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Abstract

We use full mitochondrial genomes to test the robustness of the phylogeny of the Octocorallia, to determine the evolutionary

pathway for the five known mitochondrial gene rearrangements in octocorals, and to test the suitability of using mitochondrial

genomes for higher taxonomic-level phylogenetic reconstructions. Our phylogeny supports three major divisions within the

Octocorallia and show that Paragorgiidae is paraphyletic, with Sibogagorgia forming a sister branch to the Coralliidae.

Furthermore, Sibogagorgia cauliflora has what is presumed to be the ancestral gene order in octocorals, but the presence of a

pair of inverted repeat sequences suggest that this gene order was not conserved but rather evolved back to this apparent ancestral

state. Based on this we recommend the resurrection of the family Sibogagorgiidae to fix the paraphyly of the Paragorgiidae.

This is the first study to show that in the Octocorallia, mitochondrial gene orders have evolved back to an ancestral state after going

throughagene rearrangement,with at leastoneof thegeneorders evolving independently indifferent lineages.Anumberof studies

have used gene boundaries to determine the type of mitochondrial gene arrangement present. However, our findings suggest that

this method known as gene junction screening may miss evolutionary reversals.

Additionally, substitution saturation analysis demonstrates that while whole mitochondrial genomes can be used effectively for

phylogenetic analyses within Octocorallia, their utility at higher taxonomic levels within Cnidaria is inadequate. Therefore for phy-

logenetic reconstruction at taxonomic levels higher than subclass within the Cnidaria, nuclear genes will be required, even when

whole mitochondrial genomes are available.

Key words: Octocorallia, deep-sea corals, soft corals, cnidarian phylogenetics, gene rearrangement, substitution saturation.

Introduction

Octocorals, a group of corals commonly known as sea fans,

sea whips, sea pens, and soft corals, play a key role in forming

structures in a number of habitats including shallow water

reefs, deep seamounts, and submarine canyons (Genin et al.

1986; Hecker 1990; Stocks 2004). They act as hosts for a

variety of invertebrates and fishes, including some key deep-

water fisheries species (Genin et al. 1992; Jones et al. 1994;

Rogers 1994; Probert et al. 1997; Stocks 2004; DeVogelaere

et al. 2005; Leverette and Metaxas 2005; Mortensen and

Buhl-Mortensen 2005; Baco 2007; Buhl-Mortensen et al.

2010; Roberts et al. 2010; Baillon et al. 2012).

Deep-sea corals are slow growing, long lived, and existing

evidence suggests that many are recruitment limited (Grigg

1988; Krieger 2001; Roark et al. 2006, 2009; Sun et al. 2010).

Thus, they are very vulnerable to anthropogenic impacts and

slow to recover from them (Williams et al. 2010).

Anthropogenic activities that are known or likely to have

large impacts on octocorals include fisheries (Koslow et al.

2001; Clark and Rowden 2009), deep-sea mining for cobalt-

rich manganese crusts (Hein 2002; Hein et al. 2009), and cli-

mate change and ocean acidification (Guinotte et al. 2006).

Recent reviews of seamount fauna and deep-sea corals

have concluded that the global deficiency of scientific

GBE

� The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,

distribution, and reproduction in any medium, provided the original work is properly cited.

Genome Biol. Evol. 7(1):391–409. doi:10.1093/gbe/evu286 Advance Access publication December 24, 2014 391

-
-
-
; Roark etal.
http://creativecommons.org/licenses/by/4.0/


expertise in morphological taxonomy is a significant impedi-

ment to the understanding of deep-sea coral diversity, coral

biogeography, conservation, and seamount ecology (Morgan

et al. 2006; Parrish and Baco 2007; Rogers et al. 2007).

Likewise, in the past decade, molecular phylogenetic analyses

of the anthozoan subclass Octocorallia have shown that the

current taxonomic classification of these organisms, based on

morphology, needs to be revised (Berntson et al. 2001;

Sanchez et al. 2003; McFadden et al. 2006, 2010; Herrera

et al. 2010; Brockman and McFadden 2012).

Until recently, the majority of phylogenetic analyses of

octocorals have been based on a few mitochondrial genes

or nuclear genes or a combination of both (Berntson et al.

2001; Sanchez et al. 2003; McFadden et al. 2006, 2010;

Herrera et al. 2010); but recent studies are increasingly

using whole mitochondrial genomes, revealing five different

gene orders in octocorals (Brugler and France 2008; Uda et al.

2011; Brockman and McFadden 2012; Figueroa and Baco

2014). One of these gene orders is shared by most octocorals,

while the other four alternative orders are only found within

one of the three major clades of Octocorallia. Therefore, the

widespread phylogenetic distribution of this gene order has

led to the assumption that it represents the ancestral arrange-

ment in octocorals (Brugler and France 2008; Uda et al. 2011;

Brockman and McFadden 2012; Figueroa and Baco 2014).

Whole mitochondrial genomes, which in octocorals contain

14 protein-coding genes, provide better resolution of the tree

topology in these organisms (Uda et al. 2011). In general,

molecular phylogenetic studies agree with the three major

clades proposed by McFadden et al. (2006) based on se-

quences from two mitochondrial genes (nad2 and mutS).

One of these major clades is composed of the scleraxonians

Coralliidae and Paragorgiidae and the alcyoniina

Anthomastus, along with several other genera mostly belong-

ing to the family Alcyoniidae (McFadden et al. 2006;

Brockman and McFadden 2012; Figueroa and Baco 2014).

These three families are among the most abundant octocoral

families in the deep sea (Baco 2007) and thus improving their

taxonomy is a high priority.

Thus the goal of our study was to improve our understand-

ing of the relationships within this Anthomastus–Corallium

clade, as well as the evolution of the gene orders within this

clade. We sequenced the whole mitochondrial genome of

two morphospecies of Anthomastus and the paragorgiid

Sibogagorgia cauliflora, all three presumably members of

McFadden et al.’s (McFadden et al. 2006) Anthomastus–

Corallium clade. We also sequenced the whole mitochondrial

genome of the primnoid Narella hawaiinensis, a member of

McFadden et al. (2006) Calcaxonia–Pennatulacea clade is the

sister branch to the Anthomastus–Corallium clade (McFadden

et al. 2006; Brockman and McFadden 2012; Figueroa and

Baco 2014).

In the process of examining the phylogenetic relationships

among these families, we also have the opportunity to gain a

better understanding of the utility of whole mitochondrial ge-

nomes for unraveling phylogenetics at higher taxonomic levels

within the Cnidaria. Recent phylogenetic reconstructions

based on whole mitochondrial genomes have suggested

that Anthozoa is a paraphyletic group, with Octocorallia

branching as a sister clade to the Medusozoa and not the

Hexacorallia (Shao et al. 2006; Kayal and Lavrov 2008;

Lavrov et al. 2008; Park et al. 2012; Kayal et al. 2013). This

observation disagrees with current morphological classifica-

tion and with phylogenetic reconstructions based on nuclear

markers, which strongly support a monophyletic Anthozoa

comprised of the Octocorallia and Hexacorallia (France et al.

1996; Odorico and Miller 1997; Berntson et al. 1999; Won

et al. 2001; Collins 2002; Daly et al. 2007).

Thus another goal of our analysis is to use the newly se-

quenced mitochondrial genomes from recently collected spe-

cimens of Octocorallia in conjunction with mitochondrial

genomes found in GenBank for other Anthozoa,

Medusozoa, and Porifera for phylogenetic analyses at three

different taxonomic levels: Within subclass Octocorallia, within

class Anthozoa, and within the phylum Cnidaria. Thus, phy-

logenetic analyses were used to achieve three main objectives:

1) To elucidate the internal topology of the Anthomastus–

Corallium clade, 2) to test the robustness of the phylogeny

of Octocorallia proposed by McFadden et al. (2006), and 3) to

test the suitability of mitochondrial genomes to be used in

higher order phylogenetic reconstructions within Cnidaria.

Materials and Methods

Collections

For this study, we used four octocoral specimens: Two distinct

morphotypes of the genus Anthomastus (one collected from

Necker Ridge in the northern Central Pacific and a second

morphotype from Derickson Seamount, just south of the

Aleutian Islands); a specimen of S. cauliflora (also from

Derickson Seamount); and a specimen of N. hawaiinensis (col-

lected from Pioneer Bank in the Northwestern Hawaiian

Islands). Samples from Hawaii and Necker were collected

using the Pisces IV or V submersible, and from Derickson

using the ROV Jason II. Corals were placed in insulated bio-

boxes for return to the surface and subsamples were frozen

at �80 �C. The remainder of each specimen was deposited

at the Smithsonian. United States National Museum (USNM)#s

for each specimen are listed in table 1.

DNA Extraction, PCR, Sequencing and Assembly

Total genomic DNA was extracted from each specimen using

Qiagen’s DNeasy Blood and Tissue Kit. Complete mitochon-

drial genomes of each specimen were obtained using a series

of overlapping polymerase chain reactions (PCRs) using previ-

ously published primers sets (Park et al. 2012; Figueroa and

Baco 2014) (table 2). The following thermocycling conditions

Figueroa and Baco GBE
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Table 1

Specimens used in this Study

Subphylum Subclass Species USNM No. Genbank Acession No. Sequence From

Anthozoa Hexacorallia Acropora tenuis NC_003522 GenBank

Anthozoa Hexacorallia Agaricia humilis NC_008160 GenBank

Anthozoa Hexacorallia Anacropora matthai NC_006898 GenBank

Anthozoa Hexacorallia Astrangia sp. JVK-2006 NC_008161 GenBank

Anthozoa Hexacorallia Chrysopathes formosa NC_008411 GenBank

Anthozoa Hexacorallia Colpophyllia natans NC_008162 GenBank

Anthozoa Hexacorallia Discosoma sp. CASIZ 168915 NC_008071 GenBank

Anthozoa Hexacorallia Discosoma sp. CASIZ 168916 NC_008072 GenBank

Anthozoa Hexacorallia Euphyllia ancora NC_015641 GenBank

Anthozoa Hexacorallia Fungiacyathus stephanus NC_015640 GenBank

Anthozoa Hexacorallia Goniopora columna NC_015643 GenBank

Anthozoa Hexacorallia Lophelia pertusa NC_015143 GenBank

Anthozoa Hexacorallia Madracis mirabilis NC_011160 GenBank

Anthozoa Hexacorallia Metridium senile NC_000933 GenBank

Anthozoa Hexacorallia Metridium senile NC_000933 GenBank

Anthozoa Hexacorallia Montastraea annularis NC_007224 GenBank

Anthozoa Hexacorallia Montastraea faveolata NC_007226 GenBank

Anthozoa Hexacorallia Montastraea franksi NC_007225 GenBank

Anthozoa Hexacorallia Montipora cactus NC_006902 GenBank

Anthozoa Hexacorallia Mussa angulosa NC_008163 GenBank

Anthozoa Hexacorallia Nematostella sp. JVK-2006 NC_008164 GenBank

Anthozoa Hexacorallia Pavona clavus NC_008165 GenBank

Anthozoa Hexacorallia Pocillopora damicornis NC_009797 GenBank

Anthozoa Hexacorallia Pocillopora eydouxi NC_009798 GenBank

Anthozoa Hexacorallia Polycyathus sp. NC_015642 GenBank

Anthozoa Hexacorallia Porites okinawensis NC_015644 GenBank

Anthozoa Hexacorallia Porites porites NC_008166 GenBank

Anthozoa Hexacorallia Ricordea florida NC_008159 GenBank

Anthozoa Hexacorallia Savalia savaglia NC_008827 GenBank

Anthozoa Hexacorallia Savalia savaglia NC_008827 GenBank

Anthozoa Hexacorallia Seriatopora caliendrum NC_010245 GenBank

Anthozoa Hexacorallia Seriatopora hystrix NC_010244 GenBank

Anthozoa Hexacorallia Siderastrea radians NC_008167 GenBank

Anthozoa Hexacorallia Stylophora pistillata NC_011162 GenBank

Anthozoa Octocorallia Acanella eburnean EF672731 GenBank

Anthozoa Octocorallia Anthomastus sp. 1171062 KM015352 This study

Anthozoa Octocorallia Anthomastus sp. 1081145 KM015353 This study

Anthozoa Octocorallia Briareum asbestinum NC_008073 GenBank

Anthozoa Octocorallia Calicogorgia granulosa GU047880 GenBank

Anthozoa Octocorallia Corallium japonicum AB595189 GenBank

Anthozoa Octocorallia Dendronephthya castanea GU047877 GenBank

Anthozoa Octocorallia Dendronephthya gigantea NC_013573 GenBank

Anthozoa Octocorallia Dendronephthya mollis HQ694725 GenBank

Anthozoa Octocorallia Dendronephthya putteri HQ694726 GenBank

Anthozoa Octocorallia Dendronephthya suensoni GU047878 GenBank

Anthozoa Octocorallia Echinogorgia complexa HQ694727 GenBank

Anthozoa Octocorallia Euplexaura crassa HQ694728 GenBank

Anthozoa Octocorallia Hemicorallium imperiale 1072448 KC782352 Figueroa and Baco (2014)

Anthozoa Octocorallia Hemicorallium imperiale 1072449 KC782355 Figueroa and Baco (2014)

Anthozoa Octocorallia Hemicorallium laauense KC782348 Figueroa and Baco (2014)

Anthozoa Octocorallia Keratoisinidae sp. EF622534 GenBank

Anthozoa Octocorallia Narella hawaiinensis 1072109 KM015351 This study

Anthozoa Octocorallia Paragorgia sp. 1075769 KC782349 Figueroa and Baco (2014)

Anthozoa Octocorallia Paragorgia sp. 1075761 KC782350 Figueroa and Baco (2014)

(continued)
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were used: 96 �C for 2 min, 35 cycles at 94 �C for 1 min, 48 �C

for 1 min, 72 �C for 1 min, and a final step at 72 �C for 5 min.

The PCR fragments were sent for sequencing at the University

of Washington High Throughput Genomics Center for both

the forward and reverse strands.

The overlapping PCR fragments were assembled using the

software CLC Main Workbench 6.7.1 (CLC Bio, Aarhus,

Denmark). Sequence quality was assessed by base quality

scores and by visually inspecting each chromatogram.

Annotation of each mitochondrial genome was done by align-

ment to all octocoral genomes available in GenBank (table 1)

with the aid of the software CLC Main Workbench. The mt

genomes were scanned for transfer ribonucleic acids (tRNAs)

using the program tRNA scan-SE by Lowe and Eddy (1997).

Substitution Saturation Analysis

A hierarchical substitution saturation analysis was performed

at varying taxonomic levels to determine the potential phylo-

genetic signal contained in the nucleotide sequences of the

mitochondrial genomes. There were three steps to this

analysis. First, transitions and transversions were plotted

against divergence based on general time reversible (GTR) dis-

tances (a GTR model was selected as the best fitting evolu-

tionary model by our phylogenetic analysis, see next section).

Second, the statistical tests presented by Steel et al. (1993)

were used to determine how many sequences in each data set

were phylogenetically informative. And third, saturation indi-

ces were calculated using the method by Xia et al. (2003) to

determine whether the genomes have experienced substitu-

tion saturation. All three steps were carried out with the soft-

ware package DAMBE (Xia and Xie 2001). This analysis was

repeated for five groupings of the overall data set: Octocorallia

only, Hexacorallia only, Anthozoa (Octocorallia + Hexacorallia),

Cnidaria (Anthozoa + Medusozoa), and Cnidaria + Porifera.

Phylogenetic Analysis

In addition to the four specimens used in this study, 82 mito-

chondrial genomes were obtained from GenBank and

included in the phylogenetic analysis: 30 Octocorallia, 33

Hexacorallia, 7 Hydrozoa, 4 Scyphozoa, and 5 Porifera

Table 1 Continued

Subphylum Subclass Species USNM No. Genbank Acession No. Sequence From

Anthozoa Octocorallia Paragorgia sp. 1072362 KC782351 Figueroa and Baco (2014)

Anthozoa Octocorallia Paragorgia sp. 1072339 KC782354 Figueroa and Baco (2014)

Anthozoa Octocorallia Paragorgia sp. 1075741 KC782356 Figueroa and Baco (2014)

Anthozoa Octocorallia Paraminabea aldersladei JX508792 GenBank

Anthozoa Octocorallia Pleurocorallium kishinouyei 1072441 KC782353 Figueroa and Baco (2014)

Anthozoa Octocorallia Pleurocorallium konojoi NC015406 GenBank

Anthozoa Octocorallia Pleurocorallium secundum KC782347 Figueroa and Baco (2014)

Anthozoa Octocorallia Pseudopterogorgia bipinnata NC_008157 GenBank

Anthozoa Octocorallia Renilla muelleri JX023273.1 GenBank

Anthozoa Octocorallia Sarcophyton glaucum AF063191 GenBank

Anthozoa Octocorallia Scleronephthya gracillimum GU047879 GenBank

Anthozoa Octocorallia Sibogagorgia cauliflora 1122229 KM015354 This study

Anthozoa Octocorallia Sinularia peculiaris NC_018379 GenBank

Anthozoa Octocorallia Stylatula elongate NC_018380 GenBank

Medusozoa Hydrozoa Clava multicornis NC_016465 GenBank

Medusozoa Hydrozoa Craspedacusta sowerbyi JN593332 GenBank

Medusozoa Hydrozoa Craspedacusta sowerbyi NC_018537 GenBank

Medusozoa Hydrozoa Cubaia aphrodite NC_016467 GenBank

Medusozoa Hydrozoa Hydra magnipapillata NC_008411 GenBank

Medusozoa Hydrozoa Hydra oligactis NC_008071 GenBank

Medusozoa Hydrozoa Laomedea flexuosa NC_016463 GenBank

Medusozoa Scyphozoa Aurelia aurita HQ694729 GenBank

Medusozoa Scyphozoa Aurelia aurita NC_008446 GenBank

Medusozoa Scyphozoa Cassiopea frondosa NC_016466 GenBank

Medusozoa Scyphozoa Chrysaora quinquecirrha HQ694730 GenBank

Porifera Demospongiae Agelas schmidti NC_010213 GenBank

Porifera Demospongiae Amphimedon compressa NC_010201 GenBank

Porifera Demospongiae Aplysina fulva NC_010203 GenBank

Porifera Demospongiae Igernella notabilis NC_010216 GenBank

Porifera Demospongiae Oscarella carmela NC_009090 GenBank

Figueroa and Baco GBE
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(table 1). The sequences for each gene and ribosomal RNA

were aligned with MUSCLE (Edgar 2004) and then sequen-

tially concatenated. The alignment was visually inspected for

optimality. All phylogenetic analyses were performed with

MEGA v5.05 (Tamura et al. 2011) using maximum-likelihood

(ML) methods with bootstrap values from 10,000 replicates. A

GTR model with gamma distribution and invariant sites

(GTR + G + I) was selected by MEGA v5.05 as the best fitting

model of molecular evolution based on the Akaike

Information Criterion. Bayesian analyses were performed

with MrBayes 3.1 (Ronquist and Huelsenbeck 2003) using a

GTR + G + I model of evolution as selected by MrModeltest 2.2

Table 2

Primers Used for this Study

Forward Primer Reverse Primer Start End Size (bp) Overlap

1F ATGAACAAATATCTTACACG 1R ATAARTGCTGRAATAAAAT 1 699 698 162

2F ACAACATTTTTTGATCCT 2R GCTAAACCCAAGAAATG 667 1,290 623 32

3F ACAGGTTATAGTTATAATGA 3R GTCTGCTGGCACTTAGTTAG 1,223 1,860 637 67

4F CTGGTCGAAGATGCGTAGTA 4R TGTGCTAACACTGGGTTAGA 1,743 2,500 757 117

5F TATGCGCTACATTCTCCTAT 5R CACACTTCATAGCTAATCAT 2405 3,128 723 95

ssRNA-F1 CTGCGTTTAATACGTACTTGGC 6R YACTGCATCTAAACCTATCA 2,680 3,591 911 448

7F ATTCTAGGAATGGGCTGC 7R GACATTTGTCCCCAAGGTAA 3,509 4,126 617 82

8F ATATTTTAAGAGACGTTAAT 8R CTCTACTGGATTAGCCCCTA 3,964 4,726 762 162

9Fa ATCCTTTAGTAACTCCTG msh2806R TAACTCAGCTTGAGAGTATGC 4,501 5,088 587 225

9Fa ATCCTTTAGTAACTCCTG msh3101R GATATCACATAAGATAATTCCG 4,527 5,354 827 561

10F YTRCTTCAAATGGGGTTTCC mutS-3458R TSGAGCAAAAGCCACTCC 5,268 5,731 463 86

10F YTRCTTCAAATGGGGTTTCC mutS-6088Ra TGTGATAGGGTTGAGAAG 5,268 5,900 632 463

10F YTRCTTCAAATGGGGTTTCC 10R AGAATTGTAACACTCGGG 5,268 5,939 671 632

mutS-F5 ATTTAATTAAGAATCTCCAACTTCC mutS-6979a TATTAATGGGTGTCGGAG 5,932 6,937 1,005 7

mutS-6818Fa CTAAGCTATTTTTWCCCC mutS-R2 TCTAAAGACTCATTAAGATAAACCC 6,918 7,875 957 19

13R CTGTTTCCAAGCCTACTT 13F CTATTTTAGGYTGGAAGAGA 7,861 8,623 762 14

14R TTTCCTCTTGAGACAGTA 14F ACTGGTGTAGTAAGACTA 8,516 9,219 703 107

octo2-H CGATAAGAACTCTCCGACAATA 15F CAACTGAATGGCCGCGGTAA 9,134 9,601 467 85

octo1-L AGACCCTATCGAGCTTTACTGG nd2-R1 GTTCAAGCTCTCCTGTGGAGCC 9,343 10,394 1051 258

nd2-1418R ACATCGGGAGCCCACATA 16S-647F ACACAGCTCGGTTTCTATCTACAA 9,772 10,552 780 622

16R GCACGATAGATAATAGCGCA 16F TGGTGACACAGCTCGGTT 9,791 10,590 799 761

17R ATATTTGTTATTACTAAAGG 17F ATTRTTATTTAAAGTATCTG 10,527 11,153 626 63

18R TCCCAACCRATAAATARTTG 18F GTTTTTAACTAARTGGTATR 11,043 11,709 666 110

19R GCATGAATRATTGAGCCTGC 19F ATTCTACAAGTTATATGAGA 11,605 12,323 718 104

20R TATCATTAATGCATAATTAA 20F AGTTTATATCAYYTACTAAC 12,299 13,051 752 24

21R AACATTAAACTGAGCCGACT 21F TGTCTCTTATCGTACTATAG 13,005 13,653 648 46

22R TTTTATTATTAGTTAACCTTCATC nad4-F3 TTTTATTATTAGTTAACCTTCATC 13,514 14,179 665 139

22R GTACTAGTWGAAAAAGCAGC nd4-13343Fa AATAGGTTGGTTTGAGGG 13,514 14,300 786 665

co3bam567F GCTGCTAGTTGGTATTGGCAT 23F ATGGTRTTTACTTTAGCTAA 14,264 14,787 523 36

23R GCTGCTAGTTGGTATTGGCA 23F ATGGTRTTTACTTTAGCTAA 14,274 14,835 561 513

24R TATCACCCTTATCATYTAGT 24F CTAAGARCCCCACCARTAAA 14,772 15,508 736 63

25R TCWACAGCTAAYAAGGGAAC 25F TGAAAATATARTACTGAGCC 15,468 16,063 595 40

siro-cox2-F1 AGGCCCACTCTGTATATTTC atp6-R2 ATGTAGATTTAGAGTATCATTAATRTA 15,588 16,291 703 475

26R CATTAGSTATTAAAATGGAT 26F GTAAATACRTAGGGAAATAG 15,524 16,597 1,073 767

cox2-16530Fa CCCCTAAAGATCACCACA nd42599F GCCATTATGGTTAACTATTAC 16,582 17,397 815 15

27F GAGTGATTAGCGCCACATAA 27R GGAGCCTATATCCTTGRGAT 16,681 17,468 787 716

REVNRnd6a ATCGTTAGCGGGACATTATCAATT coII-8068F CCATAACAGGACTAGCAGCATC 17,207 17,995 788 261

nd6-F TCCTTAGGAATAGTTGGAGCTAG nd3-2126R CACATTCATAGACCGACACTT 17,935 18,600 665 60

siro-nad6-R1 ATTGCCCCTATGTTAGTTCTAG 28R CCAATCATTACTGGCATTAC 18,304 233 982 296

nd6-F REV CTAGCTCCAACTATTCCTAAGGA New NCR2R ATGATCATCTCCTAACATACTACC 18,774 162 585 162

9Fb ATCCTTTAGTAACTCCTG COII-8068F CCATAACAGGACTAGCAGCATC 4,531 5,123 593 —

msh2806Rb TAACTCAGCTTGAGAGTATGC RevNrND6 ATCGTTAGCGGGACATTATCAATT 17,209 18,037 829 —

NOTE.—Unless otherwise noted, sequence numbers are based on mt genomes with konojoi gene arrangement, starting with cox1.

All primers are from previous research (Brugler and France 2008; Uda et al. 2011; Park et al. 2012, Figueroa and Baco 2014).
aPrimer pairs used for mt genomes with konojoi arrangement only.
bPrimer pairs used for mt genomes with japonicum arrangement only.
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(Nylander 2004). The chains were carried out for 5,000,000

generations, sampling every 500th generation. After inspect-

ing the trace files generated by the Bayesian Markov chain

Monte Carlo (MCMC) runs, we determined that the initial

25% (2,500) of sampled generations would be omitted.

For the phylogenetic reconstruction of Octocorallia, all 14

protein-coding genes, including the mutS gene, and 2 RNAs

were used. For the phylogenetic reconstructions of both

Anthozoa and Cnidaria, only 13 protein-coding genes were

used. This is because the mutS gene is only found in octocorals

and therefore could not be used in phylogenies above this

taxonomic level. The two RNAs were also not included be-

cause they varied so much among higher taxa that homolo-

gous regions could not be accurately aligned.

Testing Phylogenetic Robustness

Because our inferences on gene order evolution within the

Octocorallia rely heavily on their phylogeny, additional analy-

ses were performed on this group to test the robustness of the

reconstructed phylogeny. Starting with the alignment, the

visual inspection for optimality was compared with alignment

optimization using the software GBLOCKS 0.91b (Castresana

2000) using default settings with “Allowed GAP positions” set

to “All.” The ML and Bayesian analyses, as described above,

were repeated with the alignment selected by GBLOCKS.

Because multiple coding genes were used, a partitioned phy-

logenetic analysis was also performed using PartitionFinder

v1.1.1 (Lanfear et al. 2014) and RAxML v8.0.0 (Stamatakis

2014). To find the optimal ML tree with RAxML, 20 indepen-

dent searches were performed with 1,000 bootstrap repli-

cates. Data blocks were defined by each gene and codon

position for the 14 protein-coding genes. Codon positions

were not used for the two RNAs. Finally, four additional, in-

dependent Bayesian analyses were run using MrBayes 3.1

(Ronquist and Huelsenbeck 2003) with a GTR + G + I model

of evolution as selected by MrModeltest 2.2 (Nylander 2004).

The chains were carried out for 1,000,000 generations, sam-

pling every 100th generation. The software AWTY

(Wilgenbusch et al. 2004) was then used to test for conver-

gence of the MCMC runs.

Results

Mitochondrial Genomes

Four new octocoral mitochondrial genomes were obtained.

All four have similar lengths, from shortest to longest:

18,716 bp (Anthomastus sp. USNM# 1171062),

18,838 bp (N. hawaiinensis USNM# 1072109), 18,913 bp

(Anthomastus sp. USNM# 1081145), and 19,044 bp (S. cauli-

flora USNM# 1122229). All 4 mt genomes contain 14 protein-

coding genes (atp6, atp8, cox 1–3, cob, nad 1–6, nad4L, and

mutS), 2 ribosomal RNAs (12s and 16s), and 1 transfer RNA.

The A + T content in all four mt genomes is similar, ranging

from 62.2% to 63.3%. The nucleotide lengths of all genes are

similar for all four species.

Two gene arrangements were observed (fig. 1), both spe-

cies of Anthomastus have the same arrangement as that dis-

covered by Uda et al. (2011) in Corallium japonicum, further

referred to as the “japonicum” arrangement; while N. hawaii-

nensis and S. cauliflora both have what is assumed to be the

ancestral arrangement in octocorals (McFadden et al. 2006;

Uda et al. 2011; Brockman and McFadden 2012) (fig. 1). In all

4 mitochondrial genomes, 7 of the genes either overlap or do

not have a spacer between them, with the rest separated by a

total of 12 intergenic spacers, ranging in size from 14 to

396 bp. Within the spacers, the two Anthomastus mt ge-

nomes and the Sibogagorgia mt genome have one pair of

an inverted repeat sequence (fig. 2), identified previously in

the mitochondrial genomes of C. japonicum and

Pleurocorallium konojoi (Uda et al. 2011). In Anthomastus,

these inverted repeat sequences are found in the intergenic

regions between cob and cox2 genes and mutS and nad4L

genes; while in Sibogagorgia, they are found in the intergenic

regions between cob and nad6 genes, nad4L and mutS genes,

and cox1 and cox2 genes (fig. 2).

Substitution Saturation Analysis

Plots of transitions and transversions versus divergence based

on GTR distances (fig. 3) show a linear relationship for the

Octocorallia, with transitions always greater than transver-

sions. For the Hexacorallia, the relationship between transver-

sions and divergence is linear, while the relationship between

transitions and divergence starts out linear and then levels off

at higher divergences. Also, at these higher divergences trans-

versions begin to surpass transitions. For the Anthozoa

(Hexacorallia + Octocorallia) and the Cnidaria (Hexacorallia +

Octocorallia + Medusozoa), the relationship between transi-

tions and transversions versus divergence is comparable with

that described above for the Hexacorallia. One exception is

that in the Cnidaria transversions start to level off at higher

divergences and transitions begin to lose their linear relation-

ship and are surpassed by transversions at a lower divergence.

When the Porifera are added to the Cnidaria data set (not

shown in figure), the relationships are similar to that of the

Cnidaria; however, the linearity of the relationship for both

transitions and transversions is lost at even lower divergence

levels.

The results for the substitution saturation index defined by

Xia et al. (2003) are shown in figure 4. The test, as imple-

mented by DAMBE, calculates a critical index for a symmetrical

and an asymmetrical tree and compares it with the observed

index (Iss). If the Iss observed value is higher than the Iss critical

values, then the sequences will fail to recover the true phylo-

genetic relationships. The index shows that for the

Octocorallia the observed Iss is lower than either of the critical

values. For all the remaining data sets Hexacorallia, Anthozoa,
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Cnidaria, and Cnidaria + Porifera, the Iss observed is higher

than either of the critical values. The statistical test by Steel

et al. (1993) as implemented in DAMBE gives each sequence a

’ score from 0 to 1 based on how phylogenetically informative

that sequence is relative to what can be expected by chance.

A score below 0.04 is considered as lacking phylogenetic in-

formation (Xia and Lemey 2009). These test results are sum-

marized in figure 4 and show that for Octocorallia and

Hexacorallia all the sequences are phylogenetically informa-

tive. For the Anthozoa only 21% of the sequences are phylo-

genetically informative, for the Cnidaria only 10%, and for the

Cnidaria + Porifera only 13%.

One way to deal with possible substitution saturation is to

translate nuclear sequences to amino acid sequences, and

then reverse translate them back to nucleotide sequences

using a universal code. This effectively gets rid of synonymous

substitutions and it is a method used by Park et al (2012) for

their study on cnidarian divergence times using whole mito-

chondrial genomes. Another option is to reconstruct phylog-

enies using the amino acid sequences themselves after

translating nuclear sequences. This method was utilized by

Kayal et al. (2012) for reconstructing the phylogeny of the

Cnidaria. As part of our analysis, we used the amino acid

alignment from Kayal et al. (2012) and reverse translated

the alignment following the same procedures as Park et al.

(2012). We performed both saturation tests on this data set.

There was a marked improvement with respect to Iss scores

for the Xia et al. (2003) test compared with our Cnidaria and

Cnidaria + Porifera data set (fig. 4). But, it only passes the test

if the tree is symmetrical while still failing the test if the

A

B C

FIG. 1.—Mitochondrial gene arrangement based on Medina et al. (2006), Brugler and France (2008), Park et al. (2012), Uda et al. (2011), Figueroa and

Baco (2014), and this study. Arrows show direction of replication. Thicker line shows heavy strand, thinner line shows light strand. (A) Presumed octocoral

ancestral mt gene arrangement; (B) japonicum mt gene arrangement; and (C) konojoi mt gene arrangement. Taxa that have been shown to have these

arrangements are listed within each arrangement. *Although Sibogagorgia cauliflora has the presumed ancestral gene order, it is not because it was

conserved in this lineage but rather it reversed back from a different arrangement to this ancestral state, as explained in the text.
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resulting tree is asymmetrical. Although the Xia et al. (2003)

substitution saturation test did show some improvement, the

test by Steel et al (1993) showed that all the sequences in this

new data set were lacking phylogenetic information and

therefore any tree recovered could statistically be due to

chance.

Octocorallia Phylogenetic Analysis

A total of 34 octocoral mitochondrial genomes were used in

the octocoral phylogenetic analysis, using all 14 protein-

coding sequences and the 2 ribosomal RNAs. Our original

alignment was very similar to the alignment selected by

GBLOCKS 0.91b where 98% of the original 18,398 bp were

retained. Phylogenetic analyses were performed on both

alignments and they yielded identical results. The same tree

topology was obtained with both ML and Bayesian methods

(five independent Bayesian analyses) and both methods re-

sulted in well-supported branches (fig. 5). Analyses using the

software AWTY showed convergence of all MCMC runs. All

runs yielded identical topology and branch support. Both anal-

yses were performed unrooted; once the tree was obtained, it

was then redrawn with Briareum asbestinium as the root be-

cause this species is considered to be basal in the Octocorallia

(McFadden et al. 2006; Brockman and McFadden 2012; Park

et al. 2012). PartitionFinder v1.1.1 (Lanfear et al. 2014) divided

the data into six partitions. The partitioned phylogenetic anal-

ysis performed with RAxML included 20 independent searches

for the optimum ML tree with 1,000 bootstrap replicates. This

also yielded the same phylogenetic tree with similar support

for all branches with only one exception. Our original tree

shows that the species Euplaxaura crassa and

Pseudopterogogia bipinnata are sister taxa, while the parti-

tioned analysis collapses this clade.

The tree shows two main clades, which we will refer to as

Clade A and Clade B. Clade A contains members of the subor-

ders Alcyoniina and Holaxonia and includes the same groups

of taxa which fall into Clade 1 of McFadden et al. (2006). All

members of the Clade A have the presumed ancestral octo-

coral mitochondrial gene arrangement. Clade B contains the

other members of the order Pennatulacea and of the subor-

ders Alcyoniina, Calcaxonia, and Scleraxonia. All four alternate

gene arrangements are found in the members of Clade B. This

clade splits into two clear subclades, Clade B(2), containing

FIG. 2.—Alignment of inverted repeat sequences present in all the Corallium, Paragorgia, Anthomastus, and Sibogagorgia mitochondrial genomes.

These were first identified by Uda et al. (2011) and they occur in the intergenic spacers where gene inversions took place leading to the japonicum and

konojoi mt gene arrangement. Panel A corresponds to spacer a and Panel B to spacer b shown in figures 5 and 7.
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FIG. 3.—Transitions (s) and transversions (v) compared with GTR distance for four data sets: within the subclass Octocorallia, within the subclass

Hexacorallia, within the class Anthozoa, and within the phylum Cnidaria (Anthozoa+ Medusozoa).

FIG. 4.—Substitution saturation tests for six data sets as implemented by DAMBE, based on Xia et al. (2003) and Steel et al. (1993). Graph shows Iss

observed and Iss critical for both symmetrical and asymmetrical tree. If Iss observed is higher than Iss critical, then it means that the sequences have high

substitution saturation and will fail to recover the phylogenetic signal. All differences are significant. The P value for all comparisons is 0.0000 except for the

Iss observed versus Iss asymmetrical in Octocorallia, were the P value is 0.029. Below the graph is the average ’ value from Steel et al.’s test for each data set.

A value of less than 0.04 is considered to lack a phylogenetic signal (Xia and Lemey 2009). Sequences above this threshold are considered phylogenetically

informative and are shown as a percentage.
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FIG. 5.—Octocoral phylogenetic tree inferred by ML, based on all mitochondrial protein-coding genes and RNAs. The tree is drawn to scale, with branch

lengths measured in the number of substitutions per site. Tree topology inferred by Bayesian methods is identical except for Hemicorallium imperiale USNM#

1072449 branches with Hemicorallium imperiale USNM# 1072448 in the Bayesian topology and with Hemicorallium laauense in the ML topology. Branch

values correspond to bootstrap support for ML (first) and Bayesian posterior probabilities (second) for the nonpartitioned data. The third branch value

corresponds to bootstrap support for ML as determined by RAxML with the partitioned data. *Support values less than 0.70. Clade numbers are labeled to

correspond to the clade designations in McFadden et al. (2006). Coloring corresponds to the different mitochondrial gene orders as shown to the right of the

phylogeny. The corresponding genes in each numbered box are given in the bottom panel of the diagram.
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the Pennatulacea and Calcaxonia, and corresponding to Clade

2 of McFadden et al. (2006), and the second, Clade B(3) con-

taining the Scleraxonia and the two Alcyoniina Paraminabea

and Anthomoastus, corresponding to Clade 3 of McFadden

et al. (2006). In Clade B(3), Paraminabea branches out first,

then Anthomastus forms a sister branch with Paragorgiidae

and Coralliidae. The Paragorgiidae is a paraphyletic taxon, be-

cause Sibogagorgia does not group with the Paragorgia, but

rather forms a sister branch to the Coralliidae. The Coralliidae

have two main branches, one leading to Corallium and

Hemicorallium, all with the japonicum mitochondrial gene ar-

rangement, while the other leading to Pleurocorallium, which

have the konojoi mitochondrial gene arrangement.

Anthozoa and Cnidaria Phylogenetic Analysis

A total of 78 mitochondrial genomes were used for the phy-

logenetic reconstruction of the Anthozoa, 67 Anthozoa (34

Octocorallia and 33 Hexacorallia), and 11 Medusozoa

(7 Hydrozoa and 4 Schyphozoa). Unlike the Octocorallia phy-

logenetic analysis, only 13 protein-coding genes were conca-

tenated and aligned. The Octocorallian mutS gene was

excluded as it is not present in any other taxa and the two

RNAs were also excluded due to high levels of variation in

large gaps in alignments above the subclass level, making it

difficult for homologous regions to be aligned. Both ML and

Bayesian methods resulted in similar tree topology with well-

supported branches (fig. 6A). The medusozoans were in-

cluded in this analysis as an outgroup for the Anthozoa and

they form a distinct clade that divides into two branches, one

containing the Hydrozoa and the other the Schyphozoa. There

was no support for an Anthozoan clade. Instead, the

Octocorallia and the Hexacorallia branched independently.

The internal branching of the Octocorallia is similar to that

of the previous analysis but some resolution has been lost

including the collapse of some branches (tree not shown).

The same mt genomes used in the Anthozoa analysis were

used for the Cnidarian analysis with the addition of five

Porifera as the outgroup. The mutS gene and the two RNAs

were also omitted in this analysis. The phylogenetic recon-

struction shows four distinct and well-supported clades: 1)

The Porifera, 2) the Medusozoans, 3) the Hexacorallia, and

4) the Octocorallia (fig. 6B). When the tree is redrawn, using

the Porifera as the root for the Cnidaria, the Hexacorallia form

the first derived branch for this group, while the Medusozoans

and Octocorallia form a second branch (fig. 6C).

Discussion

Phylogeny of the Octocorallia

Our phylogenetic reconstruction supports two major clades

within the Octocorallia (fig. 5). One includes the Alcyoniina

and Holaxonia, while the other divides into two branches, one

composed of Pennatulacea and Calcaxonia, and the second

with Anthomastus, Paragorgiidae, and Coralliidae. This largely

agrees with the phylogeny proposed by McFadden et al.

(2006) except that in their study the basal relationships be-

tween these three clades remain inconclusive, while here they

are more supported. Their phylogenetic analysis is based on

two mitochondrial genes, nad2 and mutS. When using max-

imum parsimony and Bayesian methods, their phylogeny

show Clades A(1) Alcyoniina and Holaxonia and B(3)

Anthomastus–Paragorgiidae–Coralliidae as sister clades,

while their reconstruction using ML shows Clades B(2)

Pennatulacea and Calcaxonia and B(3) Anthomastus–

Paragorgiidae–Coralliidae as sister branches. Our phylogenetic

reconstruction supports the latter. Using the entire mitochon-

drial genome provides robust support for an independent

Clade A(1) Alcyoniina–Holaxonia. Clades B(2) Pennatulacea–

Calcaxonia and B(3) Anthomastus–Paragorgiidae–Coralliidae

have strong support as sister clades in the Bayesian analysis.

Our ML analysis recovers the same relationships, but in this

case the support for a sister relationship between Clades B(2)

and B(3) is weaker.

The phylogenetic relationships within Clades A(1)

Alcyoniina–Holaxonia and B(2) Pennatulacea–Calcaxonia are

discussed at length by McFadden et al. (2006). The number of

full mitochondrial genomes available for members of these

two clades is limited, 12 for Clade A(1) and 5 for Clade

B(2), when compared with the number of taxa used in

McFadden et al. (2006) where there are 73 for the former

and 24 for the latter. Therefore it will suffice to say that our

limited data set for these two clades is congruent with that of

McFadden et al. (2006) and we will defer further discussion to

their study and the sequencing of further mt genomes. In the

case of Clade B(3) Anthomastus–Paragorgiidae–Coralliidae,

our study includes 16 members, while McFadden et al.

(2006) only has 3. Our study shows that full mitochondrial

genomes work well in resolving the phylogeny within this

clade. Paraminabea is the basal member of this clade, fol-

lowed by Anthomastus. In a recent taxonomic revision of

Anthomastus based on morphology, it was suggested that

this genus should be divided into at least three genera,

Anthomastus, Heteropolypus, and Pseudoanthomastus

(Molodtsova 2013). We support this taxonomic revision be-

cause Anthomastus ritteri, which has been revised by

Molodstova (2013) as Heteropolypus ritteri, has the presumed

octocoral ancestral gene order (Brockman and McFadden

2012), while our two morphospecies of what are presumably

Anthomastus have a japonicum gene order. This genetic in-

formation supports at least two distinct lineages. Genetic sup-

port for the third lineage will have to wait until the full

mitochondrial genomes of members of all three revised

genera are sequenced.

After Anthomastus, the next branch in Clade B(3) is com-

posed of Paragorgia. Paragorgia was erroneously thought to

be a sister branch to the Coralliidae (Brockman and McFadden

2012; Uda et al. 2013; Figueroa and Baco 2014), but our

Octocoral Mitochondrial Genomes GBE

Genome Biol. Evol. 7(1):391–409. doi:10.1093/gbe/evu286 Advance Access publication December 24, 2014 401

the 
since 
maximum likelihood
5
t
c
-
-
maximum-likelihood
-
-
-
-
-
-
m
aximum-likelihood
c
c
-
-
to 
-
-
since 
;


results clearly show that the sister branch to the Coralliidae is

Sibogagorgia. Both Paragorgia and Sibogagorgia currently

belong to the family Paragorgiidae. Our phylogenetic analyses

show that Paragorgia and Sibogagorgia are two independent

lineages, making the Paragorgiidae a paraphyletic group. We

propose that to fix this taxonomic inadequacy, the family

Sibogagorgiidae, as suggested by Verseveldt (1942), should

be resurrected for Sibogagorgia. Sibogagorgia was also found

to be highly divergent in the analyses by Herrera et al (2010)

based on mitochondrial genes. A less favorable alternative to

make Paragorgiidae monophyletic would be to subsume the

Coralliidae into the Paragorgiidae. The last branch in Clade

B(3) has the members of the Coralliidae. The Coralliidae are

clearly composed of three lineages, which support the recent

split of Corallium into three genera, Corallium, Hemicorallium,

and Pleurocorallium (Ardila et al. 2012; Figueroa and Baco

2014).

Mitochondrial Gene Order: Evidence of Reversal to an
Ancestral State

The four mitochondrial genomes of N. hawaiinensis, S. cauli-

flora, and the two morphospecies of Anthomastus have the

same compositional elements as the mitochondrial genomes

of all 29 species of octocorals that have been published to

date (fig. 1). There are five different gene arrangements that

A

B

C

FIG. 6.—Phylogenetic trees for the Anthozoa (A, unrooted) and Cnidaria+ Porifera (B, unrooted and C, rooted by the Porifera) inferred by ML, based on

all mitochondrial protein-coding genes, excluding RNAs and mutS. The tree is drawn to scale, with branch lengths measured in the number of substitutions

per site. Tree topology inferred by Bayesian methods is identical. Branch values correspond to bootstrap support for ML (first) and Bayesian posterior

probabilities (second). The number of taxa in each branch is shown in parenthesis.
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have been identified in the Octocorallia (Beaton et al. 1998;

Brugler and France 2008; Uda et al. 2011; Brockman and

McFadden 2012; Park et al. 2012). Our study shows that

Anthomastus has the same mitochondrial gene arrangement

as the one discovered in Paracorallium japonicum by Uda et al.

(2011) and also shared by at least three species of Corallium

(Figueroa and Baco 2014). Both N. hawaiinensis and S. cauli-

flora have the presumed ancestral mitochondrial gene order.

However, despite having the presumed ancestral gene order,

the presence of a pair of inverted repeat sequences in the

spacer regions of S. cauliflora suggest that this apparent an-

cestral mitochondrial gene arrangement was not conserved in

this species but rather evolved back to its ancestral state after

going through a rearrangement (fig. 7).

The inverted repeat sequences were first identified by Uda

et al. (2011) in the mitochondrial genomes of both P. japoni-

cum and Corallium konojoi and have since been identified in

several other species of Corallium and Paragorgia (Figueroa

and Baco 2014). The origin of these inverted repeat sequences

are discussed in detail in Uda et al. (2011). The authors suggest

A

B

FIG. 7.—Theoretical origin of inverted repeat sequences a and b in Sibogagorgia. There are two possible scenarios. In Scenario A, the konojoi

arrangement arises first, creating the two inverted repeat sequences; these are conserved in the subsequent evolution of the japonicum arrangement

and in the return to an ancestral state in Sibogagorgia. In Scenario B, the japonicum arrangement arises first creating the inverted repeats; these are

conserved in the subsequent evolution of the japonicum arrangement and in the return to an ancestral state in Sibogagorgia.
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two possible pathways for the origin of these inverted repeat

sequences, one is going from a presumed ancestral mitochon-

drial gene arrangement to a japonicum arrangement, and the

other is going from the presumed ancestral arrangement to a

konojoi arrangement. Either pathways result in inversions

leading to the inverted repeat sequences in the intergenic

spacer regions that carry part of the gene to which they

were previously adjacent. Uda et al. (2011) clearly show that

the only way these inverted repeat spacer sequences can form

is to go through either the konojoi or japonicum rearrange-

ments. Therefore because these inverted repeat sequences are

present in the mitochondrial genome of S. cauliflora, which

has the presumed ancestral gene order, it suggests that the

gene arrangement in this taxon is not an indication of a con-

served ancestral state but rather that the gene order evolved

back to the ancestral state from either a konojoi or a japoni-

cum arrangement.

This is the first observation that shows that in the

Octocorallia, mitochondrial gene arrangement is not only di-

verse but it can evolve back to an ancestral state. This has

important implications for genetic studies that use gene

boundaries to determine the type of mitochondrial gene ar-

rangement present and then use that information for classifi-

cation or phylogenetic purposes. This practice of testing gene

boundaries has been referred to as “gene junction screening”

(Brockman and McFadden 2012). If this were done with S.

cauliflora, it would show that it has the ancestral gene ar-

rangement and lead to the erroneous conclusion that

Sibogagorgia is basal to Paragorgia and Coralliidae because

those taxa have derived mitochondrial gene arrangements.

But this is not the case, by analyzing the complete mitochon-

drial genome, including intergenic spacers, it is clear that the

gene arrangement in S. cauliflora is also derived and has

evolved back to an ancestral gene order. Therefore we rec-

ommend for future studies of gene rearrangements not to rely

exclusively on gene junction screening as it will miss reversals

to ancestral states.

Evolution of Mitochondrial Gene Arrangements

Our phylogenetic analysis shows that within the Clade B of the

Octocorallia, mitochondrial gene order has changed at least

six times. The first change occurs in the basal branch of this

clade from the presumed ancestral gene order to the unique

order shared by Keratoisidinae sp. and Acanella eburnea

(fig. 5). The second change comes in the basal branch for

Clade B(3) (fig. 5), going from the presumed ancestral gene

order to the unique arrangement found in Paraminabea alder-

sladei. Paraminabea aldersladei is the sister branch to the rest

of the members of Clade B(3) where presumably the ancestral

gene order was maintained. From this point, there are three

equally plausible scenarios for the evolution of the japonicum

and konojoi gene order and the return to an ancestral state in

Sibogagorgia (fig. 8).

A

B

C

FIG. 8.—Three possible evolutionary pathways for the different mito-

chondrial gene orders found in Clade B(3) of the Octocorallia. All three

scenarios are equally plausible in terms of the number of evolutionary steps

needed. The tree is not drawn to scale. Arrows point to nodes where a

particular gene order evolved. Branches are color coded for the gene

orders, black for ancestral, purple for Paraminabea, red for japonicum,

and blue for konojoi. Panel A shows Scenario 1 where the japonicum

arrangement evolves first and it is conserved throughout going back to

an ancestral state in Sibogagorgia and with the konojoi order evolving

twice independently. Panel B shows Scenario 2 where the japonicum

order also evolves first, but it is not conserved. Instead, the konojoi

order evolves right and it is conserved afterwards, going back to an an-

cestral state in Sibogagorgia and with the japonicum order evolving inde-

pendently a second time in the Corallium–Hemicorallium clade. Panel C

shows Scenario 3 where the konojoi order evolves first and it is conserved

throughout, going back to an ancestral order in Sibogagorgia and with the

japonicum order evolving twice independently.
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In the first scenario, the third change occurs from the pre-

sumed ancestral gene order to the japonicum gene order

(fig.8A and B) found in the two morphospecies of

Anthomastus. The japonicum gene order is maintained and

conserved through to the Corallium and Hemicorallium clade,

while the konojoi gene order arises independently twice, once

in Paragorgia and a second time in the Pleurocorallium

(fig. 8A). In Sibogagorgia, it returns to an ancestral order

from a japonicum arrangement (fig. 8A). In the second sce-

nario, the japonicum gene order also evolves first from the

presumed ancestral gene order, but then is only conserved in

the Anthomastus clade, while the konojoi emerges as ances-

tral to the remaining branches (fig. 8B) and is therefore con-

served in Paragorgia and Pleurocorallium. In this scenario in

the Corallium–Hemicorallium clade, the gene order reverses to

the japonicum arrangement and Sibogagorgia returns to the

ancestral gene order from a konojoi arrangement (fig. 8B).

In the third scenario, the konojoi gene order evolves first

(fig. 8C). The konojoi order is maintained throughout the main

branch and conserved through to Pleurocorallium. In this case,

the japonicum arrangement evolves independently, once in

the Anthomastus and a second time in the Corallium–

Hemicorallium clade and Sibogagorgia goes back to an ances-

tral state from a konojoi arrangement.

All three of these possible scenarios have the same number

of evolutionary steps and in all three, one of the gene orders,

japonicum or konojoi, had to evolve twice. Previous studies

have also tried to determine the sequence of evolutionary

events leading to these gene arrangements in Clade B (Uda

et al. 2011; Brockman and McFadden 2012). Our present

study agrees with some of their conclusions but there are

several key differences. Uda et al. (2011) suggest two possible

mechanisms by which the japonicum and konojoi mt gene

orders arose. Their favored mechanism involves tandem du-

plication by slipped-strand mispairing followed by a random

loss of genes and inversion by intramitochondrial recombina-

tion. This mechanism leads to the japonicum gene arrange-

ment first and the konojoi arrangement second.

Brockman and McFadden (2012) also lend support to a

japonicum mt gene arrangement evolving first, but their pro-

posed mechanism of inversions leading to the japonicum ar-

rangement cannot explain the creation of the inverted repeat

sequences observed in all these taxa. They sequenced the full

mitochondrial genome of Pa. aldersladei (family Alcyoniidae),

discovering the fifth novel gene arrangement in octocorals.

Then they proceed to map the five different arrangements

onto a phylogeny of the Octocorallia based on two mitochon-

drial genes (mutS and cox1) and a nuclear gene (28S). Their

phylogeny shows that the japonicum gene arrangement

evolved first, before the konojoi arrangement, in the branch

leading to the Coralliidae and Paragorgiidae. They present

Paracorallium (now subsumed into Corallium; Ardila et al.

2012), which has the japonicum gene arrangement, as the

sister branch to Paragorgia and C. konojoi and Corallium

kishinouyei (the genus Pleurocorallium has been resurrected

for these species; Figueroa and Baco 2014), which have the

konojoi gene arrangement. Furthermore, they show that

Anthomastus is the sister branch to the Coralliidae and

Paragorgiidae clade. And by using gene junction screening,

they determine that A. ritteri has the presumed ancestral octo-

coral mitochondrial gene order.

Our analysis agrees with that of Brockman and McFadden

(2012) in placing Anthomastus as the sister branch to the

Paragorgiidae and Coralliidae, but it differs in that the two

morphospecies of Anthomastus used in our study have the

japonicum gene arrangement, while the species of

Anthomastus used by Brockman and McFadden (2012) has

the presumed ancestral gene arrangement. Because

Brockman and McFadden (2012) only used gene junction

screening to determine the mitochondrial gene arrangement

of A. ritteri, the possibility remains that instead of being an

example of conserved mitochondrial gene order, this particu-

lar species of Anthomastus could have reverted back to the

ancestral state as it happened with S. cauliflora. So far, every

species of octocoral belonging to McFadden et al.’s

(McFadden et al. 2006) Anthomastus–Corallium clade,

which also include the Paragorgiidae (Figueroa and Baco

2014), has a derived mitochondrial gene arrangement,

except for A. ritteri (Brockman and McFadden 2012).

Therefore it would be interesting to sequence the full mito-

chondrial genome of A. ritteri, because if it truly has a con-

served ancestral mitochondrial gene order then it is likely a

basal member of this major octocoral clade.

Further research is needed to determine the evolutionary

order of the mitochondrial gene arrangement in this

Anthomastus–Corallidae–Paragorgiidae clade. Although Uda

et al. (2011) and Brockman and McFadden (2012) support a

japonicum gene arrangement evolving before the konojoi ar-

rangement, our present research shows that this is not nec-

essarily the case because each major branch in this clade has

its own unique arrangement with possible reversals to ances-

tral states and with at least one of these arrangements evolv-

ing in two independent events. Therefore it is very likely that

when the full mitochondrial genomes are sequenced from

more members of this clade, more unique gene orders will

be found and possibly more reversals to ancestral states will

also be identified.

Mitochondrial Genomes and Higher Level Phylogenies
within Cnidaria

The class Anthozoa consists of two subclasses, the

Hexacorallia and the Octocorallia (Daly et al. 2007). The

monophyly of Anthozoa is well supported by both morpho-

logical and molecular phylogenetic reconstructions based on

nuclear genes (France et al. 1996; Odorico and Miller 1997;

Berntson et al. 1999; Won et al. 2001; Collins 2002; Daly et al.

2007). However, recent studies based on whole mitochondrial
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genomes disagree with this observation and suggest that

Anthozoa is paraphyletic because in their phylogenetic recon-

structions, the Octocorallia is more closely related to the

Medusozoa than to the Hexacorallia (Shao et al. 2006;

Kayal and Lavrov 2008; Lavrov et al. 2008; Park et al. 2012;

Kayal et al. 2013). In our phylogenetic reconstruction, where

members of the Porifera were included with the Cnidaria, the

resulting unrooted phylogeny shows that the Porifera are a

sister branch to the Hexacorallia. If this tree is redrawn and

rooted by the Porifera, then the resulting phylogeny appears

as if the Hexacorallia are the basal branch to the Cnidaria with

the Octocorallia branching later, as a sister clade to the

Medusozoa. This is the same pattern observed by those stud-

ies that suggest that the Anthozoa is paraphyletic (Shao et al.

2006; Kayal and Lavrov 2008; Lavrov et al. 2008; Park et al.

2012; Kayal et al. 2013). This suggests that the close associ-

ation between the Octocorallia and the Medusozoa is likely an

artifact due to the use of Porifera as a root for the Cnidaria.

This observation is further supported by our phylogenetic anal-

ysis that only included the Octocorallia, Hexacorallia, and

Medusozoa. This phylogeny clearly shows that based on

whole mitochondrial genomes, no assertion can be made

whether the Octocorallia belong to the Hexacorallia or the

Medusozoa. Each of these taxa form an independent well-

supported branch.

Because of the mismatch in previous studies between phy-

logenies based on whole mitochondrial genomes compared

with nuclear and morphological data (France et al. 1996;

Odorico and Miller 1997; Berntson et al. 1999; Won et al.

2001; Collins 2002; Shao et al. 2006; Daly et al. 2007;

Kayal and Lavrov 2008; Lavrov et al. 2008; Park et al. 2012;

Kayal et al. 2013), we explored the possibility of saturation in

the mitochondrial sequences that have been used for

Cnidaria. Our phylogenetic reconstruction and substitution

saturation analysis show that whole mitochondrial genomes

can be used effectively for phylogenetic analyses of the

Octocorallia. However, it appears that the utility of mt ge-

nomes at higher taxonomic levels is limited (figs. 3 and 4).

It has been shown that when substitution saturation is

high, similarity between sequences does not accurately reflect

phylogenetic relationships (Steel et al. 1993; Xia et al. 2003;

Xia and Lemey 2009). Sequences that have not experienced

substantial substitution saturation will show a linear relation-

ship for both transitions and transversions versus sequence

divergence; also, transitions will occur more often than trans-

versions (Xia and Xie 2001). This relationship is found in the

Octocorallia, but it starts to break down in the Hexacorallia

and it deviates even further at higher taxonomic levels with

the Anthozoa and Cnidaria. This suggests that at higher tax-

onomic levels the phylogenetic signal in mitochondrial

genomes may be lost due to substitution saturation. The sta-

tistical tests proposed by Steel et al. (1993) support this ob-

servation. These tests showed that when only the Octocorallia

or the Hexacorallia are considered, all the sequences are

phylogenetically informative. But, when higher taxonomic

levels are considered, such as Anthozoa and Cnidaria, more

than 80% of the sequences are no longer phylogenetically

informative. This clearly shows that the nucleotide sequences

of mitochondrial genomes at the Anthozoan and Cnidarian

taxonomic level have experienced full substitution saturation

and therefore are no longer phylogenetically informative.

To minimize the problem generated by substitution satura-

tion, nucleotide sequences can be translated into amino acid

sequences; then they can be translated back into a nucleotide

sequence using a standard genetic code, essentially getting rid

of any synonymous substitutions. This was done by Park et al.

(2012) when using full mitochondrial genomes to look at

Cnidarian evolution using the Porifera as a root. Because the

alignment by Park et al. (2012) is not available on an online

repository, we used the amino acid alignment from Kayal et al.

(2013) and followed the methods of Park et al. (2012) to

reverse translate this alignment to a nucleotide alignment.

The alignment by Kayal et al. (2013) includes all the sequences

used by Park et al. (2012) plus many more obtained in that

study. We analyzed this new data set for substitution satura-

tion using the tests developed by Xia et al. (2003) and Steel

et al. (1993). Xia’s test showed that the observed saturation

index is lower than the critical saturation index if the resulting

tree is symmetrical, but it is still higher if the tree is asymmet-

rical (fig. 4). The phylogeny presented by both Park et al.

(2012) and Kayal et al. (2013) is highly asymmetrical, which

suggests that despite eliminating synonymous substitutions

from the analysis, substitution saturation was still a problem

for analyzing the Cnidaria using reverse-translated nucleotide

sequences. The inadequacy of these reverse-translated nucle-

otide sequences for reconstructing the phylogeny of the

Cnidaria is further supported by Steel’s test which shows

that none of the sequences are phylogenetically informative.

Therefore, the nucleotide sequences of mitochondrial ge-

nomes should not be used to determine phylogenetic relation-

ships for the Anthozoa or the Cnidaria. Kayal et al. (2013)

address the issue of nucleotide saturation by removing the

third codon position as well as all codons for arginine, leucine,

and serine. Additionally, they use amino acid sequences to

reconstruct their phylogeny of Cnidaria using the best evolu-

tionary models available to reduce the effects of saturation.

Unfortunately, saturation tests for their nucleotide alignments

are not presented and no such tests exist for amino acid align-

ments. Therefore, although they go through great lengths to

compensate for saturation, whether their methods were

enough will likely go unanswered until other molecular mar-

kers are used to reconstruct the phylogeny of Cnidarians. The

dubious association of the Porifera as a sister branch of the

Hexacorallia and the resulting appearance of the Octocorallia

forming a clade with the Medusozoa could just be an artifact

of substitution saturation in the mitochondrial genomes of

these taxa. Therefore we recommend that for phylogenetic

reconstruction at taxonomic levels higher than subclass within
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the Cnidaria, nuclear genes will be required, even when whole

mitochondrial genomes are available.

Conclusions

Our phylogenetic reconstruction supports two major clades

within the Octocorallia. One includes the Alcyoniina and

Holaxonia, while the other divides into two branches, one

composed of Pennatulacea and Calcaxonia, and the second

with Anthomastus, Paragorgiidae, and Coralliidae. Our phy-

logeny also shows that Paragorgia and Sibogagorgia are two

independent lineages, making the Paragorgiidae a paraphy-

letic group. We propose that to fix this taxonomic inadequacy,

the family Sibogagorgiidae should be resurrected.

Our study is the first to show that in the Octocorallia, mi-

tochondrial gene arrangement is not only diverse but it can

evolve back to an ancestral state. This has important implica-

tions for genetic studies that use gene boundaries to deter-

mine the type of mitochondrial gene arrangement present

and then use that information for classification or phyloge-

netic purposes. Therefore we recommend for future studies of

gene rearrangements not to rely exclusively on gene junction

screening as it will miss reversals to ancestral states.

Further research is needed to determine the evolutionary

order of the mitochondrial gene arrangement in the

Anthomastus–Corallidae–Paragorgiidae clade. Our study

shows that each major branch in this clade has its own

unique arrangement with possible reversals to ancestral

states and with at least one of these arrangements evolving

in two independent events.

Our phylogenetic reconstruction and substitution satura-

tion analysis demonstrates that whole mitochondrial genomes

can be used effectively for phylogenetic analyses of the

Octocorallia. However, the utility of mt genomes at higher

taxonomic levels is limited. Therefore we recommend that

for phylogenetic reconstruction at taxonomic levels higher

than subclass within the Cnidaria, nuclear genes will be re-

quired, even when whole mitochondrial genomes are

available.
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