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Abstract

The majority of neurons in lateral septum (LS) are electrically silent at resting membrane 

potential. Nicotine transiently excites a subset of neurons and occasionally leads to long lasting 

bursting activity upon longer applications. We have observed simultaneous changes in frequencies 

and amplitudes of spontaneous action potentials (AP) in the presence of nicotine. During the 

prolonged exposure, nicotine increased numbers of spikes within a burst. One of the hallmarks of 

nicotine effects was the occurrences of double spikes (known also as bursting). Alignment of 51 

spontaneous spikes, triggered upon continuous application of nicotine, revealed that the slope of 

after-depolarizing potential gradually increased (1.4 vs. 3 mV/ms) and neuron fired the second AP, 

termed as double spiking. A transition from a single AP to double spikes increased the amplitude 

of after-hyperpolarizing potential. The amplitude of the second (premature) AP was smaller 

compared to the first one, and this correlation persisted in regard to their duration (half-width). A 

similar bursting activity in the presence of nicotine, to our knowledge, has not been reported 

previously in the septal structure in general and in LS in particular.
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…in the hippocampal formation and septum, clear behavioral correlates can be 

determined for almost all neurons…

Ranck, 1973

Introduction

The septal structure of the brain has several inputs and outputs, and major ones could be 

considered to and from the hippocampus. Stimulation of hippocampus suppresses the 
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activity of neurons in the lateral septum (LS), which receives outputs from CA3 regions via 

fornix precomissuralis (Vinogradova 2001). LS neurons are also prone to long-term 

potentiation (LTP) that can be induced by the stimulation of fornix (Racine et al. 1983; van 

den Hooff et al. 1989). Stimulation of CA1 pyramidal layer of the hippocampus in addition 

results in LTP of neurotransmission in septal neurons. This is a reciprocal phenomenon, i.e., 

the stimulation of septum induces LTP in CA1 pyramidal neurons; the latter also leads to 

potentiation in the subiculum and amygdala. The stimulation of fimbria triggers excitatory 

neurotransmission (van den Hooff et al. 1989), and upon adequate paradigm leads to 

vasopressin dependent LTP in LS. The hippocampus possesses a local and dedicated 

inhibitory drive, but the GABAergic signals sent by the septum can dominate and lead to the 

disinhibition of pyramidal neurons of CA1/3 regions and granular cells of dentate gyrus 

(Freund and Antal 1988). Disinhibition of principal cells is not triggered directly by the 

GABAergic neurons of the septum, but via their inhibitory effects on hippocampal 

interneurons (Toth et al. 1997).

There are a few studies dedicated to LS (Carette 1999; Thomas et al. 2013) because of the 

lack of direct synaptic inputs into the hippocampus. We have recently described the 

hyperpolarization-activated cyclic nucleotide (HCN or Ih) gated non-selective cation 

channels in LS (Kodirov et al. 2014). The very first hint for existence of these channels and 

their involvement in pace-making was evidenced in Purkinje fibers and was termed iK2 

(Noble and Tsien 1968). The discovery of iK2 subsequently underwent extensive 

interpretations by these and other authors (Vassalle et al. 1995). Recurrent activation of HCN 

channels (DiFrancesco et al. 1991; Luthi and McCormick 1998) leads to rhythmic spiking in 

diverse cells (Mao et al. 2003; Pal et al. 2003), and during developmental stages of the brain 

it triggers GDP—giant depolarizing potentials (Bender et al. 2005). Both the involvement of 

HCN to and its altered expression in seizures depend on specific brain areas and underlying 

subunits/isoforms (Adams et al. 2009). HCN channels are progressively activated by 

hyperpolarization, do not inactivate during at least seven seconds (Thon et al. 2014), are 

sensitive to cocaine (Campanac and Hoffman 2013), and contribute to septohippocampal 

memory processing (Cisse et al. 2008).

An addiction to nicotine (Changeux 2009) occurs in the brain by targeting neurons and 

nicotinic acetylcholine receptors (nAChR). There is a crucial difference between the 

neuronal nAChRs and those of other cell types in terms of their distribution in the membrane 

and endoplasmatic reticulum (D’Agostino et al. 2014). The intravenous nicotine injection 

(Mameli-Engvall et al. 2006) increases the action potential rate and numbers of spikes 

within a burst (SWB). Similar response of dopaminergic (DA) neurons in the ventral 

tegmental area (VTA) persisted in α7−/−, but not in β2−/− mice. Nicotine has been shown 

also to increase the frequency of spikes (by ~75 %) in tonically active cholinergic medial 

habenular (MHb) neurons (Görlich et al. 2013). Although the nAChR composed of α3β4 

were defined as an excitatory mediator, only mecamylamine (MEC) prevented the effects of 

nicotine, while dihydro-β-erythroidine (DHbE), 3-(4)-dimethylaminobenzylidine anabaseine 

(DMAB), and bungarotoxin decreased it to ~50 %, conotoxin AuIB or SR 16584 inhibited to 

~20 %, and conotoxin MII had no effects.
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It is emerging that nicotine has additional targets, i.e., it modulates HCN channels (Kodirov 

et al. 2014). Furthermore, our pharmacological characterization using antagonists for 

multiple subunits of nAChR revealed that the HCN channels were directly modulated by 

nicotine. The current study focuses on main properties of spontaneous and evoked APs and 

the mechanism underlying the double spiking triggered by nicotine in LS.

Results

We have experimented with neurons of LS (Fig. 1) by focusing on parameters of APs, which 

were always either recorded at (spontaneous spikes, Figs. 2, 3, 4, 5, 6, 7, 8 and 12) or evoked 

from the RMP (−60.6 ± 2 mV, n = 21) by injection of constant depolarizing currents of up to 

300 pA (Figs. 9, 10 and 11). Under control conditions, only in 5 out of 19 cells did we 

observe spontaneous activities. These differences correlated with the mean values of RMP in 

two groups: −48.5 ± 4 versus −62 ± 1.5 mV (P < 0.001), respectively. These cells comprise 

only those to which subsequently nicotine at least at one of concentrations (0.3, 1, and 3 μM) 

was applied.

Basal Electrical Activity of LS Neurons

In order to elucidate the effects of nicotine in the LS, we first have continuously observed 

activity of neurons at RMP for longer periods. The inhibitory and excitatory drive in the 

slice was undisturbed in this case. Under control conditions (i.e., ACSF alone), most of the 

neurons did not exhibit spontaneous APs or in a rare case a few spikes within minutes could 

be observed (Fig. 2a). Application of nicotine at 1 μM concentration led to a transient 

depolarization accompanied by a few APs (Fig. 2b). Thereafter, the neuron was silent and 

similarly responded to the next cumulative concentration of nicotine. Upon the continuous 

presence of 3 μM nicotine, the neuron generated relatively regular spikes/bursts (Fig. 2c). 

Data revealed that the amplitudes of these APs were smaller (Fig. 2c) compared to those few 

observed both under control conditions (Fig. 2a) and in the presence of 1 μM nicotine (Fig. 

2b). These effects are easy to discriminate when the overshoot potentials are compared (26.7 

± 0.2 vs. 18.8 ± 0.3 and 6.6 ± 0.2 mV, respectively), although the RMP was slightly negative 

after application of nicotine (Fig. 2b, c) and during the course of wash-out (Fig. 2d). The 

effect of nicotine on overshoot potential was to some extent reversible (13.7 ± 0.4 mV), but 

the bursting persisted during a 30-min wash-out. These mean values were estimated from 2, 

4, 60, and 54 APs, respectively, for conditions presented in Fig. 2. The properties of APs 

within the burst resembled those of evoked ones (see Fig. 9), specifically the occurrence of 

“double spikes” at the beginning of each burst (Fig. 2c). This phenomenon was not seen 

under control conditions (Fig. 2a). Occasionally just only double spiking (without 

conventional bursting) was observed in the presence of nicotine (Fig. 2c). After-depolarizing 

potentials (ADP) were observed upon the termination of the repolarization phase of single 

spikes only (Fig. 2a, b and d). During the burst, the MP remained depolarized and 

subsequently repolarized back to initial RMP value upon its termination. The nicotine 

triggered bursting mode had a frequency of 0.16 ± 0.02 Hz (Fig. 3a–c). In this and in Figs. 4, 

5, 7 and 8 each vertical bar represents an AP recorded in real time. The frequencies of both 

bursting and double spikes were not sensitive to longer applications of up to 18 min (Fig. 
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3c). The rate of the majority of spikes is centered at ~1 Hz (however, see Fig. 4), while the 

frequency around 100 Hz reflects double spiking.

Double Spikes

Since both the sequential timing of first three spikes and their amplitude within the burst are 

not similar (Fig. 4), it is not straight forward to define double spikes as the 1st and 2nd APs. 

The analyses reveal that a double spiking in LS is not preprogrammed, but an opportunistic 

phenomenon depending on the magnitude of ADP (see Fig. 6) in those neurons exhibiting 

such a component of AP. During continuous perfusion of nicotine, we have observed seven 

bursts/min−1 and three are presented in sequential order in Fig. 4a–c. The frequencies of 

bursts and SWB could be clustered into the three diapasons: the burst, subsequently the 1st 

AP is triggered at 0.1–1 Hz, the double spikes, i.e., the 2nd AP at 100–200 Hz, and the 3rd 

and following spikes at 1–10 Hz. This pattern of spiking could be described as adaptation in 

frequency and amplitudes of APs. Interestingly, the absence of double spiking (indicated 

with  as a predicted 2nd AP, Fig. 4c) does not obliterate the sequential frequencies of SWB.

The amplitudes of all SWB vary, but they mirror the bursting behavior of neurons (Fig. 5a–

c). In contrast to the frequency values, only two clear diapasons for the amplitude are 

distinguished. The first one is either the amplitude of single spikes, or the 1st, 3rd and 

subsequent SWB (Single). The next diapason comprises the magnitude of the 2nd AP during 

double spiking (Double), and which is lower than those of first group. Why does their 

amplitude (also duration) vary transiently? The most plausible explanation: the 2nd AP is 

triggered prematurely by a transition from the ADP (Fig. 6). This notation is substantiated 

by an increase in the slope of ADP (1.4 vs. 3 mV/ms) after the exposure to nicotine. Smaller 

amplitudes of 2nd spikes are presumably a result of both incomplete inactivation and 

activation of Nav1 channels.

Phenomenon ADP during evoked APs might have some peculiar features in LS. (1) The 

ADP either is selectively locked/related to the 1st AP during up to 1 s depolarization, (2) or 

similar to APs is also prone to a refractory period, (3) or starting with the 2nd AP, the after-

hyperpolarizing potential (AHP) dominates the ADP and masks it. The 3rd possibility is 

unlikely, since an ADP always precedes the AHP (Fig. 6b), at least its slow component 

(sAHP). Nicotine increases the ADP, which in turn triggers the 2nd premature spike (Fig. 

6c). Thus, the underlying mechanism for the 2nd AP is a simple ADP to spike transition (AP 

← ADP). Note that the overshoot potential is low for the 1st spikes, because of the effects 

of nicotine (see Fig. 2c).

In contrast to the evoked train of APs in LS neurons, every single spontaneous spike 

possesses an ADP and thus their values also mirror the above-mentioned bursting behavior 

(Fig. 7a–c). By including the amplitudes of the 2nd spikes, we show that they logically do 

not trigger ADP (blue-colored down arrow, Fig. 7c, and see Fig. 6c), but they increase the 

amplitude of AHP (Double, Fig. 8). There was a moderate linear relationship between the 

AHP triggered by one AP (Single, Fig. 8) and those by fewer double spikes. A similar 

dependency persisted in respect to frequencies of SWB during the three 1-min sequential 

recordings (Fig. 8a–c). The degree of linear relationship was less pronounced when 

amplitudes of SWB were compared (data not shown), but were comparable. Phenomenon 
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AHP (Figs. 6, 8) is not only a product of Na+-dependent spikes, but also Ca2+-mediated 

ones. Accordingly, their time course is very slow (sAHP) and ranges up to ~5 s in the 

thalamus (Kolaj et al. 2014). Nevertheless, the sAHP is observed only in the presence of 

extracellular Na+ and the substitution with Tris eliminates it, but lithium transforms it into an 

even slower ADP. Note that also the duration of AHP in LS (>100 ms, Fig. 6) similar to 

amygdalar and striatal ones (Kodirov et al. 2006; Ponterio et al. 2013) is considered slow 

despite much a shorter duration compared to that in the thalamus. The fast AHP lasting only 

~10 ms are observed in granular cells of dentate gyrus (Kodirov, unpublished).

Nicotine Effects on Latency

At the beginning of this study, one of the aims was to compare the latencies (before reaching 

a threshold) of spontaneous and evoked APs. Since the spontaneous and recurrent APs 

occurred only in a minority of neurons, we next analyzed the latencies for AP generated 

during injected pulse of currents (Fig. 9). When APs are evoked by somatic current 

injections, double spikes appear at more depolarized states and their frequency increases 

accordingly (Fig. 9). The same is true for the amplitude of the 1st AP during each step and 

the double spikes may reflect the state of increased excitability.

Also in this set of experiments, we have compared and analyzed the effects of nicotine in the 

same neurons. In four out of 8 cells the time to threshold in the presence of 3 μM nicotine 

significantly decreased by 61.2 ± 15.5 % of control (n = 4, Fig. 10a–c). Under identical 

conditions, nicotine slowed down the time course in remaining cells by 267.8 ± 88.2 % (n = 

4, Fig. 10d). Next, a consistent observation was made in regard to timing to the 1st AP at 

(for example) 20 pA and the subsequent ones evoked by depolarizing steps ranging up to 

300 pA. Under control conditions (Fig. 10e), the latency for AP at rheobase and subsequent 

incremental (20 pA) current injection were 168 ± 38.1 and 77.8 ± 15.3 ms (n = 8), 

respectively. Application of nicotine (Fig. 10f) did not significantly affect the latter values 

and a similar tendency persisted (137.4 ± 35.7 and 76.2 ± 19.2 ms, n = 8, P = 0.3 and P = 0.9 

for both corresponding control values). In the absence (Fig. 10e) and presence of nicotine 

(Fig. 10f), the ratio of the time to thresholds between the 1st injected current magnitude and 

2nd one (e.g., AP at 40 pA/AP at 20 pA that depends on the actual threshold of individual 

neuron) was 0.5 ± 0.04 and 0.58 ± 0.03 (n = 8, P = 0.1, paired t test), respectively. This ratio 

of AP latencies between those evoked/obtained by subsequent incremental current 

magnitudes was not dramatic and has slowly stabilized (Fig. 10e, f).

Correlation of Amplitudes and Widths of Spikes Behaviors

Next, we were interested in whether or not the nicotine, under identical conditions, will 

affect the active properties of the membrane/neuron. We have observed that in a majority of 

cells the amplitude of a 2nd AP at given injected current magnitude was always smaller and 

it either gradually further decreased or abruptly reversed toward the value of 1st AP (Fig. 

11a, b). The latter phenomenon could be considered as “complex spikes” (Ranck 1973) and 

was dependent upon the magnitude of injected currents. For example, in the particular 

neuron shown in Fig. 11a (at 40 pA) and Fig. 11b (140 pA) the amplitudes of seven 

subsequent APs evoked by current magnitudes ranging between 40 and 100 pA gradually 

decreased in comparison to the very 1st AP (Fig. 11c). For clarity in y axes only the actual 
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range is shown by introducing break points. The APs evoked by 120, 140, and 160 pA steps 

(Fig. 11c) behave differently and show a significant and transient decrease in amplitude of 

2nd AP. Interestingly, the amplitude of 3rd AP had a similar value as the 1st one and the 

following APs obey a gradual rule. Note that in this neuron the injection of 20 pA current 

was not sufficient (at least during 1 s) to depolarize the MP up to the threshold. Finally, there 

was a clear correlation between the decreased amplitude and the increased duration (half-

width) of the 2nd AP at all injected current magnitudes (Fig. 11d). Also the half-widths of 

APs have increased either abruptly or gradually.

Application of nicotine to the same neuron both decreased the amplitude and resulted in 

greater variability of amplitudes of APs (Fig. 11e). In the presence of nicotine, the LS 

neuron responds with the decreased amplitude of the 2nd AP compared to all spikes evoked 

by 40 pA (Fig. 11e). These particular effects of nicotine have impact on up to the first 4 APs 

(Fig. 11f). The magnitude of 2nd, 3rd, and even 4th APs evoked by 140 pA remained 

significantly lower before almost completely reversing to amplitude values of 1st ones as 

illustrated (Fig. 11f). Normalized values (the amplitude of 1st AP as reference) revealed a 

comparable phenomenon also for APs evoked by 20–160 pA (Fig. 11g). Importantly, the 

latter effects of nicotine were mirrored also in regard to half-widths of APs (Fig. 11h). Note 

that a decrease in the amplitude of APs (Fig. 11g) and prolongation of their durations (Fig. 

11h) in the presence of nicotine were not gradual. Nicotine presumably influences the 

underlying cellular mechanism for ADP, and the resultant increase in intracellular Ca2+ 

decreases the amplitudes of subsequent up to three APs (Fig. 11g) and prolongs their 

durations (Fig. 11h). A decrease in amplitudes of spikes mainly results from the effects of 

nicotine on over-shoot potential (Fig. 12). The analyses of ΔmV/Δms revealed that the 

waveforms of 1st APs during either a single (n = 35) or double spiking (n = 10) are not apart 

(Fig. 12c, d, respectively). These results are consistent with a notion that the 2nd spike is a 

product of upregulated ADP by nicotine, but is not triggered by the 1st AP per se.

Discussion

Several lines of evidence suggest that nicotine can act synergistically with other 

neurotransmitters including ACh (Fisher and Dani 2000), and it facilitates both the GABA 

and glutamate release (Bancila et al. 2009). However, in LII/III of the frontal cortex, nicotine 

increased the inhibitory neurotransmission but not the excitatory one (Klaassen et al. 2006). 

Nicotinic ACh receptor agonism excites (enables the generation of additional APs) the 

distinct types of interneurons of neocortex that results in subsequent enhancement of GABA 

release and thereby in additive inhibition (Porter et al. 1999). Nicotine effects on both 

frequency and numbers of SWB in VTA DA neurons outlasted for minutes (not ~1 s as 

indicated by the graph) after injection and were completely reversible within ~15 min 

(Mameli-Engvall et al. 2006).

Its capability of interaction with known neurotransmitters points that nicotine could also 

control additional elements of neurons. Note that nicotine has dual effects (excitatory and 

inhibitory) on evoked APs (Kodirov et al. 2014), which is mediated via modulation of HCN 

channels and should theoretically pertain also in the case of spontaneous spikes. However, 

precautions are warranted, since HCN shares conserved α B-helix regions with K+ channel 
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and some antagonists inhibit Ih and K+ currents or even Cav1 channels with overlapping 

affinities (Nazzari et al. 2008; van Welie et al. 2005; Vasilyev et al. 2007).

In the current study, we have evidenced that nicotine triggers spontaneous APs, and upon 

frequent recurrent activities a bursting mode is observed. Detailed analyses revealed that the 

frequency behavior of spontaneous spikes within each burst is both predictable and 

compensated when the 2nd spike is absent ( , Fig. 4d). We also evidenced that the 2nd AP 

could be evoked by nicotine and there is a clear ADP to spike transition derived from the 

increased slope and amplitude (Fig. 6). We suggest that the underlying mechanism could 

involve Ca2+ influx enabled by HCN channels. Although the effects of nicotine on Ih are 

most striking, involvements of other voltage-dependent and -independent ion channels can 

not be ruled out. Thus, the experimentally observed “nicotine effects can not be only 

attributed to its multiple receptors, and no single brain area is a definitive target” (Kodirov 

2015).

HCN channel contribution could reliably be manifested by hyperpolarization in voltage- and 

current-clamp modes in the same LS neuron (Kodirov et al. 2014). Precise patterns of 

activation are also shown for single HCN2 channels in cell-attached and inside-out modes 

(Thon et al. 2014). Most of channels are readily open within the first seconds of 

hyperpolarization and do not transit into the closed state. Interestingly, cAMP was able to 

activate only one additional channel under these conditions, and single channel conductance 

remained unaffected at the ~1.6 pS level. Note that the facilitation of the opening of HCN2 

channels by cAMP is considered stronger compared to HCN1 (Rozario et al. 2009). 

Nevertheless, the waveforms of Ih and underlying sag in a variety of cells, including retinal 

rods, are very similar (Mao et al. 2003). It has been elegantly shown that the magnitude of Ih 

depends on internal K+ salts, which is smaller with K+-gluconate (Velumian et al. 1997). 

However, K+-gluconate in current-clamp mode increases the sag, which perhaps was 

overlooked, since the purpose of those particular experiments was different as stated: 

“voltage transients in response to hyperpolarizing current steps had a depolarizing sag that 

affected the precise estimation of membrane input resistance.”

The deletion of one so far known auxiliary subunit of HCN channels—tetratricopeptide 

containing Rab8b-interacting protein (TRIP8b)—eliminates the sag and resultant rebound 

tail potential (RTP) in neurons of the CA1 region of the hippocampus (Brager et al. 2013; 

Lewis et al. 2011). These effects are paralleled by an increased excitability upon the 

depolarization in TRIP8b−/− mice. Note that the changes in excitability (Brager et al. 2013; 

Lewis et al. 2011) are strictly dependent on the magnitude of injected depolarizing currents, 

since in the same transgenic animals and neuronal type, the properties of evoked APs by 

theta burst train did not differ (Brager et al. 2013). All four HCN α subunits are expressed in 

the brain (Brauer et al. 2001; Day et al. 2005), and thus the effects of Ih, each subunits, 

antagonists, and agonists are much more complex than in many previously described studies. 

This includes also the dual effects of nicotine on HCN channels: (1) inhibition of sag and 

RTP, and an increased firing rate may occur in parallel (Koch and Grothe 2003), (2) 

elimination of sag and RTP does not necessarily change the excitability (Thuault et al. 

2013), (3) an increase in sag may lead to RTP into RAP transition, which is accompanied by 

facilitated excitability upon the depolarization, (4) over-activation of HCN channels will 

Kodirov et al. Page 7

J Membr Biol. Author manuscript; available in PMC 2017 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increase the sag potential, but diminishes the excitability of neurons. HCN channels are 

differentially expressed in prekaryon and dendrites, and the magnitude of sag and RTP in the 

soma of CA1 neurons are lower (Brager et al. 2013; Lewis et al. 2011). RTP sometimes is 

cited as a transient overshoot that occurs due to deactivation of Ih (Solomon et al. 1993). The 

summation of EPSPs (to which HCN channels contribute) in dendrites are lower and results 

from higher levels of HCN expression (Magee 1999). The sag kinetics in CA1 pyramidal 

cells are faster (Brager et al. 2013) compared to LS neurons (Kodirov et al. 2014), which 

may well reflect differences in subunit expressions as demonstrated for neurons of 

vomeronasal organ (VNO) in mice (Dibattista et al. 2008).

The sag is not always considered to be driven by Ih and occasional studies have found 

supporting evidence. In one of them, both the sag and expression of HCN1 were decreased 

by TTX (Arimitsu et al. 2009). The recurrent activation of HCN channels can also lead to 

spontaneous sag during the down states followed by long plateau potentials as shown for 

inhibitory NRT (nucleus reticularis thalami) neurons (Blethyn et al. 2006). In contrast, in 

pyramidal neurons of layer V of mPFC the deletion of HCN1 had no impact on these two 

states or on excitability in vivo (Thuault et al. 2013).

Neurons of the LS may play an important role alone by the fact that they are exposed to 

liquor cerebrospinalis (McRae-Degueurce et al. 1987) of ventricles—cavum septi pellucidi 
(CSP). Dramatic changes should occur in this fluid during diseases, which could affect the 

properties of LS neurons, at least those located most dorsally. In addition, it is perhaps 

important to study this area, since activity of LS neurons are relayed to the CA3 as the 

element of hippocampal regulatory circuit (Vinogradova 2001). In LS, similar to evoked APs 

(Kodirov et al. 2014), the amplitude of spontaneous spikes also decreased in the presence of 

nicotine. The underlying mechanism is not clear, but the number of activated channels may 

contribute to increased APs frequency paralleled by a decrease in their amplitude 

(Kononenko and Berezetskaya 2010). Nicotine also comparably diminishes the amplitude of 

local field potentials, but increases their frequencies (Matsuo et al. 2014).

Our results shed additional light on nicotine effects and bursting properties of LS neurons in 

general, and the behavior of amplitude, ADP, AHP, frequency, latency, and width of APs in 

the brain in particular. Since the timing of ADP and “double spikes” match closely after 

application of nicotine, we concluded that they are inter-related events (Fig. 6b, c). The 

bursting mode in the presence of nicotine is HCN channel dependent, and this notion is 

supported by the basics of mitral cells properties (Angelo and Margrie 2011). These neurons 

also could be subdivided into the two groups by the absence and presence of sag. 

Importunately, cells lacking the sag possess a bursting behavior, which was also observed 

when the sag was blocked by ZD 7288. An ADP into spike transition at relatively low 

concentration of nicotine may functionally play a role during the synergistic synaptic (and 

spike) plasticity and related behavior in the septo-hippocampal complex. HCN apparently 

plays a role not only in memory, but also in long-term depression (Tokay et al. 2009). 

Moreover, because of the established involvement of HCN channels in epilepsy (Marcelin et 

al. 2009), nicotine effects could enable a targeted modulation at neuronal level. 

Nevertheless, the role of neurons lacking the HCN channels should not be underestimated in 

comparison with cells possessing them, since in MS the activity of former neurons occurs 
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after the local field potential (theta rhythm), while the latter start to fire beforehand (Hangya 

et al. 2009).

In conclusion, a similar bursting activity in the presence of nicotine, to our knowledge, has 

not been reported previously in the septal structure in general and in LS in particular. Based 

on similarly affected parameters of evoked (Kodirov et al. 2014) and spontaneous APs, we 

suggest the role of HCN channels in this modulation.

Materials and Methods

Slice Preparation

The brain was sliced at the coronal plane with a vibrotome and their thicknesses were 

adjusted to 300 μm (Kodirov et al. 2010). The age of rats ranged from P21 to P46 (P35.4 

± 2.8, n = 12) and all underwent anesthesia with isoflurane according the guidelines of the 

local committee.

Electrophysiology

All patch-clamp experiments were conducted in whole-cell current-clamp mode (Hamill et 

al. 1981; Krishtal 2015) at room temperature (~22°C). Particular neurons for recordings 

were chosen in the dorsal part of the LS adjacent to ventricles (Fig. 1). Although the lateral 

and medial septum (MS), and properties of their neurons are distinct both anatomically and 

electrophysiologically (Kodirov, unpublished), recordings from cells in the border zone were 

avoided. The electrode resistance was kept below 6 MΩ in order to enhance the patch 

quality. Action potentials (AP) were either recorded at or triggered from resting membrane 

potential (RMP), by incremental injections of current of up to 300 pA, since brain slices 

were from adult rats. We did not compensate for the series resistance. The input resistance 

was calculated from voltage deflections during hyperpolarizing steps for all neurons (237.7 

± 17.2 MΩ, n = 20), except for one that was subjected to spontaneous AP recording only. 

External solution included (in mM) 119 NaCl, 2.5 KCl, 1.25 NaH2PO4, 1 MgSO4, 2.5 

CaCl2, 26 NaHCO3, 10 glucose, and was equilibrated with 95 % O2 and 5 % CO2. We could 

reliably use this solution (albeit cooling) also for the isolation of brain, its slicing, and 

maintaining sections up to ~8 h. The pipette solution contained (in mM) 120 K+-gluconate, 

5 NaCl, 1 MgCl2, 10 HEPES, 0.2 EGTA, 2 Mg2ATP, 0.2 NaGTP (pH = 7.2). Nicotine was 

obtained in liquid form from Sigma. The tested concentrations of nicotine ranged between 

300 nM and 3 μM, and in most cases cumulative doses were applied. Although the 

frequency of spikes is low in LS, we have used relatively faster sampling intervals (5 kHz) in 

order to fully resolve them. The instantaneous frequencies of both spontaneous and evoked 

APs were estimated as the inverse of the inter-spike intervals. Values for each parameter of 

spontaneous spikes are represented by vertical bars and correspond to recordings in a real 

time for indicated times (at least 1 min). The average data are supplemented with the 

corresponding SEM. Comparison was made with student’s t test and values are indicated in 

“Results” section.
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Fig. 1. 
Schematic drawing of the appearances of recorded slices and neurons from the protocol: 

page 91, slice number 3, cell number 08d23100. Data from this neuron are presented in Fig. 

11. R recording site for majority of cells, MS medial septum, LS lateral septum, AC anterior 

commissure
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Fig. 2. 
Spontaneous action potentials in LS neuron. APs were recorded under control conditions 

(a), after treatment with 1 μM (b), 3 μM nicotine (c), and upon its wash-out (d). Randomly 

selected APs for all four conditions are shown in right panels in an expanded time scale. 

Note that in the presence of nicotine most of bursts start with “double spikes” as shown in c. 

The same tendency remains during wash-out and the waveform of 3rd AP in d is similar to a 

single AP in a, albeit the increased ADP (see Fig. 6). However, the bursting behavior is 

independent of double spiking (see Figs. 3, 4). Upper and lower dashed lines indicate 

identical ±0 and −64 mV (closely corresponds to RMP) levels, respectively. An identical 

amplitude scale bars apply for (a–d). Time scales are identical for main panels and 

corresponding insets
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Fig. 3. 
Instantaneous frequency of spontaneous APs in the presence of nicotine. Each vertical bar 
represents an AP. The bursting behavior can be also appreciated by plotting frequencies of 

spikes over 60 s segments. a–c correspond to the time points of exposure to 3 μM nicotine at 

9, 14, and 18 min, respectively. Experiments reveal a major diapason around 1 Hz compared 

to secondary one at ~100 Hz that corresponds to the frequency of 2nd spikes (red-colored up 
arrow). For clarity the frequency diapasons of 1st and 2nd spikes are color matched (a–c). 

Examples of regular bursting are circled in b and in 6 out of these 7 bursts accompanying 

2nd spikes are observed (Color figure online)
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Fig. 4. 
Instantaneous frequency of spontaneous SWB. All capital letters (a–c) respectively 

correspond to 1st, 2nd, and 3rd bursts observed during continuous recording. As it is 

evidenced the absence of 2nd spike ( , c) does not influence the sequential frequency 

diapason (1–10 Hz) of subsequent APs within bursts. This diapason is a middle range 

compared to that of the 1st (0.1–1 Hz) and the 2nd (100–200 Hz) spikes (Color figure 

online)
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Fig. 5. 
Amplitude dynamics. Bursting behavior is reflected by amplitude values of sequential spikes 

(a–c). As a rule the amplitude of 2nd spike in case of “double spikes” is lower than the 1st 

one. Their premature origin is depicted in Fig. 6. For adequate comparison of amplitude and 

frequency behaviors the same segments from Fig. 3 are analyzed and bursting patterns are 

circled. Note the increased variability in amplitudes of single and occasional 2nd spikes 

compared to their frequencies
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Fig. 6. 
ADP to spike transition. a Parameters of spontaneous spikes (n = 51) in the presence of 

nicotine. Overshoot potential and mean threshold values are indicated. b Average trace of 47 

single spikes from (a). In this neuron the ADP is followed by a slow AHP lasting for more 

than 150 ms. Estimation of amplitudes of spikes (AP), ADP, and AHP are performed as 

shown. c One of the “double spikes” is superimposed with the average trace of single spikes 

shown in b. The maximal slope of rising phase of ADP was 1.4 mV/ms after single spikes. 

During the transition into the premature spike, the slope of ADP increased to 3 mV/ms. The 

accelerated slope is paralleled by an increase in amplitude (2.5 vs. 5.6 mV), and some of 

ADP subsequently triggered the 2nd spike. Note that the 2nd spikes do not possess ADP, but 

their AHP phase is increased in amplitude (see Fig. 7)
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Fig. 7. 
The presence of ADP reflects a consistent bursting behavior. a–c The amplitude of ADP for 

each single SWB was calculated as indicated in Fig. 6. Data are presented for continuous 

recordings during 5 min. Note that for comparison purpose the amplitudes of 2nd APs are 

also plotted. The latter also reveals if the ADP is absent (c) when the double spiking occurs 

(blue-colored down arrow) (Color figure online)
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Fig. 8. 
The relationship between AHP amplitude and spike frequency was linear. The amplitude of 

AHP clearly depends on whether or not it was triggered by either single or double spikes 

(see also Fig. 6). AHP triggered by single AP has a narrow diapason, while those by double 

spikes have a broader range. The linear relationship (Y = A ? B * X) remained similar under 

these conditions
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Fig. 9. 
Frequency of the evoked double spikes. MP responses to incremental (40 pA) current 

injections (from −80 to 280 pA) are shown. Easy manifestation of double spiking was 

achieved based on instantaneous frequencies. The frequency of evoked APs during constant 

steps increases according to injected current magnitude, and double spikes occur only at 

more depolarized MP starting at 160 pA. The double spiking occurs at gradually higher rates 

according to the magnitude of injected currents. Thereafter, a rapid adaptation in frequency 

of 3rd and subsequent APs is seen. The rate stabilizes at ~10 Hz during each step. 

Calculation is performed for total of 99 APs, which includes also 4 double spikes
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Fig. 10. 
Action potential latencies in LS neurons. a The evoked APs by somatic current injections of 

different magnitudes (color coded and shown next to APs) are superimposed. The beginning 

of the overshoot phase of APs is indicated by the line at ±0 mV. RMP was −56 mV. No APs 

were triggered at 20 and 40 pA in standard ACSF. b The exposure of same neuron to 3 μM 

nicotine. The APs are color matched with respect to those in a. c The latency values at 20–

300 pA under control conditions (blue-colored circle) and in the presence of nicotine (red-
colored circle). In the presence of nicotine APs are triggered even at 20 and 40 pA, and 

latencies at each current magnitude are significantly decreased (red-colored down arrow). 

Raw data are shown in a, b, respectively. d The representative latency values from a single 

neuron that belongs to the group in which nicotine suppressed the excitability. Note a 

complete abolishment of APs at 20 and 40 pA and a significant increase (red-colored up 
arrow) in latencies at more depolarized states. e, f Normalized values for all individual 

neurons in the absence and presence of nicotine (n = 8). Under control conditions, the 

overall ratio along the current magnitude has decreased faster than those in the presence of 

nicotine. Importantly, the ratio between the first and 2nd injected current magnitudes was 

~50 % and gradually decreased further to more stable values. Scale bars for a and b are 

identical (Color figure online)

Kodirov et al. Page 23

J Membr Biol. Author manuscript; available in PMC 2017 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
Distinct firing pattern of LS neurons and facilitation of excitability by nicotine. a, b The 

superimposed APs evoked by 1 s depolarizing currents of 40 and 140 pA magnitudes, 

respectively. All cells were excited from RMP. c Normalized amplitude values for data 

points collected at 20–160 pA during the same experiment shown in a, b. The neuron did not 

respond with APs during 20 pA current injection. d The mirror correlations of normalized 

half-width values to those of amplitudes at each injected current magnitude. Note a similar 

gradual decrease in amplitudes and half-widths estimated for the initial seven APs. e, f 
Evoked APs in the presence of 3 μM nicotine in the same neuron. Note a decrease in the 

amplitude of 2nd AP at 40 pA (e) and even 4th one at 140 pA (f). g Relative amplitude 

values from this neuron now reveal both the generation of APs at 20 pA and complex 

responses during further depolarization. h Similar to amplitude values also the half-width 

was dependent on the AP sequence during each step in the presence of nicotine. However, 

effects were more severe in regard to half-width, and therefore, in this neuron the values can 

not reliably estimated at 160 pA
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Fig. 12. 
Decreased overshoot potential in the presence of nicotine. a Temporal changes of MP during 

spontaneous action potentials under control conditions. The beginning of the trace at 

±0ΔmV/Δms corresponds to RMP of −55.2 mV. b Three superimposed APs in the same 

neuron after application of nicotine. In two of them double spiking (2nd AP) was observed. 

c Average values of single spikes (n = 35). Note that the nicotine decreased the overshoot 

potential and the extent (vertical bar) is shown in reference to the control value in a. SEM 

are small and simultaneously shown for both ΔmV/Δms and MP. d The rate of double spikes 

(n = 10). The time courses of depolarization and repolarization for the 1st AP are similar 

whether a neuron generates single (c) or double spikes (d). The ΔmV/Δms of 2nd AP during 

the double spiking are slower, but the gradual changes almost mirror those of the 1st AP
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