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Abstract 45 

 46 

Background: Observational studies have demonstrated that variation in normal range thyroid 47 

function is associated with major cardiovascular risk factors, including dyslipidaemia, 48 

hypertension, type 2 diabetes (T2D), and obesity. As observational studies are prone to residual 49 

confounding, reverse causality and selection bias, we used a Mendelian randomization (MR) 50 

approach to investigate whether these associations are causal or not.  51 

 52 

Methods: Two-sample MR analysis using data from the largest available genome-wide 53 

association studies on normal range TSH and FT4 levels, serum lipid levels, blood pressure 54 

measurements, T2D and obesity traits (body mass index (BMI) and waist-hip ratio (WHR)).  55 

 56 

Results: A one standard deviation (SD) increase in genetically predicted TSH levels was 57 

associated with a 0.037 SD increase in total cholesterol levels (P=3.0x10-4). After excluding 58 

pleiotropic instruments, we also observed significant associations between TSH levels and low-59 

density lipoprotein levels (β=0.026 SD, P=1.9x10-3), pulse pressure (β=-0.477 mmHg, P=7.5x10-60 

10) and T2D risk (OR=0.95, P=2.5x10-3). While we found no evidence of causal associations 61 

between TSH or FT4 levels and obesity traits, we found that a one SD increase in genetically 62 

predicted BMI was associated with a 0.075 SD decrease in FT4 levels (P=3.6x10-4). 63 

  64 

Conclusions: Variation in normal range thyroid function affects serum cholesterol levels, blood 65 

pressure and T2D risk.  66 
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Introduction 67 

 68 

Cardiovascular disorders (CVD) are a leading cause of mortality worldwide (1). Whereas 69 

traditional cardiovascular risk factors, such as dyslipidaemia, hypertension, type 2 diabetes 70 

(T2D) and obesity, are well-recognized, observational studies have shown that also overt and 71 

subclinical thyroid dysfunction are associated with a higher risk of CVD (2-6). More recently, 72 

even variation in normal range thyroid function has been associated with an increased risk of 73 

CVD, including atherosclerotic disease and stroke (7-10), as well as with serum lipid levels (11), 74 

blood pressure (12), T2D risk (13) and obesity (14). These findings could have important clinical 75 

implications for prevention efforts targeting cardiovascular risk (15). However, observational 76 

studies are prone to various sort of bias, including residual confounding, reverse causality and 77 

selection bias, which can affect their results and disrupt their interpretation (16). Therefore 78 

before translating these findings into clinical practice, it is essential to first clarify whether 79 

causal associations underlie these epidemiological observations (17).  80 

An established and widely used approach to investigate whether causal relationships underlie 81 

the observed associations is to perform a Mendelian randomization (MR) study. This method 82 

involves finding genetic variants which are associated with an exposure (e.g. thyroid function), 83 

and then testing the association between these variants and the outcome of interest (e.g. CVD). 84 

The fundamental principle of MR is that if genetic variants alter the exposure that is causal for 85 

the outcome, then these genetic variants should also be associated with this outcome to the 86 

extent corresponding to their effects on the exposure (18, 19). In that way, MR uses genetic 87 

variants as proxies to evaluate the causal effect of an exposure on the outcome of interest (20). 88 
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It draws from the fact that genetic variants segregate randomly from parents to offspring, 89 

which can be compared to randomization used in clinical trials and allows to overcome 90 

potential confounding (19). As genetic variants can affect the trait of interest but not the other 91 

way around, an association between the genetically predicted exposure and the tested 92 

outcome can provide evidence for causality (20). However, this approach requires several 93 

assumptions. Most importantly, the genetic variants have to be truly associated with the 94 

exposure, and their effects on the outcome of interest has to be mediated solely by the 95 

exposure under study (20). Although a single genetic variant can be used as an instrument in 96 

MR analyses, combining the effects of multiple genetic variants that can explain a larger 97 

proportion of variance in the exposure can significantly increase the analysis power (21). As 98 

some of the variants used as instruments might potentially violate MR assumptions, several 99 

statistical methods has been proposed to adjust for these violations (22, 23).  100 

In this study, we performed a two-sample MR to investigate the effects of variation in normal 101 

range thyroid function on established cardiovascular risk factors, including cholesterol and 102 

triglyceride levels, blood pressure, T2D risk and obesity traits (body mass index (BMI) and waist-103 

hip ratio (WHR)). For this, summary level data from the most recent and largest genome-wide 104 

association studies (GWAS) on thyroid function and cardiovascular risk factors were used (24-105 

28). Bidirectional MR analyses were performed to gain insight into the complex associations 106 

and potentially causal effects in both directions between thyroid function and obesity (29). 107 

 108 
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Materials and Methods 109 

 110 

Two-sample Mendelian randomization 111 

We performed two-sample MR analyses using the data from the most recent genome-wide 112 

association study (GWAS) on thyroid function (24), and summary-level statistics from the 113 

largest available GWAS meta-analyses on cardiovascular risk factors (detailed in the sections 114 

below; (25-28)). No ethical approval was required as all data were extracted from publically 115 

available summary statistics. 116 

 117 

Exposures and instruments 118 

The exposures of interest were normal range TSH and FT4 levels. Based on the results of the 119 

currently largest GWAS on thyroid function (24), we identified 61 and 31 independent (r2≤0.01 120 

within windows of ±1 Mb for variants in the same locus) single nucleotide polymorphisms 121 

(SNPs) associated at a genome-wide significant level (P<5x10-8) with TSH and FT4 levels within 122 

the reference range, respectively. Only individuals with TSH levels within their cohort-specific 123 

reference ranges were included in the GWAS on TSH and FT4 levels and subjects using thyroid 124 

medications or after thyroid surgery were excluded from these GWAS, while no information on 125 

thyroid-specific antibodies was available in that study (24). We used the identified genetic 126 

variants as potential instruments to investigate the causal relationship between normal range 127 

thyroid function and the outcomes of interest. Two variants associated with TSH levels were a 128 

priori excluded from all the analyses as they were highly pleiotropic (ABO-rs8176645) or had 129 

the same effect allele associated (P<0.05) with both higher TSH levels and higher FT4 levels 130 
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within the normal range (BCAS3-rs1157994). Detailed data on variants used as instruments are 131 

presented in Supplementary Tables 1 & 2.  132 

 133 

Outcomes of interest and datasets used 134 

Outcomes of interest included serum lipid levels (total cholesterol, low-density lipoprotein 135 

cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c) and triglyceride (TG) levels), 136 

blood pressure measurements (systolic blood pressure (SBP), diastolic blood pressure (DBP), 137 

and pulse pressure (defined as a difference between SBP and DBP)), T2D risk, and obesity 138 

parameters (BMI and WHR).  139 

Summary data for serum lipid levels were derived from a GWAS meta-analysis in nearly 300,000 140 

participants from the Million Veteran Program (25), available at dbGaP under the accession 141 

number phs001672. Summary data for blood pressure measurements were derived from a 142 

GWAS meta-analysis in over 750,000 participants of European ancestry, provided by the UK 143 

Biobank and ICBP Consortium (26), made available by the study authors upon request. 144 

Summary data for T2D were derived from a GWAS meta-analysis performed by the DIAGRAM 145 

Consortium, which investigated the association of 27 million genetic variants in up to 74,124 146 

cases and 824,006 controls of European ancestry (27), available at the consortium website 147 

(https://diagram-consortium.org/downloads.html). Summary data for BMI and WHR were 148 

derived from a GWAS meta-analysis in over 800,000 participants, combining data from the UK 149 

Biobank and GIANT Consortium (28), available at the online repository 150 

(https://github.com/lindgrengroup/fatdistnGWAS).  151 
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Data on the effect/other allele, beta coefficients and standard errors (SE) for the variants 152 

associated with TSH and FT4 levels were extracted from each study for MR analyses and 153 

presented in Supplementary Tables 1 & 2. 154 

 155 

Statistical analyses 156 

 157 

Primary analyses 158 

The primary analyses included two-sample MR analyses performed using the inverse-variance 159 

weighted (IVW) method (22). This approach requires several assumptions of which the most 160 

important are that: (i) the genetic variants used as instruments have to be truly associated with 161 

the exposure (i.e. TSH or FT4 levels), and (ii) the effect of the instruments on the outcome of 162 

interest (i.e. one of the studied cardiovascular risk factors) has to be mediated solely by the 163 

exposure under study (20). This means that weak and pleiotropic instruments should be 164 

avoided as they can strongly bias the causal estimates (30, 31). To this end, we assessed the 165 

strength of all instruments based on the F statistics (calculated as F=β2exposure/SE2exposure), which 166 

indicated no weak instruments (F statistics ranged 29.81-535.70 and 30.25-455.33 for the TSH 167 

and FT4 instruments, respectively), and we addressed the problem of potential pleiotropy in 168 

the sensitivity analyses. To control for false positive findings due to multiple testing, a 169 

conservative Bonferroni correction adjusted for the number of primary exposures and 170 

outcomes analyzed in the study was applied, and P-values less than 0.05/20=0.0025 were 171 

considered statistically significant. A P-value less than 0.05 was considered as evidence for 172 

nominal significance. All analyses evaluate the causal effects of a one standard deviation (SD) 173 
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increase in genetically predicted TSH or FT4 levels, approximately corresponding to a 1.0 mU/L 174 

and 2.2 pmol/L increase in TSH and FT4, respectively (32). 175 

 176 

Secondary analyses 177 

 178 

Sensitivity analyses 179 

Sensitivity analyses were performed in order to account for potential pleiotropy in the 180 

associations between thyroid function and the outcomes of interest. First, we compared the 181 

results obtained using the IVW method with the results from MR Egger (33) and weighted 182 

median (WM) (34) methods, as the slope of the MR Egger regression may provide valid MR 183 

estimates in the presence of horizontal pleiotropy when the pleiotropic effects of the genetic 184 

variants are independent from the genetic associations with the exposure (33), while WM can 185 

provide valid MR estimates under the presence of horizontal pleiotropy when up to half of the 186 

included instruments are invalid (34). Egger intercept was also used as one of the indicators of 187 

directional pleiotropy (33). Furthermore, we used I2 statistics and Cochran’s Q test to quantify 188 

heterogeneity across the instruments, with Phet<0.05 indicating the presence of significant 189 

heterogeneity suggesting pleiotropy (35). We identified potentially pleiotropic variants based 190 

on their individual Q statistics and repeated the IVW MR analyses after excluding outliers 191 

extending the 99.9th (L1), 99th (L2) and 95th (L3) percentiles of a chi-squared distribution with 192 

1 degree of freedom (23, 36). Finally, as the genetic variants associated with FT4 levels form a 193 

highly heterogeneous group with potentially diverse effects on T4 and T3 bioavailability, we 194 

also compared the results of MR analyses using as instruments two separate subsets of FT4 195 



 

 

10 

associated variants, specifically including: (i) variants within the deiodinases loci (i.e. DIO1 and 196 

DIO2), and (ii) other (non-deiodinase) genetic variants associated with FT4 levels in the GWAS 197 

by Teumer et al. (24).  198 

 199 

Bidirectional MR on normal range thyroid function and obesity traits 200 

Bidirectional MR studies on thyroid function and obesity traits (BMI and WHR) were performed 201 

to gain insight into the complex and potentially bidirectional associations between thyroid 202 

function and obesity (29). A list of variants associated with BMI and WHR at a genome-wide 203 

significant level (P<5.0x10-8) and corresponding summary statistics were derived from the study 204 

by Yengo et al. (37) and Pulit et al. (28), respectively. To eliminate pleiotropic effects of variants 205 

primarily associated with thyroid function, we repeated MR analyses after excluding all variants 206 

associated (P<0.05) with normal range TSH and FT4 levels, respectively. 207 

 208 

Power calculations 209 

To estimate the power of our study, we used a non-centrality parameter-based approach (21), 210 

implemented in a publicly available mRnd web tool (http://cnsgenomics.com/shiny/mRnd/). 211 

For binary outcomes (T2D), we calculated minimal odds ratio (OR) of the outcome variable per 212 

standard deviation (SD) of the exposure variable (TSH and FT4 levels) that was detectable 213 

(power=0.8, α=0.05) in our study. For continuous outcomes (blood pressure measurements, 214 

serum lipid levels and obesity traits), we calculated the smallest detectable regression 215 

coefficient (β) for the true underlying causal association between the exposure and outcome 216 

variables. Proportions of total variance in TSH and FT4 levels explained by the genetic variants 217 
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used as instruments (9.4% and 4.8%, respectively) were established based on the data from 218 

Teumer et al. (24). The results of power calculations are provided in Supplementary Table 3. 219 

 220 

Results 221 

 222 

The results of MR analyses investigating the association between genetically predicted normal 223 

range TSH and FT4 levels and each of the tested cardiovascular risk factors respectively are 224 

presented in Supplementary Tables 4-8 and summarized in Figure 1 and below.  225 

 226 

Lipid levels 227 

A one SD increase in genetically predicted TSH levels was associated with a 0.037 SD increase in 228 

total cholesterol levels (P=3.0x10-4; Supplementary Table 4). Sensitivity analyses using the WM 229 

and MR Egger methods provided effect estimates of the same direction and magnitude 230 

(β=0.039 SD, P=1.3x10-3 and β=0.031 SD, P=0.20, respectively; Supplementary Table 5), while 231 

exclusion of potentially pleiotropic instruments also led to similar results (β=0.043 SD, 232 

P=1.3x10-6; Supplementary Table 4). 233 

Analyses of specific lipid fractions showed that the association between TSH and total 234 

cholesterol levels could be driven by the effect on LDL-c levels (β=0.022 SD, P=0.029; 235 

Supplementary Table 4), which was confirmed in sensitivity analyses excluding potentially 236 

pleiotropic instruments (β=0.026 SD, P=1.9x10-3; Supplementary Table 4), and using the WM 237 

method (β=0.037 SD, P=1.1x10-3; Supplementary Table 5). 238 
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Although we found no associations between TSH levels and HDL-c or TG levels in the primary 239 

analyses (β=0.018 SD, P=0.11 and β=0.015 SD, P=0.23, respectively; Supplementary Table 4), 240 

sensitivity analyses excluding potentially pleiotropic instruments showed nominally significant 241 

associations between TSH and HDL-c levels (β=0.016 SD, P=0.042; Supplementary Table 4), 242 

which was also in line with the results of sensitivity analyses using the WM method (β=0.028 243 

SD, P=0.014; Supplementary Table 5). 244 

No associations were found between FT4 and total cholesterol levels or any of the specific lipid 245 

fractions (Supplementary Table 4). 246 

 247 

Blood pressure 248 

TSH levels were not associated with SBP (β=-0.178 mmHg, P=0.24) or DBP (β=0.160 mmHg, 249 

P=0.080) in our primary analyses (Supplementary Table 4). However, after exclusion of 250 

potentially pleiotropic instruments we observed a nominally significant association between 251 

TSH levels and SBP (β=-0.255 mmHg, P=8.6x10-3; Supplementary Table 4), which was also in 252 

line with the results of sensitivity analyses using the WM method (β=-0.315 mmHg, P=0.013; 253 

Supplementary Table 5). Moreover, we observed a nominally significant association between 254 

TSH levels and pulse pressure (β=-0.322 mmHg, P=5.1x10-3; Supplementary Table 4), which was 255 

further confirmed after exclusion of potentially pleiotropic instruments (β=-0.477 mmHg, 256 

P=7.5x10-10; Supplementary Table 4). Sensitivity analyses using the WM and MR Egger methods 257 

also indicated associations between TSH levels and pulse pressure (β=-0.454 mmHg, P=3.5x10-6 258 

and β=-0.518 mmHg, P=0.078, respectively; Supplementary Table 5). 259 



 

 

13 

No associations were found between FT4 levels and any of the blood pressure traits 260 

(Supplementary Table 4).  261 

 262 

Type 2 diabetes 263 

TSH and FT4 levels were not associated with T2D risk in our primary analyses (Supplementary 264 

Table 4). However, after exclusion of potentially pleiotropic instruments we observed a 265 

significant association between TSH levels and a lower T2D risk (OR=0.95, 95%CI=0.91-0.98, 266 

P=2.5x10-3, Supplementary Table 4), which was also supported by sensitivity analyses using the 267 

WM method (OR=0.95, 95%CI=0.91-1.00, P=0.045; Supplementary Table 5). Sensitivity analyses 268 

using the MR Egger method provided effect estimates of the same direction (OR=0.87, 269 

95%CI=0.70-1.09, P=0.22; Supplementary Table 5).  270 

 271 

Obesity parameters 272 

TSH and FT4 levels were not associated with BMI or WHR, except for a nominally significant 273 

association between FT4 levels and WHR in sensitivity analyses excluding potentially pleiotropic 274 

instruments (β=-0.022 SD, P=0.026, Supplementary Table 4).   275 

 276 

MR analyses with specific subsets of FT4 instruments 277 

Although we found no significant associations in MR analyses using specific subsets of FT4 278 

instruments (i.e. variants within the deiodinases loci and other (non-deiodinase) genetic 279 

variants associated with FT4 levels), we observed opposite effect directions in the analyses 280 

using both subsets of instruments for 9 out of 10 analyzed outcomes (Supplementary Table 7). 281 
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 282 

Causal effects of obesity traits on TSH and FT4 levels 283 

To further investigate the relationship between TSH and FT4 levels and obesity traits, we 284 

performed bidirectional MR analyses assessing the effects of genetically predicted BMI and 285 

WHR on TSH and FT4 levels (Supplementary Table 8). While we observed no causal effects of 286 

BMI and WHR on TSH levels (β=0.022 SD, P=0.24, and β=0.015 SD, P=0.68, respectively), we 287 

found that a one SD increase in genetically predicted BMI was associated with a 0.075 SD 288 

decrease in FT4 levels (P=3.6x10-4). Sensitivity analyses excluding all BMI variants associated 289 

(P<0.05) with FT4 levels yielded similar results (β=-0.042 SD, P=0.020). There was also a nominal 290 

association between genetically predicted WHR and FT4 levels in the same direction (β=-0.072 291 

SD, P=0.032), which disappeared in sensitivity analyses excluding instruments associated 292 

(P<0.05) with FT4 levels (Supplementary Table 8).  293 

  294 

Discussion 295 

 296 

This study presented the currently largest, to the best of our knowledge, MR analysis assessing 297 

causal relationships between variation in normal range thyroid function and cardiovascular risk 298 

factors. We found statistically significant associations (P<2.5x10-3) between TSH levels and 299 

serum cholesterol levels, blood pressure and T2D risk. In contrast, FT4 was not associated with 300 

any of the tested outcomes. While variation in normal range thyroid function did not affect BMI 301 

or WHR, secondary analyses suggested that BMI affects FT4 levels. 302 

 303 
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Variation in normal range thyroid function is causally associated with total cholesterol and 304 

LDL-c levels 305 

Both overt and subclinical hypothyroidism have been associated with dyslipidaemia (38, 39). 306 

Moreover, normal range TSH levels have been positively associated with total cholesterol, LDL-c 307 

and TG levels, as well as negatively associated with HDL-c levels in various observational studies 308 

(11, 40, 41). Our results confirm that the associations between variation in normal range 309 

thyroid function and total cholesterol are causal, and that this can be predominantly attributed 310 

to a change in LDL-c serum levels. Although the estimated effects are relatively small (0.037 SD 311 

and 0.022 SD increase in total cholesterol and LDL-c levels, respectively, for a one SD increase in 312 

TSH levels), they might be clinically relevant as they reflect a lifelong exposure. Our results are 313 

in line with the results of in vitro studies showing that thyroid hormones regulate LDL-c 314 

catabolism by their effects on lipid metabolizing enzymes and LDL-c receptor expression in the 315 

liver (42, 43). Several intervention studies also demonstrated that L-thyroxine treatment 316 

reduces total cholesterol and LDL-c levels in patients with subclinical hypothyroidism (44-46), as 317 

well as in euthyroid subjects (47), while no significant effects on HDL-c or TG levels were 318 

observed in these studies (44-47). In our MR study we neither observed an effect on TG levels, 319 

while we only detected a nominally significant association between TSH and HDL-c levels. 320 

Future larger MR studies with more genetic instruments will clarify whether this is due to small 321 

effect sizes which we could not detect in our study, or whether there is no effect of variation in 322 

normal range thyroid function on HDL-c and TG levels at all.   323 

 324 
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Variation in normal range thyroid function is causally associated with blood pressure  325 

There is evidence that thyroid disease is an important cause of secondary hypertension (48, 49). 326 

Overt hyperthyroidism is accompanied by increased cardiac output and reduced vascular 327 

resistance resulting in increased SBP, decreased DBP and increased PP (50). However, the effect 328 

of subclinical hyperthyroidism on blood pressure was not confirmed (51-53). The few studies 329 

which have investigated the effects of overt hypothyroidism on blood pressure found an 330 

association with increased DBP (54, 55), possibly due to increased vascular resistance and 331 

arterial stiffness (56). In contrast, much more data are available on the effects of subclinical 332 

hypothyroidism on blood pressure. A meta-analysis of observational studies comparing patients 333 

with subclinical hypothyroidism to euthyroid controls (N=50,147) found a minor increase in 334 

their SBP, but not DPB (57). Importantly, a large (N>30,000) population-based study even found 335 

a positive association between normal range TSH levels and SBP as well as DBP (12), which was 336 

further confirmed by a recent meta-analysis of 14 observational studies (N=96,175) (58). 337 

In the current study, we found that within the normal range, higher TSH levels were associated 338 

with a lower pulse pressure, which was mainly driven by an inverse association with SBP. Future 339 

studies should clarify why the nominal association between normal range TSH levels and SBP 340 

observed in our study was opposite to the reported in observational studies (58). Importantly, 341 

such studies should also take potential non-linear relations into account, as the effects of hypo- 342 

and hyperthyroidism on blood pressure come together within the normal range. This is 343 

important, as observational studies have shown that increased pulse pressure is an 344 

independent predictor of cardiovascular events in patients with hypertension (59, 60), as well 345 

as a predictor for peripheral arterial disease (61). 346 
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 347 

MR analysis suggest a causal association between normal range thyroid function and T2D risk 348 

Several observational studies have shown that thyroid disease and T2D frequently coexist in 349 

patients (62-64). A meta-analysis of observational studies in Chinese has also reported an 350 

increased risk of diabetic complications in patients with coexisting T2D and subclinical 351 

hypothyroidism (65). Both hypo- and hyperthyroidism have been associated with T2D risk and 352 

insulin resistance (66, 67), and multiple mechanisms have been suggested to play a role in this 353 

association, including intestinal glucose absorption, hepatic gluconeogenesis, and glucose 354 

utilization in peripheral tissues (68). However, the associations between variation in normal 355 

range thyroid function and T2D are less clear. Recently, a large population-based prospective 356 

study in 8,452 participants reported an increased risk of incident T2D in individuals with low-357 

normal thyroid function (13). However, a following meta-analysis in nearly 30,000 participants 358 

did not confirm these findings (69). In 2017, Bos et al. performed a MR study investigating the 359 

effects of genetically predicted TSH and FT4 levels on T2D risk and glycaemic traits, and did not 360 

find causal associations (70). Compared to Bos et al. (70), we significantly increased statistical 361 

power by using genetic instruments which doubled the proportion of explained variance in TSH 362 

and FT4 levels, as well as by using more precise effect estimates for T2D, as based on the most 363 

recent GWAS meta-analysis including nearly 900,000 participants (74,124 cases and 824,006 364 

controls) (27). Moreover, we performed sensitivity analyses excluding potentially pleiotropic 365 

instruments which can be a source of bias in MR analysis. Interestingly, we identified various 366 

genetic variants with pleiotropic effects on thyroid function and T2D in our sensitivity analyses 367 

using the Cochran's Q statistics. Indeed, these included variants within the INSR gene (encoding 368 
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the insulin receptor), IGF2BP2 (which regulates the translation of IGF2 mRNA and has been 369 

associated with T2D susceptibility (71)), GLIS3 (a susceptibility gene for T2D that modulates 370 

pancreatic beta cell development and apoptosis (72, 73)), VEGFA (essential for a proper 371 

formation of pancreatic islet structure (74)), and two variants within the FGF7 gene (promotes 372 

proliferation of embryonic pancreatic epithelial cells (75)). The fact that our statistical analyses 373 

identified these variants as pleiotropic also makes sense from a biological perspective, as they 374 

are located in loci encoding proteins with a known role in glucose regulation. We excluded 375 

these pleiotropic variants, which were in majority associated with both higher TSH levels and 376 

higher T2D risk, to unravel the real causal association between normal range thyroid function 377 

and T2D. This showed that within the normal range higher TSH levels were associated with 378 

lower T2D risk. The carriage of genes with pleiotropic effects could therefore be an important 379 

explanation for the observed discrepancy between the results of observational studies and MR 380 

analyses. 381 

 382 

Bidirectional MR analysis suggests a causal effect of BMI on FT4 levels 383 

In our study, we found no evidence for a causal effect of variation in normal range thyroid 384 

function on obesity traits, represented by BMI and WHR. While we cannot exclude causal 385 

effects smaller than detectable in our study, this can also suggest that minor variation in thyroid 386 

function tests is rather a consequence than a cause of weight change. Indeed, our bidirectional 387 

MR analysis indicated that genetically predicted BMI was inversely associated with FT4 levels. 388 

Multiple observational studies showed that there is a positive association between BMI and 389 

TSH levels, even within the normal range (76). Several observational studies reported also a 390 
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positive association between BMI and FT3 levels (77-80), as well as a negative association 391 

between BMI and FT4 levels in euthyroid subjects (77, 78). A MR study performed by Taylor et 392 

al. found that higher BMI leads to higher FT3 levels in children, while no effect of genetically 393 

predicted BMI on FT4 levels was observed in that study (81). It was suggested that the increase 394 

in serum levels of FT3 may be a compensatory mechanism for the increase in central fat 395 

accumulation (80). Although the expression of type 1 deiodinase (DIO1) and type 2 deiodinase 396 

(DIO2) in the white adipose tissue (WAT), in comparison to DIO1 expression in the liver or DIO2 397 

expression in the brown adipose tissue (BAT), is minimal (82, 83), it has been shown that DIO1 398 

activity in WAT is increased in obese subjects (84). Therefore higher FT3 and lower FT4 levels in 399 

overweight and obese subjects might at least partially result from an increased peripheral 400 

conversion of FT4 to FT3 in WAT. Moreover, studies on animal models suggest that, besides its 401 

effects on central regulation of the hypothalamus-pituitary-thyroid axis (85), leptin produced in 402 

WAT may be also involved in tissue-specific regulation of deiodinase activity in other tissues 403 

(86-89). Interestingly, Araujo et al. showed that leptin administration restores starvation-404 

induced decrease in DIO1 activity in the liver and the kidney (89), the main sources of 405 

circulating FT3. Although these results require further confirmation, this hypothesis would be in 406 

line with the observation that weight reduction is associated with a decrease in FT3 and an 407 

increase in FT4 serum levels in humans (90).  408 

 409 

Strengths and limitations of the study 410 

Strengths of the current study include the use of data from the largest available GWAS on 411 

thyroid function and the tested cardiovascular risk factors (24-28). Moreover, sensitivity 412 
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analyses were performed to reduce bias due to potentially pleiotropic instruments, as well as to 413 

provide better insights into the analyzed associations.  414 

While we observed several significant associations between genetically predicted TSH levels 415 

and the tested outcomes, we found no such associations for genetically predicted FT4 levels. A 416 

possible explanation for this discrepancy could be that TSH is a much more sensitive biomarker 417 

for detecting small alterations in thyroid function compared to FT4 (91), as relatively modest 418 

changes in FT4 concentrations result in marked excursions in TSH levels due to an inverse log-419 

linear association between both parameters (92, 93). A limitation of our study was that we had 420 

less power to detect associations with FT4, as the available instruments reported in literature 421 

have a lower explained variance compared to TSH levels (4.8% vs. 9.4%, respectively). 422 

Therefore, our results should not be interpreted as reflecting direct (i.e. not mediated by 423 

thyroid hormones) effects of TSH on the tested outcomes. Importantly, the available FT4 424 

variants form a highly heterogeneous group, including polymorphisms within genes encoding 425 

transcription factors implicated in the pituitary and thyroid development (FOXE1, LHX3), TH 426 

transporters (SLCO1B1, SLC17A4), TH metabolizing enzymes (DIO1, DIO2, AADAT) and multiple 427 

loci without a known function in the hypothalamus-pituitary-thyroid axis (94). Therefore, while 428 

they all increase serum FT4 levels, they could well have differential effects on tissue T4 and T3 429 

bioavailability. For example, variants in the DIO1 gene, encoding the type 1 deiodinase (DIO1), 430 

which is responsible for peripheral conversion of T4 to T3, result in higher T4 levels and lower 431 

T3 levels. This leads to a net euthyroid state of the pituitary, as reflected by the absence of an 432 

association with TSH levels. Consequently, while these variants can be used as instruments 433 

reflecting variation in normal range FT4 levels, they should not be interpreted as being 434 
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instruments for increased thyroid function (95). This is supported by our sensitivity analyses in 435 

which the effects of deiodinase gene variants and other variants were analysed separately. 436 

These analyses showed opposite effect directions in the majority of the tested outcomes, likely 437 

reflecting the differential effects of these genetic instruments on T4 and T3 bioavailability. 438 

When both subsets are analyzed together, their effects could level out, resulting in a net zero 439 

effect. Indeed, none of the MR studies performed so far found any evidence for associations 440 

between genetically predicted FT4 levels and tested outcomes, including the recent study on 441 

thyroid function and atrial fibrillation risk, which reported significant effects for TSH levels, 442 

FT3:FT4 ratio and hyperthyroidism (96). This underlines the importance of having a good 443 

biological understanding of the genetic instruments used in MR studies. Finally, while we 444 

provide evidence for associations between variation in normal range thyroid function and 445 

cholesterol levels, blood pressure and T2D risk, MR studies performed so far found no evidence 446 

for a causal association between normal range thyroid function and CVD (97, 98), except for the 447 

recently reported association with stroke, that was mediated via the risk of atrial fibrillation 448 

(99). One of possible explanations is that established cardiovascular risk factors, such as 449 

dyslipideamia and hypertension, are nowadays widely recognized and treated in the context of 450 

primary prevention. This might limit the potential cause-and-effect relationship between 451 

thyroid function and CVD in the general population that was used as a basis for the MR-452 

underlying GWAS, and consequently make it more difficult to detect the effects of variation in 453 

normal range thyroid function on CVD in a MR study. Alternatively, unfavourable effects of low 454 

normal thyroid function on the lipid profile observed in this study might be levelled out by the 455 

beneficial effects of low normal thyroid function on pulse pressure and T2D risk, limiting in that 456 
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way the overall effect of variation in normal range thyroid function on cardiovascular risk. 457 

Future studies should further investigate this complex relationship. 458 

 459 

Conclusions 460 

In conclusion, our study demonstrates that variation in normal range thyroid function is causally 461 

associated with serum cholesterol levels, blood pressure and T2D risk. On the other hand, we found no 462 

evidence of causal association between variation in normal range thyroid function and the tested 463 

obesity traits. Instead, our study suggests that increased BMI might be causally associated with lower 464 

FT4 levels in euthyroid individuals. These findings provide a better insight into the complex relationships 465 

between thyroid function and CVD risk.  466 
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Figure 1. Heatmap of associations between normal range TSH and FT4 levels and major 897 

cardiovascular risk factors. For each pair of traits, the size of the circle corresponds to the P-898 

value for the regression coefficient (β) from the Mendelian Randomization analysis using the 899 

inverse variance weighted method. Positive (direct) association is shown in black, whereas 900 

negative (inverse) association is shown in gray. 901 

 902 


