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ABSTRACT 

Traditional Hardy-Weinberg equilibrium (HWE) tests (the χ2 test and the exact test) have long 

been used as a metric for evaluating genotype quality, as technical artifacts leading to incorrect 

genotype calls often can be identified as deviations from HWE. However, in datasets comprised 

of individuals from diverse ancestries, HWE can be violated even without genotyping error, 

complicating the use of HWE testing to assess genotype data quality. In this manuscript, we 

present the Robust Unified Test for HWE (RUTH) to test for HWE while accounting for 

population structure and genotype uncertainty, and evaluate the impact of population 

heterogeneity and genotype uncertainty on the standard HWE tests and alternative methods 

using simulated and real sequence datasets. Our results demonstrate that ignoring population 

structure or genotype uncertainty in HWE tests can inflate false positive rates by many orders 

of magnitude. Our evaluations demonstrate different tradeoffs between false positives and 

statistical power across the methods, with RUTH consistently amongst the best across all 

evaluations. RUTH is implemented as a practical and scalable software tool to rapidly perform 

HWE tests across millions of markers and hundreds of thousands of individuals while supporting 

standard VCF/BCF formats. RUTH is publicly available at https://www.github.com/statgen/ruth. 
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INTRODUCTION 

Hardy-Weinberg equilibrium (HWE) is a fundamental theorem of population genetics and has 

been one of the key mathematical principles to understand the characteristics of genetic 

variation in a population for more than a century (HARDY 1908; WEINBERG 1908). Genetic variants 

in a homogeneous population typically follow HWE except for unusual deviations due to very 

strong case-control association and enrichment (NIELSEN et al. 1998), sex linkage, or non-

random sampling (WAPLES 2015).  

HWE tests are often used to assess the quality of microsatellite (VAN OOSTERHOUT et al. 

2004), SNP-array (WIGGINTON et al. 2005), and sequence-based (DANECEK et al. 2011) genotypes. 

Testing for HWE may reveal technical artifacts in sequence or genotype data, such as high rates 

of genotyping error and/or missingness, or sequencing/alignment errors (NIELSEN et al. 2011). It 

can also identify hemizygotes in structural variants which are incorrectly called as homozygotes 

(MCCARROLL et al. 2006). Quality control for array- or sequence-based genotypes typically 

includes a HWE test to detect and filter out artifactual or poorly genotyped variants (LAURIE et 

al. 2010; NIELSEN et al. 2011). 

While HWE tests are commonly and reliably used for variant quality control in samples 

from homogeneous populations, applying them to more diverse samples remains challenging. 

When analyzing individuals from a heterogeneous population, the standard HWE tests may 

falsely flag real, well-genotyped variants, unnecessarily filtering them out for downstream 

analyses (HAO AND STOREY 2019). This problem is important since genetic studies increasingly 

collect genetic data from heterogeneous populations. In principle, HWE tests in these 

structured populations can be performed on smaller cohorts with homogenous backgrounds 
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(BYCROFT et al. 2018), and the test statistics combined using Fisher’s or Stouffer’s method 

(MOSTELLER AND FISHER 1948; STOUFFER 1949). However, such a procedure requires much more 

effort than using a single HWE test across all samples. In addition, this approach cannot account 

for any heterogeneity within each of the smaller cohorts. 

Here, we describe RUTH (Robust Unified Test for Hardy-Weinberg Equilibrium) which 

tests for HWE under heterogeneous population structure. Our primary motivation for 

developing RUTH is to robustly filter out artifactual or poorly genotyped variants using HWE 

test statistics. RUTH is (1) computationally efficient, (2) robust against various degrees of 

population structure, and (3) flexible in accepting key representations of sequence-based 

genotypes including best-guess genotypes and genotype likelihoods. We perform systematic 

evaluations of RUTH and alternative methods for HWE testing using simulated and real data to 

explore the advantages and disadvantages of these methods for samples of diverse ancestries.  

MATERIALS AND METHODS 

Unadjusted HWE tests  

Consider a study of 𝑛 participants with true (unobserved) genotypes 𝑔ଵ, 𝑔ଶ, ⋯ , 𝑔௡ at a bi-allelic 

variant coded as 0 (reference homozygote), 1 (heterozygote), or 2 (alternate homozygote). 

Represent the best-guess/hard-call (observed) genotypes as 𝑔ොଵ, 𝑔ොଶ, ⋯ , 𝑔ො௡. A simple HWE test 

uses the chi-squared statistic to compare the expected and observed genotype counts 

assuming no population structure and no genotype uncertainty. The chi-squared HWE test 

statistic is defined as  𝑇ఞమ ൌ ∑ ሺ௖ೖି௖ೖ̂ሻమ௖ೖ̂ଶ௞ୀ଴  where 𝑐௝ ൌ ∑ 𝐼ሺ𝑔ො௜ ൌ 𝑗ሻ௡௜ୀ଴  (ignoring missing 
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genotypes), 𝑝̂ ൌ ௖భାଶ௖మଶ௡ , 𝑞ො ൌ 1 െ 𝑝̂ , 𝑐̂଴ ൌ 𝑛𝑞ොଶ, 𝑐̂ଵ ൌ 2𝑛𝑝̂𝑞ො, and 𝑐̂ଶ ൌ 𝑛𝑝̂ଶ. Under HWE, the 

asymptotic distribution of 𝑇ఞమ  is assumed to follow 𝜒ଵଶ (ROHLFS AND WEIR 2008). An exact test is 

known to be more accurate for finite samples, particularly for rare variants (WIGGINTON et al. 

2005), and using mid-p values instead of exact p-values will lead to slightly less conservative 

estimates (GRAFFELMAN AND MORENO 2013). HWE tests stratified by case-control status are known 

to prevent an inflation of Type I errors for disease-associated variants (LI AND LI 2008). Widely 

used software tools such as PLINK (PURCELL et al. 2007) and VCFTools (DANECEK et al. 2011) 

implement an exact HWE test based on best-guess genotypes. We will refer to the exact test as 

the unadjusted test. 

Existing HWE tests accounting for structured populations 

The unadjusted HWE test assumes a homogeneous population. If a study is comprised of a set 

of discrete structured subpopulations, a straightforward extension of the unadjusted test is to 

(1) stratify each study participant into exactly one of the subpopulations, (2) perform the 

unadjusted HWE test for each subpopulation separately, and (3) meta-analyze test statistics 

across subpopulations to obtain a combined p-value using Stouffer’s method (STOUFFER et al. 

1949). More specifically, let 𝑧ଵ, 𝑧ଶ, ⋯ , 𝑧௦ be the z-scores from HWE test statistics for s distinct 

subpopulations with sample sizes 𝑛ଵ, 𝑛ଶ, ⋯ , 𝑛௦. A combined meta-analysis HWE test statistic 

across the subpopulations is 𝑇௠௘௧௔ ൌ ∑ ௭೔ඥ௡೔ೞ೔సభට∑ ௡೔ೞ೔సభ  , which asymptotically follows a standard normal 

distribution when each subpopulation follows HWE. 

When the population cannot be easily stratified into distinct subpopulations (e.g. intra-

continental diversity or an admixed population), a quantitative representation of genetic 
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ancestry, such as principal component (PC) coordinates or fractional mixture over 

subpopulations, can be more useful for representing genetic diversity (ROSENBERG et al. 2002; 

PRICE et al. 2006). HWES takes PCs as additional input to perform HWE tests under population 

structure with logistic regression (SHA AND ZHANG 2011), and a similar idea was suggested by Hao 

and colleagues (2016). However, existing implementations do not support sequence-based 

genotypes (where genotype uncertainty may remain at low or moderate sequencing depth) or 

other commonly used formats for genetic array data. A recent method PCAngsd estimates PCs 

from uncertain genotypes represented as genotype likelihoods (MEISNER AND ALBRECHTSEN 2019) 

and uses these estimates to perform a likelihood ratio test (LRT) for HWE, similar to the LRT 

version of RUTH with differences in computational performance (see below).  

Robust HWE testing with RUTH 

Here we describe RUTH (Robust and Unified Test for Hardy-Weinberg equilibrium) to enable 

HWE testing under structured populations, which is especially useful for large sequencing 

studies. We developed RUTH to produce HWE test statistics to allow quality control of 

sequence-based variant callsets from increasingly diverse samples. RUTH models the 

uncertainty encoded in sequence-based genotypes to robustly distinguish true and artifactual 

variants in the presence of population structure, and seamlessly scales to millions of individuals 

and genetic variants. 

We assume the observed genotype for individual 𝑖 can be represented as a genotype 

likelihood (GL) 𝐿௜ሺீሻ ൌ Pr ሺ𝐷𝑎𝑡𝑎௜|𝑔௜ ൌ 𝐺ሻ, where 𝐷𝑎𝑡𝑎௜  represents observed data (e.g. 

sequence or array), and 𝑔௜ ∈ ሼ0,1,2ሽ the true (unobserved) genotype. For example, GLs for 
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sequence-based genotypes can be represented as 𝐿௜ሺீሻ ൌ ∏ Pr ሺ𝑟௜௝|𝑔௜ ൌ 𝐺; 𝑞௜௝ሻௗ೔௝ୀଵ  where 𝑑௜ is 

the sequencing depth, 𝑟௜௝ is the observed read, and 𝑞௜௝ is the corresponding quality score 

(EWING AND GREEN 1998; JUN et al. 2012). We model GLs for best-guess genotypes 𝑔ො௜ from SNP 

arrays as 𝐿௜ሺீሻ ൌ ሺ1 െ 𝑒௜ሻଶ, 2𝑒௜ሺ1 െ 𝑒௜ሻ,  𝑒௜ଶ  for 𝑔ො௜ ൌ 2, 1, 0 where 𝑒௜ is the assumed per-allele 

error rate. Imputed genotypes may also be approximately modeled using this framework, but 

the current implementation requires creating a pseudo-genotype likelihood to describe this 

uncertainty (see Discussion). 

Accounting for Population Structure with Individual-Specific Allele Frequencies 

We account for population structure by modeling individual-specific allele frequencies from 

quantitative coordinates of genetic ancestry such as PCs, similar to HAO et al. (2016). For any 

given variant, instead of assuming that genotypes follow HWE with a single universal allele 

frequency across all individuals, we assume that genotypes follow HWE with heterogeneous 

allele frequencies specific to each individual, modeled as a function of genetic ancestry. Let 𝒙𝒊 ∈ ℝ௞ represent the genetic ancestry of individual 𝑖, where 𝑘 is the number of PCs used. We 

estimate individual-specific allele frequency 𝑝 as a bounded linear function of genetic ancestry  

𝑝ሺ𝒙௜; 𝜷ሻ ൌ ቐ𝜷𝑻𝒙௜ 𝜀 ൑ 𝜷𝑻𝒙௜ ൑ 1 െ 𝜀𝜀 𝜷𝑻𝒙௜ ൏ 𝜀1 െ 𝜀 𝜷𝑻𝒙௜ ൐ 1 െ 𝜀  , 

where 𝜀 is the minimum frequency threshold. We estimate 𝜷෡ with an E-M algorithm. We used 𝜀 ൌ ଵସ௡ in our evaluation. Even though we used a linear model for 𝑝ሺ𝒙௜; 𝜷ሻ for computational 

efficiency, it is straightforward to apply a logistic model, which is arguably better (YANG et al. 

2012; HAO et al. 2016). 
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 Let 𝑝௜ ൌ 𝑝ሺ𝒙௜; 𝜷ሻ and 𝑞௜ ൌ 1 െ 𝑝௜  be the individual specific allele frequencies of the 

non-reference and reference alleles for individual 𝑖. Under the null hypothesis of HWE, the 

frequencies of genotypes (0, 1, 2) are ሾ𝑞௜ଶ, 2𝑝௜𝑞௜, 𝑝௜ଶሿ. Under the alternative hypothesis, we 

assume these frequencies are ሾ𝑞௜ଶ ൅ 𝜃𝑝௜𝑞௜, 2𝑝௜𝑞௜ሺ1 െ 𝜃ሻ, 𝑝௜ଶ ൅ 𝜃𝑝௜𝑞௜ሿ where 𝜃 is the 

inbreeding coefficient. This model is a straightforward extension of a fully general model where 𝑝௜, 𝑞௜ is identical across all samples. Then the log-likelihood across all study participants is 

𝑙ሺ𝜷, 𝜃ሻ ൌ ෍ logቂ𝐿௜ሺ଴ሻሺ𝑞௜ଶ ൅ 𝜃𝑝௜𝑞௜ሻ ൅ 𝐿௜ሺଵሻ 2𝑝௜𝑞௜ሺ1 െ 𝜃ሻ ൅ 𝐿௜ሺଶሻሺ𝑝௜ଶ ൅ 𝜃𝑝௜𝑞௜ሻቃ௡௜ୀଵ  

Under both the null ሺ𝜃 ൌ 0ሻ and alternative ሺ𝜃 ് 0ሻ hypotheses, we maximize the log-

likelihood using an Expectation-Maximization (E-M) algorithm (DEMPSTER et al. 1977). As we 

empirically observed quick convergence within several iterations in most cases, we used a fixed 

(n=20) number of iterations in our implementation (Figure S2). 

RUTH Score Test 

The score function of the log-likelihood is the derivative of the log-likelihood with respect to 𝜃: 

𝑈ሺ𝜃ሻ ൌ ෍ 𝑝௜𝑞௜ቂ𝐿௜ሺ଴ሻ െ 2𝐿௜ሺଵሻ ൅ 𝐿௜ሺଶሻቃ𝐿௜ሺ଴ሻሺ𝑞௜ଶ ൅ 𝜃𝑝௜𝑞௜ሻ ൅ 𝐿௜ሺଵሻ  2𝑝௜𝑞௜ሺ1 െ 𝜃ሻ ൅ 𝐿௜ሺଶሻሺ𝑝௜ଶ ൅ 𝜃𝑝௜𝑞௜ሻ௡௜ୀଵ ൌ ෍ 𝑢௜ሺ𝜃ሻ௡௜ୀଵ  

Since 𝑢௜ᇱሺ𝜃ሻ ൌ െ𝑢௜ଶሺ𝜃ሻ, we construct a score test statistic of 𝐻଴: 𝜃 ൌ 0 vs 𝐻ଵ: 𝜃 ് 0 as: 

𝑇௦௖௢௥௘ ൌ ሾ𝑈ሺ0ሻሿଶ𝐼ሺ0ሻ ൌ ሾ∑ 𝑢௜ሺ0ሻ௡௜ୀଵ ሿଶ∑ 𝑢௜ଶሺ0ሻ௡௜ୀଵ  
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where I(0) is the Fisher information under the null hypothesis. Under the null, 𝑇௦௖௢௥௘ has an 

asymptotic chi-squared distribution with one degree of freedom, i.e. 𝑇௦௖௢௥௘~𝜒ଵଶ. A detailed 

algorithm can be found in Figure S1. 

RUTH Likelihood Ratio Test 

The log-likelihood function 𝑙ሺ𝜷, 𝜃ሻ can also be used to calculate a likelihood ratio test statistic: 

𝑇௅ோ் ൌ 2 ൤max𝜷,ఏ 𝑙ሺ𝜷, 𝜃ሻ െ max𝜷 𝑙ሺ𝜷, 0ሻ൨. 

Like the score test, we estimate MLE parameters 𝜷, 𝜃 iteratively using an E-M algorithm to test 𝐻଴: 𝜃 ൌ 0 vs 𝐻ଵ: 𝜃 ് 0. Under the null hypothesis, the asymptotic distribution of 𝑇௅ோ் is 

expected to follow 𝜒ଵଶ. This test is very similar to the likelihood-ratio test proposed by PCAngsd 

(MEISNER AND ALBRECHTSEN 2019), except PCAngsd does not re-estimate 𝜷 under the alternative 

hypothesis. In principle, the RUTH LRT should be slightly more powerful due to this difference; 

we expect the practical difference in power to be small, as deviations from HWE usually do not 

change the estimates of 𝜷 substantially. 

Simulation of genotypes and sequence reads under population structure 

We simulated sequence-based genotypes under population structure using the following 

procedure. First, for each variant, we simulated an ancestral allele frequency and population-

specific allele frequencies. Second, we sampled unobserved (true) genotypes based on these 

allele frequencies. Third, we sampled sequence reads based on the unobserved genotypes. 

Fourth, we generated genotype likelihoods and best-guess genotypes based on sequence reads. 
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Our goal was to simulate variants such that each subpopulation will have different average 

allele frequencies from other subpopulations. 

To simulate ancestral and population-specific allele frequencies, we followed the 

BALDING AND NICHOLS (1995) procedure, except we sampled ancestral allele frequencies from 𝑝 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚ሺ0,1ሻ instead of 𝑝 ~ Uniformሺ0.1, 0.9ሻ to include rare variants. For each of 𝐾 ∈ሼ1, 2, 5, 10ሽ populations, we sampled population-specific allele frequencies from 𝑝௞ ~ 𝐵𝑒𝑡𝑎 ቀ௣ሺଵିிೞ೟ሻிೞ೟ , ሺଵି௣ሻሺଵିிೞ೟ሻிೞ೟ ቁ, where 𝑘 ∈ ሼ1, ⋯ , 𝐾ሽ, and 𝐹௦௧ ∈ ሼ.01, .02, .03, .05, .10ሽ was 

the fixation index to quantify the differentiation between populations, as suggested by 

Holsinger (HOLSINGER 1999) and implemented in previous studies (HOLSINGER et al. 2002; BALDING 

2003). Because 𝑝௞ no longer follows the uniform distribution, we used rejection sampling to 

ensure that 𝑝̅ ൌ  ଵ௄ ∑ 𝑝௞௄௞ୀଵ  is uniformly distributed across 100 bins across simulations to avoid 

artifacts caused by systematic differences in allele frequencies. 

The unobserved genotype 𝐺௜ ∈ ሼ0,1,2ሽ for individual 𝑖 ∈ ሼ1, ⋯ , 𝑛௞ሽ, belonging to 

population 𝑘 with sample size 𝑛௞, was simulated from genotype frequencies ሺ𝑞௞ଶ ൅𝜃 𝑝௞𝑞௞, 2𝑝௞𝑞௞ሺ1 െ 𝜃ሻ, 𝑝௞ଶ ൅ 𝜃 𝑝௞𝑞௞ሻ, where 𝑞௞ ൌ 1 െ 𝑝௞ and 𝜃 ∈ ቂെ min ቀ௤ೖ௣ೖ , ௣ೖ௤ೖቁ , 1ቃ quantifies 

deviation from HWE; 𝜃 ൌ 0 represents HWE, while 𝜃 ൏ 0 and 𝜃 ൐ 0 represent excess 

heterozygosity and homozygosity compared to HWE expectation, respectively. In our 

experiments, we evaluated 𝜃 ∈ ሼ0, േ.01, േ.05, േ.1, േ.5ሽ. When 𝜃 was smaller than the 

minimum possible value for a specific population, we replaced it with the minimum value.  

We simulated sequence reads based on unobserved genotypes, sequence depths, and 

base call error rates. To reflect the variation of sequence depths between individuals, we 
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simulated the mean depth of each sequenced sample as 𝜇௜~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚ሺ1, 2𝐷 െ 1ሻ, where 𝐷 is 

the expected depth and 𝐷 ൌ 5 and 𝐷 ൌ 30 representing low-coverage and deep sequencing, 

respectively. For each sequenced sample and variant site, we sampled the sequence depth 

from 𝑑௜~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ𝜇௜ሻ. Each sequence read carried either of the possible unobserved (true) 

alleles 𝑟௜௝ ∈ ሼ0,1ሽ, where 𝑗 ∈ ሼ1, ⋯ , 𝑑௜ሽ. Given unobserved genotype 𝐺௜, we generated 

𝑟௜௝~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 ቀீ೔ଶ ቁ, with observed allele 𝑜௜௝ ൌ ൫1 െ 𝑒௜௝൯𝑟௜௝ ൅ 𝑒௜௝൫1 െ 𝑟௜௝൯ flipping to the other 

allele when a sequencing error occurs with probability 𝑒௜௝~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖ሺ𝜖ሻ. We used 𝜖 ൌ 0.01 

throughout our simulations (which corresponds to phred-scale base quality of 20) and assumed 

that all base calling errors switched between reference and alternate alleles.  

We then generated genotype likelihoods and best-guess genotypes from the simulated 

alleles. Let 𝑡௜ ൌ ∑ 𝑜௜௝ௗ೔௝ୀଵ  be the observed alternate allele count. The GLs for the three possible 

genotypes are 𝐿௜ሺ଴ሻ ൌ ሺ1 െ 𝜖ሻௗ೔ି௧೔ ሺ𝜖ሻ௧೔, 𝐿௩ሺଵሻ ൌ 0.5ௗ೔ , 𝐿௜ሺଶሻ ൌ ሺ𝜖ሻௗ೔ି௧೔ ሺ1 െ 𝜖ሻ௧೔. We called best-

guess genotypes by using the overall ancestral allele frequency 𝑝̅ for a given variant as the 

prior, then calling the genotype corresponding to the highest posterior probability among ቀ𝐿௜ሺ଴ሻሺ1 െ 𝑝̅ሻଶ, 2𝐿௜ሺଵሻ𝑝̅ሺ1 െ 𝑝̅ሻଶ, 𝐿௜ሺଶሻ𝑝̅ଶቁ for each individual. For each possible combination of 𝐹௦௧, 𝐾, and 𝜃, we generated 50,000 independent variants across a set of 𝑛 ൌ 5,000 samples 

with per-ancestry samples sizes 𝑛௞ ൌ ௡௄. 

Evaluation of Type I Error and Statistical Power 

We used different p-value thresholds, 𝐹௦௧ values, number of ancestry groups 𝐾, and average 

sequencing depth 𝐷 to determine the number of variants significantly deviating from HWE. To 

evaluate Type I error, we simulated sequence reads under HWE (𝜃 ൌ 0) and calculated the 
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proportion of significant variants at each p-value threshold. In RUTH tests, we assumed PCs 

were accurately estimated using true genotypes unless indicated otherwise. For real data, we 

summarized ancestral information by projecting PCs estimated from full genomes onto the 

reference PC space of the Human Genome Diversity Panel (HGDP) (LI et al. 2008) using 

verifyBamID2 (ZHANG et al. 2020), similar to the procedure for variant calling in the TOPMed 

Project, which has integrated RUTH as part of its quality control pipeline 

(https://github.com/statgen/topmed_variant_calling).  

In all datasets, we evaluated the tradeoff between Type I Error and power for each 

method using precision-recall curves (PRCs) and receiver-operator characteristic curves (ROCs). 

In simulated data, we considered variants with θ = 0 to be true negatives and variants with 

θ = -0.05 to be true positives. For real data, we labeled HQ variants as negative and LQ variants 

as positive. 

Data source 

To evaluate our method, we used sequence-based genotype data from the 1000 Genomes 

Project (1000G) (THE 1000 GENOMES PROJECT CONSORTIUM et al. 2015) and the Trans-Omics 

Precision Medicine (TOPMed) Project (TALIUN et al. 2019). In both cases, we used subsets of 

variants from chromosome 20. For 1000G, we started with 1,812,841 variants in 2,504 

individuals, with an average depth of 7.0 ൈ. For TOPMed, we started with 12,983,576 variants 

in 53,831 individuals, with an average depth of 37.2 ൈ. 

Application to 1000 Genomes data 

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab044/6171183 by The U

niversity of Texas R
io G

rande Valley user on 09 April 2021



 

 

15 
 

To test our method on 1000G data, we first needed to define two sets of variants: one set 

which is expected to follow HWE, and another set which is expected to deviate from HWE. 

Unlike simulated data, variants in 1000G are not clearly classified into “true” or “artifactual”, so 

evaluation of false positives and power is less straightforward. We focused on two subsets of 

variants in chromosome 20 which serve as proxies for these two variant types. We selected 

non-monomorphic sites found in both the Illumina Infinium Omni2.5 genotyping array and in 

HapMap3 (THE INTERNATIONAL HAPMAP CONSORTIUM et al. 2010) as “high-quality” (HQ) variants that 

mostly follow HWE after controlling for ancestry, ending up with 17,740 variants. We selected 

variants that displayed high discordance between duplicates or Mendelian inconsistencies 

within family members in TOPMed as “low quality” (LQ) variants which should be enriched for 

deviations from HWE even after accounting for ancestry, ending up with 10,966 variants. 

Among 329,699 LQ variants from TOPMed in chromosome 20, we found that only 10,966 

overlap with 1000 Genome samples. We suspect that a substantial fraction of these 10,966 LQ 

variants are true variants since they passed all of the 1000G Project’s quality filters. 

Nevertheless, we still expect a much larger fraction of these LQ variants to deviate from HWE 

compared to HQ variants.  

We evaluated multiple representations of sequence-based genotypes from 1000G. As 

1000G samples were sequenced at relatively low-coverage of 7.0 ൈ on average, best-guess 

genotypes inferred only from sequence reads (raw GT) tend to have poor accuracy. Therefore, 

the officially released best-guess genotypes in 1000G were estimated by combining genotype 

likelihoods (GL), calculated based on sequence reads, with haplotype information from nearby 

variants through linkage-disequilibrium (LD)-aware genotype refinement using SHAPEIT2 

(DELANEAU et al. 2013). This procedure resulted in more accurate genotypes (LD-aware GT), but 
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it implicitly assumed HWE during refinement. As different representations of sequence 

genotypes may result in different performance in HWE tests, we evaluated all three 

representations - raw GT, LD-aware GT, and GL. In all tests of RUTH using hard genotype calls, 

we assumed the error rate for GT-based genotypes to be 0.5%, which is representative of a 

typical non-reference genotype error rate for SNP arrays. We restricted our analyses to biallelic 

variants. The positions and alleles of 1000G and TOPMed variants were matched using the 

liftOver software tool (KUHN et al. 2013). 

We evaluated all tests as described above. For meta-analysis with Stouffer’s method, we 

divided the samples into 5 strata, using the five 1000G super population code labels – African 

(AFR), Admixed American (AMR), East Asian (EAS), European (EUR), and South Asian (SAS). To 

obtain PC coordinates for 1000G samples, we estimated 4 PCs from the aligned sequence reads 

(BAM) with verifyBamID2 (ZHANG et al. 2020), using PCs from 936 samples from the Human 

Genome Diversity Project (HGDP) panel as reference coordinates. The RUTH score test and LRT 

used these PCs as inputs, along with genotypes in raw GT, LD-aware GT, and GL formats. For 

PCAngsd, we used GLs from all variants tested as the input. We limited the analysis to a single 

chromosome due to the heavy computational requirements of PCAngsd. 

Application to TOPMed Data 

We analyzed variants from 53,831 individuals from the TOPMed sequencing study (TALIUN et al. 

2019). These samples came from multiple studies from a diverse spectrum of ancestries, 

leading to substantial population structure. Using the same criteria as our 1000G analysis, we 

identified 17,524 high-quality variants and 329,699 low-quality variants across chromosome 20. 

Since TOPMed genomes were deeply sequenced at 37.2 ൈ ሺേ4.5 ൈ), LD-aware genotype 
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refinement was not necessary to obtain accurate genotypes. Therefore, we used two genotype 

representations – raw GT and GL – in our evaluations. This genotype data contained no 

missingness. 

Similar to 1000G, for best-guess genotypes (raw GT), we used PLINK for the unadjusted 

test. For meta-analysis, we assigned each sample to one of the five 1000G super populations as 

follows. First, we summarized the genetic ancestries of aligned sequenced genomes with 

verifyBamID2 by estimating 4 PCs using HGDP as reference. Second, we used Procrustes 

analysis (DRYDEN AND MARDIA 1998; WANG et al. 2010) to align the PC coordinates of HGDP panels 

(to account for different genome builds) so that the PC coordinates were compatible between 

TOPMed and 1000G samples. Third, for each TOPMed sample, we identified the 10 closest 

corresponding individuals from 1000G using the first 4 PC coordinates with a weighted voting 

system (assigning the closest individual a score of 10, next closest a score of 9, and so on until 

the 10th closest individual is assigned a score of 1, then adding up the scores for each super 

population) to determine the super population code that had the highest sum of scores, and 

therefore best described that sample. In this way, we classified 15,580 samples as AFR, 4,836 as 

AMR, 29,943 as EUR, 2,960 as EAS, and 716 as SAS. Among these samples, 94.5% had the same 

super population code for all 10 nearest 1000G neighbors. To evaluate the RUTH score test and 

LRT for both raw GT and GL, we used 4 PCs estimated by verifyBamID2 (ZHANG et al. 2020), 

consistent with the method applied for the 1000G data. 

Impact of Ancestry Estimates on Adjusted HWE Tests 

We examined the effect of changing the number of PCs used as input for RUTH tests by using 2 

PCs as opposed to 4 PCs. We also evaluated the impact of using different approaches to classify 
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ancestry when adjusting for population structure with meta-analysis. By default, our analysis 

classified the 1000 Genomes subjects into 5 continental super populations based on published 

information (THE 1000 GENOMES PROJECT CONSORTIUM et al. 2015). For TOPMed, the best-matching 

1000 Genomes continental ancestry was carefully determined using the PCA-based matching 

strategy described above. However, in practice, ancestry classification may be performed with a 

coarser resolution (JIN et al. 2019). To mimic plausible scenarios in which sample ancestries are 

not carefully determined, we used k-means clustering on the first 2 PCs of our samples to divide 

individuals into 3 distinct groups, roughly corresponding to East Asian, European, and African 

populations, and performed meta-analyses based on this coarse classification for both 1000G 

and TOPMed data. 

RESULTS 

Simulation: Effect of Genotype Uncertainty 

To evaluate the impact of genotype uncertainty, we first compared tests in the absence of 

population structure (i.e. single ancestry). For the unadjusted test, we used only best-guess 

genotypes (GTs). For PCAngsd, we used only genotype likelihoods (GLs). For RUTH score and 

likelihood ratio tests, we used both. 

Using GLs over GTs substantially reduced Type I errors in HWE tests, especially in low-

coverage data (Figure 1A-C). For example, the standard HWE test based on GTs resulted in a 

229-fold inflation (22.9%) at p < .001 (Figure 1B, Table S1), a threshold which allows the 

evaluation of Type I error with reasonable precision with 50,000 variants (50 expected false 

positives under the null). GT-based RUTH-Score and RUTH-LRT tests showed similar inflation. 
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When GLs were used instead of best-guess genotypes, RUTH-Score and RUTH-LRT had Type I 

errors close to the null expectation (.001 for RUTH-Score and .0012 for RUTH-LRT). PCAngsd, 

which also accounts for genotype uncertainty (MEISNER AND ALBRECHTSEN 2019), had similar 

performance. The severely inflated Type I errors with best-guess genotypes can largely be 

attributed to high uncertainty and bias towards homozygote reference genotypes in single site 

calls from low-coverage sequence data, resulting in apparent deviations from HWE. For high-

coverage sequence data, inflation of Type I error with GTs was substantially attenuated; 

inflation nearly disappeared when using GLs (.004 for RUTH-Score and .002 for RUTH-LRT; 

Figure 1D-F).  

Next, we evaluated the power to identify variants truly deviating from HWE at various 

levels of inbreeding (θ). For low-coverage sequence data, we skip interpretation of power of 

GT-based tests owing to their extremely inflated false positive rates. All GL-based tests behaved 

similarly, achieving ~19-21% power at p < .001 with moderate excess heterozygosity (θ = -0.05) 

(Figure 2B, Table S1). For high-coverage sequence data, the power of GL-based tests at the 

same p-value threshold increased to ~56-60%, comparable to corresponding GT-based tests. 

Interestingly, the unadjusted GT-based test showed much lower power than RUTH and PCAngsd 

tests under excess heterozygosity (θ < 0) while demonstrating much higher power with excess 

homozygosity (θ > 0). Upon further investigation, we observed that the tests have lower power 

than the exact test specifically for rare variants with excess homozygosity due to the mismatch 

between the empirical and asymptotic null distributions (see Discussion for details). 

We also generated precision-recall curves (PRC) and receiver-operator characteristic 

(ROC) curves to better understand the tradeoff between the Type I errors and power under 
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moderate excess heterozygosity (θ = -.05) (Figure S3C-D). Again, accounting for genotype 

uncertainty resulted in better empirical power and Type I error, especially for low-coverage 

data: at an empirical false positive rate of 1%, GL-based tests had 41-45% power, as opposed to 

4-10% for GT-based tests. For high-coverage data, GL-based tests had 1-2% greater power than 

GT-based tests at the same false positive rate. These results suggest that ignoring genotype 

uncertainty in HWE tests is reasonable for high-coverage sequence data. 

Simulation: Impact of Population Structure on HWE Test Statistics 

As expected, the unadjusted HWE test had substantially inflated Type I errors under population 

structure based on the Balding-Nichols (1995) model (Figure 1, Table S1). Even for an intra-

continental level of population differentiation (FST = .01), the Type I errors at p < .001 were 

inflated 13.5-fold even for high-coverage data. With an inter-continental level of differentiation 

(FST = .1), we observed orders of magnitude more Type I errors across different simulation 

conditions. This inflation is expected to increase with larger sample sizes, suggesting that 

adjustment for population structure is important even if a study focuses on a single continental 

population. 

One simple approach to account for population structure is to stratify individuals into 

distinct subpopulations and apply HWE tests separately, as was done in UK Biobank (BYCROFT et 

al. 2018), then meta-analyze the results (Figure 3B). Type I errors were appropriately controlled 

with this approach in high-coverage but not low-coverage data, likely due to unmodeled 

genotype uncertainty (Figure 1, Table S1). Instead of classifying individuals into distinct 

subpopulations, RUTH incorporates PCs to jointly perform HWE tests (Figure 3C). By estimating 

individual-specific allele frequencies, RUTH was able to adjust for the simulated population 
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structure. For both low- or high-coverage data, GL-based RUTH tests and PCAngsd showed well-

controlled Type I errors, while GT-based tests showed slight (high-coverage) to severe (low-

coverage) inflation.  

Although meta-analysis resulted in well-controlled Type I errors for high-coverage data, 

it was considerably less powerful than RUTH. For example, with moderate excess 

heterozygosity (θ = -.05) across five ancestries (FST = .1), RUTH tests identified 20-27% more 

variants as significant at p < .001 (Figure 2, Table S1) compared to meta-analysis. PRCs also 

clearly showed better operating characteristics for RUTH and PCAngsd compared to meta-

analysis (Figure S4). For example, at an empirical false positive rate of 1%, RUTH showed much 

greater power (66-68%) than meta-analysis (43%), even though the simulation scenario favors 

meta-analysis because samples were perfectly classified into distinct subpopulations. When 

stratified by allele frequency, RUTH showed better operating characteristics for common 

variants compared to rare variants due to a difference in power (Figure S5).  

Application to 1000 Genomes WGS data 

Next, we evaluated the performance of various HWE tests in low-coverage (~6x) sequence data 

from the 1000 Genomes Project. We evaluated three representations of genotypes - (1) raw GT, 

(2) LD-aware GT, and (3) GL, as described in Materials and Methods. Among chromosome 20 

variants, we selected 17,740 high-quality (HQ) variants that are polymorphic in GWAS arrays, 

and 10,966 low-quality (LQ) variants enriched for genotype discordance in duplicates and trios. 

Unlike simulation studies, not all LQ variants are expected to violate HWE, so we consider the 

proportion of significant LQ variants as a lower bound for the sensitivity to identify significant 
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variants. Similarly, not all HQ variants are expected to follow HWE, so the proportion of 

significant HQ variants serves as an upper bound for the false positive rate. 

 Consistent with simulation results, all tests based on raw GTs generated from low-

coverage sequence data had severe inflations of false positives (Figure 4A, Table 1). This was 

true even for HQ variants, presumably due to genotyping errors and bias in raw GTs. Standard 

HWE tests, which model neither genotype uncertainty nor population structure, showed the 

highest inflation of false positives at 44% for p < 10-6, a threshold commonly used for HWE 

testing in large genetic studies (LOCKE et al. 2015; FRITSCHE et al. 2016). Modeling population 

structure substantially reduced inflation, with RUTH tests showing fewer false positives (0.7-

1.0% at p < 10-6) than meta-analysis (2.0% at p < 10-6). False positives were inflated across all 

methods when using raw GTs. 

Similarly, GL-based RUTH tests further reduced false positives (0.034% at p < 10-6). In 

contrast to our simulations, however, PCAngsd demonstrated considerably higher false 

positives than RUTH (2.1% at p < 10-6) because PCAngsd estimates PCs from the input data 

without the ability to use externally provided PCs (see Discussion). The sensitivity for detecting 

significant LQ variants was also consistent with our simulations (Figure 4B, Table 1). GL-based 

tests, which showed better control of false positives, identified 22-25% of LQ variants as 

significant at p < 10-6. 

 Strikingly, while using LD-aware GTs reduced false positives with adjusted tests, it was at 

the expense of substantially reduced sensitivity to detect LQ variants. The false positive rates of 

any adjusted test with LD-aware GTs were uniformly lower than those of any GL- and raw GT-

based tests across all p-value thresholds (Figure 4A). However, sensitivity was also substantially 
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reduced with LD-aware genotypes (Figure 4B). For example, at p < 10-6, GL-based RUTH tests 

identified 22-23% of LQ variants as significant, while using LD-aware GTs halved the 

proportions. Meta-analysis with LD-aware GTs had even lower sensitivity, likely because the 

implicit HWE assumption in LD-aware genotype refinement altered the LD-aware genotypes to 

conform to HWE, further reducing both false positives and sensitivity. 

We evaluated PRCs between HQ and LQ variants to further evaluate this tradeoff. The 

results clearly demonstrated that HWE tests using LD-aware GTs are substantially less robust 

than tests using other genotype representations (Table S2, Figure S6A). For example, for the 

RUTH score test, when LD-aware GTs identified 0.1% of HQ variants as significant, 17% of LQ 

variants were identified as significant. However, with raw GT and GL, 24~27% were identified as 

significant at the same threshold. Even fewer were significant in meta-analysis with LD-aware 

GTs (13%). Similar trends were observed across all thresholds, suggesting that using LD-aware 

GTs results in substantially poorer operating characteristics. As more accurate genotyping in LD-

aware genotype refinement is expected to improve the performance of QC metrics compared 

to raw GTs, these results are quite striking, and highlight a potential oversight in using LD-aware 

genotypes in various QC metrics for sequence-based genotypes. It should also be noted the 

significance threshold we used can be subjective (see Discussion), but the relative trends 

between the methods largely remained similar (Table 1). 

Application to TOPMed Deep WGS data  

We evaluated the various HWE tests on a subset of the Freeze 5 variant calls from high-

coverage (~37ൈ) whole genome sequence (WGS) data in the TOPMed Project (TALIUN et al. 

2019). We identified 17,524 HQ variants and 329,699 LQ variants using the same criteria used 
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for 1000G variants and evaluated raw GTs and GLs. We did not evaluate PCAngsd due to 

excessive computational time (see “Computational cost” below). 

We first evaluated the false positive rates of different HWE tests indirectly by using HQ 

variants. With a >20-fold larger sample size than 1000G, we identified more significant HQ 

variants, while the false positive rates were still reasonable with adjusted tests. At p < 10-6, 74% 

of HQ variants were significant with unadjusted tests, while the adjusted GL-based tests 

identified ~0.3% at p < 10-6 (Figure 4C-D, Table 2). Adjusted GT-based tests had only slightly 

higher levels of false positives at p < 10-6. However, inflation was more noticeable at less 

stringent p-value thresholds, suggesting that GL-based tests may be needed for larger sample 

sizes. 

Next, we evaluated the proportions of LQ variants found to be significant by different 

tests to indirectly evaluate their statistical power. GT- and GL-based RUTH tests showed similar 

power, while meta-analysis showed considerably lower power. For example, at p < 10-6, meta-

analysis identified 47% of LQ variants as significant, while RUTH tests identified 54-58%. This 

pattern was similar across different p-value thresholds (Figure 4C-D) or choices of LQ variants 

(Table S3, Figure S7). Our results suggest that GL-based RUTH tests are suitable for testing HWE 

for tens of thousands of deeply sequenced genomes with diverse ancestries, and that using raw 

GTs will also result in a comparable performance at typically used HWE p-value thresholds (e.g. 

p < 10-6). 

We used PRCs to evaluate the tradeoff between empirical false positive rates and 

power. Consistent with previous results, the GL-based RUTH test showed the best tradeoff 

between false positives and power, while the GT-based RUTH test and meta-analysis were 

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyab044/6171183 by The U

niversity of Texas R
io G

rande Valley user on 09 April 2021



 

 

25 
 

slightly less robust but largely comparable (Figure S6). Notably, when we evaluated the 

different methods at an empirical false positive rate of 0.1%, RUTH score tests had ~4% higher 

power than RUTH LRT for both raw GTs and GLs (Figure S8-9). 

Impact of ancestry estimation accuracy on HWE tests 

So far, our evaluations relied on genetic ancestry estimates carefully determined with 

sophisticated methods (see Materials and Methods). However, using simpler approaches 

instead during the variant QC step may affect the performance of adjusted HWE tests. We 

evaluated whether the number of PC coordinates affected the performance of RUTH tests by 

comparing the use of 2 vs. 4 PCs (default). The results from both simulated and real datasets 

consistently demonstrated that using 4 PCs led to substantially reduced Type I errors compared 

to using 2 PCs at a similar level of power (Table S2, Table S4, Figure S10). PRCs also clearly 

showed that using 4 PCs was more robust against population structure across both simulated 

and real datasets (Figure S11). 

We also evaluated whether the classification accuracy of subpopulations affected the 

performance of meta-analysis. Instead of assigning 1000 Genomes individuals into five 

continental populations, we used the k-means algorithm on those samples’ top 2 PCs to classify 

them into 3 crude subpopulations (Figure S12). This led to a much higher false positive rate with 

virtually no increase in true positives (Figure S13, Table S2). We saw the same pattern in 

simulated data (Figure S11, Table S5). 

Computational cost  
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We compared the computational costs of RUTH and PCAngsd for simulated and real data. RUTH 

has linear time complexity to sample size, while PCAngsd appears to have quadratic time 

complexity due to joint estimation of PCs (Tables 3, S6). RUTH also has low memory 

requirements compared to PCAngsd (for example, 14 MB vs 2 GB for 1000G data). Extrapolating 

our results to the whole genome scale, analyzing 1000G (i.e. 80 million variants) is expected to 

take 120 CPU-hours for RUTH and 3,200 CPU-hours for PCAngsd (with >1 TB memory 

consumption). Additionally, RUTH can be parallelized into smaller regions in a straightforward 

manner. 

DISCUSSION 

RUTH is a unified, flexible, and robust approach to incorporate genetic ancestry and genotype 

uncertainty for testing Hardy-Weinberg Equilibrium capable of handling large amounts of 

genotype data with structured populations. Sha and Zhang (2011) proposed HWES, an HWE test 

for structured populations, to address some of these challenges, but it has not been widely 

used due to the lack of an implementation that supports popular genotype data formats (e.g. 

PED, BED, VCF, or BCF) and inability to handle imputed or uncertain genotypes. Hao and 

colleagues (2016) proposed sHWE which can only handle best-guess (hard call) genotypes (i.e. 

0, 1, or 2 for biallelic variants) and does not account for genotype uncertainty. MEISNER AND 

ALBRECHTSEN (2019) proposed PCAngsd to address some of these issues, but it does not support 

the standard VCF/BCF formats for sequence-based genotypes, and its current implementation 

scales poorly with genome-wide analyses of large samples. 

Similar to previous studies (SHA AND ZHANG 2011; HAO et al. 2016), our proposed 

framework uses individual-specific allele frequencies rather than allele frequencies pooled 
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across all samples to systematically account for population structure in HWE tests. Unlike those 

previous studies, we model genotype uncertainty in sequence-based genotypes using a 

likelihood-based framework. We implemented two RUTH tests – a score test and a likelihood 

ratio test (LRT) – to test for HWE under population structure for genotypes with uncertainty. 

While RUTH LRT is similar to the independently developed PCAngsd, the software 

implementation of RUTH is more flexible, scales much better to large studies, and supports the 

standard VCF format. 

We provide a comprehensive evaluation of various approaches for testing HWE using 

simulated and real data. Our results demonstrate that modeling population stratification is 

necessary for HWE tests on heterogeneous populations. We showed that accounting for 

genotype uncertainty via genotype likelihoods performs substantially better than using best-

guess genotypes, especially for low-coverage sequenced genomes. Importantly, we included 

evaluations for an unpublished but commonly used approach – meta-analysis across stratified 

subpopulations, cohorts, or batches. Our results demonstrate that while meta-analysis may be 

effective in reducing false positives, it does so at the expense of substantially reduced power 

compared to RUTH. 

We observed that the current implementation of PCAngsd does not scale well to large-

scale sequencing data, though in principle it can be implemented more efficiently, because the 

underlying HWE test itself is similar to RUTH LRT. PCAngsd requires loading all genotypes into 

memory, which is often infeasible for large sequencing studies. For example, loading all of 1000 

Genomes will require ~4.8 TB of memory. In our evaluation of 1000G chromosome 20 variants, 

the inability of PCAngsd to estimate PCs from the whole genome may have contributed to the 

observed difference in results from RUTH compared to our simulation studies. Moreover, 
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PCAngsd does not offer an option to externally provide PCs or exclude false positive variants 

when calculating PCs, so it performs poorly when false positive variants confound PC estimation 

as demonstrated in the 1000 Genomes examples.  

Although our 1000G experiments demonstrated the unexpected result that using raw 

GTs had better sensitivity than using LD-aware GTs at the same empirical false positive rates for 

low-coverage data, we do not advocate using raw GTs for low-coverage sequence data. First, 

the results for raw GTs were still consistently less robust than GL-based RUTH tests. Moreover, 

it would be tricky to determine an appropriate p-value threshold when false positives are 

severely inflated. Therefore, we strongly advocate using GL-based RUTH tests for robust HWE 

tests with low-coverage sequence data. For the now more typical high-coverage sequence data, 

GL-based tests are still preferred, but GT-based RUTH tests should be acceptable for cases in 

which genotype likelihoods are unavailable. 

Our experiment compared using 2 vs 4 PCs only because the verifyBamID2 software tool 

estimated up to 4 PCs projected onto the HGDP panel by default (ZHANG et al. 2020). Because 

our method focuses on testing HWE during the QC steps in sequence-based variant calls, a 

curated version of PCs, estimated from the sequenced cohort themselves, may not be readily 

available. However, it is possible to use a larger number of PCs (e.g. >10 PCs) if available at the 

time of HWE test. We expect that a larger number of PCs will account for finer-grained 

population structure and may improve the performance of HWE tests, but additional 

experiments are needed to quantify the effect. 

Our results demonstrate that RUTH score and LRT tests perform similarly in simulated 

and experimental datasets. Overall, the RUTH-LRT was slightly more powerful than the RUTH-

score test at the expense of slightly greater false positive rates, although this tendency was not 
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consistent. We observed that the RUTH tests tended to be slightly more powerful in identifying 

deviation from HWE in the direction of excess heterozygosity than excess homozygosity when 

compared to adjusted meta-analysis. These results might be caused by the difference between 

our model-based asymptotic tests compared to the exact test used in meta-analysis. 

We did not evaluate our methods on imputed genotypes in this manuscript. Because 

imputed genotypes implicitly assume HWE, we suspect that HWE tests based on imputed 

genotypes may have reduced power compared to directly genotyped variants. It is possible to 

use approximate genotype likelihoods instead of best-guess genotypes for imputed genotypes, 

but this requires genotype probabilities, not just genotype dosages. If genotype 

probabilities Pr ሺ𝑔௜ ൌ 𝐺|𝐷𝑎𝑡𝑎௜ሻ are available, they can be converted to genotype likelihoods 𝐿௜ሺீሻ ൌ Pr ሺ𝐷𝑎𝑡𝑎௜|𝑔௜ ൌ 𝐺ሻ using Bayes’ rule by modeling Prሺ𝑔௜ ൌ 𝐺ሻ as a binomial distribution 

based on allele frequencies (which implicitly assumes HWE). However, similar to LD-aware 

genotypes in low-coverage sequencing, the power of HWE tests with imputed genotypes may 

be poor. Further evaluation is needed to understand the effect of using imputed genotypes on 

the behavior of HWE tests. 

As described in our results, we observed that the current implementations of RUTH (and 

PCAngsd) tests relying on asymptotic distributions do not work more robustly than the exact 

test when testing for excess homozygosity (θ ൐ 0). This is mainly because the empirical null 

distribution becomes increasingly asymmetric between the two directions of effects for rarer 

variants, but the asymptotic approximation assumes symmetry between them, causing loss of 

power for excess homozygosity. Using RUTH score test will further reduce power because score 

tests are known to have reduced power than LRT when θ strongly deviates from zero, which 
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happens in rare variants with excess homozygosity. Applying Saddlepoint approximation (Dey 

et al. 2017) or similar techniques may help address this issue. 

In practice, when we examined low quality (LQ) variants, determined by high Mendelian 

errors, the vast majority (65% for 1000G, 82% for TOPMed) of them deviated from HWE 

towards excess heterozygosity (θ ൏ 0) as opposed to excess homozygosity (θ ൐ 0) when we 

examined the direction of deviation from HWE regardless of its significance. On the other hand, 

the majority of high quality (HQ) variants (77% for 1000G, 64% for TOPMed) mildly deviated 

from HWE towards excess homozygosity (θ ൐ 0), presumably due to residual population 

structure and cryptic relatedness. These observations suggest that detecting excess 

heterozygosity is practically more important for variant QC, on which RUTH tests are expect to 

perform well. 

Our methods have room for further improvement. First, we used a truncated linear 

model for individual-specific allele frequencies for computational efficiency. Although such an 

approximation was demonstrated to be effective in practice (ZHANG et al. 2020), applying a 

logistic model or some other more sophisticated model may be more effective in improving the 

precision and recall of RUTH tests. Second, we did not attempt to model or evaluate the effect 

of admixture in our method. Because HWE is reached in two generations with random mating, 

accounting for admixed individuals may only have a marginal impact. On the other hand, 

admixture can lead to higher observed heterozygosity. It may be possible to improve RUTH by 

explicitly modeling and adjusting for the effect of admixture on individual-specific allele 

frequencies. Systematic evaluations focusing on admixed populations are needed to evaluate 

whether an admixture adjustment is necessary. Third, RUTH tests do not account for family 

structure or individual-level inbreeding. We suspect that the apparent inflation of Type I error 
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for the TOPMed data was partially due to sample relatedness. Accounting for family structure 

or individual-level inbreeding in other ways, for example using variance components models, 

will require much longer computational times and may not be feasible for large-scale datasets. 

Fourth, RUTH currently does not directly support imputed genotypes or genotype dosages. In 

principle, it is possible to convert posterior probabilities for imputed genotypes into genotype 

likelihoods to account for genotype uncertainty (by using individual-specific allele frequencies). 

However, because most genotype imputation methods implicitly assume HWE, we suspect that 

HWE tests on imputed genotypes will be underpowered, similar to our observations with LD-

aware genotypes in the 1000 Genomes dataset, even though explicitly modeling posterior 

probabilities may slightly mitigate this reduction in power. 

The choice of a p-value threshold to indicate deviation from HWE remains an open 

question. In previous studies, stringent p-value thresholds were used to prevent high-quality 

variants from being filtered due to population structure. Adjusting for population structure with 

RUTH helps mitigate this problem, allowing the use of less stringent thresholds to improve test 

performance, but the choice of p-value threshold remains subjective, based on the tradeoff 

between sensitivity and specificity. Future development of more robust methods to determine 

significance thresholds would help further improve the use of HWE tests for variant quality 

control. 

In summary, we have developed and implemented robust and rapid methods and 

software tools to enable HWE tests that account for population structure and genotype 

uncertainty. We comprehensively evaluated both our methods and alternative approaches. Our 

tools can be used to evaluate variant quality in very large-scale genetic data sets, with the 
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ability to handle standard VCF formats for storing sequence-based genotypes. Our software 

tools are publicly available at http://github.com/statgen/ruth. 

Software and data availability 

RUTH is available at https://github.com/statgen/ruth. Genotype data from 1000G is available 

from the International Genome Sample Resource at https://www.internationalgenome.org. 

TOPMed data is available via a dbGaP application for controlled-access data (see 

https://www.nhlbiwgs.org for details). Supplementary materials have been uploaded to 

figshare: https://doi.org/10.25386/genetics.14068970.  
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Figure 1 Evaluation of Type I Errors between various HWE tests on simulated genotypes. 
Under each combination of simulation conditions (number of ancestries, sequencing coverage, and fixation index), 
we simulated 5,000 samples with 50,000 variants that follow HWE within each of the subpopulations and 
determined the Type I error performances of different HWE tests based on the proportion of variants labeled as 
having significant p-values. Five HWE tests – (1) Unadjusted HWE test (WIGGINTON et al. 2005) implemented in 
PLINK-1.9 (PURCELL et al. 2007) using hard genotypes, (2) meta-analysis using Stouffer’s method across ancestries 
using hard genotypes (GT), (3) RUTH test using hard genotypes, (4) RUTH test using phred-scale likelihood (GL) 
computed from simulated sequence reads, and (5) PCAngsd (MEISNER AND ALBRECHTSEN 2019) – were tested under 
HWE with various parameter settings. Gray dotted lines indicate targeted Type I Error rates. Top panels (A-C) 
represent results from shallow sequencing (5x), and the bottom panels (D-F) represent results from deep 
sequencing (30x). Using GL-based genotypes resulted in Type I Error rates closer to the targeted rate than using 
GT-based genotypes across different numbers of ancestries (A, D), P-value thresholds (B, E), and fixation indices (C, 
F). The difference is especially large for low-coverage genotypes.  
 
Figure 2 Evaluation of power between different HWE tests on simulated genotypes. 
Under each combination of simulation conditions (number of ancestries, sequencing coverage, fixation index, and 
deviation from HWE), we simulated 50,000 variants for 5,000 samples and evaluated the ability of different HWE 
tests to find the variants significant. Unless otherwise specified, the default simulation parameters are 5 
ancestries, with FST=.1, P-value threshold=.001, and Theta=-0.05. Tests that can find a larger proportion of 
significant variants are considered more powerful. Five HWE tests – (1) Unadjusted HWE test (WIGGINTON et al. 
2005) implemented in PLINK-1.9 using hard genotypes  (2) RUTH test using hard genotypes, (3) RUTH test using 
phred-scale likelihood (PL) computed from simulated sequence reads, (4) meta-analysis using Stouffer’s method 
across ancestries using hard genotypes, and (5) PCAngsd (MEISNER AND ALBRECHTSEN 2019) – were tested for variants 
deviating from HWE with various parameter settings, for low coverage (A-D) and high coverage (E-H) data. (A, E) 
Theta controls the degree of deviation from HWE, with negative values indicating excess heterozygosity and 
positive values indicating heterozygote depletion. The high Type I Error rates in GT-based tests (Figure 2) lead to 
those methods appearing to have higher power in some scenarios. The unadjusted test suffers from this problem 
the most. GL-based methods have slightly lower powers than GT-based methods in exchange for a much better 
controlled Type I error rate. This pattern mostly holds across different numbers of ancestries (B, F), p-value 
thresholds (C, G), and fixation indices (D, H). Meta-analysis had the lowest power in the presence of excess 
heterozygosity. 
 
Figure 3 Schematic diagrams of different methods to test HWE under population structure. 
Three different methods to test HWE under population structure are described. (A) In the standard (unadjusted) 
HWE test, all samples are tested together using best-guess genotypes. This test does not adjust for sample 
ancestry. (B) In a meta-analysis of stratified HWE tests, the samples must first be categorized into discrete 
subpopulations, determined a priori based on their genotypes or self-reported ancestries. Next, standard HWE 
tests (based on best-guess genotypes) are performed on each of these subpopulations. Then, the resulting HWE 
statistics are converted into Z-scores and combined in a meta-analysis using Stouffer’s method, with the sample 
sizes of the subpopulations as weights. (C) In our proposed method (RUTH), either best-guess genotypes or 
genotype likelihoods can be used as input for HWE test. We assume that the genetic ancestries of each sample are 
estimated a priori, typically as principal components (PCs). We combine the genotypes and PCs to perform either a 
score test or a likelihood ratio test to obtain a joint ancestry-adjusted HWE statistic for each variant across all 
samples. 
 
Figure 4 Evaluation of different HWE tests on 1000 Genomes and TOPMed variants. 
In 1000 Genomes data (A, B), we identified 17,740 “high quality” (HQ) variants and 10,966 “low quality” (LQ) 
variants in chromosome 20. In TOPMed data (C, D), we identified 17,524 HQ variants and 329,699 LQ variants in 
chromosome 20. A well-behaved HWE test should maximize the proportion of significant LQ variants while 
controlling the false positive rate for HQ variants. Dotted gray lines represent targeted Type I error levels if we 
assume all HQ variants follow HWE. (A) Both the unadjusted test and PCAngsd found substantially more significant 
variants than expected in the 1000G HQ variant set, while both RUTH and meta-analysis were more conservative. 
Methods that used raw GTs showed substantial false positive rates, while methods that used GLs and LD-aware 
GTs had much better control of false positives. (B) In 1000G LQ variants, meta-analysis lagged behind RUTH and 
the unadjusted test in discovering significant deviation from HWE. RUTH behaved well for HQ variants while having 
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more power to find low-quality variants significantly deviating from HWE. (C) In TOPMed data, the unadjusted test 
resulted in an excess of false positives. Tests using GL-based genotypes outperformed tests using GT-based 
genotypes. (D) Methods using GL-based genotypes were able to discover more LQ variants than methods using GT-
based genotypes, demonstrating the advantage of accounting for genotype uncertainty in HWE tests. 
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Table 1 

Performance of the unadjusted test, meta-analysis, RUTH, and PCAngsd on 1000 Genomes chromosome 20 
variants. 

Variant  
Category 

Genotype 
Format HWE Test 

Proportion of Significant Variants Total 
Variant 
Count P < 10-2 P < 10-3 P < 10-4 P < 10-5 P < 10-6 

LQ 
Variants 

raw GT 

Unadjusted 0.487 0.432 0.394 0.366 0.339 10,966 
Meta-analysis 0.392 0.343 0.307 0.283 0.262 10,966 
RUTH-Score 0.418 0.367 0.333 0.305 0.284 10,966 
RUTH-LRT 0.431 0.373 0.335 0.305 0.280 10,966 

LD-aware 
GT 

Unadjusted 0.479 0.395 0.336 0.292 0.259 10,966 
Meta-analysis 0.184 0.149 0.127 0.111 0.098 10,966 
RUTH-Score 0.211 0.172 0.147 0.130 0.112 10,966 
RUTH-LRT 0.215 0.177 0.151 0.131 0.115 10,966 

GL 
RUTH-Score 0.336 0.295 0.264 0.242 0.223 10,966 
RUTH-LRT 0.358 0.306 0.270 0.243 0.225 10,966 
PCAngsd 0.380 0.331 0.300 0.275 0.255 10,920 

HQ 
Variants 

raw GT 

Unadjusted 0.755 0.657 0.573 0.501 0.443 17,740 
Meta-analysis 0.298 0.161 0.084 0.042 0.020 17,740 
RUTH-Score 0.183 0.083 0.036 0.015 7.4x10-3 17,740 
RUTH-LRT 0.200 0.095 0.044 0.021 0.010 17,740 

LD-aware 
GT 

Unadjusted 0.623 0.507 0.422 0.361 0.311 17,740 
Meta-analysis 0.019 3.1x10-3 5.6x10-4 1.7x10-4 1.1x10-4 17,740 
RUTH-Score 0.011 1.9x10-3 1.1x10-4 0 0 17,740 
RUTH-LRT 0.011 1.1x10-3 2.3x10-4 5.6x10-5 0 17,740 

GL 
RUTH-Score 0.026 3.3x10-3 7.9x10-4 4.5x10-4 3.4x10-4 17,740 
RUTH-LRT 0.036 6.4x10-3 1.3x10-3 5.1x10-4 3.4x10-4 17,740 
PCAngsd 0.059 0.032 0.026 0.022 0.021 17,740 

The numbers within cells represent the proportions of significant variants under the corresponding testing 
conditions at the given P-value threshold. We expect our LQ variants to violate HWE at a higher rate than our HQ 
variants. A well-behaved test is expected to find a high proportion of LQ variants to be significant while 
maintaining the targeted Type I Error rate in HQ variants. The unadjusted test consistently shows the highest false 
positive rate among all the tests. HWE tests that rely on raw GTs also show much higher false positive rates than 
tests that use other genotype representations. RUTH tests were the best at controlling false positives while still 
maintaining comparable power to the other methods. PCAngsd had a much higher false positive rate than RUTH-
based methods, especially at more stringent p-value thresholds. 
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Table 2 

Performance of the unadjusted test, meta-analysis, and RUTH on TOPMed freeze 5 chromosome 20 variants.  

 

Variant 
set 

Genotype 
Format HWE Test 

Proportion of Significant Variants Total Variant 
Count P < 10-2 P < 10-3 P < 10-4 P < 10-5 P < 10-6 

LQ 
Variants 

raw GT Unadjusted 0.592 0.561 0.539 0.521 0.506 329,699 
raw GT Meta-analysis 0.554 0.524 0.502 0.485 0.471 329,699 
raw GT RUTH-Score 0.608 0.587 0.572 0.559 0.549 329,699 

GL RUTH-Score 0.635 0.608 0.590 0.575 0.563 329,699 
raw GT RUTH-LRT 0.610 0.580 0.556 0.538 0.522 329,699 

GL RUTH-LRT 0.653 0.615 0.588 0.567 0.550 329,699 

HQ 
Variants 

raw GT Unadjusted 0.890 0.842 0.800 0.766 0.736 17,524 
raw GT Meta-analysis 0.065 0.022 9.0x10-3 4.8x10-3 3.3x10-3 17,524
raw GT RUTH-Score 0.145 0.047 0.172 7.1x10-3 3.5x10-3 17,524

GL RUTH-Score 0.034 0.011 4.9x10-3 3.1x10-3 2.5x10-3 17,524
raw GT RUTH-LRT 0.125 0.036 0.012 5.0x10-3 2.7x10-3 17,524

GL RUTH-LRT 0.041 0.018 8.5x10-3 4.3x10-3 3.1x10-3 17,524

The numbers within cells represent the proportions of significant variants under the corresponding testing 
conditions at the given P-value threshold. These results are based on tests that used likelihood-based genotype 
representations as input. A well-behaved test should reduce the number of significant high-quality (HQ) variants 
while increasing the number of significant low-quality (LQ) variants. The unadjusted test had a greatly inflated false 
positive rate for HQ variants while showing a lower true positive rate for LQ variants. While meta-analysis 
performed better for HQ variants, it had reduced power to find LQ variants to be significant. RUTH performed the 
best, with fewer false positives (significant HQ variants) compared to both the unadjusted test and meta-analysis, 
while at the same time finding more true positives (significant LQ variants).  
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Table 3 

Runtimes for RUTH and PCAngsd on simulated data. 

Sample Size 
Wall Time (s) User Time (s) 

RUTH-LRT RUTH-Score PCAngsd RUTH-LRT RUTH-Score PCAngsd 
1,000 16.21 27.24 173.11 16.16 27.09 172.37 
2,000 32.19 54.63 347.10 31.94 54.51 345.58 
5,000 82.80 136.44 1,124.83 81.81 136.20 1,102.85 

10,000 165.48 273.67 7,396.00 163.88 273.27 7,235.91 
20,000 336.75 553.92 38,807.67 332.06 553.05 37,338.69 
50,000 902.81 1,438.32 461,971.33 886.67 1,435.87 403,296.5 

 
We simulated 10,000 genotype likelihood-based variants for varying numbers of samples. Wall time indicates total 
runtime, while user time is the amount of time the CPUs spent running each program. All programs were run in 
single-threaded mode. System processes make up the difference between the two values, with a majority 
consisting of file I/O. We used VCF files with GL fields in RUTH and converted them to Beagle3 format for PCAngsd. 
The RUTH likelihood ratio test (LRT) was the fastest method, with the score test about 60% slower. PCAngsd was 
about 10 times slower than RUTH-LRT with the smallest sample sizes and over 400 times slower with our largest 
tested size of 50,000 samples.  
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