and

T(x̃,ỹ)Δ̃fY

= {(aR + v, bR + π∗
Σdϕt

ZΣ
dπΣv) ∈ TY ⊕ TY | a, b ∈ R and α(v) = 0}.

(5.13)
If x 
= y, then (x, y) ∈ ΔfΣ . Then there exists a positive g = g(x̃, ỹ) > 0

so that
T(x̃,ỹ)Δ̃fY

= R(R, gR) ⊕ H, (5.14)

where the subspace H is such that dπΣ|H : H → TΔfΣ induces a linear iso-
morphism.

Proof. Observe first that if x = πΣx̃, we have

πΣϕt
ZY

(x̃) = ϕt
ZΣ

(x).

This gives dπΣ dϕt
ZY

(x̃) = dϕt
ZΣ

dπΣ(x̃). From this, it follows that dϕt
ZY

(x̃)R
is a multiple of the Reeb vector field. Observe also that ϕt

ZΣ
and ϕt

ZY
are both

orientation-preserving diffeomorphisms for all t. We, therefore, obtain that
if y = ϕt

ZΣ
(x), ϕt

ZY
induces a diffeomorphism between the fibres π−1

Σ (x) →
π−1

Σ (y). Additionally, we must have then that dϕt
ZY

(x̃)R is a positive multiple
of the Reeb vector field. Let g(x̃, ỹ) > 0 such that dϕt

ZY
(x̃)R = g(x̃, ỹ)R.

In general, if ỹ = ϕt
ZY

(x̃), we have

T(x̃,ỹ)Δ̃fY
= {(v,dϕt

ZY
(x̃)v + cZY (ỹ)) | v ∈ TxY, c ∈ R}. (5.15)

Consider first the case of x = y. Then both x̃ and ỹ are in the same
fibre of Y → Σ. By definition of the flow diagonal, there exists t > 0 so that
ϕt

ZY
(x̃) = ỹ, and hence ZY is vertical, ZΣ(x) = 0. It follows that x ∈ CritfΣ .

From this, it now follows that πΣ(Δ̃fY
) ⊂ ΔfΣ ∪ {(p, p) | p ∈ Crit(fΣ)}.

We now consider the consequences of Eq. (5.15) in this case of x = y.
Any v ∈ TxY may be written as v0 + aR where α(v0) = 0. Furthermore,
since x = y ∈ Crit(fΣ), and by definition, neither x̃ nor ỹ are critical points
of fY , we obtain that ZY (ỹ) is a non-zero multiple of the Reeb vector field.
Equation (5.13) now follows from the fact that dπΣϕt

ZY
(x̃) = dϕt

ZΣ
(x)dπΣ.

We now consider when x 
= y. Let H = {(v,dϕt
ZY

(x̃)v + cZY (ỹ) |α(v) =
0}. Then

dπΣ(H) = {(v,dϕt
ZΣ

(x)v + cZΣ) | v ∈ TxΣ} = TΔfΣ .
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By assumption, y is not a critical point of fΣ, so dπΣ induces an isomorphism.
The decomposition of T Δ̃fY

now follows immediately from the definition of
g and from Eq. (5.15). �

Proof of Proposition 5.41. We consider first the case of

ẽvY : M∗
H,k,R×Y ;k−,k+

((A1, . . . , AN );JY ) → Y 2N .

Suppose that ṽ = (ṽ1, . . . , ṽN ) ∈ M∗
H,k,R×Y ;k−,k+

((A1, . . . , AN );JY ).
For each i = 1, . . . N , let ỹi = ṽi(−∞, 0) ∈ Y and x̃i = ṽi(+∞, 0) ∈ Y , with

ỹ1 ∈ W s
Y (q̃), x̃N ∈ Wu

Y (p̃)

(x̃i, ỹi+1) ∈ Δ̃fY
for 1 � i � N − 1.

Let wi = πΣ(ṽi) and xi = πΣ(x̃i), yi = πΣ(ỹi). Then it follows that

y1 ∈ W s
Σ(q), xN ∈ Wu

Σ(p)

(xi, yi+1) ∈ ΔfΣ ∪ {(p, p) | p ∈ Crit(fΣ)} for 1 � i � N − 1.

Let S ⊂ Σ2N−2 be the appropriate product of a number of copies of ΔfΣ

and of {(p, p) | p ∈ Crit(fΣ)}. By Proposition 5.35, the evaluation map on
MΣ((A1, . . . , AN );JY ) is transverse to S.

Then by the previous lemma,

TS ⊂ dπΣ

(
Tỹ0W

s
Y (q̃) × T(x̃1,ỹ2)Δ̃fY

× · · · × T(x̃N−1,ỹN )Δ̃fY
× Tx̃N

Wu
Y (p̃)

)
.

It suffices, therefore, to obtain transversality in the vertical direction.
Notice that by rotating by the action of the Reeb vector field on ṽi, we obtain
that the image of dẽv contains the subspace

{(a1R, a1R, a2R, a2R, . . . , aNR, aNR) | (a1, . . . , aN ) ∈ R
N} ⊂ (TY )2N .

In the case of the chain of pearls in Σ, each of the spheres wi, i =
1, . . . , N must either be non-constant or have a non-trivial collection of
augmentation punctures. Then, by Lemma 5.43, each punctured cylinder
ṽi has different multiplicities k+

i , k−
i at ±∞. The moduli space of k Floer

cylinders has an (S1)k-action by rotation of the domains of the cylin-
ders. Linearizing this action, it follows that the image of dẽvY (ṽi) contains
(k−R, k+R) ∈ Tỹi

Y ⊕ Tx̃i
Y . While this holds for each i = 1, . . . , N , we only

require such a vector for one cylinder. Then, by taking this in the case of
i = 1, we see that the following N + 1 vertical vectors in (RR)2N ⊂ TY 2N

are in the image of the linearized evaluation map (the first two obtained by
combining the two Reeb actions on ṽ1, the remainder by the Reeb action on
ṽi, i � 2):

(R, 0, 0, . . . , 0),

(0, R, 0, . . . , 0),

(0, 0, R,R, 0, 0, . . . , 0),

(0, 0, 0, 0, R,R, 0, . . . , 0),
. . .

(0, 0, . . . , 0, R,R).
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By the previous lemma, the tangent space T(x̃i,ỹi+1)Δ̃fY
contains at

least the vertical vector (R, giR), where gi := g(x̃i, ỹi+1) > 0, for each 1 �
i � N − 1. In the vertical direction, this then contains the following N − 1
vectors:

(0, R, g1R, 0, . . . , 0),

(0, 0, 0, R, g2R, 0, . . . , 0)
. . .

(0, . . . , 0, R, gN−1R, 0).

We now observe that this collection of 2N vectors spans (RR)2N . This
establishes that ẽvY defined on M∗

H,k,R×Y ;k−,k+
((A1, . . . , AN );JY ) is trans-

verse to W s
Y (q̃) × Δ̃N

fY
× Wu

Y (p̃).
We now consider the case of

ẽvW,Y : M∗
H,k,W ;k+

((B;A1, . . . , AN );JW ) → W × Y 2N+1.

We will show this evaluation map is transverse to

S̃ := Wu
W (x) × Δ̃ ×

(
Δ̃fY

)N−1

× Wu
Y (p̃).

As before, it suffices to show transversality in a vertical direction, since,
by Proposition 5.35, the projections to X, Σ are transverse. More precisely,
let S ⊂ W × Σ × Σ2N be of the form S = Wu

W (x) × Δ × S′ × Wu
Σ(p), where

S′ ⊂ Σ2N−2 is a product of some number of ΔfΣ and of {(p, p) | p ∈ Crit(fΣ)}
so that TS ⊂ TdπΣ(S̃). Proposition 5.35 gives transversality of ẽvW,Y to S.

Notice that the tangent space T S̃ contains at least the following vertical
vectors (we put 0 in the first component since TW has no vertical direction):

(0, R,R, 0, 0, . . . , 0)

(0, 0, 0, R, g1R, 0, . . . , 0)
. . .

(0, . . . , 0, R, gN−1R, 0).

Let (ṽ1, ṽ1, . . . , ṽN ) ∈ M∗
H,k,W ;k+

. The plane ṽ1 converges to a Reeb
orbit of multiplicity l = B • Σ. Observe that domain rotation on the plane
ṽ1 then gives that (0, lR, 0, . . . , 0) ∈ TW ⊕ TY ⊕ TY 2N is in the image of
dẽvW,Y .

As before, the Reeb rotation on each of the punctured cylinders
ṽ1, . . . , ṽN gives that the following vertical vectors are in the image of dẽvW,Y :

(0, 0, R,R, 0, 0, . . . , 0, 0)

(0, 0, 0, 0, R,R, . . . , 0, 0)

(0, 0, 0, 0, . . . , 0, R,R).

We notice then that these vectors span 0 ⊕ (RR)2N−1, so it follows that the
evaluation map is transverse to S̃.
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Finally, the transversality of the evaluation maps at augmentation punc-
tures comes from the fact that the augmentation evaluation maps

ẽva
Σ × eva

Σ : M∗
H,k,R×Y ;k−,k+

((A1, . . . , AN );JY ) × M∗
X((B1, . . . , Bk);JW )

→ Σk × Σk

ẽva
Σ × eva

Σ : M∗
H,k,W ;k+

((B;A1, . . . , AN );JW ) × M∗
X((B1, . . . , Bk);JW )

→ Σk × Σk

factor through the evaluation maps

eva × eva : M∗
k,Σ((A1, . . . , AN );JΣ) × M∗

X((B1, . . . , Bk);JW ) → Σ2k and

eva × eva : M∗
k,(X,Σ)((B;A1, . . . , AN );JW ) × M∗

X((B1, . . . , Bk);JW )→Σ2k.

The required transversality for these maps is given by Proposition 5.35. Fur-
thermore, these evaluation maps are invariant under the domain and Reeb
rotations used to obtain transversality for ẽvY and for ẽvW,Y in the vertical
directions, so the transversality follows immediately. �

6. Monotonicity and the differential

The results of the previous section show that the moduli spaces of Floer
cylinders with cascades that project to simple chains of pearls are transverse.

We will now assume that (X,Σ, ω) is a monotone triple, as in Defini-
tion 2.4, to show that these moduli spaces are sufficient for the purposes
of defining the split Floer differential. Recall that this yields that (X,ω) is
spherically monotone, with c1(TX) = τX [ω] on spherical homology classes
for some τX > 0, and A • Σ = Kω(A) for some fixed K > 0 and every spher-
ical homology class A in X. It is further assumed that τΣ := τX − K > 0,
which implies that (Σ, ωΣ = ω|Σ) is spherically monotone with monotonicity
constant τΣ.

6.1. Index inequalities from monotonicity and transversality

First, we consider the Fredholm index contributions of a plane in W that
could appear as an augmentation plane, to obtain some bounds on the pos-
sible indices.

Lemma 6.1. If v : C → W is a JW holomorphic plane asymptotic to a given
closed Reeb orbit γ in Y , the Fredholm index for the deformations of v (as
an unparameterized curve) keeping γ fixed is |γ|0 and it is non-negative. Fur-
thermore, if v is multiply covered, this Fredholm index is at least 2.

Proof. The fact that the Fredholm index Ind(v) in the statement is given by
|γ|0 as in (3.6) can be seen using Theorem 5.18. On the other hand, thinking
of v as giving a JX -holomorphic sphere in homology class B ∈ H2(X; Z),
with an order of contact B • Σ with Σ, we see that

Ind(v) = 2(〈c1(TX), B〉 − B • Σ − 1) = 2(τXω(B) − Kω(B) − 1).
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Figure 4. Option (1) in Proposition 6.2, call it Case 1

Since the plane is holomorphic, the class B has ω(B) > 0. By our monotonic-
ity assumptions, we have

τXω(B) − Kω(B) = (τX − K)ω(B) > 0.

Finally, since τXω(B) = 〈c1(TX), B〉 ∈ Z and Kω(B) = B • Σ ∈ Z, we have
that τXω(B) − Kω(B) > 0 is an integer, and is thus at least 1.

It, therefore, follows that Ind(v) � 0.
Suppose now that v is a k-fold cover of an underlying simple holomorphic

plane v0, representing classes B = kB0 and B0, respectively. Then

Ind(v) + 2 = 2(τX − K)ω(kB0) = k(Ind(v0) + 2).

Hence, Ind(v) � 2(k − 1). �

Proposition 6.2. Any Floer cascade appearing in the differential, connecting
two periodic orbits in R × Y , must be one of the following configurations:

(0) An index 1 gradient trajectory in Y without any (non-constant) holo-
morphic components and without any augmentation punctures.

(1) A smooth cylinder in R × Y without any augmentation punctures and a
non-trivial projection to Σ. The positive puncture converges to an orbit
p̌k+ and the negative puncture converges to an orbit q̂k− . The difference
in multiplicities of the orbits is given by k+ − k− = Kω(A), where
A ∈ H2(Σ; Z) is the homology class represented by the projection of the
cylinder to Σ. See Fig. 4.

(2) A cylinder with one augmentation puncture and whose projection to Σ is
trivial. The positive puncture converges to an orbit p̌k+ and the negative
puncture converges to an orbit q̂k− . The augmentation plane has index
0. If B ∈ H2(X; Z) is the class represented by the augmentation plane,
then the difference in multiplicities is given by k+ − k− = Kω(B). Fur-
thermore, p̌ and q̂ are critical points of fY contained in the same fibre
of Y → Σ, which we can write as q = p. See Fig. 5.

Proof. Consider a cascade with N levels and k augmentation planes appear-
ing in the differential dp̃k+ = · · · + q̃k− + · · · . Let A1, . . . , AN ∈ H2(Σ)
denote the homology classes of the projections to Σ, let B1, . . . , Bk ∈ H2(X)
denote the homology classes corresponding to the augmentation planes. Let
γi, i = 1, . . . , k denote the limits at the augmentation punctures, and let ki

denote their multiplicities. Let A =
∑N

i=1 Ai.
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Figure 5. Option (2) in Proposition 6.2, call it Case 2

We, therefore, have k+ − k− − ∑k
j=1 kj = Kω(A) = K 〈c1(TΣ),A〉

τX−K . We
also have kj = Bj • Σ = Kω(Bj). Notice then that |γi|0 = 2〈c1(TX), Bj〉 −
2Bj • Σ − 2.

We, therefore, have

1 = |p̃k+ | − |q̃k− | = i(p̃) + M(p) − i(q̃) − M(q)

+2
τX − K

K

⎛

⎝k+ − k− −
k∑

j=1

kj

⎞

⎠ + 2
τX − K

K

k∑

j=1

kj

= i(p̃) + M(p) − i(q̃) − M(q) + 2〈c1(TΣ), A〉 + 2k +
k∑

j=1

|γj |0. (6.1)

By Lemma 6.1, we have that for each j = 1, . . . , k, |γj |0 � 0.
Consider the chain of pearls in Σ obtained by projecting the upper level

of this split Floer trajectory to Σ. By Proposition 5.26, if this is a simple
chain of pearls, it has Fredholm index

IΣ := M(p) + 2〈c1(TΣ), A〉 − M(q) + N − 1 + 2k.

If the chain of pearls is not simple, by monotonicity, we have that the index
is at least as large as the index of the underlying simple chain of pearls.

Now let N0 be the number of sublevels that project to constant curves in
Σ and let N1 be the number of sublevels that project to non-constant curves
in Σ, N = N0 + N1. Note that by the stability condition, each cylinder
that projects to a constant curve in Σ must have at least one augmentation
puncture, so N0 � k.

By transversality for simple chains of pearls (Proposition 5.26), we
obtain the inequality

IΣ � 2N1 + 2k
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by considering the two-dimensional automorphism group for the N1 non-
constant spheres and by considering the 2k-parameter family of moving aug-
mentation marked points on the domains.

Combining with Eq. (6.1), we obtain

1 = i(p̃) − i(q̃) + (IΣ − N + 1) +
k∑

j=1

|γj |0

1 � (i(p̃) − i(q̃) + 1) + 2N1 + 2k − N +
k∑

j=1

|γj |0

1 � (i(p̃) − i(q̃) + 1) + N1 + k + (k − N0) +
k∑

j=1

|γj |0.

Observe now that each term on the right-hand-side of the inequality is non-
negative. In particular, there is at most one augmentation plane (k ≤ 1) and
if there is one, it must have |γ1|0 = 2〈c1(TX), B1〉 − 2B1 • Σ − 2 = 0 (so the
augmentation plane cannot be multiply covered, by Lemma 6.1).

We can further write

1 � (i(p̃) − i(q̃) + 1) + N1 + k + (k − N0).

Notice that N1 + 2k − N0 � N .
This inequality can be satisfied in one of the following ways:

(0) N = 0. Then, either i(p̃) = i(q̃) or p̃ = p̌ and q̃ = q̂. Since N = 0, this
is a pure Morse differential term.

(1) N1 = 1, N0 = k = 0 and p̃ = p̌, q̃ = q̂. This case corresponds to a
non-constant sphere in Σ without any augmentation punctures.

(2) N1 = 0, k = 1, N0 = 1, and p̃ = p̌, q̃ = q̂. In this case, the Floer
cylinder has one augmentation puncture, and projects to a constant in
Σ, so q = p ∈ Σ. �

We now consider the possible terms in the differential that connect non-
constant Hamiltonian trajectories in R × Y to Morse critical points in X.

Proposition 6.3. Any Floer cascade appearing in the differential, connecting
a non-constant Hamiltonian orbit p̃k+ in R × Y to a Morse critical point x
in W , consists of two levels. The upper level, in R ×Y , projects to a point in
Σ and is a cylinder asymptotic at +∞ to an orbit p̌k+ and at −∞ to a Reeb
orbit γ in {−∞} × Y . This γ is the parametrized Reeb orbit associated with
p̌k+ .

The lower level is a holomorphic plane in W converging to the
parametrized orbit γ at ∞ and with 0 mapping to the descending manifold of
the critical point x. As a parametrized curve, this has Fredholm index 1. See
Fig. 6.

Proof. Suppose such a cascade occurs in the differential, connecting the non-
constant orbit p̃k+ to the critical point x in the filling W .



77 Page 60 of 77 L. Diogo, S. T. Lisi JFPTA

Figure 6. Configuration as in Proposition 6.3, call it Case 3

Let N be the number of cylinders in R × Y that appear in the split
Floer cylinder. Let Ai ∈ H2(Σ), i = 1, . . . , N , denote the spherical classes
represented by the projections of these cylinders to Σ. Let A =

∑N
i=1 Ai.

Let k be the number of augmentation planes, and let Bj ∈ H2(X), j =
1, . . . , k be the corresponding spherical homology classes in X. Let γj , j =
1, . . . , k, be the corresponding Reeb orbits with multiplicities kj = Bj • Σ =
Kω(Bj).

Let B ∈ H2(X) be the spherical homology class in X represented by
the lower level v0 in W , connecting to the critical point x. Let k− = B • Σ
be the multiplicity of the orbit to which the plane v converges. As before, we
have

k+ − k− −
k∑

j=1

kj = Kω(A).

We then have

1 = |p̃k+ | − |x|
= i(p̃) + M(p) + 1 − 2n + M(x)

+2
τX − K

K

⎛

⎝k+ − k− −
k∑

j=1

kj + k− +
k∑

j=1

kj

⎞

⎠

= i(p̃) + M(p) + 1 − 2n + M(x) + 2〈c1(TΣ), A〉 + 2〈c1(TX), B〉

−2B • Σ + 2k +
k∑

j=1

|γj |0. (6.2)

Projecting to Σ, we obtain a chain of pearls with a sphere in X. Let N0

be the number of constant spheres in Σ and let N1 be the number of non-
constant spheres in Σ, N = N0 + N1. Notice that each non-constant sphere
in Σ has a two-parameter family of automorphisms, and each augmentation
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marked point can be moved in a two-parameter family. Furthermore, the
holomorphic sphere v0 also has a two-parameter family of automorphisms.
By passing to a simple underlying chain of pearls as necessary, and applying
monotonicity and Proposition 5.26 (to M∗

k,(X,Σ)((B;A1, . . . , AN );x, p, JW )),
we obtain

IX := M(p) + 2〈c1(TΣ), A〉 + 2 (〈c1(TX), B〉 − B • Σ)

+ M(x) − 2n + 1 + N + 2k

� 2N1 + 2k + 2.

We now combine the inequality with Eq. (6.2):

1 = i(p̃) + IX − N +
k∑

j=1

|γj |0

1 � i(p̃) + 2N1 + 2k + 2 − N0 − N1 +
k∑

j=1

|γj |0

0 � i(p̃) + N1 + k + (k + 1 − N0) +
k∑

j=1

|γj |0.

Notice that we have N0 � k + 1 since the first sphere in the chain of pearls
with a sphere in X is allowed to be constant without any marked points.
This observation together with Lemma 6.1 gives that each term on the right-
hand-side of the inequality is non-negative. It follows, therefore, that each
term must vanish: N1 = 0, N0 = 1, k = 0 and p̃ = p̌. Notice that the Floer
cylinder in R × Y is contained in a single fibre of R × Y → Σ, so the marker
condition coming from p̌ can be interpreted as a marker condition on the
holomorphic plane v0 (via the parametrized Reeb orbit γ in the statement).
Without the marker condition, v0 has Fredholm index 2, and thus with the
marker constraint, it has index 1. �

Remark 6.4. Similar analysis applied to continuation maps gives that our
construction does not depend on the choices of almost complex structure JY ,
JW or of the auxiliary Morse functions and gradient-like vector fields.

In general, ∂2 = 0 is obtained through analyzing gluing and considering
the boundary of 1-dimensional moduli spaces. In our situation, if additionally
fΣ and fW are assumed to be lacunary (i.e. have no critical points of consec-
utive indices), all contributions to the differential of an orbit p̌ are either of
the form q̂ or constant orbits. This automatically gives that ∂2 = 0 for split
symplectic homology.

Case (2) in Proposition 6.2 allows for the existence of augmented con-
figurations contributing to the symplectic homology differential. We will now
adapt an argument originally due to Biran and Khanevsky [4] to show that
if W is a Weinstein domain (or equivalently, if W is a Weinstein manifold
of finite-type), and Σ has minimal Chern number at least 2, then there can
only be rigid augmentation planes if the isotropic skeleton has codimension
at most 2 (in particular, dimR X = 2n ≤ 4).
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Lemma 6.5. If W is a Weinstein domain with isotropic skeleton of real codi-
mension at least 3, then X is symplectically aspherical if and only if Σ is.

Furthermore, any symplectic sphere in X is in the image of the inclu-
sion

ı∗ : π2(Σ) → π2(X).

Proof. The trivial direction is that if there exists a spherical class A ∈ π2(Σ)
with ω(A) > 0, then ı∗A ∈ π2(X) and still has positive area.

We will now prove that any symplectic sphere in X is in the image of
the inclusion. Let C ⊂ W be the isotropic skeleton of W . Notice that by
following the flow of the Liouville vector field on W , we obtain that W\C
is symplectomorphic to a piece of the symplectization (−∞, a) × Y . Thus,
we have that X\C is an open subset of a symplectic disk bundle over Σ
(the normal bundle to Σ in X). We denote this bundle’s projection map by
π : X\C → Σ.

Suppose A ∈ π2(X) is a spherical class with ω(A) > 0. By hypothesis,
the skeleton C is of codimension at least 3. We may, therefore, perturb A in
a neighbourhood of the skeleton so that it does not intersect the skeleton C.
If ι : Σ → X and j : X\C → X are the inclusion maps, then ωΣ = ι∗ω and
ι ◦ π is homotopic to j. This implies that ωX(A) = ωΣ(π∗A), and the result
follows. �

Lemma 6.6. Suppose W is a Weinstein domain with isotropic skeleton of real
codimension at least 3 and Σ has minimal Chern number at least 2. Then,
there do not exist any augmentation planes.

Proof. Recall from Proposition 6.2 that an augmentation plane in the class
B must have index 0, so 0 = 2(〈c1(TX), B〉−B •Σ−1). Now, 〈c1(TX), B〉−
B • Σ = (τX − K)ω(B) � 1. Thus, the augmentation plane can only exist if
there is a spherical class B with (τX − K)ω(B) = 1.

By applying Lemma 6.5, we have B = ı∗A, where A ∈ π2(Σ) is a
spherical class in Σ.

Now observe that 〈c1(TΣ), A〉+ 〈c1(NΣ), A〉 = 〈c1(TX), A〉, so we have
〈c1(TΣ), A〉 = (τX − K)ωΣ(A). Hence, 1 = (τX − K)ω(A) = 〈c1(TΣ), A〉.
This contradicts the assumption that the minimal Chern number of Σ is at
least 2, so the augmentation plane cannot exist. �

Remark 6.7. Observe that this lemma applies more generally: if Σ has mini-
mal Chern number at least 2, then an augmentation plane cannot represent
a spherical class in the image of ı∗ : π2(Σ) → π2(X).

Additionally, we have that an augmentation plane cannot have image
entirely contained in ϕ(U). Indeed, any holomorphic sphere contained in ϕ(U)
will have index too high to be an augmentation plane: the JX -holomorphic
sphere with image in ϕ(U) automatically comes in a two-parameter family
(corresponding to the C

∗ action on the normal bundle to Σ). To make this
argument more precise, we use our index computations. Suppose a sphere in
ϕ(U) is an augmentation plane. It then represents a class ı∗A with A ∈ H2(Σ).
By the same index argument as in Lemma 6.6, 1 = 〈c1(TΣ), A〉. Since the
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image is assumed to be in ϕ(U), the projection of the curve to Σ is JΣ-
holomorphic. The index of this projection is given by −4+2〈c1(TΣ), A〉 = −2.
This must be non-negative; however, since the projection is JΣ-holomorphic,
and represents an indecomposable homology class. This contradiction then
rules this possibility out.

Remark 6.8. The dichotomy between Σ with minimal Chern number equal to
1 and bigger than 1 is also explored in upcoming joint work of the first named
author with D. Tonkonog, R. Vianna and W. Wu, studying the effect of the
Biran circle bundle construction on superpotentials of monotone Lagrangian
submanifolds [14].

7. Orientations

To orient our moduli spaces, we will take the point of view of coherent ori-
entations, which is implemented in the Morse–Bott setting in [5,9]. Some
authors [36,44] have used the alternative approach of canonical orientations.
We find it more straightforward to use coherent orientations in our compu-
tations, especially since there are very few choices involved. Notice also that
if one has a canonical orientation scheme, it is possible to extract a coherent
orientation from this by making choices of preferred orientations of certain
capping operators.

The geometry of our specific situation allows us to avoid some of the
technical difficulties present in the general Morse–Bott situation. In particu-
lar, we have two key features that make our analysis more straightforward.
First of all, we do not have any “bad” orbits appearing in our setting (recall
from Sect. 3.1 that, if we take a “constant” trivialization, the Conley–Zehnder
index does not depend on covering multiplicity). For another, the manifolds
of orbits are all orientable, and are even oriented quite naturally by the sym-
plectic/contact structures that exist on them.

We now recall the general method for obtaining signs in Floer homology,
as first introduced in [18] and since generalized. First of all, over the space
of all Fredholm Cauchy–Riemann operators, there is a determinant bundle.
A choice of a section of this bundle then induces an orientation on moduli
spaces of holomorphic curves. This (together with some additional choices in
the Morse–Bott situation) allows us to orient all moduli spaces that occur in
Floer homology. On the other hand, configurations that are counted in the
differential have a natural R-action on them by reparametrization, which also
induces an orientation on these moduli spaces. The sign of such a term in the
differential is positive if they agree and negative if they disagree.

7.1. Orienting the moduli spaces of curves

We now explain the first part of this method: how to orient the moduli
spaces of Floer punctured cylinders, but without considering their constraints
coming from evaluation maps. We begin by sketching the situation for the
non-degenerate case and then discuss the modifications needed for the Morse–
Bott situation.
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First, consider all Cauchy–Riemann operators on Hermitian vector bun-
dles over punctured spheres with fixed trivializations near the punctures
E → Ṡ, as described in Sect. 5.2.1. For a given Hermitian vector bundle with
fixed trivializations near the punctures and fixed, non-degenerate, asymptotic
operators, the space of all Cauchy–Riemann operators with these asymptotic
operators is contractible. Each such operator induces a Fredholm operator
D : W 1,p(Ṡ, E) → Lp(Ṡ,Λ0,1T ∗Ṡ ⊗ E). There exists a line bundle over this
space of Fredholm operators called the determinant line bundle and its fibre
over an operator D is given by

det D = (Λmax ker D) ⊗R (Λmax coker D)∗.

(See for instance [45].) An orientation corresponds to a nowhere vanishing
continuous section of this determinant bundle over the space of Cauchy–
Riemann operators (topologized in a way compatible with the discrete topol-
ogy on the space of asymptotic operators).

In the case of non-degenerate operators, an orientation is coherent if
it respects the gluing operation on Cauchy–Riemann operators, considered
as operators D : W 1,p(Ṡ, E) → Lp(Ṡ,Λ0,1T ∗Ṡ ⊗ E). Indeed, given two such
operators

D : W 1,p(Ṡ, E) → Lp(Ṡ,Λ0,1T ∗Ṡ ⊗ E)

and

D′ : W 1,p(Ṡ′, E′) → Lp(Ṡ′,Λ0,1T ∗Ṡ′ ⊗ E′)

that have a matching asymptotic operator at a positive puncture for D and a
negative puncture for D′, we may form a glued surface Ṡ#Ṡ′, a glued bundle
E#E′ → Ṡ#Ṡ′, and a glued operator

D#D′ : W 1,p(Ṡ#Ṡ′, E#E′) → Lp(Ṡ#Ṡ′,Λ0,1T ∗(Ṡ#Ṡ′) ⊗ (E#E′)).

This operator is not unique, but depends on a contractible family of choices,
in particular on a gluing parameter. If the operators D and D′ are both sur-
jective, this is explicitly constructed by a map kerD ⊕ ker D′ → ker(D#D′),
which we take to be orientation preserving. After stabilizing operators that
are not surjective, we obtain a map detD ⊗ det D′ → det(D#D′), which we
require to be orientation preserving in a coherent orientation scheme. (See,
for instance, [7] and [18, Section 3].) Thus, an orientation of D and an ori-
entation of D′ induce an orientation of D#D′. We will refer to this as the
gluing property for coherent orientations.

In our setting, we also require the coherent orientation to have the
following two properties:

• the orientation of the direct sum of two operators is the tensor product
of their orientations,

• the orientation of a complex linear operator is its canonical orientation.

Finally, we extend this coherent orientation to Cauchy–Riemann opera-
tors with possibly degenerate asymptotics, but acting on weighted spaces so
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they are still Fredholm. Let δ be a vector of weights, δ : Γ ∪ {±∞} → R so
that

D : W 1,p,δ(Ṡ, E) → Lp,δ(Ṡ,Λ0,1T ∗Ṡ ⊗ E)

is a Fredholm Cauchy–Riemann operator. The operator is then conjugate to
a non-degenerate operator Dδ : W 1,p(Ṡ, E) → Lp(Ṡ,Λ0,1T ∗Ṡ ⊗ E) as given
in Definition 5.15. For fixed δ, recall that Dδ is not unique, but depends on a
contractible family of choices (of cut-off functions). The resulting orientation
of D is then independent of the choices involved.

An orientation of Dδ : W 1,p(Ṡ, E) → Lp(Ṡ,Λ0,1T ∗Ṡ ⊗ E) induces an
orientation of D : W 1,p,δ(Ṡ, E) → Lp,δ(Ṡ,Λ0,1T ∗Ṡ ⊗ E) by this conjugation.

From [7,18], [16, Section 1.8], a coherent orientation of the determi-
nant bundle over non-degenerate Cauchy–Riemann operators exists and may
be specified by choosing a preferred section of the determinant bundle over
certain capping operators. These are operators whose domain is the once
punctured sphere C (where the puncture is positive), with a trivial Hermit-
ian vector bundle over them and specified asymptotic operator. To achieve
the two properties listed above, it suffices to enforce them on these capping
operators since the linear gluing operation described in [18] respects direct
sums and complex linearity.

We now describe how we orient capping operators for the relevant
asymptotic operators. By Lemma 5.22, the linearized operator associated
with a Floer cylinder ṽ is a compact perturbation of a split operator DC

ṽ ⊕ḊΣ
w,

where w = πΣ ◦ ṽ. There is also a corresponding splitting of the asymptotic
operators at the asymptotic limits. In particular, ḊΣ

w has complex linear
asymptotic operators, and thus is a compact perturbation of a complex linear
Cauchy–Riemann operator. Hence, its orientation is induced by the canoni-
cal one, and is independent of choice of trivialization or of capping operator
(which may always be taken to be complex linear).

We are left with the task of orienting operators with the same asymp-
totic operators as DC

ṽ . By Lemma 5.24, if ṽ converges at both ±∞ to a
closed Hamiltonian orbit, with δ > 0 sufficiently small (see Remark 5.21),
the operator

DC

ṽ : W 1,p,δ
V0

(R × S1, C) → Lp,δ(Hom0,1(T (R × S1), C))

has Fredholm index 1, is surjective and its kernel contains an element that
can be identified with the Reeb vector field. We may identify the kernel (and
cokernel) of this operator with those of

DC

ṽ : W 1,p,−δ(R × S1, C) → Lp,−δ(Hom0,1(T (R × S1), C)).

At ±∞, the −δ-perturbed asymptotic operators (see Definition 5.15)
associated with DC

ṽ are

A± := −
(

J
d
dt

+
(

h′′(eb±) eb± ±δ 0
0 ±δ

))

. (7.1)

(The asymptotic operator at a Reeb orbit at −∞ is just −J d
dt and is −δ

perturbed to give −(J d
dt − δ).)
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We now choose capping operators for the A±, which determines an
orientation of DC

ṽ by the coherent orientation scheme.

Lemma 7.1. Let δ > 0 be sufficiently small. There is a choice of capping
operators with orientations for the asymptotic operators A± above, such that
the orientation induced on

DC

ṽ : W 1,p,−δ(R × S1, C) → Lp,−δ(Hom0,1(T (R × S1), C))

identifies the Reeb vector field as positively oriented. (Recall that we have
identified R∂r ⊕ RR with C.)

Proof. Recall that for each bk > 0 satisfying h′(ebk) = k ∈ Z+, we have a
Y -parametric family of 1-periodic Hamiltonian orbits. We can associate to
each of these orbits two operators A±, as in (7.1). We will define capping
operators

Φ±
k : W 1,p(C, C) → Lp(Hom0,1(T (C), C))

with these asymptotic operators.
We first define two families of auxiliary Fredholm operators. For each

k > 0,

Ψk : W 1,p(R × S1, C) → Lp(Hom0,1(T (R × S1), C))

is an operator given by

Ψk(F )(∂s) = Fs + iFt +
(

a(s) − δ 0
0 −δ

)

F,

where the function a : R → R is such that lims→−∞ a(s) = h′′(eb1)eb1 and
lims→+∞ a(s) = h′′(ebk)ebk . Let now

Ξk : W 1,p(R × S1, C) → Lp(Hom0,1(T (R × S1), C))

be an operator given by

Ξk(F )(∂s) = Fs + iFt +
(

h′′(ebk)ebk + δ(s) 0
0 δ(s)

)

F,

where δ : R → R is such that lims→−∞ δ(s) = −δ < 0 and lims→+∞ δ(s) = δ.
The operators Ψk are isomorphisms (in particular, they are canoni-

cally oriented). This follows from an argument analogous to the proof of
Lemma 5.24. A version of the same argument implies that the operators
Ξk are Fredholm of index 1 and surjective, and that their kernels contain
elements that can be identified with the Reeb vector field.

Now, pick an arbitrary capping operator Φ−
1 . Define Φ−

k for k > 1 by
gluing Φ−

1 #Ψk. Define Φ+
k for all k > 0 by gluing Φ−

k #Ξk. For these choices
of capping operators, DC

ṽ are oriented in the direction of the Reeb flow, as
wanted. �

We will now discuss how to orient

Dδ : W 1,p,δ
V (Ṡ, C) → L1,p,δ(Ṡ, T ∗Ṡ ⊗ C)
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for δ > 0 and small, where V is the collection of kernels of the asymptotic
operators at the punctures. On the one hand, we have an orientation for

D−δ : W 1,p,−δ(Ṡ, C) → L1,p,−δ(Ṡ, T ∗Ṡ ⊗ C),

where Dδ is the same Cauchy–Riemann operator, i.e. it is the restriction of
D−δ to its domain. From Lemma 5.20, determinant bundles of Dδ and D−δ

are isomorphic, which then induces an orientation on Dδ. On the other hand,
Dδ is a finite dimensional stabilization of Dδ|W 1,p,δ

0
(stabilized by ⊕Vz), also

inducing an orientation of the determinant bundle of Dδ. In the remainder of
this section, we will verify these orientations are the same for suitable choices.
This will then prove to be useful in analyzing the situation with constraints
in Sect. 7.2.

Lemma 7.2. Let A be a degenerate asymptotic operator, let V be its kernel
and let δ > 0 be chosen small enough that [−δ, δ] ∩ σ(A) = {0}.

Then, the kernel of ∂
∂s − A : W 1,p,−δ(R × S1, Cn) → Lp,−δ(R × S1, Cn)

consists of constant maps with values in V , and its cokernel is trivial.
In particular, an orientation of this operator corresponds to an orienta-

tion of V .

Proof. The proof follows from expanding L2(S1, Cn) in a Hilbert basis given
by eigenvectors of the asymptotic operator A seen as an elliptic self-adjoint
unbounded operator on L2(S1, Cn). Then, the kernel of ∂

∂s −A is spanned by
solutions of the form eλs v(t), where v(t) is an eigenfunction for the eigenvalue
λ. Since we require exponential growth of rate δ, this forces −δ < λ < δ. The
result for the kernel now follows since 0 is the only such eigenvalue.

The statement about the cokernel now follows from similar analysis of
the adjoint operator. Indeed, the adjoint is − ∂

∂s −A, and so non-zero elements
of its kernel will take a similar form, but with λ < −δ and λ > δ, showing no
such element exists. �

We thank Chris Wendl and Richard Siefring for suggesting this argu-
ment. See also [31, Theorem 10.4.19].

Up to this point, we have coherent orientations for Cauchy–Riemann
operators acting on spaces with weights

D : W 1,p,δ(Ṡ, E) → Lp,δ(Ṡ,Λ0,1T ∗Ṡ ⊗ E).

We now consider orientations for operators free to move in subspaces of
the kernels of the relevant asymptotic operators. Let D be a Cauchy–
Riemann operator on the punctured cylinder Ṡ = R × S1\Γ. Let δ be a
vector of sufficiently small weights that for each puncture z0 ∈ Γ ∪ {±∞},
[−|δz0 |, |δz0 |]∩σ(Az0) ⊂ {0}. Fix a collection of subspaces V so at each punc-
ture z0 ∈ {±∞} ∪ Γ with δz0 > 0, Vz0 ⊂ kerAz0 . If δz0 � 0, set Vz0 = 0.
Then, the corresponding operator

Dδ : W 1,p,δ
V (Ṡ, E) → Lp,δ(Ṡ,Λ0,1T ∗Ṡ ⊗ E)

is Fredholm. This is then the operator that corresponds to having exponential
convergence to an element of Vz at the puncture z ∈ Γ ∪ {±∞} (and with
appropriate behaviour at punctures with δz � 0).
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Let D0
δ : W 1,p,δ(Ṡ, E) → Lp,δ(Ṡ,Λ0,1T ∗S ⊗ E) be the restriction of this

operator to the subspace where all sections decay to 0 at punctures for which
δz > 0.

Given a choice of ordering of the punctures in Γ = {z1, . . . , zm}, we have
the following map:

det V−∞ ⊗ Πm
i=1 det Vzi

⊗ det D0
δ ⊗ det V+∞ → det Dδ, (7.2)

where det Vz0 = ΛmaxVz0 .

Definition 7.3. Suppose δ, V, Dδ and D0
δ as above. Given orientations of

V±∞ and assuming that Vz is a complex linear vector space for each z ∈ Γ, an
orientation of D0

δ induces an orientation on Dδ. We define then the orientation
on Dδ and hence on D to be such that this map is orientation preserving.

Finally, we verify that this orientation of Dδ is consistent with the one
induced from Lemma 5.20.

Lemma 7.4. Let D be a Cauchy–Riemann operator on the punctured cylinder
Ṡ = R × S1\Γ, and let z0 ∈ {±∞} ∪ Γ, δ, δ′ and V as in Lemma 5.20.
Suppose furthermore that the asymptotic operator at each puncture in Γ is
complex linear. For each puncture z ∈ Γ∪{±∞}, let Vz = kerAz be oriented
by Lemma 7.2.

Then, for a coherent orientation, the orientation of

Dδ : W 1,p,δ
V (Ṡ, E) → Lp,δ(Ṡ,Λ0,1T ∗Ṡ ⊗ E)

from Definition 7.3 agrees with the orientation of the operator

Dδ′ : W 1,p,δ′
(Ṡ, E) → Lp,δ′

(Ṡ,Λ0,1T ∗Ṡ ⊗ E)

via the identification of kernel and cokernel given by Lemma 5.20.

Proof. For notational simplicity, we will consider the case z0 = +∞. The
other cases will be similar, aside from a reordering of the terms.

Let D+ = ∂
∂s − A+∞ : W 1,p,−δ(R × S1, Cn) → Lp,−δ(R × S1, Cn).

Let D0
δ : W 1,p,δ(Ṡ, E) → Lp,δ(Ṡ,Λ0,1T ∗Ṡ ⊗ E) be the restriction of Dδ

to the space of sections decaying to 0 at each puncture with δz > 0.
Observe now that Dδ′ is homotopic to the glued operator D0

δ#D+. By
Lemma 7.2, the determinant bundle of D+ is det V+∞. By the gluing property
for coherent orientations, the gluing map

det D0
δ ⊗ detD+ → det Dδ′

is orientation preserving.
By Definition 7.3, we have the following map is orientation preserving:

det D0
δ ⊗ det V+∞ → det Dδ.

The result now follows since, by hypothesis and Lemma 7.2, det V+∞ is
assumed to be oriented by detD+. �
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We remark here that our asymptotic operators are either complex linear
or have a kernel that is naturally identified with the Reeb vector field or with
the tangent space to the contact manifold Y . The Reeb vector field and
the contact form on Y induce orientations on these asymptotic operators,
which are compatible with the choices of orientations of capping operators in
Lemma 7.1.

We have now oriented the operators DC
ṽ and ḊΣ

w acting on spaces of
sections free to move in their Morse–Bott families. Since the linearized Floer
operator is a compact perturbation of their direct sum, we get induced ori-
entations on the transverse moduli spaces of Floer cylinders with punctures.

7.2. Orientations with constraints

We have now explained how to orient all of the moduli spaces of punctured
cylinders with ends free to move in the corresponding Morse–Bott families
of orbits. This is not yet sufficient to orient our moduli spaces of cascades.
The additional ingredient necessary is to orient moduli spaces of holomor-
phic curves with constraints on their asymptotic evaluation maps, with the
asymptotic evaluation map constrained to lie in stable/unstable manifolds of
critical points of the auxiliary Morse functions, or, in the case of multilevel
cascades, constrained to lie in [flow] diagonals in manifolds of orbits.

Let us begin by stating the convention in [9] for how to orient a fibre
sum (which agrees with [28, Convention 7.2.(b)]).

Definition 7.5. Given linear maps between oriented vector spaces fi : Vi →
W , i = 1, 2, such that f1 − f2 : V1 ⊕ V2 → W is surjective, the fibre sum
orientation on V1 ⊕fi

V2 = ker(f1 − f2) is such that
(1) f1 − f2 induces an isomorphism (V1 ⊕ V2)/ ker(f1 − f2) → W which

changes orientations by (−1)dim V2. dim W ,
(2) where a quotient U/V of oriented vector spaces is oriented in such a

way that the isomorphism V ⊕ (U/V ) → U (associated with a section
of the quotient short exact sequence) preserves orientations.

One key property of this orientation convention for fibre sums is that
it is associative (this property specifies the orientation convention almost
uniquely, as explained in [28, Remark 7.6.iii] and [34]; this was pointed out
to us by Maksim Maydanskiy).

To orient our constrained moduli spaces, we follow the point of view in
the literature [3,5,9,20,36]. Specifically, we begin by orienting moduli spaces
of unconstrained Floer cylinders as in the previous section, by the chosen
coherent orientation of Cauchy–Riemann operators with free asymptotics.
We also fix orientations on all stable and unstable manifolds of the relevant
manifolds of orbits (see the next section for more details), as well as on the
relevant diagonals and flow diagonals. Then, we orient the moduli spaces of
Floer cylinders with cascades by the rule that the asymptotic constraints are
obtained as fibre products over descending and ascending manifolds of the
Morse functions in the manifolds of orbits Yk and W and as fibre products
over flow diagonals and diagonals in Yk ×Yk and in Y ×Y . The fibre products
are oriented using Definition 7.5. For this scheme to induce a differential,
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Figure 7. An interior point of the moduli space of cascades

we then need the orientations of the various boundary components of these
moduli spaces of cascades to be consistent.

Observe that in a general Morse–Bott situation, there are additional
orientation difficulties that are not present in our problem. Specifically, [5,9,
36] have to deal with parametric families of asymptotic operators that move
in the space of asymptotic operators of fixed degeneracy. In our problem,
the asymptotic operators of DC

ṽ are constant on each Morse–Bott family of
orbits, dramatically simplifying the problem to consider.

We also notice another key feature regarding cascades: suppose that ṽ−
and ṽ+ are two (punctured) cylinders so the asymptotic limit of ṽ− at +∞
matches the asymptotic limit of ṽ+ at −∞, as in the centre of Fig. 7. Let x
denote the limit of ṽ− at −∞ and let y denote the limit of ṽ+ at +∞. This
configuration can arise in two ways. It appears in the compactification of the
space of cylinders with negative end in the Morse–Bott family of orbits that
includes x and positive end in the Morse–Bott family of orbits that includes
y (right in the figure). It also appears as the limit of a two level cascade as
the length of the finite length flow line goes to 0 (left in the figure). The key
point of a Morse–Bott orientation scheme is that the orientations should be
such that the broken configuration of (ṽ−, ṽ+) should appear as an interior
point of the moduli space. We now sketch the key point that is developed in
greater detail in [36, Section 8.4] (and in greater generality, and with totally
real boundary conditions):

Lemma 7.6. The coherent orientation of the Cauchy–Riemann operator that
corresponds to gluing ṽ− and ṽ+ is the opposite of the orientation induced as
the boundary of the fibre sum orientation of ṽ± over the flow diagonal.

Sketch of proof. The linearized operator that describes the tangent space to
the moduli space of pairs (ṽ−, ṽ+) with matching asymptotic ṽ−(+∞) =
ṽ+(−∞) ∈ S0 is naturally given by:

Dṽ− ⊕ Dṽ+ : W 1,p,δ(Ṡ−, E−) ⊕ Δ ⊕ W 1,p,δ(Ṡ+, E+)

−→ Lp,δ(Ṡ−,Λ0,1T ∗Ṡ− ⊗ E−) ⊕ Lp,δ(Ṡ+,Λ0,1T ∗Ṡ+ ⊗ E+),
(7.3)

where δ > 0 imposes exponential decay (for a weight chosen smaller than the
spectral gap, as in Remark 5.21) and where Δ ⊂ TS0 ⊕ TS0 is the diagonal.
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Notice that Δ is naturally isomorphic to TS0 and can be oriented as the image
of the map x → (x, x). Let A be the (degenerate) asymptotic operator at the
shared orbit.1 After the conjugation described in Definition 5.15, we obtain
non-degenerate operators D̂ṽ− and D̂ṽ+ that have asymptotic operators A+δ
and A − δ, respectively. If we consider now a δ-perturbed Cauchy–Riemann
operator coming from the linearization at a trivial orbit cylinder, T := ∂s −
A + f(s), with f(s) = +δ near −∞ and f(s) = −δ near +∞, we obtain
an operator with trivial cokernel and whose kernel is identified with TS0

(by Lemma 7.2). This allows us to identify the Dṽ− ⊕ Dṽ+ in (7.3) with the
triple (D̂ṽ− , T, D̂ṽ+). This triple can be glued to obtain the linearization of
the space of cylinders with one fewer cascade, so this is naturally oriented as
the boundary.

Similarly, by taking the fibre product over the diagonal, we see this as
oriented with the opposite orientation of the boundary of the flow diagonal,
which is oriented as [0,∞)×Δ. This allows us to conclude that our orientation
scheme is coherent with respect to the additional breakings that appear in
the Morse–Bott setting. �

7.3. A calculation of signs

Having now explained the general framework of our orientations, let us now
give an explicit description of the signs associated with a Floer cylinder with
cascades contributing to the differential. By Propositions 6.2 and 6.3, there
are four types of contributions to the differential, referred to as Cases 0
through 3. We will explain how to determine the signs in each case.

In Case 0, we have gradient flow lines of Morse–Smale pairs (f, Z) on
manifolds of orbits, which can either be (fY , ZY ) on Y or (−fW ,−ZW ) on
W (see Definition 4.4). Let us stipulate the orientation conventions for Morse
homology that we will use. The Morse complex of a Morse–Smale pair (f, Z)
on a manifold S is generated by critical points of f and the differential ∂f is
such that, given p ∈ Crit(f),

∂f (p) =
∑

q∈Crit(f)
indf (p)−indf (q)=1

#((W s
S(q) ∩ Wu

S (p)) /R) q. (7.4)

In this formula, we use the notation of (3.1) for critical manifolds of Z. Note
that they intersect transversely, by the Morse–Smale assumption.

We need to make sense of the signed count in the formula. We will be
interested in the cases where S is Σ, Y or W , all of which are oriented (by
their chosen symplectic, contact and symplectic forms, respectively). If we
fix an orientation on a critical manifold at a critical point p, then we get
an induced orientation on the other critical manifold, by imposing that the
splitting

TpW
s
S(p) ⊕ TpW

u
S (p) ∼= TpS (7.5)

1Technically, to define this requires a trivialization of ξ along this orbit. In our setting the
asymptotic operator is complex linear in the ξ direction, so this choice does not matter.
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preserves orientations. Pick orientations on all unstable manifolds of Σ and
W . For all p ∈ Crit(fΣ), we will assume that the orientations on critical
submanifolds of Σ and Y are such that the restrictions of πΣ : Y → Σ to

Wu
Y (p̌) → Wu

Σ(p) and W s
Y (p̂) → W s

Σ(p) (7.6)

are orientation-preserving diffeomorphisms.
If γ : R → S is a rigid flow line from q to p (critical points of consecutive

indices), then it induces a diffeomorphism onto its image

γ(R) ⊂ W s
S(q) ∩ Wu

S (p).

The source R has its usual orientation, corresponding to increasing values of
time in the orbit γ, and the image W s

S(q)∩Wu
S (p) is a transverse intersection,

and can be oriented in such a way that the splitting

TWu
S (p) ∼= T (W s

S(q) ∩ Wu
S (p)) ⊕ TWu

S (q) (7.7)

is orientation-preserving (see [26, Equation (2)] for a similar convention).
The flow line γ contributes to # ((W s

S(q) ∩ Wu
S (p))/R) in (7.4) positively

iff it preserves orientations. The Case 0 contribution of a flow line to the
symplectic homology differential is the same as its contribution to the Morse
differential.

Let us now consider Case 1, which is more interesting. Recall that such
configurations consist of a Floer cylinder without augmentation punctures,
together with two flow lines of ZY at the ends. Suppose that the Floer cylinder
converges to orbits of multiplicities k± at ±∞. Such a cylinder is an element
of the space M∗

H,0,R×Y ;k−,k+
(A;JY ), for some A ∈ H2(Σ; Z).

Cylinders with cascades that contribute to the differential in Case 1
are elements of spaces M∗

H,1(q̂k− , p̌k+ ;JW ), for p 
= q ∈ Crit(fΣ) (recall the
notation in (5.11)). These spaces are unions of fibre products

W s
Y (q̂) ×ev M∗

H,0,R×Y ;k−,k+
(A;JY ) ×ev Wu

Y (p̌) (7.8)

defined with respect to the inclusion maps

W s
Y (q̂),Wu

Y (p̌) → Y

and the evaluation maps from (5.8)

ẽvY : M∗
H,0,R×Y ;k−,k+

(A;JY ) → Y × Y,

for appropriate A ∈ H2(Σ; Z). Recall the discussion of Case 0 above, which
included a specification of orientations on all critical submanifolds of Y . We
use the fibre sum convention (in Definition 7.5) to orient the fibre product
(7.8).

Observe now that if M∗
H,1(q̂k− , p̌k+ ;JW ) is one-dimensional, then its

tangent space at every point is generated by the infinitesimal translation in
the s-direction on the domain of the Floer cylinder. This induces an orienta-
tion on M∗

H,1(q̂k− , p̌k+ ;JW ). Comparing this orientation with the one defined
above with the fibre sum rule, we get the sign of such a contribution to the
split symplectic homology differential.

We adapt the argument above to associate a sign to a contribu-
tion to the differential in Case 2. Such cascades are elements of spaces
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M∗
H,1(p̂k− , p̌k+ ;JW ), for p ∈ Crit(fΣ). The analogue of (7.8) is now (using

the notation of (5.10)):

W s
Y (p̂) ×ev

(
M∗

X(B;JW ) ×ẽv M∗
H,1,R×Y ;k−,k+

(0;JY )
)

×ev Wu
Y (p̌). (7.9)

Notice that in this case we also need capping operators for augmentation
punctures. The asymptotic operators at such punctures are

A = −J
d
dt

,

which are complex linear. We may, therefore, take (canonically oriented) com-
plex linear capping operators at these punctures. We can now orient the fibre
product (7.9) using the fibre sum convention. The sign of such a contribu-
tion to the differential is obtained by comparing this orientation with the one
induced by s-translation on the domain of the punctured Floer cylinder in
M∗

H,1,R×Y ;k−,k+
(0;JY ).

Finally, Case 3 Floer cylinders with cascades that contribute to the
differential are elements of M∗

H,1(x, p̌k+ ;JW ), which are unions of fibre prod-
ucts

Wu
W (x) ×ev

(
M∗

H,0,W ;k+
((B; 0);JW ) ×ev Δ̃

)
×ev Wu

Y (p̌).

The relevant evaluation maps are given by factors of ẽvW,Y in (5.9). It will
be useful to write an alternative description of this fibre product. Recall
that M∗

H,0,W ;k+
((B, 0);JW ) is a space of pairs (ṽ0, ṽ1) with the following

properties. The simple JW -holomorphic cylinder ṽ0 : R × S1 → W has a
removable singularity at −∞, defining a pseudoholomorphic sphere in X in
class B ∈ H2(X; Z), with order of contact k+ = B•Σ at ∞. Denote the space
of such cylinders by M∗

H(B;JW ). The Floer cylinder ṽ1 : R × S1 → R × Y
converges at +∞ to a Hamiltonian orbit of multiplicity k+ and at −∞ to a
Reeb orbit of the same multiplicity in {−∞}×Y . It projects to a constant in
Σ. Denote the space of such cylinders by M∗

H,k+
(0;JY ). We have evaluation

maps

(ev1
−, ev1

+) : M∗
H(B;JW ) → W × Y and

(ev2
−, ev2

+) : M∗
H,k+

(0;JY ) → Y × Y

and can write

M∗
H,0,W ;k+

((B, 0);JW ) = M∗
H(B;JW ) × M∗

H,k+
(0;JY )

and

M∗
H,0,W ;k+

((B, 0);JW ) ×ev Δ̃ = M∗
H(B;JW )ev1

+
× ev2

−M∗
H,k+

(0;JY ).

We now rewrite the Case 3 contributions to the differential as

Wu
W (x) ×ev1

−

(
M∗

H(B;JW )ev1
+

× ev2
−M∗

H,k+
(0;JY )

)
×ev2

+
Wu

Y (p̌), (7.10)

which is oriented using coherent orientations on the spaces of cylinders and
the fibre sum orientation convention.

The space M∗
H(B;JW )ev1

+
×ev2

−M∗
H,k+

(0;JY ) has an action of R1×R2,
where the one-dimensional real vector space R1 acts by s-translation on the
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domain of the cylinder in W and R2 acts by s-translation on the domain of
the cylinder in R × Y . The sign of a Case 3 contribution to the differential
is obtained by comparing the coherent/fibre product orientation on (7.10)
with the usual orientation on R1 × R2, corresponding to s-translation on the
domain of ṽ0 followed by s-translation on the domain of ṽ1.
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