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In that Empire, the Art of Cartography attained such
Perfection that the map of a single Province occupied the
entirety of a City, and the map of the Empire, the entirety
of a Province. In time, those Unconscionable Maps no
longer satisfied, and the Cartographers Guilds struck a Map
of the Empire whose size was that of the Empire, and which
coincided point for point with it. The following Generations,
who were not so fond of the Study of Cartography as their
Forebears had been, saw that that vast Map was Useless,
and not without some Pitilessness was it, that they delivered
it up to the Inclemency of Sun and Winters. In the Deserts
of the West, still today, there are Tattered Ruins of that
Map, inhabited by Animals and Beggars; in all the Land
there is no other Relic of the Disciplines of Geography

—Jorge Luis Borges, On Exactitude in Science

An experiment is a question which science poses to Nature
and a measurement is the recording of Nature’s answer.

—Max Planck (1958 - 1947)
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Abstract

Understanding the contact line dynamics during droplet impact is critically im-
portant for industrial processes such as coating, the spraying of pesticides and for
the design of anti-icing surfaces or impermeable clothing. It is known that, upon
impacting on a solid, a droplet can spread, bounce off the substrate or splash de-
pending on the liquid characteristics, the solid properties, the impact speed and
the ambient pressure. In this thesis, we explore droplet impact in terms of some of
these variables. Consequently, this work is focused on the experimental study of the
contact line dynamics of impacting droplets on substrates ranging from wettable to
non-wettable and from porous to non-porous. In particular, we focus on the param-
eters affecting: i) the splashing threshold of impacting droplets on solid substrates
and ii) the penetration of impacting droplets through textiles. Furthermore, we
apply our findings to the development of a liquid latex droplet-on-demand printing
system.

Most of the experiments in this thesis consist of the visualisation, by high speed
imaging, of the impact of ethanol, water and aqueous glycerol droplets on solid and
textile substrates. In addition, we present a custom-made Matlab algorithm that
uses a polynomial fitting approach to extract the dynamic contact angle as a function
of the contact line velocity. Moreover, we analyse the effect of droplet shape, the
order of the fitting polynomial and the fitting domain, on the measurement of the
contact angle on various stages following droplet impact.

We use our experimental setup to demonstrate the importance of wettability
and substrate roughness on the contact line dynamics and the impacting outcome.
For smooth surfaces, we show that the maximum advancing contact angle (θmax) is
greater than 87 degrees for all the liquid/substrates. Moreover, we show that splash-
ing depends on the substrate wettability and its threshold can be parameterised by
θmax and the splashing ratio. Correspondingly, for rough surfaces, we determine
that θmax increases with increasing substrate roughness. Furthermore, we establish
that the ratio of the peak to peak roughness to the surface feature mean width,
in conjunction with θmax and the splashing ratio, adequately predict the splashing
threshold.

Similarly, for the droplet impact dynamics on textiles, we find that the textile
characteristics, such as the pore size and solid fraction, are critical for the im-
pact outcome. Correspondingly, we find three different impact regimes, namely,
‘no penetration’, ‘capture’ and ‘complete penetration’. Additionally, by balancing
the kinematic pressure with the capillary pressure, we find a critical pore size for
the transition from capture to complete droplet penetration in terms of the Weber
number.

Finally, we present a setup that permits the printing, by droplet impact, of liquid
latex on paper with a high solid content (60 wt %). The process is controllable and
reliable, making the printing of patterns possible. With this setup, multilayer objects
were created from pure liquid latex, as well as from micronized rubber powder and
latex suspensions. These results demonstrate the potential of droplet-based additive
manufacturing processes to produce prints of liquid latex and tire rubber reuse.
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Chapter 1

Literature Review

This chapter provides the motivation behind the projects presented herein. Further-
more, it presents the overall thesis structure and provides a brief literature review
on the wettability and droplet impact phenomena.
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1.1 Introduction

Industrial systems such as coating, sprays, inkjet and 3D printing, and other natural

phenomena like rain impacting on tree leaves or soil are processes where droplet

dynamics play a major role. Therefore, the study of fluid dynamics can help us to

optimise industrial processes and understand nature. A. M. Worthington is known

to be one of the first researchers to study droplet dynamics in detail. In 1895,

he studied the impact of liquid droplets onto solid dry substrates [1]. From this

preliminary study, several researchers have continued to elucidate the physics behind

droplet dynamics. Past works have revealed that drop impacting on a solid dry

substrate can deposit, bounce or break into secondary droplets (splash) [2]. The

result depends not only on the droplet properties and impact speed, but on a wide

range of parameters including the atmospheric pressure and the surface properties

such as roughness, temperature and stiffness [3, 4]. In this thesis, we focus mainly

on the influence of the substrate wettability, roughness and porosity on the droplet

impact dynamics. We also present a novel methodology to measure and analyse the

contact line dynamics. Furthermore, we present a droplet-on-demand system that

can successfully print liquid latex.

The thesis structure is as follows: In this chapter (Chapter 1) a brief literature

review is presented; Chapter 2 shows the overall experimental methodology used

throughout the thesis; chapters 3-5 include a study on droplet impact dynamics on

dry solid substrates, from spreading (Chapter 3) to splashing (Chapter 4), and on

textiles (chapter 5). Chapter 6 introduces a droplet-on demand latex 3D printer.

Finally, Chapter 7 presents the summary of my results and discusses possible im-

provements and future work.

1.2 Contact angle

This section presents the key concepts that describe the shape taken by a droplet

once it sticks to a dry solid substrate; also known as wettability. In other words,

we focus on the study of wetting; the phenomena of a liquid contacting or moving
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over a solid substrate. The wettability of a liquid on a solid substrate is critically

important for situations where either liquid adhesion or repellency are required. In-

dustrial processes such as coating and the spraying of pesticides are examples where

maximising the liquid adherence to a solid is desired [5, 6]. In contrast, repellency is

sought in the design of materials with anti-icing properties or impermeable clothing.

Drop wettability is known to depend on the properties of both, the liquid and the

solid substrate, and is commonly studied through the apparent contact angle. The

contact angle is defined as the angle between the tangent of the droplet surface and

the tangent to the solid surface at the contact line, i.e. the angle formed by the

intersection of the liquid-solid interface and the liquid-vapour interface, as shown in

Fig. 1.1 [7, 8]. According to the convention, a contact angle less than 90 degrees

the surface is regarded as hydrophilic or wetting, in contrast, an angle greater than

90 degrees is regarded as hydrophobic or non-wetting. Experimental and theoretical

efforts have been made to understand the contact angles of a droplet in motion,

and the effects of surface wettability on droplet impact. However, it is generally

accepted that this phenomena is yet not fully understood.

Figure 1.1: Diagram showing the contact angle of a droplet sitting on a solid surface.
The figure shows examples of the different attainable values of the contact angle on a solid
surface.

In most wetting phenomena, surface tension (σ) is the force that governs the

equilibrium state. Surface tension acts as a force per unit length or energy per unit

area and can be described with classical mechanics and thermodynamic arguments.

From the mechanical point of view, surface tension arises as a competition of cohesive

forces at the bulk of the liquid and cohesive forces at its interface with another

material. From thermodynamics aspects, the surface tension can be defined as an

increase of free energy E by an increase unit of surface area [9],
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∂E

∂A
. (1.1)

In this thesis we adhere to this thermodynamic definition as it represents the ratio

between different interface tensions such as liquid-gas, solid-liquid and solid-gas.

In the cases where a solid, a liquid droplet, and a gas are all in contact, three

surface forces arise: the solid-liquid σsl, solid-gas σsv and liquid-gas σlv. The interface

where solid, liquid and solid coexist is called the contact line. A droplet contacting

a surface spreads and eventually tends to adopt a semi-spherical shape to reach a

minimum energy state and equilibrium [9, 10]. This equilibrium state between the

liquid droplet, the solid and the gas can be derived by considering a moving contact

line over a distance dx. For a droplet on an ideal surface; smooth, homogeneous,

rigid and insoluble the work per unit length done by the contact line is [11],

δW = (σsl − σsv)dx+ σlvcos(θY )dx. (1.2)

If the droplet is at equilibrium, then the work done is zero and

σsv = σsl + σlvcos(θY ), (1.3)

where θY is the Young’s contact angle [12]. Equation 1.3, is known as Young’s

equation and represents the balance of the surface tension forces between solid, liquid

and gas. Accordingly, Young’s contact angle can be used to predict the equilibrium

diameter of a droplet resting on a solid surface (Deq) as

Deq = D0 sin(θY )

[
4

(1− cos(θY ))2(2 + cos(θ))

]1/3
, (1.4)

where D0 is the diameter of the original droplet (before contacting the surface),

[11]. This way, if θY → 0 then Deq → ∞ and the liquid tends to wet the surface

completely. In contrast, if θY → 180◦ then Deq → 0 and the droplet barely touches

the surface. By convention, hydrophobic surfaces are defined as surfaces that form

a contact angle θY > 90◦ and hydrophilic surfaces are the ones that have a contact

angle of θY < 90◦. Equations 1.3 and 1.4 are only satisfied if the thermodynamic
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equilibrium is reached, and an unique contact angle and equilibrium radius are ob-

tained irrespective of how the droplet was deposited on the substrate [11]. However,

in practice, the contact angle given by equation 1.3 cannot be measured, because

even a small heterogeneity on the substrate can lead to thermodynamic meta-stable

states affecting the contact angle [13]. In fact, it has been found that every surface

has as least two asymptotic possible values of the contact angles, the advancing

and receding angles (θa and θr respectively) [5]. The former is the contact angle

measured during droplet spreading, and the latter is the contact angle measured as

the droplet recedes after spreading [5]. Accordingly, assuming that the drop shape

can be approximated as a truncated spherical cap, an advancing (Da) and receding

(Dr) diameter can be defined

Di

D0

= 2

[
sin3θi

2(1− cos(θi)(2− cosθi − cos2θi)

]1/3
, (1.5)

where the subscript i refers to the advancing Da and θa or receding case Dr and θr.

The difference between the maximum θa and the minimum θr is known as contact

angle hysteresis [12]. In fact, the contact line of drops resting on an inclined plane

without slipping takes a range of contact angles along its length due to the contact

angle hysteresis [11].

So far, we have referred to the contact angle in quasi-static conditions, i.e. the

drop shape approximates to a spherical cap, but in practice there are many situations

where the contact line is moving and the spherical cap approximation is no longer

valid. In these cases a dynamic expression of the advancing and receding contact

angles has to be defined to accurately model the wetting phenomena. The dynamic

advancing and receding angles are found far from equilibrium with a contact line

in motion [5]. The dynamic angles change with time and the contact line velocity

[14]. Accordingly, is possible to define a static hysteresis and a dynamic hysteresis.

Static contact angle hysteresis arises from a difference between the advancing and

receding angles at zero contact line speed. The dynamic contact angle hysteresis

is observable for moving contact lines and is caused by forces between the droplet

and the surface - preventing the droplet from flowing freely. At high contact line
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velocities, the dynamic hysteresis dominates the motion over the static hysteresis,

whereas in slow drop motion (in a rough surface) the static hysteresis dominates [7].

The moving contact line problem is described in greater detail in subsection 1.2.2.

Many authors attribute the contact angle hysteresis to surface roughness, how-

ever, C. W. Extrand and Y. Kumagai found that roughness effects are smaller for

static droplets than for moving droplets [15]. Other possible sources of hysteresis are

surface heterogeneity, adsorption/desorption and deformation of the surface, never-

theless, the fundamental causes are not really understood [7, 13]. The mechanisms

from which the contact angle hysteresis arises are not clear and consequently more

theoretical and experimental work is needed to clarify the phenomena.

Substrate roughness affects wettability, and to quantify the effect of the substrate

roughness on the contact angle, the Wenzel and the Cassie-Baxter models are widely

used. In the former, Young’s contact angle model (equation 1.3) is adjusted by the

average roughness ratio r, defined as the factor by which roughness increases the

solid-liquid interfacial area [16]. This is,

cos(θW ) = rcos(θY ), (1.6)

where θW is the Wenzel angle. In Eq. 1.6, r = 1 for smooth surfaces while r > 1,

for rough ones. In the Wenzel state the droplet is placed between the grooves of the

substrate, i.e. the droplet wets a larger area than if the substrate was completely

smooth. The main conclusion of this model is that the rougher the surface the lower

the contact angle. In contrast, the Cassie-Baxter model assumes the droplet is on

top of the substrate asperities and the contact with the solid surface is minimised.

The Cassie-Baxter model is expressed as follows [17],

cos(θCB) = f(1 + cos(θ))− 1, (1.7)

where f is the liquid-solid contact area. Examples of the Cassie-Baxter and Wenzel

states are shown in Fig. 1.2. In the Cassie-Baxter state, high droplet mobility

and contact angles larger than 90 degrees have been observed [18]. Recently, it has

23



been reported that, for substrates with different roughness scales, a mix between the

Cassie-Baxter and Wenzel states can be achieved [18]. For example, a droplet can

be in a Wenzel state at the nanometric roughness while staying in a Cassie-Baxter

state at the micrometric scale and vice versa [18]. Understanding Wenzel and Cassie-

Baxter states are key to many applications since it has been widely reported that

droplets on the Cassie-Baxter state have a larger contact angle and have higher

mobility than in the Wenzel state [19, 20]. Moreover it has been observed that a

transition between the Cassie-Baxter state is possible. Patankar et. al. showed

that if a drop in a Cassie-Baxter state is pressed against the substrate, the droplet

transitions to a Wenzel state [20]. The transition happens when the air pockets on

the substrate collapse and the liquid droplet touches the bottom of the substrate.

This transition has also been studied at impacting conditions on microstructured

substrates and it occurs above a threshold impact velocity [21, 22]. The threshold

velocity has been shown to depend greatly on the surface morphology as well as

the roughness scale [21, 22]. The Cassie Baxter to Wenzel transition is explored in

greater detail in subsection 2.6.

In this subsection we have considered the wettability of a static droplet in contact

of smooth and solid surfaces and how can be described with the Young’s, Wenzel

and Cassie-Baxter models. Assessing the wettability of a solid surface from the

theoretical perspective is often challenging, in contrast, the experimental study of

the contact angle is often more effective. In the next subsection we present some of

the current experimental techniques used to measure the contact angle of droplets

on solid substrates.

1.2.1 Experimental methods for measuring the contact angle

As described in the last section, the contact angle is an useful widely-used parameter

for describing the wettability of a liquid on a solid. Therefore, several experimental

techniques have been developed for measuring the contact angle. Most of these

techniques rely on optic methods to detect the contact line and the droplet profile.

The contact angle is normally obtained by doing a profile fitting to the droplet
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Figure 1.2: Wenzel and Cassie-Baxter states of a droplet standing on a structured surface.
In the Wenzel state the droplet rests on the asperities. In the Cassie-Baxter state the
droplet rests on top of the pillars.

boundary and calculating the tangent to the fitted boundary. It should be noted,

that the angle obtained by all experimental methods is an apparent contact angle,

i.e., is not the angle described in Eq. 1.3. In this section we review three of the

most common methods to measure the contact angle, namely, the sessile drop, the

tilted plane and the Wilhelmy methods.

The sessile drop method consists of pumping liquid into and out a droplet resting

on a substrate- measuring the advancing and receding angles respectively [7]. The

tilted plane method consists of placing a droplet on a tilting a plane. The droplet

stays pinned to the tilted plane due to a difference in curvature between the leading

and the trailing edges. This difference of curvature generates a pressure gradient

inside the drop, that opposes the force of gravity. In this method, the advancing

and receding contact angles are measured as soon as the droplet slides down [7].

Finally, the Wilhelmy method consists of driving in and out a solid body with a flat

geometry from a liquid pool. In this method, the contact angle is determined at the

solid-liquid interface [10]. Diagrams of the three methods are shown in Figs. 1.3

and 1.4.

In the Wilhelmy approach, the only required measurable quantities are the

perimeter of the contact line and the weight of the plate, which can both be mea-

sured precisely with simple methods [10]. The disadvantage of this approach is that

the liquid wets all the surface of the plate, so the plate requires a uniform topogra-

phy, so it is not useful for anisotropic materials [7, 10]. The other problem is that

border effects can affect the measurement [7, 10].
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Figure 1.3: Schematic Diagram of: a) the sessile drop method; the droplet is pushed
with a syringe and advances to measure the advancing contact angle or is sucked back and
recedes to measure the receding contact angle. b) The tilted plate method, where a droplet
rests on an inclined plane and the droplet is deformed due to gravity. This deformation
leads to the possibility of measuring both, the advancing and receding angles.

Figure 1.4: Diagram showing the Wilhelmy method. This method consists on plunging
a solid into a liquid bath. Measuring the advancing contact angle while the solid is getting
pushed into the liquid. Conversely, the receding angle is measured while taking the solid
away from the liquid bath.

The tilted plate method setup is easy to construct as only a camera and an

inclined substrate are required. Most of the work is done by image analysis. There

is however a disadvantage of this method; it has been found that the droplet size

and shape can affect the minimum angle for which the droplet slides [23]. Therefore,

a small surface heterogeneity altering the drop shape could lead to errors on the

contact angle measurements.

The sessile method requires the surface, a camera, a needle and a pump that can

push in or out liquid from the droplet. The advantage of this method is that it also

uses conventional optical imaging and the contact angle can be obtained directly.
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The disadvantages are that is droplet-size-dependent and droplet shapes can distort

the wettability at the feeding needle, changing the contact angle reading [7, 12].

Another problem arises for large (≈ 180 degrees) or small (≈ 0 degrees) contact

angles [12].

A major complication of all these methods is that they strongly depend on the

image analysis used to identify the liquid-vapour interface profile. The effect is

further complicated by droplet curvature changes while in motion [7]. However,

there have been different approaches to overcome this difficulty. One of the most

common imaging analysis techniques is the axisymmetric drop shape analysis profile

where the contact angle is measured by fitting a Laplace equation to the surface

droplet profile. The angle between the slope of the theoretical profile at the contact

point is then defined as the contact angle [24]. The drop needs to be perfectly

axisymmetric to fit the theoretical curve to the drop profile [25]. To avoid the

axisymmetric requirement, attempts have been made to calculate the contact angle

using ellipsoidal approximation to the droplet profile [26]. Both methods show good

agreement with the theory at static conditions, but are not suitable for conditions

where a droplet is largely deformed. To overcome this issue the goniometric mask

method has been used [27, 28]. In this method, a goniometer is digitally used around

the edge of the droplet profile [29]. This method shows better results when compared

to the axisymmetric shape analysis at static conditions and can track the evolution

of the contact angle during droplet spreading. Another method that has shown good

results, in static conditions, is the polynomial fitting approach. This method consist

of extracting the droplet profile and fitting it with a polynomial function around the

contact point. Previous research has focused on the effect of the number of pixels and

the order of the polynomial on the contact angle measurement [25, 30]. In Chapter 2,

we show a similar methodology to track the evolution of the dynamic contact angle of

a spreading drop after impact. Moreover, in that section, we use various polynomial

fittings to measure the dynamic contact angle and discuss their differences with

other approaches. Additionally, we analyse the effect of an inadequate detection

of the contact line (pinning points) on the measurement of the contact angle. The
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dynamic contact angle is of critical importance for contact lines moving at large

speeds, as shown in the next section.

1.2.2 Moving contact lines

The physics of droplets interacting with solid substrates is dominated by the wetting

of the contact line. In this section, we discuss the problem of the moving contact

line, i.e. the advancing or receding of the contact line over a solid substrate [5]. In

this case, inertial, viscous and surface tension forces act on the fluid [31]. In fact

the contact line movement can be described by a corner flow [32], where the viscous

stress can be approximated as µucl/s (where µ is the liquid viscosity, ucl is the

contact line velocity and s is the contact line position from the impact point), and

diverges close to the contact line [31]. These dynamics may cause a strong curvature

in the liquid interface near the contact line [33]. Therefore, Young’s contact angle

model ceases to be valid and a dynamic contact angle θD needs to be defined. The

force experienced by an advancing liquid towards the dry region can be expressed

as:

F (θD) = σsv − σsl − σlvcos(θD). (1.8)

This force tends to zero as θD tends to θY , and its magnitude depends on the

fluid properties, the contact line velocity, and is quantified by the capillary number

Ca = (µucl)/σlv, [33] [34]. As noted by Huh and Scriven the system does not have

an intrinsic scale [32]. However, for distances smaller than the capillary length (λc =√
σlv/ρg where ρ is the density of the liquid and g is the gravity) the lubrication

approximation can be used to describe the interface profile ψ(x) this is [31]:

d3ψ

dx3
= −3χCa

h2
, (1.9)

where χ is +1 or -1 for advancing or receding contact lines respectively.

In asymptotic cases this equation reduces to ψ′(x) ≈ θ(x) ≈ [9Ca ln(x/c)]1/3

[35]. If the motion of the contact line is dominated by viscous dissipation and the
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fluid is divided into an outer section that do not slip on the substrate, and an inner

region where the fluid can slip, one can write [31],

θ3D = θ3Y + 9χCa ln (
C0 l0
li

), (1.10)

which is commonly referred to as the Cox-Voinov law. Here l0 and li are the macro-

scopic and the molecular lengths respective and solve the singularity problem at the

contact line and C0 is a constant to take into account the system specific parameters.

Equations resulting from hydrodynamic theories are highly nonlinear and ex-

perimental methods are unable to reach molecular scale measurements. Therefore,

numerical simulation are often used to gain some understanding on the moving con-

tact line phenomena. There are two main approaches on numerical analysis. The

first uses a continuum approach (volume of fluid simulations) and the second ap-

proach simulates each particle within the fluid (molecular dynamics simulations)

[12]. Continuum simulations present major limitations at the contact line as the no-

slip boundary condition leads to divergences in pressure and energy [36]. In contrast,

molecular dynamics simulations are naturally consistent with the no slip boundary

condition. A technique to circumvent the divergences around the contact line is to

allow the fluid to slip within a fixed length. The Navier-slip is the most commonly

applied model to enforce this condition [37]. Within this model, the shear stress

governs the magnitude of the slip and can be expressed as,

ν − ucl = Λ
∂(ν)

∂x
, (1.11)

where ν is the slip velocity and Λ is the slip length; this equation is evaluated at

the solid boundary (x = 0). The slip length is the region where the fluid can flow

freely without the restriction of the no-slip boundary condition. The slip length

has been proved to exist at the molecular level, which is normally too small to be

resolved by numerical simulations [33]. Moreover, implementing this slip depends on

the interface tracking of the droplet [38]. Methods that explicitly track the interface

normally require a slip condition placed at the mesh node at the contact line [39].

VOF implementations include an effective slip length [40], because the interface is
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advected not from the solid boundary, but from a distance from the solid boundary,

where the no-slip boundary conditions does not apply [38]. This generates a problem

because a smaller mesh gives a smaller effective slip and viceversa, therefore VOF

is mesh dependant. S. Afkhami et al. showed in 2009 that a scaling for θD based

on Eq. 1.10, the mesh size and the capillary number the dependence on the mesh

spacing is removed and the solutions converge [33].

In 2009 K. Yokoi, et al. used a level set method coupled with a VOF function to

track the contact line interface. The no-slip condition can be satisfied by extrapo-

lating the fluid velocity into the solid and by using bilinear interpolation by a level

set function [41]. This way, the no-slip condition is satisfied with no singularities.

Furthermore, this method includes the effects of the contact angle dynamics in the

spreading phenomena. These simulations were run with different contact angle mod-

els: dynamic, equilibrium and static contact angles, and the results were compared

with experiments carried out by D. Vadillo et. al. [42]. The dynamic contact angle

model produced the best agreement with experiments, with the simulation correctly

predicting that the advancing (receding) contact angle tends to a limit as the ve-

locity of the contact line increases (decreases). Moreover, it was shown that the

contact angle has a maximum value while spreading and acquires different values at

ucl = 0 m/s (this can be understood as the contact angle hysteresis).

Other techniques used in the continuum approach include van der Waals inter-

actions between the solid surface and the liquid and a diffuse interface. The diffuse

interface is implemented by considering diffusion in the transition layers found be-

tween two different fluids, producing a continuous density gradient [43].

On the other hand, molecular dynamic simulations are automatically consistent

with the no-slip boundary [44]. In these simulations, the motion of every particle

in the solid and the fluid is taken into account, and the macroscopic behaviour

can be obtained by averaging the momentum energy and exchange of these particle

collisions [43]. This idea is based on the kinetic theory of gases, and is modelled

by the Boltzmann transport equation [36]. Nowadays, the most used method of

molecular dynamics is called Lattice Boltzmann, in which the motion of the contact
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line is determined by molecules located at the triple line. In this model, the driving

force per unit length of the contact line is given as:

Fw = σlv(cos(θ)− cos(θD)), (1.12)

where θD is the dynamic contact angle and the wetting velocity is given by,

U(θ) = 2κ0∆sinh

[
σlv(cos(θ)− cos(θD))

∆2

2kbT

]
, (1.13)

where kb is the Boltzmann constant, T the temperature, κ0 the equilibrium frequency

of molecular displacements occurring within the triple line and ∆ is the average

distance between the adsorption/desorption locations on the solid surface [7].

This section has reviewed some of the problems found on the study of the contact

line motion and revised some models and numerical simulations to describe the

contact line dynamics. The next section approaches the specific problem of liquid

deformation and contact line motion, i.e. droplet impact on a dry solid surface.

1.3 Droplet impact on dry substrates: Contact line

dynamics and splashing

Droplet impact phenomena on dry solid substrates have been widely studied since

the work of Worthington in 1895, [1]. These phenomena is important in industrial

processes such as coating, inkjet printing and combustion as well as in natural pro-

cesses such as rain impacting on tree leaves or soil erosion. Rioboo et. al. in 2001

found that there are at least five different outcomes from a droplet impacting a

solid surface, namely, deposition, partial and total rebound, receding breakup and

splashing [2]. During droplet impact on a solid substrate, the inertial energy is

transformed into surface energy [45]. However, there is also energy dissipation com-

ing from the liquid viscosity and the no-slip boundary condition. This creates a thin

boundary layer that arrests the fluid [45] and the impact is therefore governed by in-

ertia, viscous and surface forces. Consequently, the drop impact dynamics are often
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characterised by dimensionless numbers that take into account these parameters.

The Weber number We =
ρU2

0D0

σ
, is the ratio of inertia and surface energy forces,

and the Reynolds number Re = ρUD0

µ
relates inertia with the viscous dissipation,

here ρ, σ and µ are the liquid density, surface tension, and viscosity respectively,

D0 is the drop diameter and U0 is the impact velocity. In this thesis, we focus on

large Weber and Reynolds numbers, meaning that gravity effects can be neglected,

the droplet greatly exceeds Deq (as defined in Eq. 1.4) while spreading, and viscous

effects are important just near the contact line [5].

This section is divided into 5 parts. Subsection 2.2 introduces the concept of

smooth deposition and rebound and the definition the spreading factor. Section

2.3 introduces the concept of fingering and its causes. Section 2.4 focuses on the

causes leading to the breakup into secondary droplets of an impacting droplet, i.e,

splashing. Finally, section 2.5 reviews droplet impact on porous and microstructured

substrates.

1.3.1 Spread factor on flat solid surfaces

The spreading (moving) front of a droplet impacting a solid substrate approaches

a contact angle of 180 degrees at the first instant after impact. Immediately after

this first contact, the droplet undergoes large deformations around the contact line,

while the rest of the droplet remains in a spherical shape. As a result of this large

deformation an air bubble is often entrapped inside the droplet at the centre of

impact; although this bubble has not been observed to influence the subsequent

dynamics [46, 47]. During this first stage of impact, the vertical momentum of

the droplet is transformed into horizontal momentum which results from a strong

pressure at the contact line. This pressure decays rapidly and, after a time t∗ =

D0/2U0 (inertial time), the vertical motion of the droplet stops, and the droplet

deformation can be described by a hyperbolic flow bounded by a viscous boundary

layer growing as
√
µ/ρt, [45].

In particular, for an impacting droplet on a solid surface, the contact diameter

D(t) is characterised by a t1/2 growth until it reaches a maximum contact diameter
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Dmax [48]. In this initial stage, droplets can slowly recede to acquire a smaller equi-

librium contact diameter Deq. Under some conditions, a second spreading/receding

phase is observed that ends with the drop oscillating around the equilibrium contact

diameter [2, 49]. The first spreading stage is commonly characterised in terms of

the spread factor d(t) = D(t)
D0

, or the maximum spread factor dm = Dmax

D0
, where D0

is the diameter of the drop prior impact. The maximum spreading factor typically

ranges from 1.25 to 5 [48, 50]. For a droplet that does not recede, dm, can be pre-

dicted by a lubrication approximation and energy balance methods. In contrast, if

the droplet recedes over the surface these approximations are no longer valid and a

free rim surrounding the lamella governs the droplet dynamics [45]. Other models

are based on a mass and momentum balance and use a thin film approximation for

the spreading dynamics.

Using scaling arguments, Clanet et al. in 2004 found that dm is a function

of We1/4 for both hydrophobic and hydrophilic surface [51]. This scaling was

subsequently validated by experimental data for drops impacting in the range of

2 ≤ We ≤ 900. However, this scaling was proved to be valid just in a set of partic-

ular conditions [52]. Additionally, other different regimes dominated by viscous and

capillary forces have been found by Eggers et al. in 2010 and Lagubeau et al. in

2012 [45, 53]. In this case dm ≈ Re1/5. In contrast, at high We numbers viscosity

can be neglected and dm ≈ We1/2 [45, 53]. In a different work, for the viscous

regime, Lee et al. in 2016 proposed a scaling of dm in terms of Re1/5 and θD at

dm for low impact velocities [27, 28]. The study concludes that θD parametrises the

liquid characteristics and substrate roughness. Further studies by Laan, et al. in

2014, used a Padé first approximation to conclude that dm ∝ Re1/5 f(WeRe−2/5),

validating previous works that argued that both viscous and capillary forces are

needed for an accurate description of the dynamics [45, 52].

Numerous experiments have been conducted to validate scaling theories and

study the influence of the parameters governing the spreading of a droplet upon

impact. Experiments conducted by Visser, et al., on micrometer sized droplets, ex-

plored the droplet size dependence on dm. The study concluded that dm depends
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on the We and Re numbers and not on D0 [54]. However, experimental studies by

Vsikalo, et. al., suggest that viscosity effects are more important for smaller droplets

and dm tends to be smaller. Other studies have shown that the role of wettability

of the substrate on spreading is not clear [50]. Most of the scientific community

agrees that wettability influences the receding process of the droplet but there is no

agreement as to whether it influences its spreading. Experimental data from Bayer

and Megaridis suggest that there is no relationship between the contact angle and

the contact line speed [49]. In contrast, some studies of droplet impacting on stain-

less steel, glass and paraffin substrates, argue that wettability influences dm under a

critical Weber number [9, 55, 14, 42]. Moreover, experimental data have shown that

for We < 200, dm is a monotonically decreasing function of θ, while for We > 200

dm ≈ We1/5 [56]. Simulations based on the finite element method, implementing a

changing contact angle between θa and θr during droplet spreading and receding,

showed agreement with experiments [57]. Volume of fluid simulations with constant

and variable angles have been implemented, where a variable angle showed a better

matching to experimental results. Experimental studies and numerical simulations

have concluded that the dynamic contact angle is largely influenced by the wetta-

bility of the substrate, and the viscosity of the fluid [14, 41]. These simulations

can predict d(t), by adjusting the numerical simulation using experimental data for

the dynamic contact angle. These simulations were run with different contact angle

models: dynamic, equilibrium and static contact angles. The model which pro-

duced the best agreement with experiments was the dynamic contact angle model.

Another important result is that, for hydrophobic surfaces, the dynamic advancing

(receding) reaches a maximum (minimum) asymptotic value.

It also should be noted that, despite having different approaches and scaling ar-

guments, all of the previous models fit well with experimental data. This is because

the value of dm varies less than an order of magnitude, making power laws diffi-

cult to identify [47]. In fact, increasing the Weber and Reynolds numbers lead to

instabilities and splashing, altering the spreading mechanisms, making asymptotic

testing impossible [47]. As we already mentioned, increasing the impact velocity
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lead to instabilities during the spreading. In the next subsection, we discuss one of

these instabilities known as fingering.

1.3.2 Fingering

Fingering refers to a phenomena where, after an impact on a dry substrate, the

spreading lamella separates at the spreading edge to form jet structures that resem-

ble fingers [5]. Fingering studies are useful to forensic sciences as its splatter pattern

can provide information about the drop size and trajectory [58, 59]. Fingering is

attributed to a Rayleigh-Taylor type instability on the lamella edge [60, 61]. Lin-

ear stability analysis of a liquid rim further supports this theory. During droplet

impact on a solid surface, the lamella decelerates by friction forces from the solid

surface which in turn causes a perturbation [5]. The perturbation travels with a

wavelength λ0 = 2π(3σ/ρa)1/2, where a is the deceleration of the droplet normal to

the wall. Based on λ0, the number of fingers can be determined as Nf = πDmax/λ0

[5]. However, Rayleigh-Taylor instability models are unable to predict the merging

and splitting of the fingers as observed in the experiments [61]. In addition, finger-

ing is suppressed by reducing the ambient pressure [62]. Furthermore, at a critical

impact velocity, fingers can break into droplets; this phenomenon is called splashing

and is the subject of study the upcoming subsection.

1.3.3 Splashing of droplets on smooth substrates

An impacting droplet reaching sufficiently high We and Re numbers will break up

into secondary droplets, these phenomena is known as splashing [5, 47]. Splashing

occurs when the contact line speed exceeds certain velocity, air is entrained and

there is a dynamical wetting transition. Splashing is generally divided into two dif-

ferent phenomena called corona and prompt splashing [47]. Corona splashing refers

to the phenomena where a thin sheet of liquid is ejected upwards and outwards from

the droplet and the liquid sheet breaks up into small droplets. Prompt splashing

refers to the phenomena where small drops detach from the fingers created at the

outer rim of the spreading droplet. There is no formal definition of corona and
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prompt splashing apart from the one based on the observable shape and timing of

splashing. As observed by Latka et al. in 2012, both types of splashing can occur

within at the sameWe and Re numbers [62]. Numerous studies have tried to predict

the critical impact conditions that generate the splashing of an impacting droplet

[62, 63, 64, 65, 66, 67, 68]. The community agrees that, accurately describing the

physics and finding the important parameters governing splashing is still a challenge.

The most commonly used parameter to predict splashing is the splashing param-

eter K = We1/2Re1/4 [69] and other parameters include a combination or slight

modification of the We and Re numbers, including the capillary number Ca = We
Re

[68]. Interestingly, using the Ca number to describe the splashing threshold would

imply that, the more viscous the fluid, the lower the critical impacting speed needs

to splash. However, studies suggest that the role of viscosity in splashing can be

non-monotonic [70, 71]. In 2013 Palacios et al. [64], found that at Re > 1000

viscosity promotes both splashing and the gliding of the lamella. In contrast, at

small Re numbers, viscous dissipation reduces splashing by inhibiting the break up

of the lamella [64, 72]. Further studies conclude that increasing viscosity delays the

splashing process [73]. In addition, if the liquid is not in contact with the solid but

spreading over a thin sheet of air, viscosity effects are negligible [74, 75].

An important parameter ruling splashing is the ambient pressure. Past studies

have found that the ambient pressure can change the critical splashing impact speed.

In 2005 Xu et al., concluded that by reducing the ambient pressure splashing can be

suppressed, highlighting the relevance of the surrounding air properties [3]. Accord-

ingly, it has been suggested that the air viscosity is the most influential parameter

on splashing, with a small contribution from the gas inertia [76]. Surprisingly, it has

also been shown that air, at the impact point, plays no significant role on splashing,

but is the air at the spreading edge that influences it [46, 63, 77]. Liu, et al. in

2015 conducted an experiment where a droplet impacted substrates with micrometer

pores; splashing could be observed for cases where the pores were found around the

impact centre but, if the pores were situated near a critical radius from the centre,

splashing was not longer observed [77]. Moreover, in a recent work at high We-
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ber and Reynolds numbers, Burzynski and Bansmer concluded that splashing is not

caused by gas entrainment on glass substrates [78]. The exact mechanism for lamella

formation remains unresolved, but the strong influence of air under the expanding

liquid suggests that splashing might be initiated by a Kevin Helmholtz (KH) insta-

bility [77, 79]. This is, as the air density increases, the number of air molecules at

the surrounding volume increases and the shear stress increases [70, 76]. At high

impact velocities, the shear molecular forces between air and the liquid film initi-

ates a KH instability that produces splashing at a small spatial scale. From these

observations further theoretical and empirical studies have aimed to study the role

of the gas dynamics on the lubrication force lifting the lamella [65, 67, 76]. In fact,

in 2014, Riboux and Gordillo, using potential flow theory and momentum balance

equation, calculated the ejection time of the thin sheet prior splashing and defined

a paramater (β) that quantifies the aerodynamic forces needed to overcome the sur-

face tension [65]. This parameter includes the liquid properties and the ambient gas

pressure.

On the other hand, there is no accepted consensus on the effect of the substrate

wettability on drop splashing. As previously discussed, wettability of a substrate is

normally characterised for a liquid droplet at rest (or during a quasistatic process)

on a solid surface by the static contact angle θs, where θs is defined as the angle

between the tangent of the droplet surface and the tangent to the solid surface at

the pinning point. During droplet impact and spreading, the pinning line moves so

wettability should be studied in terms of the dynamic contact angle θD [56]. The

dynamic contact angle is measured as the contact line moves, and can be divided in

two components: the advancing dynamic contact angle θDA for spreading droplets,

and the receding dynamic contact angle θDR for receding lines.

Latka et al. in 2017, conducted experiments with silicon oils and water-glycerol

solutions at Ca> 1.5 concluding that wettability (in particular θs) does not affect the

splashing threshold [75]. At this range of capillary numbers the lamella is not in con-

tact with the solid, but glides over a thin sheet of air. Furthermore, a study in rough

and porous substrates, with different wettabilities and varying ambient pressures,
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found no direct effect of θa or θr on the splashing behaviour [66]. Therefore, it has

been proposed that the splashing threshold depends on the density, surface tension,

and diameter of the droplet, and the air viscosity. In contrast studies of solid spheres

impacting on liquid pools have found an effect of the wettability on the splashing

phenomena and air entertainment [72, 80, 81, 82]. Duez et. al. in 2007, found that

the critical velocity for air entertainment on solid spheres impacting a liquid pool

is independent of wettability for hydrophilic surfaces (i.e. θa < 90 degrees) but the

critical velocity scales as θ−1/3a for hydrophobic surfaces. The later is an example

where surface wettability plays an active role on cavity formation and splashing of

solids plunging into a liquid [82]. Changing the wetting properties of the liquid pool

(and not the sphere properties) leads to the same conclusion [81]. In the context

of drop impacting solids, experimental data has shown that splashing effectively

depends on the surface wettability [72, 80]. Experimental studies on oblique impact

have shown that hydrophobic substrates exhibit a low-velocity splashing threshold

[80]. Simulations have also demonstrated the influence of the dynamic contact angle

(θD) on the splashing threshold [83]. In these simulations, drop parameters were

kept constant and the contact angle was varied. Prompt splash only occurs if θD

is greater than 90 degrees. Kensuke Yokoi in 2011 also found that spreading (and

splashing) is solely govern by inertia at times t < 0.3 ms after the impact [83]. In

chapter 4 we present our work on the influence of θDA on splashing.

In the last two subsections we have focused our attention on the droplet impact

dynamics on smooth surfaces. However, in most industrial and natural scenarios

surfaces are not smooth but have a certain degree of roughness. In the next sec-

tion we present a review of past works on the droplet impact dynamics on rough

substrates and compare it to the the dynamics on smooth surfaces.

1.3.4 Droplet impact on rough and microtextured surfaces:

From spreading to splashing

In practice, most surfaces have a certain degree of roughness. Examples of these are

the surfaces widely used in industry such as rough metals and paper, to surfaces in
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nature such as plant leaves and butterflies wings. In fact, the best-known method to

achieve super-hydrophobicity is by adding surface roughness to a material [21, 22].

For these reasons there have been many studies trying to understand the influence

of the roughness on the substrate wettability and the influence of the impact out-

come [10, 16, 17, 66, 84, 85, 86, 87]. In static conditions, substrate roughness is

the responsible for contact angle hysteresis, i.e. the difference between the advanc-

ing and the receding contact angles [10]. For a hydrophilic substrate, roughness

promotes hydrophilic behaviour, while for a hydrophobic substrate roughness en-

hances hydrophobicity [10]. For dynamic conditions, roughness alters the contact

line dynamics and the splashing threshold [49, 86].

As in smooth surfaces, there is a great interest in finding the maximum spreading

diameter dm upon impact on rough surfaces. In a recent work, surface roughness was

parametrised using a scaling that included the dynamic contact angle at maximum

spreading [27]. This scaling was used to effectively predict dm in terms of the We

number. For grooved substrates it has been argued that the reduction of dm in the

direction perpendicular to the grooves is due to the pinning of the edge of the drop

at the edge of the substrate pillars, causing the contact angle to increase [88]. This

defines a pinning coefficient that is proportional to the advancing contact angle and

the surface hysteresis. Moreover, it has been found that the slip length is influenced

by substrate roughness [49]. In particular, dm is affected by substrate roughness for

water impacting hydrophilic grains [89]. However, for water drops on hydrophobic

grains substrate roughness has a minor effect on dm [89]. The latter experiments

show that the substrate roughness is just one of the many variables affecting the

dynamics with a certain influence of the intrinsic wettability of the substrate. Exper-

iments have shown that droplets impacting on micro-architectured tapered micro-

posts result in either a pancake bouncing or a recoiling-bouncing regime [90]. For

straight posts, the liquid menisci are subjected to constant deceleration, resulting in

droplet recoiling before bouncing. Other experiments have shown that an irregular

surface roughness results in diverse bouncing regimes, ranging from conventional

spreading to partial bouncing due to droplet pinning at the roughness elements [91].
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Superhydrophobic micro-patterned substrates can be flooded by liquid due to im-

pact, evaporation and/or condensation, and such invasion can be promoted by local

extreme roughness protrusions [21, 92]. Surface patterning leads to partial wetting

and pinning of the liquid at the substrate surface too. In this transition, a droplet

goes from being suspended above the substrate to being impaled at the microposts.

Whether a sessile droplet impales or remains suspended depends on the architecture

of the substrate, the cavity size, θD, and the roughness factor [22].

Most past works on splashing have found that substrate roughness promote

splashing and even a single protrusion in the substrate can trigger a splash [66,

84, 86, 87, 93]. It has also been found that in some situations surface roughness

can suppress corona splashing, while promoting prompt splashing by suppressing

thin sheet creation [2, 62, 94]. However, Hao et al., showed that the suppression

of corona splash by roughness in non-monotonic [84]. This non-monotonic effect

decreases with liquid surface tension [84]. Several parameters have been proposed

to successfully characterise the roughness effect on splashing. Among these pa-

rameters, the most common are the arithmetic amplitude average roughness (Ra)

and the root-mean-square roughness (Rrms). For the threshold between splashing

and no splashing, a critical We number (as a function of the ratio of the droplet

radius to the surface roughness, Ra/D0) was proposed [86]. More recently, the pa-

rameter (Re1/2We1/4 (in terms of D0/Ra) was suggested to separate the splashing

and no-splashing phenomena [87]. However, it has also been argued that Ra is not

enough to characterise the threshold. Roisman et al. in 2015 demonstrated that the

characteristic slope of the roughness of the substrate fits the experimental results in

terms of impact Weber number [66]. Recent research on splashing on micro-textured

substrates have been devoted to identify the influence of geometry and size of the

roughness on the droplet splashing. It has been found that the height of pillars

and their spacing are the most important parameters for controlling drop splashing

[95]. Compared with smooth surfaces, droplet splashing is enhanced for tall sparse

pillars and suppressed for dense tall pillars. In the same study, Zhang et al. (2018)

noted that same-size roughness might have a disparate effect on droplets of differ-
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ent size [95]. For certain critical ratios of droplet diameter and pillar spacing, the

effect of the pillars can banish. Further experiments by Tsai et al. (2009) showed

that, for impact events at We < 120, the roughness at nanoscale plays a minor role

on splashing. However, for faster impacting droplets, splashing is more violent on

nanoscale roughness substrates than on substrates with microstructured roughness

[91].

In this subsection we have reviewed past works on the influence of the substrate

roughness on the spreading and splashing of impacting drops. The main conclusion

is that roughness can prevent a droplet from spreading while promoting prompt

splashing. The next subsection reviews the transition from bouncing to impaled

droplets in micropillared substrates and its similarities with the impact on porous

media.

1.3.5 Penetrating surface features: The Cassie-Baxter toWen-

zel transition and droplet impact on porous media

Porous surfaces such as textiles, sponges and some types of soil interacting with

liquids, are examples of porous media found both in industrial process and nature.

Besides the wide range of applications, droplet impact on porous media has not been

widely researched. In fact, the transition from the Cassie-Baxter to the Wenzel state,

has been the object of numerous studies and share common features with droplet

impact on porous substrates. The voids between pillars in microtextured surfaces

can play the role of pores and penetration is governed by the kinematic and capil-

lary pressures. The main difference, between the impact in micropillared and porous

substrates, is that the droplet can not completely penetrate the microtextured sur-

faces while it can on the porous ones. Preliminary studies by Reyssat et al. (2006),

found that the critical impact velocity U∗ for impalement scales as (σh/ρw2)1/2,

where L is the pillar height and w is the inter pillar distance [22]. Similarly, Bartolo

et al. (2006), found three different regimes, namely sticky droplets (impalement),

bouncing droplets (non-impalement) and non-bouncing droplets (non-impalement)

[21]. These experiments showed that critical impalement depends not only on the
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height of the pillars but also on the solid fraction; the percentage of solid surface

respect to the void. Moreover, the pinning force is dependant on the surface con-

tact angle hysteresis [21]. Accordingly, molecular dynamics simulations and Lattice

Boltzmann methods have found similar results [96, 97]. In fact, Koishi, et al. (2009)

reached to the same conclusions as Reyssat et al. (2006), finding an intermediate

state where both the Wenzel and Cassie-Baxter states are favourable [98].

Studies on droplet impacting a sieve have been done by Lorenceau and Quéré in

2003 [99]. This research showed that under certain conditions, a droplet can pene-

trate a hole and create a filament along the impacting direction [99]. The generated

filament can elongate and break up into secondary droplets. In this study, a critical

penetration velocity was found to be dependant on the liquid properties and the

pore size, and independent on the surface wettability. Delbos et al. (2010) studied

the impact of millimetre-sized droplets on superhydrophobic sub-millimetre-sized

capillary tubes and found that the liquid either penetrate or not the capillary tube

[100]. For an impact at a high speed, most of the droplet volume would penetrate

into the capillary tube and form a liquid slug. The slug mechanism has also been

found on microtextured substrates and is responsible of the Cassie-Baxter to Wen-

zel transition [101]. In the case of droplets impacting meshes, recent works have

identified three impact regimes, namely no penetration, protrusion and complete

penetration [102, 103]. Similarly to microtextured substrates, the critical velocity

U∗ that divides no penetration from complete penetration is obtained by balanc-

ing the dynamic impact pressure Pd ∝ ρU2
0 and the capillary pressure Pc ≈ w/A,

where A and w are the opening area and the perimeter of the mesh pore, therefore

U∗ ≈ (σw/A)1/2. In fact, U∗ was found to increase as the pore depth increases

due to viscous dissipation [99]. In the protrusion regime a portion of the droplet

extends beyond the mesh pores and some of the liquid is pushed back to the surface

by capillary forces. In the complete penetration case, liquid fingers can be created

on the back of the surface and these fingers can break into small droplets. A further

study demonstrated that superhydrophobic meshes could effectively resist incoming

droplets and eliminate protrusion [104]. However, Ryu et al. found that despite a
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drop not penetrating a superhydrophobic mesh upon impact, the droplet could pen-

etrate it while receding and bouncing off the substrate [103]. Additionally, pancake

bouncing was reported on superhydrophobic meshes [103, 104]. In another work,

Bordoloi et al. (2014) studied the penetration of millimetre-sized water droplets (≈

5 mm diameter) through a millimetric pore while the entire system was submerged

in oil. A thin oil film was found to separate the wall of the pore and the droplet (for

pores with rounded edges) [105] . In this case, the surface wettability of the pore

wall was found to have no effect on the impact but surface wettability affected the

penetration dynamics. Additionally, Joung and Buie (2014) investigated the impact

of droplets on paper and found four impact outcomes ranging from droplet sticking

to the impact surface to splashing, all dependent on the We number [106].

This section has focused on droplets impacting various solid substrates but scarce

evidence exists on the impact dynamics on textiles. In fact, past studies on the

wetting of fabrics have often focused on static wetting [107, 108]. In industrial

environments, liquid repellency of textiles has been sought after using hydrophobic

coatings but little attention has been paid to the liquid dynamics or the textile pore

size. Chapter 5 presents results on the contact line dynamics of droplet impact on

textiles.

1.4 Conclusions

This chapter has reviewed some basic concepts on the wettability and contact line

dynamics of liquids interacting with solid surfaces with different characteristics,

namely, wettable, non-wettable, smooth, rough, porous and non-porous. We have

seen that for a droplet on an ideal surface; smooth, homogeneous, rigid and insoluble

the contact angle can be described by Young’s Eq. (Eq. 1.3). In addition, for drops

resting on rough substrates Wenzel and Cassie-Baxter models are used, depending

if the droplet rests between the grooves (Eq. 1.6) of the substrate or if it rests on

the top of roughness asperities (Eq. 1.7). Commonly, quasi-static contact angles

are used to characterise substrate properties. Yet, there are many situations where

the contact line is far from equilibrium and quasi-static angles are not enough to
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characterise the surface.

Examples of where the contact line is far from equilibrium are found during

the spreading or receding of an impacting droplet on a dry solid substrate. The

dynamics of drop impact onto solid substrates has received much attention due to

their relevance in inkjet printing [109], paint spraying [110], and other aerosol based

coatings [111]. At least six different outcomes of drop impact have been identified:

deposition, prompt splash, corona splash, receding break up, partial rebound, and

complete rebound [2]. At high We and Re numbers, an impacting drop ejects a

thin film, which, in turn, breaks up to form secondary droplets; i.e. splashing [5].

Although many studies have aimed at finding scaling arguments to characterise

splashing [62, 63, 64, 65, 66, 73], the exact combination of parameters and their

influence have remained elusive. Moreover, there is no accepted consensus on the

role of surface properties on drop splashing. Consequently in Chapter 4 we study the

relevance of surface properties on splashing, in particular, wettability and surface

roughness.

Furthermore, we reviewed experiments and theory developed for the impact on

microtextured substrates and metallic meshes. In particular, we focused on the

Cassie-Baxter to Wenzel transition. The transition is given by the height of the

pillars, the solid fraction of the microtextured substrate and the impact velocity

[22]. Similarly, for droplet impact on metallic meshes it was found that the critical

penetration speed is scaled by the ratio between the area and perimeter of the pore

and the surface tension of the liquid [104]. However, research in droplet impact

dynamics on textiles, is scarce, despite its importance in industry and for creating

protecting clothing. In Chapter 5 we present experimental results on the contact

line dynamics of droplet impact on textiles with different wettability.

It is clear that many past works on droplet spreading and splashing rely on the

detection of the contact line, and on the measurement of the contact angle. However,

a standard measurement method is unavailable and, consequently, the contact angle

is often obtained and reported using different techniques. Next chapter (Chapter 2)

presents an automated polynomial fitting algorithm that can extract the dynamic
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contact angle of an impacting droplet during the spreading and receding phases. In

addition, the algorithm can extract the impact velocity of the droplet, as well as

its initial and spreading diameters. Furthermore, next chapter presents the general

experimental setup used in chapters 3-5.
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Chapter 2

Experimental Methods

This chapter describes the general experimental setup used throughout the thesis.
Additionally, it presents a Matlab routine to measure the dynamic contact angle
and its validation.
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2.1 Introduction

The experimental setup used in this thesis is described in this chapter together

with a brief description of the data acquisition and analysis; further details and

specifics are seen in next chapters. In brief, the experiments consisted off single

drops travelling vertically to impact onto dry solid substrates or nylon textiles at a

constant speed with the substrate perpendicular to the impact direction. In these

experiments drop impact speeds ranged from 1.1 to 4.9 m/s and the drop diameter

ranged from 1.1 to 2.5 mm. The substrate position was controlled by servo controlled

and an arduino, and allowed different inclinations. In all the impact experiments in

this thesis the substrate was set at φ = 0 degrees with respect of the horizon. The

experiments are recorded with a high speed camera and the image analysis is done

through MATLAB. A picture of the experimental set-up is shown in Figs. 2.1 and

2.2 shows a diagram of the rotating platform system.

Figure 2.1: Picture of the experimental setup. A lateral view of the experiment is
presented. The picture shows a high-speed camera, a tilting substrate, a diffuser and a
LED array.
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Figure 2.2: Diagram of the tilting platform; a) lateral view at the starting position, b)
platform set at an angle φ > 0, c)platform starting position (φ = 0) and d) platform set
at an angle φ < 0.

2.2 Measurement of liquid properties

The viscosity, surface tension and density of the liquids used throughout this thesis

where measured at room temperature. Viscosity was measured with a Viscolite

700. The viscometer, calculates the viscosity from the damping that occurs when

its steel sensor vibrates inside the liquid. The accuracy of the viscometer is 0.0001

Pa s. Additionally, surface tension was measured with a SITA pro line t15, which

uses the bubble pressure method. This method consists of introducing a capillary

that pumps air inside a liquid, thus creating a bubble. This bubble is exposed to

the liquid pressure, then the gas pumped in the capillary tube until the pressure

inside the bubble reaches a maximum. Soon after the bubble detaches from the

capillary tube and a new bubble forms. The resolution of the SITA pro line t15 is

0.1 mN/m with a repeatability error of 0.5 mN/m. Correspondingly, the density of

the liquids was measured with a Densiti-meter, DMA 35, PAAR. The density meter

benefits from the pulsed excitation method. In the later, a U-shaped tube made

from borosilicate glass or metal is excited to oscillate at its characteristic frequency,

which is directly related to the density of the sample. The resolution of the density

meter is of 1 kg/m3.
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2.3 Droplet generation

Liquid drops were generated by two methods; dripping and by drop on demand. In

the dripping method, drops were produced by a 1.0 mm diameter metallic syringe

tip attached to a syringe pump (Razel, model R99-E) that pushes the liquid at a

rate of 1.94 mm3/s until the drop falls. Droplet growth and detachment is governed

by surface tension of the liquid as it tries to minimise surface energy by minimising

the surface area of the liquid [112]. During this process, the geometry of the liquid

droplet is transformed from spherical to a pearl shaped due to the addition of liquid

through the pump. Soon after the detachment, the droplet starts to oscillate. Oscil-

lations are viscosity dependent and are dampened with time until the drop becomes

spherical [113]. In this experiments the in flight time of the droplet was enough to

not observe droplet oscillations. Droplet volume is controlled by the needle radius

(R), flow rate (Q), gravity (g) and the liquid’s surface tension and viscosity. To

determine the size of each droplet detaching from a needle, we have to balance the

weight with the capillary forces. Considering that the droplet is fed quasistatically,

we have that, ρΩg = 2πRσ, where Ω is the droplet volume. On the other hand,

Ω can be written in terms of the drop radius (R0) and the capillary length λc as,

Ω = 2πRλ2c = 4
3
πR3

0, therefore,

Rg = (
3

2
Rlambda2c)

1/3 (2.1)

Taking into account the flow rate, Schele and Meister (1968) found the following

equation [114],

Ω ∝

[
2πσR

gρ
− 4Q2

3πR2g
+ 7.14

(
Q2R2σ

g2ρ

)1/3
]

(2.2)

The advantage of the dripping system is its simplicity and reliability. The

droplets generated with this systems had a standard error of ±0.01 mm per ex-

periment. The drop impact velocity (U0) was adjusted by varying the distance from

the needle to the substrate.

In the drop on demand method system (Fig. 2.3), a loudspeaker functions as
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Figure 2.3: Schematic diagram of the droplet generator. Figure taken from (J. R.
Castrejón-Pita, et. al. on Review of Scientific Instruments 2008).

the actuator, pushing the liquid through a nozzle to create a droplet. The system

is prepared to produce droplets in the following manner. First the actuator is filled

with liquid, taking care that the actuator has no air bubbles - as air bubbles would

compress and cause dissipation of the pressure, preventing the system from ejecting

the droplets. This is achieved by connecting an external container to control the

filling by rising it until some liquid comes out from the exhaust port. The exhaust

port is then closed and the height of the external container is adjusted to balance

the pressure in the system and no liquid comes out of the nozzle. Finally, droplets

are generated by sending a pressure pulse to the actuator. In this system, the

droplet velocity and volume is determined by the pulse duration, pulse amplitude

and the number of pulses. Pressure pulses can be delivered in two ways. In single

pulse mode, a function generator activates a relay that switches a dc voltage to the

loudspeaker, to create a single pressure pulse that drives the liquid out of the nozzle.

In the second mode, an audio power amplifier is used to amplify the amplitude of a

pulse from a pulse generator (TTi). In these experiments, a 1 mm outer diameter

conical nozzle was used. The driving signal is produced by a pulse generator and

an amplifier. The waveform is kept to a single square pulse, with control of the

pulse amplitude and width, to adjust droplet impact speed and size. The impact

speed can also be controlled by adjusting the print-head height. The advantage of

this system is that the impact speed as well as the droplet size can be adjusted

for a single nozzle. Moreover, changing the nozzle size permits a wider droplet
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diameter variability. This system has been proven to successfully create droplets

of ethanol, viscous aqueous mixtures of glycerol and with viscosities up to 20 cP,

liquid latex (Chapter 6) and hydrogels containing skin cells [115]. However, the

system is very sensible to the meniscus position and perfectly spherical droplets are

difficult to produce reliably. Moreover, water droplets generated with this method

tend to oscillate more than with the dripping method. One solution to prevent drop

oscillation is by the use of viscous fluids.

Is noted that evaporation is not expected to play a role in these experiments. A

recent work by Niimura and Hasegawaka in 2019 demonstrated that similarly sized

(D0 = 1.4 mm) ethanol droplets, levitated in air at ambient temperature, initially

evaporate at a rate of 2.5 % in 5 seconds [116]. Assuming this evaporation rate,

our 1.9 mm diameter droplet would reduce its diameter by 0.3 µm in the 3.0 ms

duration of our experiments. This is below the resolution of our optical system and

its effect negligible in the experimental error.

In conclusion, both drop generating systems allows the control over a wide range

of the impact velocities, liquid properties and size of the droplets. Furthermore, in

both systems the error in the droplet diameter does not exceed the 0.12 mm.

2.4 Image analysis

The recording of drop impacts was carried out with a Phantom V710 coupled with

a Narvitar microscope lens. For a typical experiment performed in this thesis the

camera resolution was set to 1280 × 256 pixels2 at a sample rate of 23000 frames

per second and an exposure time of 10 µs. The spatial calibration was made with

a graduated glass disk with a minimum resolution of 0.1 mm. The size of the

graduation lines is≈ 2 pixels. The effective resolution of these experiments measured

by counting the number of pixels in 5mm was of 6.47 ± 0.13 µm per pixel. The

camera was inclined ≈ 2 degrees, to obtain a clear image of the contact line and

was illuminated with a 300 W LED through a diffuser. We expect little influence

of this inclination on the measured angle; we discuss this in subsection 2.3.2. The

depth of focus was set so that it includes all the drop volume. Special attention was
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given to the alignment between the focal plane of the camera and the plane where

the droplet rested - misalignment hides the true contact point and therefore results

in an incorrect contact angle measurement. After each experiment the substrates

were cleaned, first with a dry piece of fabric and then with a piece of fabric with

ethanol and then rinsed with distilled water. To ensure the dryness of the substrate,

compressed air was blown over its surface for 30 seconds and five minutes were

waited before performing the next experiment.

Image analysis to extract the (dynamic) contact angle at each frame was per-

formed by using a custom-made MATLAB code. In brief, the code works as follows:

it takes an image and converts it to grey-scale and then into a binary image using

Otsu’s method [117]. It then detects the boundary of the droplet, the substrate,

and the contact point between the droplet and the substrate. The MATLAB code

works by fitting a polynomial of order n to a portion of the droplet profile near

the contact line. The droplet and substrate profiles are then extracted as arrays of

pixels. The left-hand and the right-hand sides of the droplet boundary are inde-

pendently analysed. The pinning points are identified and recorded in all images to

track the spreading diameter and thus the contact line velocity. For the left-hand

side, the code selects a set region of the droplet boundary array from the first entry

(pinning point) to the set length of n pixels, this forms a perimeter of length δn

as seen in Fig. 2.4. The right hand side region follows the same method but from

the right pinning point. The code then fits an m-order polynomial with the least

squares method (OLS) to these n pixels of the boundary (δn in each side). It then

computes its derivative and evaluates it at the pinning point: the contact angle is

then computed from this value. We varied δn (the number of pixels n along the

droplet profile used to fit the polynomial), and the order of the polynomial to find

the optimal setup to measure the contact angle.

Droplet impact velocity and droplet diameter before impact were also extracted

from this code by tracking the centroid of the droplet for each frame before the first

contact with the solid or by taking the difference from the leftmost and rightmost

points in the droplet boundary and the uppermost and lowermost points of the
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droplet boundary prior impact.

Figure 2.4: Sketch showing the variables studied in this work. The contact line (or the
triple point) is shown as a star and indicates the place where all the three phases meet. In
a) the interrogation areas define a perimeter along the droplet’s profile of size δ (in pixels).
In b) the flat horizon given by the substrate is seen as a black thick line; image analysis
might misplace its position by a height λ due to the interface being out of focus or fuzzy.

Figure 2.5 shows a sequence of images of a typical spreading experiment after the

impact of a water drop on a hydrophilic substrate as analysed by our algorithm. The

figure presents the first spreading and receding cycles of the impacting liquid droplet,

where for most of the hydrophilic substrates the receding is negligible. As described

in previous papers, at early times after the liquid droplet touches the substrate the

contact angle is near 180 degrees. However due to the limited resolution of the

camera, the maximum contact angle that can be measured is ≈ 160 degrees. This

is seen in the first row of Fig. 2.5a); on the second row of the figure we observe

the time instant where d(t) = dmax/2; on the third panel we have d(t) = dmax (and

ucl = 0m/s); and on the bottom panel we observe the receding process.

2.4.1 Parameter optimisation and validation

This section focuses on the analysis of a static droplet on an acrylic surface and on

4 different instants during droplet spreading, i.e. i) the time of the first contact, ii)

the point where d(t) = dm/2, iii) the time where d(t) = dm, and iv) the first point

of receding. Accordingly, at these times, the droplet contact angle is measured,

using different droplet profile lengths (δ) while varying the order m of the fitting

polynomials. As noted by [25], the order of the polynomial used to adjust the

droplet shape at the pinning point is crucial to the value of the contact angle on

sessile droplets. An analysis of 100 pictures of a standing droplet was performed
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Figure 2.5: a) Example snapshots of the experimental and analysed images. The three
sets correspond to the MATLAB processed images of a drop in the spreading phase. The
images are arranged according to the number of pixels used to fit a second-order polynomial
to calculate the contact angle, i.e., 10 pixels−→ δ1/D0 = 0.0301, 30 pixels−→ δ2/D0 = 0.092,
and 120 pixels −→ δ3/D0 = 0.369. The navy blue contour corresponds to the droplet
boundary, the red (left) and green (right) stars show the pinning points, the light blue lines
correspond to the tangent evaluated at the pinning point and the pink arcs correspond to
the contact angle; b) shows a close-up of the droplet contour detected by the MATLAB
algorithm.

to test the stability of the algorithm at static conditions. The measurement was

done with a second order polynomial and profile lengths corresponding from 5 to 50

pixels. Table 2.1 shows the average value of the given contact angle, the standard

deviation and the net error; the net error is the difference between the minimum and

maximum value of the measured contact angle. Table 2.1 indicates that the best

operation condition is to take 50 pixels, however, as discussed later, this might not be

the case for droplet spreading. In addition we performed an analysis of the same 100

pictures for a direct differentiation method. This method consists of taking to pixels

of the droplet profile and performing the derivative without adjusting a polynomial.

With this method the average contact angle is 56 degrees, with a standard deviation

of 19 degrees and a maximum error of 45 degrees. With a standard deviation of ∼ 34

degrees for the static condition. Thus, we conclude that this method is unsuitable

for determining the contact angle of a droplet. In this work, we have extended this

study to other conditions where the droplet is far from equilibrium and, thus its
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Figure 2.6: Contact angle in terms of the number of pixels used to fit the droplet profile.
The image shows as well different polynomial orders. The experiment used for this analysis
was experiment number 5.

shape differs from a spherical cap. Our first set of results is seen in Fig. 2.6 where

the contact angle is obtained for various polynomial orders at the four relevant

times previously discussed. Additionally, Fig. 2.6 shows the contact angle obtained

in terms of the ratio between the number of pixels used to fit a m-degree polynomial

and the diameter of the impacting droplet (δ/D0). These results show that the

measurement of the contact angle is sensitive not only to the polynomial order but

also to the instantaneous shape of the droplet. In fact, for highly deformed droplets,

differences of up to 100 degrees in the measured contact angle are seen between the

different-order polynomials. In these conditions, the polynomial order showing the

largest differences is that corresponding to a linear fit. As seen, for the linear fit

(m = 1), the dynamic contact angle decreases monotonically for increasing profile

lengths for the four droplet shapes studied here. In fact, even at instants where the

droplet resembles spherical shapes, i.e. first contact (Fig. 2.6a) and first receding

instants (Fig. 2.6d), differences on the contact angle of up to 30 degrees are found

for m = 1. In contrast, higher order polynomials reach a stable contact angle value
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as the size ratio domain is increased.

Table 2.1: Contact angle average and standard deviation for different number of pixels.
The contact angle of a water droplet on acrylic is calculated from 100 images, an average
and its standard deviation are calculated for each number of pixels of the second order
polynomial adjusted to the droplet profile.

Number of pixels Average contact angle Standard deviation Net Error
(degrees) (degrees) (degrees)

5 58 2.4 7
10 59 1.8 9
15 58 1.8 7
20 58 0.8 4
25 58 0.7 2
30 59 0.6 2
35 60 0.4 2
40 60 0.4 2
50 60 0.3 2

Largely deformed droplets also offer intricate variations (Figs. 2.6b and 2.6c).

Here, large differences in the contact angle value are observed for the various poly-

nomial fittings and fitting domains. As seen in our results, variations of up to

80 degrees can be obtained for droplets shapes in the early spreading phases (Fig.

2.6b) or up to 30 degrees at the maximum spreading diameter where droplets ac-

quire the characteristic pancake shape (Fig. 2.6c). In practical terms, the contact

angle should be measured at the proximity of the contact line; consequently, any

measuring method should include an upper limit for the length domain. Moreover,

as seen in Fig. 2.7, for a time at d(t) = dm/2 a large number of fitting pixels,

translates in an inadequate fitting of the droplet profile. This is due to the high

droplet deformation far from the contact line. Additionally, a lower domain limit

should also exist for the fitting to correctly represent the droplet shape.

As expected, the standard deviation obtained from all the polynomials is consis-

tently low for the receding case where the shape resembles a spherical cap. A similar

behaviour is found at the point of first contact where a low deviation is seen for do-

mains larger than 30% of the droplet diameter. As discussed, in these two cases, the

droplets are not largely deformed, resemble spherical bodies, and, therefore, good

fittings are obtained over a large fitting domain. The standard deviation for largely

deformed cases is rich but shows limited variations at short profile domains. Impor-
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tantly, the standard deviations present local minima around the domain range of

δ/D0 = 0.04 to 0.10, where the various polynomial fittings seem to agree within a

standard deviation of 15 degrees. Moreover, the standard deviation in this region is

particularly low (≈5 degrees) for the highly deformed shapes and the receding case.

As a result, we conclude that a robust domain for a polynomial fitting is within

the range corresponding to profile lengths of 4 to 10% of the droplet diameter. This

fitting range is consistent with previous research asserting that larger domains might

not trace the drop profile accurately [118]. This upper limit has also been discussed

by [29], where their domain is determined by the need of their mask to follow the

droplet curvature, which requires a small mask, and “accuracy in their area mea-

surement, which requires a bigger mask”. Technically speaking, our upper domain

limit can extend to the contact line found at the other end of the droplet contour.

However, as noted by other authors, we argue that the contact angle should be

measured locally. Our optimum region of measurement is found where the standard

deviation of the data is at its minimum value, across the various shapes.

Our next analysis focuses on the standard deviation in terms of the polynomial

order; this is shown in Fig. 2.8. Interestingly, for the four shapes, the second order

polynomial fitting consistently produces the lowest standard deviation. In fact, this

polynomial order has been used by other authors [118]; here we confirm that this

fitting is the most robust for dynamic contact angle measurements.

Figure 2.7: Image analysis results of a fourth-order polynomial fit for various number
of adjusted pixels δ/D0, at a time when d(t) = dm/2. This example shows that the
polynomial no longer faithfully represents the profile of the droplet when the number of
adjusted pixels is 150. This is due to the high droplet deformation far from the contact
line.

Based on our results, we conclude that the fitting that produces the most ac-

curate results across conditions is a second order polynomial fitting with a droplet
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Figure 2.8: a) Standard deviation in terms of the dimensionless adjusted number of
pixels (δ/D0). The standard deviation is calculated based on all the polynomials used
in the analysis, for each δ/D0. b)Standard deviation of the contact angle calculated in
terms of the polynomial order. The standard deviation is the associated to all the δ/D0

considered in this paper for each polynomial. As seen, the quadratic polynomial shows the
smallest deviation for all cases.

profile length corresponding to 5% of that of the initial droplet diameter. There-

fore, in the following sections, we strictly use these conditions for the contact angle

measurements.

2.4.2 Contact Line and Pinning Points

Results indicate that another important variable affecting the correct measurement

of the contact angle is the identification and location of the pinning points. This

issue is often encountered for fuzzy or out of focus images. The effect of offsetting the

position of the substrate plane (horizon) on the measurement of the contact angle,

this is illustrated in Fig. 2.4b. Here, a distance λ in pixels is added to the true

substrate position. Figure 2.9 shows the variation of the contact angle measurement

for a second order polynomial fit with 30 pixels profile, varying λ from -10 pixels

to 10 pixels for the four different stages of the impact (first touch, dm/2, dm and

receding). Our results are conclusive; an offset from the true pinning point can

result in important differences in the measurement of the contact angle. In fact, an

offset of only five pixels (λ/D0 = 0.02) is enough to produce differences of up to 19

degrees in the measurement. This miscalculation might be evident and easy to fix

on a single picture, but dynamic systems require the automatic measurement of the

contact angle for thousands of pictures where a plethora of shapes are found. The
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effect, during the spreading phase (Fig. 2.9b), leads to a difference of 24 degrees

in the measured contact angle for a pinning point that is placed 10 pixels above its

true position. As explained before, as done by other authors, the camera is inclined

into a small angle ≈ 2 degrees to achieve a clear view of the contact line. Inclining

the angle of the camera Φ affects the measurement of θD, but allows to fully capture

the surface. This inclining angle changes the projected height (h′) captured by the

camera and is related to the true height h by h′ = hcos(Φ). Consequently, in our

experiments the angle of the camera affects the measurement of the contact angle

by 0.6%.

Figure 2.9: Influence of a vertical offset applied to the contact line (of height λ) on the
contact angle measurement. The offset is set manually within the MATLAB code, from 10
pixels below to 10 pixels above the contact line. As seen, the measurement of the contact
angle is critically dependent on the correct detection of the contact line.

2.4.3 Comparison of the experimental method with simula-

tions

A comparison with the existing literature was conducted by replicating the con-

ditions of Yokoi et al. (2009) and compared with the numerical simulations [41].
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Figure 2.10: Dynamic contact angle in terms of the contact line velocity of a water
droplet impacting at 1 m/s on a Parafilm (left) and a Teflon substrate(right).

Table 2.2: Asymptotic advancing and receding contact angles for the Parafilm and Teflon
surfaces.

Surface Advancing contact angle ±3 degrees Receding contact angle ±3 degrees
Parafilm 115 69
Teflon 115 13

These numerical simulations required the asymptotic advancing and receding con-

tact angles as inputs to model the spreading diameter dynamics. Experiments were

performed on two different substrates, namely Parafilm and Teflon. Droplets were

generated by dripping and the impact speed was set to 1 m/s. The contact angle

measurements are shown in Fig. 2.10, and the asymptotic contact angles are given

in the table 2.2. Fig. 2.11 shows results comparing the spreading diameter of the

numerical simulation with the experimental results. As shown, the simulation of the

water drop impacting the Parafilm match almost exactly. For the impact on the

Teflon surface, the spreading phase is matched reasonably well by the simulation,

however for the receding phase the spreading radius is underestimated. We note

that the numerical simulations of Yokoi et al. (2009) were validated with a surface

with similar wetting properties as the Parafilm [41]. Moreover, the hysteresis of

the Parafilm is less than the hysteresis on the Teflon. Therefore we attribute the

mismatch of the simulations and experiment on the Teflon to the inability of the

code to correctly take into account the larger hysteresis of the Teflon substrate.
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Figure 2.11: Comparison between experiments and numerical simulations of the spread-
ing diameter of a water impact droplet impacting at 1 m/s on a Parafilm (left) and Teflon
(right) surfaces.

2.5 Conclusions

In conclusion, this section has presented a robust MATLAB algorithm that can

detect the contact line and determine the dynamic contact angle of a spreading and

receding droplets. We found that the polynomial fitting method is dependent of

the polynomial order and the number of pixels used to fit the droplet profile. With

these considerations, we found that a second order polynomial and 30 pixels are

the optimal parameters, for an experimental resolution of 6.47µm and a droplet size

ranging from 1.98 to 2.63 mm. In addition, we showed the importance of measuring

the contact angle at the proximity of the contact line. Furthermore, we have included

a comparison with simulations from Yokoi et al. (2009). These simulations take the

experimental dynamic advancing and receding contact angles as an input to predict

d(t). The experimental results are well captured by the numerical simulations,

except for the equilibrium diameter for the impact experiments on Teflon. We

argue that this discrepancy is due to limitations in the simulation where the large

hysteresis seen in the Teflon substrate cannot be implemented in the code. Having

validated our methodology with previous results, the next chapter is focused on the

study of the contact angle dynamics of a droplet spreading on hydrophilic substrates.

In addition, the next chapter (Chapter 3), presents results on the droplet contact

dynamics in two scenarios; of a droplet in a tilting plate and upon impact on a solid

substrate.
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Chapter 3

Contact Angle Dynamics on
Hydrophilic Substrates

This chapter experimentally studies the contact angle dynamics of a liquid droplet
resting on a hydrophilic tilting plate. It also presents results on the droplet impact
contact line dynamics on a hydrophilic solid surface.
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3.1 Introduction

The sliding of a droplet on a tilted substrate and droplet spreading during impact

are used for surface characterisation. The most relevant parameters measured from

this experiments are the advancing and the receding contact angles, θa and θr respec-

tively. The difference between θa and θr is named contact angle hysteresis. Contact

angle hysteresis is relevant for inkjet printing [109], paint spraying [110], and other

aerosol based coatings [111], as it measures the shear and tensile adhesion forces

[119]. However, contact angle measurements have proved challenging for both of the

methods. It has been argued that determining the contact angle from the tilting

plate method is sensitive to the drop placement [23]. In contrast, a standard method

for measuring the dynamic contact angle is not available.

This chapter studies the contact angle dynamics in a tilting plate and upon

droplet impact on solid substrates. The contact angle measurements are performed

with the MATLAB algorithm and the setup described in Chapter 2. For the tilting

plate, we study the contact angle dynamics at different tilting speeds. For the

impact experiments we explore a combination of different We and Re numbers.

In these experiments we limit the analysis to liquid droplets of diameter less than

the capillary length (λc =
√

σ
ρg
) and to Weber and Reynolds numbers leading to

smooth spreading and deposition. We compare the results from the two approaches

and conclude that the underlying physics in the two cases is different.

3.2 Experimental details

3.2.1 Tilted plate experiments

These experiments consisted of a liquid droplet placed on a tilting substrate (2.2).

The droplet was placed by hand using a micro-pipette with a hydrophobic tip. A

servo controlled by an Arduino controllably inclined the substrate. The system per-

mitted different step rates and inclinations. The liquid used in the experiment was

a glycerol-water mixture with a dynamic viscosity of 12 mPa s, and the substrates

used were glass and acrylic. Droplets of glycerol-water mixture of 20.0 ± 0.2 µL
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were generated with a pipette and placed by contact-deposition on the centroid of

the substrate. The droplet volume was constant in these experiments. The angular

motion of the substrate was normally started 2 minutes after deposition to achieve

hydrodynamic equilibrium. The substrate was placed on the top of the tilting plat-

form moved by the servo motor (Ripmax Quartz QZ502). The servo, controlled

by the Arduino Uno, inclined the substrate 0.55 degrees per step. The control is

flexible but in these experiments delays of 10 ms, 15 s and 30s between steps (being

the 10 ms delay the fastest step rate and 30 s the slowest) were used, corresponding

to step rates of ω1 = 58.74 rad/s, ω2 = 0.04 rad/s and ω3 = 0.02 rad/s respectively.

The inclination range was set between a maximum tilting angle (measured in the

anticlockwise direction) and a minimum tilting angle (measured in the clockwise

direction) at which the droplet did not slide. The tilting angles are referred as φmax

and φmin respectively. The schematic diagram of these variables is shown in Fig. 3.1.

During setting up, the substrate was slowly rotated in the anticlockwise direction

until it attains the angle at which the droplet started to slide; φmax was defined as

this angle. The substrate was kept at φmax for one minute, to prove that φmax was

in fact the no slip angle. A similar procedure was carried out to find φmin, with

the difference that the substrate was rotated in the clockwise direction. The depth

of focus of the visualisation setup was set to include all the drop volume. Special

attention is given to the alignment between the focal plane of the camera and the

plane where the droplet rested, as misalignment "hides" the true contact point and

results in an incorrect contact angle measurement. For the glass substrate, φmax =

4 degrees, and φmin = -4 degrees and for acrylic φmax = 15 degrees and φmin = -15

degrees.

Figure 3.1: Experimental pictures showing how the different inclinations of the substrate
were measured: a) φmax, b) φ = 0 and c)φmin of a water-glycerol droplet deposited on
acrylic.
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Table 3.1: Fluid properties used throughout the experiments of this chapter

Fluid Viscosity (mPa s) Surface tension (mN/m) Density (kg/m3)
Distilled Water 1 70.8 998

Mix 1 2 70.3 1065
Mix 2 60 66.0 1126

The rotation of the substrate was executed in a cycle as follows: first the incli-

nation of the substrate was set to 0 degrees and then tilted at a given speed in the

anticlockwise direction until it reached φmax. Then, the substrate was tilted in the

clockwise direction to reach φmin. Finally, the substrate was returned to its initial

position (0 degrees). The cycle was performed at a constant tilting velocity. Videos

were recorded using a monochrome Phantom Miro Lab310 high speed camera with

a Tamron SP AF60 macro lens. The resolution of the video was set to 640×480

pixels2 with a sample rate of 24 frames per second and an exposure time of 10 µs,

for ω1. For the droplet on acrylic moving at ω2 and ω3 a picture was taken every 15

s and 30 s respectively with a resolution of the pictures of 1280 × 800 pixels2. The

effective resolution of all the experiments was of 35.4 pixels/mm.

3.2.2 Impact experiments

The impact experiments consisted of creating single drops, which travelled vertically

to impact onto dry solid substrates. The droplets impacted at a constant speed and

the substrate was placed at φ = 0. The substrates used here were, glass and acrylic.

Water-glycerol solutions and pure water (see table 3.1 for fluid characteristics) drops

were generated by dripping and drop on demand, which are described in Chapter 2.

In these experiments drop impact speeds ranged from 1.1 to 1.7 m/s and the drop

diameter ranged from 1.1 to 2.5 mm. Table 3.2 shows the experimental conditions.

Technical details on the imaging processing method and analysis are provided in

Chapter 2.
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Table 3.2: Experimental conditions

Experiment Number Drop Generation Substrate Liquid D0(mm) We Re
Method

1 Dripping Acrylic Water 2.41 43 2736
2 DoD System Acrylic Water 2.47 49 2964
3 DoD System Acrylic Water 1.12 45 1904
4 DoD System Acrylic Mix 1 2.4 166 2717
5 DoD System Acrylic Mix 2 2.1 169 87
6 Dripping Glass Water 2.53 46 2884
7 DoD System Glass Water 2.63 46 2959
8 DoD System Glass Water 1.1 44 1887
9 DoD System Glass Mix 1 2.42 162 2662
10 DoD System Glass Mix 2 1.98 164 83

3.3 Results and discussion

3.3.1 Tilted plate experiments

Figure 3.2: High speed imaging of a water-glycerol droplet sitting on the acrylic substrate.
The substrate was rotating at an step rate is of 58.74 rad/s.

This section presents the measurements of the contact angle in terms of the incli-

nation angle of the substrate φ, and time t. Fig. 3.2 shows examples of experimental

images of a droplet on an acrylic substrate, rotated at an step rate of ω1 = 58.74

rad/s. In this case the right hand equilibrium contact angle is of 56 degrees and its

left hand equilibrium contact angle is 58 degrees. This discrepancy is well within

the current error on the measurement method, ± 3 degrees. Under this condition,

at the maximum step rate ω1, the contact angle shows a linear relationship with the
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inclination of the substrate (Fig. 3.3 top left corner). Other tilting speeds show a

similar behaviour, the results for the other two tilting speeds, 0.04 rad/s and 0.02

rad/s, are shown in Fig. 3.3. A very important difference is seen in the codomain in

which the results live. Finally, the data at slow tilting speeds shows less dispersion,

probably because the droplets vibrate less as they move. Image analysis allows to

analyse the contact angle in terms of time as the substrate rotates. The rotation of

the substrate starts in the anticlockwise direction so the left contact angle increases

until it reaches a maximum value, then starts to decrease as the rotation changes its

direction, increasing again as the substrate returns to its initial position. However,

the contact angle does not return to its initial value regardless of the speed of rota-

tion. This can be explained given that a droplet can be in meta-stable states that

change when the droplet vibrates [13]. Moreover, in the case of the step rate of 0.02

rad/s, the difference in initial and final angles can be due to droplet evaporation.

Indeed, it has been found that the contact angle of an evaporating droplet decreases

with time [120].

Figure 3.3: Contact angle in terms of substrate inclination (left) and time (right) for a
droplet resting on acrylic. The step rates are 58.74 rad/s (top) and 0.02 rad/s (bottom).
The triangles and circles are the experimental data for the right hand and left hand angles
respectively. The navy blue line is the average of 10 the points for the right hand angle
and the red line is the average of 10 the points for the left hand angle.
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The glass substrate presents smaller contact angles than the acrylic. For glass,

φmax = 4 degrees and φmin = -4 degrees. Both, the right-hand and the left-hand

equilibrium contact angles were found to be of 11 degrees. For the step rate ω1,

the maximum variation of the contact angle was of 10 degrees; demonstrating that

drop vibrations during movement affect the contact angle measurement. The data

at other step rates is consistent with this hypothesis; slower tilting speeds show less

data scattering. At fast tilting rates, the droplet cannot reach a state of equilibrium

so hysteresis is observed at all inclination angles. This result is also observed on

Fig. 3.4 where the contact angle is in terms of time.

Figure 3.4: Contact angle in terms of substrate inclination (left) and time (right) for a
water droplet on glass at an step rate of 58.74 rad/s (top) and 0.02 rad/s (bottom). The
triangles and circles are the experimental data for the right hand and left hand angles
respectively. The navy blue line is the average of 10 the points for the left hand angle and
the red line is the average of 10 the points for the right hand angle.

In conclusion, we show that the contact angle varies with the substrate inclina-

tion, with the advancing (receding) contact angle increasing (decreasing) with the

inclination. for pinned droplets on hydrophilic substrates. Furthermore, after mov-

ing the substrate one cycle the contact angle of the droplet differs from its original

one due to the substrate hysteresis. The next section studies the dynamic contact
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angle of spreading droplets upon impact onto hydrophilic substrates.

3.3.2 Impact experiments

Figure 3.5: Left, experimental images of a water droplet spreading on a glass substrate.
Right, MATLAB processed images. The impact speed of this experiments is of 1.01 m/s

Figure 3.5 shows a sequence of images of a water drop impacting on an acrylic

substrate and the first spreading and receding phases. In the hydrophilic surfaces

studied here, i.e. glass and acrylic, the receding is negligible. Figure 3.6 shows the

contact angle dynamics in terms of contact line velocity ucl. As described in previous

papers, at the first instants after impact, the contact angle is near 180 degrees. At

these early times, t < 0.56 ms, the drop is greatly deformed near the contact line

while its top part remains spherical. Here, the contact line velocity can move at

up to 15 m/s, decreasing rapidly as the contact angle goes from 180 degrees to a

local minimum. Afterwards, the contact angle increases and reaches an asymptotic

contact angle at a contact line velocity of approximately ucl ≈ 3 m/s. Eventually

the contact angle reaches its minimum at ucl = 0 m/s. It has been found that for

impact speeds of ∼ 1.25 m/s the air layer ruptures at 14 µs and our time resolution

is ∼ 40 µs [121]. Consequently, we expect the contact angle measurement to be

unaffected by the air layer between the droplet and the substrate.

Figure 3.7 shows the spreading diameter d(t) for all the experiments performed

for this work in terms of the dimensionless time t∗ = tU0/D0 (inertial time) from

impact. For the substrates and liquids used in these experiments, the substrate

wettability does not significantly affect spreading until the maximum spreading di-

ameter dm is reached. As expected, wettability only comes into play at later times

[48]. We note that this contrasts with the results of de Goede et al. 2019 [122],

where at low impact speeds wettability affects the maximum spreading diameter.
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Figure 3.6: Contact angle of a water drop impacting onto acrylic and glass substrates at
differentWe and Re numbers. Here, the contact angle is shown in terms of the contact line
velocity. Hollow symbols represent experiments done in glass and solid symbols represent
experiments done in acrylic. On the bottom there is a zoom to the the dynamic contact
angle for the contact line velocity range from 0 to 3 m/s

This seemingly discrepancy is solved by the fact that the difference in the contact

angles between the acrylic and glass are smaller (∼ 45 degrees), than the glass and

steel used in de Goede et al. (2019) (∼ 70 degrees). Moreover, as impact velocity

increases, influence of the wettability on dm decreases [28, 123].

Experiments show that both the We and Re numbers affect dm. Indeed, exper-

iments 5 and 10 have the same We number as experiments 4 and 9, but their Re

number is approximately a quarter. The maximum spreading diameter is almost

50% smaller for the former experiments. This difference can be also observed in

the contact angle dynamics. The dynamic contact angle in experiments 5 and 10,

reaches a local maximum near ucl = 0 m/s, while for the rest of the experiments
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the contact angle acquires an "asymptotic" contact angle at a contact line velocity

of ≈ 3 m/s (Fig. 3.6). As highlighted in previous works, the dynamic contact angle

quantifies the interplay between inertia, capillary and viscous forces and the greater

the capillary and viscous forces the greater the contact angle [41, 42]. Consequently,

for hydrophilic substrates, at a given We number, the larger the maximum dynamic

contact angle at ucl = 0 the smaller dm. This is in accordance with previous works

where dm could be predicted through the dynamic contact angle at dm [27, 28].

The influence of D0 on dm is not evident when comparing experiments 2 with 3,

and 7 with 8 (table 3.2), where theWe number is the same in all the experiments but

D0 is different. In experiments 3 and 8, D0 = 1.1 mm, in contrast, in experiments

2 and 7, D0 = 2.47 mm and D0 = 2.63 mm respectively. As seen, D0 does not

seem to affect the dm, even when the Re number is 35 % smaller for experiments 3

and 8. Using micrometric drops Visser et al. in 2000, showed that the droplet size

has no influence on dm as long as the same We and Re are used [54]. In contrast,

another study on the impact of drops with diameters ranging from 10−3mm to 5 mm

studies found that dm is influenced by D0 [58]. Here it is noted that for the same

liquid, there is a unique radius for a given Weber and Reynolds number combination,

therefore the droplet radius could play a role on dm. However, our results on the

influence of D0 on dm are not conclusive and a parametric study is required.

Disagreement exists in the way the spreading diameter is defined, with two com-

peting definitions: i) the distance between pinning points (the contact line diame-

ter) and ii) that corresponding to the maximum distance between any two points

on the droplet profile. These different definitions arise from the physical modelling

of spreading. Lee et al. in 2016 argued that a scaling of the form d ∝ Weα is not

physically correct as it incorrectly leads to U0 = 0 at the point of impact (dm = 0)

[27]. Lee et al. pointed out that this is physically inconsistent because dm ≥ 1 even

for a near-rest deposition [27]. However, for a perfect superhydrophobic surface, if

dm is taken as the contact line diameter, then dm = 0 at the contact point. More-

over, for all the hydrophobic substrates dm < 1 for U0 = 0. As argued by de Goede,

et al., dm depends on the wettability of the substrate at zero impact velocity [122].
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However if dm is not defined at the contact line but defined as the largest distance

between two liquid points, then dm ≥ 1 always. We note that for impact velocities

explored in this paper the difference between taking the two definitions is within the

experimental error.
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Figure 3.7: Spreading factor d(t) in terms of the dimensionless time. Hollow symbols rep-
resent experiments done in glass and filled symbols represent experiments done in acrylic.

Based on these observations and those by Laan et al. (2014) using the Padé

approximant dmRe−1/5 = P 1/2

1.24+P 1/2 , where P = WeRe−2/5 [52]. In figure 3.8, we

show the agreement between the data and this scaling. Regarding the influence of

the droplet size D0 on the spreading factor dm, we see this effect in experiments 2

and 3, and 7 and 8, where the droplet size does not affect dm. We clarify, that our

results are limited to droplet sizes in the millimetre size range so our observation is

in agreement with [54].

3.3.3 Contact Line velocity

The contact line velocity, calculated by differentiating the spreading diameter in

terms of time, is a source of error. This is, both the contact line position and

the time are given as discrete steps and consequently the associated error can be

substantial. In particular, as seen in most past papers, the contact line can move

less than a pixel per frame. In this thesis, we used a typical resolution of 6.47 µm
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Figure 3.8: Maximum spreading factor in terms of WeRe−2/5. The black squares and
cyan circles correspond to the impact experiments on acrylic and glass, respectively. In
addition, the dashed line shows the Padé approximant dmRe−1/5 = P 1/2

1.24+P 1/2 [52].

per pixel, recording at 23000 fps. Considering an error of ± 1 pixel in the contact

line position, the error in ucl is ± 0.25 m/s. This associate error is appreciable near

maximum spreading, where the hysteresis is expected to be found at 0 m/s. We note

that the contact angle in terms of the contact line speed varies rapidly in the range

18 m/s > ucl > 3 m/s. This is the result of large local deformations near the contact,

often impossible to resolve within experiments. Moreover, for this range of contact

line velocities only a few pictures can be captured as the deceleration occurs in tenths

of milliseconds. In the same way the OLS method has an optimal number of points

to fit a polynomial, therefore the contact angle measurement depends on both, the

spatial resolution of the system and on D0 [25]. Accordingly, if the resolution is kept

constant but D0 is reduced, then the number of pixels available to fit the droplet

profile are reduced and the optimal number of points might not be reached.

3.4 Comparison between the two phenomena

The contact angle obtained from the tilting plate and the impact methods are qual-

itatively and quantitatively different. The contact angle variation for the impact
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experiments is considerably larger than that of the tilting plate experiments. In the

former method the contact angle varies from 180 to 0 degrees for all the substrates,

in the latter the differences are of only ≈ 30 degrees for all cases. In the impacting

case, even at rest in the impacting case, the contact angle varies at least 60 degrees.

Moreover, the maximum value of the contact angle obtained in the tilting plate

method is always smaller than the asymptotic contact angle. For the receding con-

tact angle, the minimum angle obtained for the tilting plate method is larger than in

the impact experiments. We argue that the difference between the two phenomena

is due to air and dynamic effects. At impact, there air is entrapped between the

droplet and the substrate; this is absent on the tilting plate experiments. The effect

of air on droplet impact has been widely discussed in the literature. de Goede et al.

(2019), suggest that the droplet skates on air, generating high contact angles seen

in experiments [122]. At later times the air layer breaks down and the wetting pro-

cess begin, leading to a reduction of the dynamic contact angle. In the tilting plate

method the contact line is static, and dynamic viscosity effects, e.g. the boundary

layer at the spreading lamella and the droplet, are not seen. In contrast, the impact

contact line dynamics are influenced the liquid viscosity.

The conclusion is that the underlying physics of the dynamic contact angle differ

in both cases. The tilting plate method is a good experiment to characterise the

substrate for applications where inertia is negligible. In contrast, for moving contact

lines the substrate, should be characterised by studying the dynamic contact angle

at impacting conditions.

3.5 Conclusions

This chapter presented dynamic contact angle in two different situations, namely,

droplet impact and a moving tilting plate. For the tilting plate experiments the

contact angle varied linearly with the angle of the tilting plate φ. Moreover, after

one cycle the contact angle did not return its initial value due to the surface hys-

teresis. The impact experiments showed that at a velocity ≈ 3 m/s the dynamic

contact angle reaches an asymptotic value. No significant difference was found in
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dm between the experiments on Glass and Acrylic, which static contact angles differ

in approximately 45 degrees. We attribute this to the experimental error and the

"high" velocities used in these experiments. In the next chapter we show that for

larger differences in the contact angle dm is influenced by the wettability.

For the studied conditions, the maximum value of the contact angle for the

impact experiments was larger than the one of the tilted plate experiments. In

contrast, the minimum receding angle is larger for the tilting plane experiments

than for the impact experiments. We argue that the difference between the two

phenomena is caused by the entrapped air between the droplet and the substrate

(absent in the tilted plane experiments). Therefore, the contact angle dynamics for

the tilted plate experiments and the impact experiments are not equivalent.

Additionally, in this chapter, we studied low Weber number droplet impacts on

smooth hydrophilic substrates. We concluded that the contact angle dynamics are

mostly dependent on the liquid properties. In addition, we found that no receding is

observed within this conditions. However, in nature and industry, substrates range

from wettable to non-wettable and can have a certain degree of roughness. Next

chapter (Chapter 4), focuses on the contact angle dynamics of impacting liquid

droplets on substrates with different wettabilities and roughness. Furthermore, it

explores a broad range of Weber and Reynolds numbers as to include all the possible

outcomes of droplets impacting a solid substrate, i.e. spreading, deposition and

splashing.
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Chapter 4

Splashing on smooth and rough
surfaces with different wettability

This chapter presents a systematic study of liquid droplets impacting on smooth and
rough solid substrates. Here, substrate properties range from completely wetting
to superhydrophobic. Our results show that the splashing ratio β, the maximum
dynamic advancing contact angle, and the mean width of the protruding peaks
appropriately parametrises the splashing and no-splashing behaviour.
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4.1 Introduction

Chapter 3 focused on the spreading of a droplet on a hydrophilic substrate. In

general, substrates used in industrial processes or the ones found in nature are nei-

ther hydrophilic nor smooth, but have different wettabilities and surface roughness.

This chapter extends the experiments of Chapter 3 by studying the contact angle

dynamics on smooth and rough substrates with varying wettabilities. In particular,

this chapter presents experiments on the effects of the wettability on the impact

dynamics and splashing on smooth and rough surfaces.

To date, there is no accepted consensus on the role of surface wettability on

drop splashing. Surface wettability is often characterised by the static apparent

contact angle θs formed by the intersection of the liquid-solid and the liquid vapour

interfaces of a sessile droplet resting on a flat substrate. Past studies have analysed

the influence of θs on splashing and determined that wettability has no effect on

the splashing threshold for high capillary numbers [66, 124]. This is expected as the

drop spreads over a thin air film and not along the substrate. Contrasting studies

have shown that drop splashing effectively depends on the surface wettability and

that hydrophobic substrates exhibit a low-velocity splashing threshold [72, 80, 81].

The influence of the dynamic contact angle (θD) on the splashing threshold has also

been observed on simulations and found that splashing does not occur for θDA < 90

degrees [83].

Surface roughness effects on splashing have been studied in terms of various

parameters, including the arithmetic amplitude average roughness (Ra), the root-

mean-square roughness (Rrms), the average peak to peak feature size (Rpk) and the

surface feature mean width (Rsm), defined as the width average of the profile features

[62, 66, 86, 84, 87]. In 1998, Range and Feuillebois proposed that splashing was

determined by the We number and the ratio between the average surface roughness

ratio and the droplet size, i.e. Ra/D0, [86]. However, Roisman et al. in 2015 argued

that the mean average roughness alone does not provide sufficient information of the

substrate surface to effectively characterise the splashing threshold [66]. They found

that the characteristic slope of the protruding peaks, Rpk/Rsm, can characterise the
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splashing behaviour on rough and porous substrates.

In this chapter, we use high speed imaging to visualise the impact of droplets on

smooth substrates and substrates with different roughness and wetting properties

to determine the role of the substrate roughness on the impact dynamics. Specially,

wettability, described through the dynamic contact angle, is studied in terms of

the spreading speed. Our results indicate that the splashing threshold depends

on the dynamic contact angle and, therefore, is influenced by the wettability. We

conclude by establishing that the splashing behaviour is effectively characterised by

three parameters, i.e. the splashing ratio, the feature roughness size ratio, and the

maximum dynamic contact angle.

4.2 Experimental Details

The experiments consist of the visualisation by high speed imaging of liquid drops

impacting at different speeds on substrates with varying properties. As described

in Chapter 2 the system allows the measurement of the dynamic contact angle and

the contact line speed. Liquid drops were generated by dripping, and travelled

vertically downwards to impact dry solid substrates of different wetting properties.

The distance from the needle to the substrate was varied from 0.4 m to 2.0 m to

adjust the drop impact velocity (U0). The speed of impact was varied for all the

liquid/substrate sets to obtain conditions that include both simple spreading and

splashing. In these experiments U0 ranges from 1.1 to 4.9 m/s, and the drop diameter

(D0) ranges from 1.8 to 2.5 mm (depending of the liquid). Liquid properties are

presented in Table 4.1.

Table 4.1: Fluid properties used throughout the experiments in this section

Fluid µ (mPa s) σ (mN/m) ρ (kg/m3)
Ethanol 1.04 22.3 789
Water 0.98 70.8 998
Water & Glycerol 4.77 68.5 1,126

The onset of splashing occurred in the range of U0 ≈ 1.5 to 1.8 m/s for ethanol

and water. Consequently, the dynamic contact angle was measured at U0 = 1.01 m/s
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as, at this condition, impacting events result on simple spreading and the contact

line is free from instabilities for all the substrates. The dynamic contact angle

(θD) at each frame was measured with the MATLAB code described in Chapter

2, with the exception of the 120 grit diffuser. As mentioned in Chapter 2, the

droplet and substrate profiles are obtained by using a defined intensity threshold

for the conversion of a greyscale image to a binary format, using Otsu’s method

[117]. This method automatically chooses the threshold value that minimises the

intraclass variance of the thresholded black and white pixels. However, for the

rough substrates, since the surface is not reflecting, the threshold had to be selected

manually to avoid any disruption in the detection of the surface. In addition, due to

the substrate roughness affecting the contrast in the picture, the contact angles for

the 120 grit substrates had to be measured manually with Image J. Splashing events

were directly identified from the images, where splashing refers to a droplet breaking

and creating at least one secondary droplet. Each experiment was conducted three

times in clean surfaces, as any impurity in the surfaces could alter the results.

4.2.1 Smooth Surfaces

The experiments include three liquids, i.e. water, a 4.7 mPa s aqueous glycerol and

ethanol, and seven flat solid substrates, i.e. glass, mica, cast acrylic and polyte-

trafluoroethylene (PTFE, teflon), Glaco and Perfluorodecyl acrylates (PFAC6 and

PFAC8) applied to glass. Substrate properties are found in Table 4.2. The rough-

ness of the Perfluorodecyl acrylates, has been found to be in the submicrometer scale

(see figure 5.2), therefore we expect that it does affect the splashing behaviour. In

addition, surface roughness from Glaco sprayed surfaces was measured with and its

average roughness and peak to peak roughness are shown in table 4.4. The details

of the roughness measurement are given in the next section. Moreover, to account

for the Glaco nanometric roughness and its effects on splashing, the Glaco coated

substrates were oxygen plasma treated to make them hydrophilic. It has been found

that the roughness of silicon, silicon dioxide, glass and fibers after an oxygen plasma

treatment increases in the range of tenths of nanometers [125, 126]. Therefore, we
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do not expect a significant effect from the change of roughness coming from the

oxygen plasma treatment on splashing (apart from the change on wettablity). The

experiments covered the range of 131 < We < 512 and 0.027 < Ca < 0.217.

Table 4.2: Equilibrium and dynamic contact angles for the smooth substrates used
throughout the experiments. Unless shown, the error on the contact angle measurements
is of 2 degrees.

Substrate θs θmax θs θmax θs θmax
Water Water Ethanol Ethanol Aqueous Glycerol Aqueous Glycerol

Glass 11±3 109±3 5 ± 4 87 ± 4 11±3 119±3
Mica 31±2 107±3 5 ± 4 87 ± 4 31±2 118±3
Acrylic 56±2 105±3 5 ± 4 87 ± 4 56±2 123±3
Teflon 93±2 113±3 5 ± 4 87 ± 4 93±2 127±3
PFAC6 111±2 122±3 31±4 96±4 111±2 120±3
PFAC8 120±2 131±3 56±4 100±4 120±2 126±3
Glaco 145±2 147±3 5 ± 4 98±4 145±4 147±2
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4.2.2 Rough Surfaces
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Figure 4.1: Atomic force microscopy of a) smooth glass, and b) Glaco-sprayed on smooth
glass. Surface roughness as seen by profilometry for c) 120 grit, and d) 220 grit substrates.

Ethanol and water liquid droplets were impacted on substrates of well-defined

roughness. The impacted surfaces were glass diffusers of the same material (NBK-7)

with different roughness. The diffussers were acquired from Thorlabs and their sub-

strate wettability was changed by a superhydrophobic spray (Glaco). The roughness

of the samples remained unchanged after the Glaco coating, except for the smooth

surface. For the smooth and the Glaco covered smooth surfaces, roughness was

measured with an Atomic Force Microscope (NT-MDT NTEGRA) used in semi

contact mode topography. The scans were conducted at a frequency of 1.01 Hz on

3 different zones of 50 by 50 µm for each sample. Imaging examples are shown in

Fig. 4.1. For the rest of the surfaces, surface roughness was measured with a tactile

surface profilometer (DektakXT Stylus Profiler) in 3 areas of 1 mm2 for each sam-

ple, taking 5000 data points per scan. Examples of the profiles are shown in Fig.
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4.1. Measurements taken from the surface profilometer correspond to the average

roughness (Ra), the peak to peak roughness (Rpk) and the characteristic width of

the surface profile Rsm. Substrate properties are presented in Table 4.4. The mean

width of the roughness feature of the smooth glass is reported as Rsm > 50 µm, as

this value corresponds to the size of the AFM sample size (no features were found

within). The measurements of the static advancing and receding contact angles

were done following the method developed by Kwok et. al. in 1996 [127]. This is,

through a syringe tip, an infuse/withdraw syringe pump (Harvard Apparatus PHD

4400) expands or contracts a droplet over a substrate at a rate of 12 µl/min. The

process was recorded at 200 fps with the same spatial resolution as the impacting

experiments (see Chapter 2). Results are shown in Table 4.3.

Table 4.3: Dynamic contact angles for the substrates used throughout the experiments

Substrate θmax θa θr θmax θa θr
Water Water Water Ethanol Ethanol Ethanol

Smooth Glass 101 ± 3 92 ± 3 70± 3 97 ± 5 20 ± 3 0 ± 3
1500 Grit 112 ± 3 89 ± 3 26 ± 3 97 ± 5 11 ± 3 0 ± 3
600 Grit 113 ± 3 - - 97 ± 5 - -
220 Grit 120 ± 5 95 ± 3 22 ± 3 101 ± 5 9 ± 3 0 ± 3
120 Grit 129 ± 5 98 ± 3 27 ± 3 107 ± 5 8 ± 3 0 ± 3
Glaco Glass 149 ± 3 161 ± 3 158 ± 3 - - -
Glaco 1500 Grit 149 ± 3 161 ± 3 159 ± 3 - - -
Glaco 220 Grit 150 ± 5 160 ± 3 156 ± 3 - -
Glaco 120 Grit 150 ± 5 158 ± 3 156 ± 3 - - -

Table 4.4: Surface roughness for the substrates used throughout the experiments

Substrate Ra (µm) Rpk (µm) Rsm (µm)
Smooth Glass 0.017 0.04 > 50
1500 Grit 1.021 2.39 40.32
600 Grit 1.028 2.48 41.99
220 Grit 3.507 11.65 152.03
120 Grit 5.743 20.02 168.49
Glaco Glass 0.422 0.82 25.58
Glaco 1500 Grit 1.064 2.41 40.47
Glaco 220 Grit 3.618 11.43 151.95
Glaco 120 Grit 5.807 20.08 168.27
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4.3 Results and discussion

4.3.1 Contact Angle Dynamics on smooth surfaces

Figure 4.2 shows the dynamic contact angle θD of water drops impacting on glass

and Glaco at various times. Figure 4.3 presents the value of the contact angle in

terms of the contact line speed for three liquid/substrate systems, and Fig. 4.4

shows the dynamic contact angle for various liquids impacting a wettable substrate.

In particular, Fig. 4.3 shows the three contrasting different contact line dynamics,

i.e. hydrophilic (ethanol on glass), hydrophobic (water on PFAC8), and super-

hydrophobic (aqueous glycerol on Glaco) dynamics. As expected, no receding is

observed under hydrophilic conditions, the contact line remains pinned at the max-

imum spreading diameter, and the maximum dynamic contact angle remains ≤ 87

degrees. For hydrophobic substrates a clear hysteresis is observed where advanc-

ing (θDA) and receding (θDR) angles rapidly achieve their asymptotic values. This

characteristic curve has been observed and validated by numerical modelling [41].

In addition, our results demonstrate that superhydrophobic substrates do not show

a large angle variation, remaining at θD ≥ 140 degrees during the advancing and

most of the receding phases (Fig. 4.3), only to vary just when the droplet is about

to bounce (ucl ≈ −0.25 m/s). According to past works, a low variation of the con-

tact angle on superhydrophobic substrates is a characteristic that a surface needs

to achieve to be considered superhydrophobic [49, 56]. Here, for future analysis, we

define θmax as the advancing asymptotic value of θDA. At these timescales, there

are no large surface deformations, and the contact angle can be measured precisely.

Previous research has found that θD at maximum spreading is independent in the

range of 0.2 < U0 < 2.1 m/s [28]. Here we argue that θmax is dependent on the con-

tact line velocity ucl, but independent of U0 for U0 leading to smooth spreading. In

addition, U0 has to be large enough so the air film ruptures at an early time and the

wetting is effectively measured by θmax. Previous research has found that the air film

ruptures at a time t = 14 µs at an impact velocity of ∼ 1.25 m/s. As the temporal

resolution of our system is 40 µs and U0 = 1.01 m/s, the air layer does not influ-
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ence θmax measurement. Dynamic hydrophobicity is observed on all the conditions

studied here, i.e. all the systems advance with a contact angle θmax ≥ 87 degrees

during the instants following impact. In fact, as observed in Fig. 4.5 and Table 4.2,

all our liquid/substrate configurations presented a dynamic advancing contact an-

gle greater than 87 degrees regardless of the value of the equilibrium/static contact

angle. The extreme case is ethanol on glass where the contact angle is 5 degrees at

rest (equilibrium) but advances at 87 degrees. This advancing hydrophobicity on

hydrophilic substrates is in agreement with previous reports[28, 42], and it has been

argued that is characterised by the droplet liquid surface tension and viscosity, and

the air between the droplet and the substrate. Moreover, Figs. 4.4 and 4.5 demon-

strate that two liquids/substrate systems with the same equilibrium contact angle

(θs) can have two different dynamic contact angle history. Ethanol on Glaco and

ethanol on glass show the same equilibrium (static) contact angle, θs ≈ 5 degrees,

yet their asymptotic dynamic values differs significantly, i.e. 98 and 87 degrees re-

spectively. Fig. 4.5 shows no direct relation between θs and θmax, i.e. the dynamic

angles are not correlated for each liquid/solid combination. However it is seen is

that for hydrophilic substrates, θmax of the aqueous glycerol is significantly larger

than θmax on for water, even when the two systems have the same θs. This can be

attributed to the viscous dissipation on the contact line. In the case of hydrophobic

substrates, we see that θmax is similar when θs ≥ 110, this is because liquids on

hydrophobic substrates liquids tend to be more mobile and they are in less contact

with the solid. Therefore viscous dissipation is negligible and surface tension forces

and inertia dominate the behaviour.

4.3.2 Splashing on smooth substrates

Figures 4.6 and 4.7 show the impact behaviour of water and ethanol drops on differ-

ent substrates at various We numbers. The effect of wettability is clearly observed

here, and our results are consistent with previous observations [72, 80, 124], splashing

is favoured by increasing impact speed and increasing maximum advancing contact

angles θmax. Ethanol droplets at an impact velocity of We = 258 (θmax = 86) show

84



Figure 4.2: Image analysis for spreading water droplets after impact on glass and glaco
at 0.98 m/s. The water spreads with a greater contact angle for glaco as compared to the
spreading on glass.

Figure 4.3: The dynamic contact angle θD in terms of the contact line velocity. Here,
we show the three major wetting behaviours, i.e. superhydrophobic (glycerol & water on
Glaco), hydrophobic (water on PFAC8) and wetting (ethanol on glass).

no splashing on the glass substrate but prompt splashing on Glaco (θmax = 98) (Fig.

4.6). In contrast, water droplets impacting on Glaco show (prompt) splashing at a

slower speed, U0 = 2.19 m/s (We = 156, θmax = 147) at a point where the droplet

has reached its maximum spreading diameter (Fig. 4.6). For water impacting on

PFAC8 at 2.34 m/s (We=189, θmax = 131), fingering of the lamella is observed but

no splashing (Fig. 4.6). We explain these observations by contrasting the dynamic

contact angle history of these systems, i.e. it is easier to splash droplets on sur-
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Figure 4.4: The dynamic contact angle θD in terms of the contact line velocity for different
liquids impacting "wettable" solids, here θs ≈ 10.

Figure 4.5: The dynamic contact angle θmax in terms of the static contact angle θs. For
all of the liquids and substrates θmax ≥ 85 degrees regardless θs.

faces with a higher maximum advancing contact angle. In addition, the transition

between corona to prompt splash is observed for increasing impact velocities. Fig.

4.6 shows impact prompt splashing of water on Glaco at U0 = 2.19 m/s and Fig.

4.7 shows corona splashing at U0 = 4.4 m/s. The transition from prompt to corona

splashing is studied in more detail in section 4.3.3.

An interesting phenomenon seen during these experiments is that the lifted

lamella breaks at a longer time on the water impact on superhydrophobic substrates

than on the ethanol impacting on glass substrates. Our theory is that the lamella
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Figure 4.6: Impact behaviour for ethanol and water droplets. Here, We = 258 for ethanol
on glass and We = 250 on Glaco, We = 167 for water impacting on Glaco, and We = 189
for water on PFAC8. Splashing is observed on Glaco, but no splashing is observed for
ethanol on glass and for water on PFAC8.

Figure 4.7: Impact behavior for ethanol (We = 571) and water (We = 462) droplets on
different substrates. Splashing is observed for ethanol on all substrates. In contrast, water
presents splashing on Glaco, microsplashing for Teflon [128], and no splashing for glass.
The bottom set of images shows the impact of a droplet on a glass substrate whose left
side has been coated with Glaco; the left side of the droplet rapidly splashes while the
right side spreads.

glides over the superhydrophobic substrates, but sticks on wettable substrates caus-

ing its breakup. For water impacting at 4.4 m/s on the Glaco-coated surface, the

lamella touches the substrate 7.78 ms after impact. For an ethanol droplet impacting

the Glaco coated surface at the same speed, the lamella touches again the substrate

after 1.17 ms. In fact, for the water impacting the superhydrophobic substrate, the

lamella can be seen gliding above the surface without breaking up. The lamella
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then spreads and recedes over the substrate, following a conventional receding pro-

cess. A further study in this regime with omniphobic substrates to characterise the

substrate wettability and the role of the liquid surface tension, would be of interest.

Figure 4.8: Contact line speed for spreading droplets in terms of the time from impact.
Here, the impact velocity for water and the aqueous solution droplets is of 1.34 m/s, while
for the ethanol drop is of 0.98 m/s. The highlighted area shows the time domain where
the lifting of the lamella occurs for splashing cases.

Our experimental observations indicate that the lifting of the lamella and splash-

ing occur in the time range between 0.4 to 1.2 ms after impact. In the same time

scale, for spreading droplets, contact line velocities are found in the range of 1.0 to

2.5 m/s, results are shown in Fig. 4.8. Consequently, we expect wettability to be

important in the timescale of hundreds of microseconds and at contact lines in the

range of 1.0 to 2.5 m/s.

However, the two dimensionless groups traditionally used to describe splashing do

not contain wettability effects; these are the capillary number, Ca, and the splashing

parameter, K = We1/2Re1/4, [69, 68]. Accordingly, Fig. 4.9 presents the splashing

behaviour in terms of these groups and both the static contact angle (θs), and the

maximum advancing contact angle (θmax). Previous experiments with ethanol drops

impacting aluminium (wettable) placed the splashing threshold at K = 127. As seen,

our results are consistent with this finding as ethanol droplets splash on hydrophilic

substrates at K > 120 [129]. However, both groups (Ca and K) fail to separate the

overall splashing behaviour for all the other liquids; the data is clustered by liquid,
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Figure 4.9: Impact behaviour in terms of the capillary Ca and the splashing K parameter
as a function of both the static θs and the maximum dynamic contact angles θmax. Open
symbols represent splashing and solid symbols no splashing. A good behaviour divide “by
liquid" is seen but is not consistent across all the fluids. The dotted line indicates the
splashing threshold for ethanol drops, K > 127, found by Bird et al. in 2009 [129].

and within these clusters the results show that large contact angles and high Ca

numbers promote splashing. Within clusters, the effect of wettability on splashing

is progressively visible as the contact angle (static or dynamic) increases. An overall

conclusion is that any dependence of splashing on wettability is only visible for Ca

< 0.22 and this evidence places our results in agreement with past works suggesting

splashing is independent of wettability at high capillary numbers (Ca > 0.26), or on

hydrophilic substrates, i.e. θs < 90 or θmax < 113 degrees [124].

Recent works have described the splashing velocity of drops impacting smooth

mostly hydrophilic surfaces at low Ohnesorge numbers (Oh = Ca/We1/2), by nu-

merically solving the momentum balance equation and estimating the aerodynamics

lifting forces [65, 130]. This model parts from the potential flow theory, where an

inviscid and incompressible flow is considered. Gordillo and Riboux in 2014, found
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that the liquid must separate from the solid and avoid further wetting to produce

a splash. Therefore, splashing is attributed to a lift force in the lamella. This lift

force has two components, the gas lubrication force (≈ klµgVt) exerted beneath the

lamella and the suction force (≈ kuρgV
2
t Ht) induced at the top of it, here kl and

ku are constants to be determined, µg and ρg are the gas viscosity and density and

Vt and Ht are the velocity and height of the lamella. This way, splashing can be

described using the momentum balance Eq. [65]

√
3

2
Re−1t−1/2e +Re−2Oh−2 = 1.21t3/2e (4.1)

where te is the ejection time of the lamella. The momentum equation is then

solved numerically to find te. Using the numerically calculated ejection time, Vt =
√
3
2
U0t

1/2
e and Ht =

√
12

2π
D0t

3/2
e , and kl can be calculated from the lamella thickness,

the mean free path of the gas molecules λg and the wedge angle α (angle between

the substrate and the lifted liquid sheet), this is,

kl = − 6

tan2α

[
ln

(
19.2

λg
Ht

)
− ln

(
1 + 19.2

λg
Ht

)]
. (4.2)

Numerical results show that ku ≈ 0.3, as calculated by Riboux & Gordillo in 2014

[65]. Finally, one can define a parameter, the splashing ratio, that compares the

aerodynamic forces with the surface tension forces as,

β =

(
klµgVt + kuρgV

2
t Ht

2σ

)1/2

. (4.3)

For low viscosity liquids and at atmospheric pressure the lubrication force dom-

inates and te = 0.88We−2/3, Vt = 1.07
√
3
2
UspWe1/3 and Ht = 0.83

√
3
π
D0We−1, where

Usp is the splashing impact velocity. A simple approximation using experimental val-

ues of the diameter of the droplet and a typical splashing velocity [131], Ht ≈ 10−6,

then kl ≈ − 6
tan2α

ln
(

19.2 λ
Ht

)
≈ 10.69

tan2α
. Therefore, the approximation of the splashing

ratio for low viscosity liquids impacting at atmospheric pressure is,

β ≈ 2.22
1

tan(α)

µ
1/2
g (ρDU5

sp)
1/6

σ2/3
. (4.4)
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Equation 4.4 is independent from viscosity but we expect viscosity to play a

significant role in splashing [62, 71]. Our premise is that viscosity influences the

dynamic contact angle as seen in Fig. 4.5. In fact, the maximum dynamic contact

angle is larger for the aqueous glycerol mixture than for pure water. Given that the

surface tension of these to liquids is very similar (smaller for the aqueous glycerol

mixture), we attribute this difference to the viscosity.

Past works have found that α remains constant at ≈ 60 degrees, obtaining a

value of β ≈ 0.11 − 0.14, [130]. Our hypothesis is that splashing over hydrophobic

and superhydrophobic smooth substrates can be described as a function of β and the

maximum advancing angle θmax. Figure 4.10 shows our results when parametrised

by β in terms of θmax, here α has been taken as 60 degrees, and the impact speed U0

has replaced Usp. As seen in Fig. 4.10, the splashing behaviour is effectively divided

for all the different liquids impacting on to all the different solids. Moreover, for

wettable substrates (θmax < 103), the data is in agreement with past experiments

and simulations (dashed line in Fig. 4.10) [65, 130]. The deviation from the current

model (dashed line) only occurs when θmax > 105, where the splashing dependency

on wettability becomes apparent for hydrophobic substrates. These results confirm

that splashing is dependent on the dynamic wettability of the system. Furthermore,

by just measuring thetamax, and knowing the liquid and gas properties the splashing

threshold can be calculated.
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Figure 4.10: Splashing in terms of θmax and β. Open symbols represent splashing while
solid ones stand for no splashing. The dashed line is from de Goede et. al (2017) [130].

4.3.3 Contact Line Dynamics on rough substrates

t = 0.0 ms

t = 0.8 ms

t = 1.2 ms

t = 1.9 ms

q = 92o

q = 101o

q = 101o

q = 117o

q = 120o

q = 120o

1 mm

Figure 4.11: Illustration of the image analysis of a water droplet spreading on smooth
(left) and 220 grit (right) diffusers. The blue lines show the tangent to the droplet at the
pinning point (contact angle).

Past studies have focused on the influence of the surface roughness on the static

contact angle [10, 16, 17] and splashing [66, 62, 86, 87, 84], however few attention

has been given on the relation between surface roughness and the dynamic contact

angle. Results in the previous section show that θmax determines the splashing

threshold in smooth surface. In the next two sections we study the influence of the

roughness on the dynamic contact angle and its role on splashing.
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Figure 4.12: The dynamic contact angle θD in terms of the contact line speed ucl for
ethanol and water spreading on substrates of different roughness.

In this thesis we have found that the dynamic contact angle is influenced not

just by its wettability (as described in the previous sections) but also by its surface

roughness, as noted in Figs. 4.11 and 4.12. We can observe the most the influence

of the substrate roughness, for water impacting the untreated surfaces where the

angle varies from 101 degrees for the smooth surface to 131 degrees for the roughest

surface used in this experiments. Figure 4.12 provides the complete behaviour of the

dynamic contact angle for water impacting the different substrates. For ethanol, the

influence of substrate roughness on the dynamic contact angle is not as clear as for

water. The dynamic contact angle is greater for the 220 grit and 120 grit surfaces

than for the smooth surface, in contrast for the 1500 grit surface the dynamic contact

angle is lower; Fig. 4.12. Moreover, the difference between the dynamic contact

angle of ethanol on the smoothest and the roughest surfaces is of 9 degrees, which

is a third of the difference observed for water impacting the same two surfaces.

These can be explained by the low surface tension of the ethanol as compared to

the water’s. The low ethanol surface tension facilitates its spreading over the solid
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surface and has less viscous dissipation than water. This is consistent with previous

works, where, a small effect of roughness during splashing and spreading conditions

for wettable or low surface tension liquids was observed [27, 84, 130]. For substrates

sprayed with Glaco all the substrates have the same θmax, indicating that capillary

forces dominate over the roughness effects and the viscous dissipation at the front

of the drop below splashing conditions. This as well could mean that the spreading

contact angle has a maximum.

According to the empirical relationship of Kistler [14], the dynamic contact angle

is determined by the liquid properties and the equilibrium contact angle. We found

that the Kistler model consistently underestimates the maximum advancing contact

angle for rough substrates. In contrast, as seen in Fig. 4.13, the model fits reasonably

well the experiments with water on smooth substrates if the static advancing contact

angle is used instead of the equilibrium contact angle. The discrepancies seen on

the dynamics of ethanol (Fig. 4.13) can be attributed to the large difference found

between the static advancing contact angle and the maximum dynamic contact

angle. In fact, one of the model’s assumptions is that static and dynamic contact

angles are similar at low speeds, but from the data in Table 4.3, we see this condition

is not satisfied.
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Figure 4.13: Comparison between the dynamic contact angle obtained experimentally
and with the Kistler Model.

In our experiments, we found that the maximum spreading diameter of a droplet
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impacting at 1.01 m/s is 6% smaller on the 120-grit surface than that on the smooth

substrate. In contrast, for the Glaco covered substrates, the maximum spreading

diameter difference between the 120 grit and the smooth surfaces is of only 1%. This

observation is consistent with previous works that found that roughness hinders the

spreading of impacting drops [87]. This is also in agreement with other works that

have demonstrated spreading is more affected by roughness on hydrophilic substrates

than on hydrophobic ones [88, 132, 133]. Moreover, at U0 = 2.05 m/s (Fig. 4.14)

the smallest spreading diameter was found on the Glaco covered smooth glass (Dm

= 2.87), while the (uncoated) smooth glass showed the largest spreading diameter

(Dm = 3.59) as expected [56].

4.3.4 Splashing on rough substrates

Figure 4.14: Snapshot sequences of water droplets impacting on smooth, Glaco-sprayed,
and 120-grit rough glass at U = 2.05 m/s. Splashing is only observed on the Glaco-covered
120-grit rough glass.

We have shown that surface roughness affects the contact angle dynamics for

hydrophilic surfaces, but not affecting the superhydrophobic ones. Following the

work done on smooth surfaces we investigate the relation of splashing with surface

roughness and wettability. Figure 4.15 shows experimental data of splashing and no

splashing events for ethanol and water on all the substrates. In line with previous

results [84, 86, 87], Fig. 4.15b, shows that roughness (Ra) affects the critical splash-
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ing speed for all the substrate/liquid combinations. For water, the surface roughness

effect on splashing is visible for all substrates used in this thesis. The same is true

for water impacting Glaco sprayed surfaces. In comparison, for ethanol, the critical

splashing velocity seems to be affected just by the roughness of the 120 grit sur-

face (the roughest used in the experiments). Another interesting feature from Fig.

4.15 is that for the Glaco covered substrates the splashing threshold is considerably

lower than for the uncoated surfaces. According experiments on smooth surfaces,

we found that the splashing threshold is affected by surface wettability. Next, we

investigated whether θmax is able to characterise both the surface roughness and

substrate wettability (Fig. 4.15). It has been noted that the wedge angle α is con-

stant for smooth surfaces, however in this setup we have used surfaces of different

roughness so α was not assumed as constant. We qualitatively observed that the

value of α increases for increasing Ra, however due to the fingering of the lamella

and the large deformation of the droplet, α is difficult to measure. Moreover, in

some cases there is not possible to define a wedge angle because surface roughness

prevents the thin sheet creation [62]. Therefore we decided to drop the dependence

of 1/tan(α) in the splashing parameter β. From Figs.4.10 and 4.15 we conclude that

θmax predicts splashing behaviour of water droplets impacting smooth and untreated

surfaces, but fails for the rough Glaco coated substrates.

Figure 4.15: Left; Splashing behaviour in terms of splashing parameter β and the max-
imum dynamic contact angle θmax. Right; Splashing behaviour in terms of splashing pa-
rameter β and the arithmetic amplitude average roughness (Ra). Open symbols represent
splashing while solid ones stand for no splashing.

Our hypotesis is that, because θmax presents a maximum for the Glaco covered

surfaces, is not enough to characterise the system. For ethanol, as Figs. 4.12, 4.15
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show, roughness plays a small role on the value of θmax as well as in splashing. In

both figures it can be seen that both are affected only by the roughest surface used

in this study. Therefore, we can conclude that although the effect is small, θmax can

be used to model splashing for ethanol. Moreover in Fig. 4.14, we observe a water

droplet impacting at 2.05 m/s onto substrates of different roughness (smooth and 120

grit) and different wettabilities (uncoated and Glaco coated). In this figure we only

observe splashing for the 120 grit Glaco sprayed substrate, thus we can conclude that

splashing is influenced by both surface roughness and surface wettability. Therefore,

we propose the parameter β to be in terms of (1+Rpk/Rsm)(1−cos(θmax)). We argue

that θmax is not able to characterise the splashing behaviour because at low impact

speeds, on the superhydrophobic surfaces, the droplet spreads staying on a Cassie-

Baxter state, i.e. it just touches the nanometric of the surface roughness and most

of the droplet is sustained in the air not interacting with the micrometric roughness,

or influencing θmax. However, when the impact speed is near splashing, the droplet

penetrates the air cushion into the micrometric roughness and then it spreads in

a Cassie-Baxter-Wenzel state (Fig. 4.16); here the dynamics are corrected by a

roughness factor. According to Reyssat et al. (2006), all our spreading experiments

are in the Cassie-Baxter state as the impact velocities are below the transitional

critical impact speed to the Wenzel state (uc = 3 m/s) [22]. In contrast, we claim

that Wenzel-Cassie-Baxter states are not found in our Glaco-coated surfaces because

the micro-sized structure is wettable and yet bouncing is observed. This is also

reflected on the dynamic contact angle. The Glaco-coated smooth glass is in a

Cassie-Baxter state as there is no micro-sized structure. Furthermore, all the Glaco-

coated substrates have the same dynamic contact angle indicating that all share the

same state, i.e. Cassie-Baxter. The combination of Wenzel and Cassie-Baxter states

have been reported for substrates with different roughness scales [18].

Following the approach of Wenzel [16], we have used the cosine of the maximum

advancing contact angle to obtain a dimensionless parameter for the wettability fac-

tor. Additionally, to resemble the trend observed on smooth substrates, we have

introduced the factor (1-cos θmax). Furthermore, following the approach of Wen-
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Figure 4.16: Schematic diagram of the possible states of a droplet on a multi-scale rough-
ness surface; a) Wenzel state, the droplet wets both the nanometric and the micrometric
structures; b)Cassie-Baxter state, the water droplet does not wet either of the multiscale
roughnesses; c) Cassie-Baxter-Wenzel state, the drop sits in the micrometric state, while
being in a Cassie-Baxter state for the nanometric roughness; d) Wenzel-Cassie-Baxter,
the droplet wets the nanometric roughness while being in a Cassie-Baxter state for the
micrometric roughness.

zel [16], the surface roughness factor was multiplied by the wettability parameter.

Finally, the additive factor (1+Rpk/Rsm) is introduced to avoid zeroing the contri-

bution of smooth substrates (Rpk/Rsm is zero for smooth substrates). In Fig. 4.17

we show the parameter β in terms of (1 + Rpk/Rsm)(1 − cos(θmax)). As observed,

these parameters successfully divide splashing and no splashing events for all rough

and smooth substrates and liquids. Moreover, these parameters also separate the

splashing behaviour of the experiments on smooth surfaces.
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Figure 4.17: Splashing behaviour of water and ethanol drops in terms of the parameter (1
+ (Rpk/Rsm))(1 -cos(θmax)).The splashing behaviour is well characterised for the different
roughness and wettabilities. Open symbols represent splashing while solid ones stand for
no splashing. Example error bars are shown at selected points. The shadowed region is a
guide for the eye to separate splashing from spreading.

4.3.5 Corona & Prompt Splashing

As discussed previously, splashing is defined as the process in which a sheet of liquid

ejected upon impact breaks up into droplets, and is often classified into two main

categories, corona and prompt splashing. In the former, the liquid sheet that emerges

at the front of the advancing contact line is lifted above the substrate and breaks

up creating secondary droplets. In the latter, secondary droplets are rapidly ejected

parallel to the substrate from the advancing lamella soon after impact. There is

no formal definition of corona and prompt splashing apart from that based on the

observable shape and timing of splashing, i.e. prompt splashing occurs quickly after

impact and often at an angle parallel to the substrate, and corona splashing results

from the fragmentation of the formed lamella [47]. However, as observed by Latka et

al. in 2012, both types of splashing can occur within the same We and Re numbers

[62]. In contrast, in 2015, Roisman, Lembach and Tropea demonstrated prompt

splashing on smooth substrates occurs at Re > 4, 000 and We > 400 [66]. In this

thesis we visually classify our experiments, consequently corona splashing is defined

as the splashing that comes after the creation and lifting of a thin sheet of liquid. In
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contrast, prompt splashing is defined, as the splashing where there is no observable

thin sheet.

Figure 4.18: Splashing map for the impact of liquid droplets on smooth substrates. Close
symbols denote spreading and open symbols denote splashing. Prompt splashing is denoted
with stars.

For smooth substrates, results indicate that the transition between prompt to

corona splashing occurs at increasing impact speed for the same liquid/substrate

(Fig. 4.18). Interestingly, no prompt splash was observed for ethanol droplets. For

the same impact speed, corona splashing is observed on non-wettable substrates but

nearly no splashing is seen on wettable substrates. We attribute this effect on the

difference of the contact line speed between a hydrophilic and a (super)hydrophobic

substrates. This can be explained by the free slip of the contact line on superhy-

drophobic substrates. In contrast, in hydrophilic substrates the contact line pins and

slows down. This is in line with past results that concluded that fast-enough contact

line speeds promote prompt splashing [75, 83]. Moreover, during prompt splashing,

the fast-moving contact line encounters the effect of capillary forces (greater for

superhydrophobic substrates than for hydrophilic), generating a lifting force that

develops into splashing [83]. The splashing map in Fig. 4.18 seems to work for

dividing corona splashing for water and aqueous glycerol droplets, however failing

for the ethanol.

Figure 4.18 shows the points where prompt splash occurred. For water droplets

100



Figure 4.19: Splashing map for the impact of liquid droplets on rough substrates. Close
symbols denote spreading and open symbols denote splashing. Prompt splashing is distin-
guished with the red colour.

a transition from prompt splash to corona splash can be seen on all the substrates.

In contrast, prompt splashing is not observed for ethanol droplets impacting the

smooth and the 1,500 grit substrates. In agreement with past works, we observed

that surface roughness can suppress corona splashing and promote prompt splashing

[2, 62, 94]. At the same impacting speeds, e.g. U0 = 2.24 m/s , ethanol droplets

present corona splashing on the 1,500 grit substrate but prompt splashing on the

120 grit surface.

Summarising, for smooth substrates we did not observed prompt splashing for

ethanol droplets. In contrast, for water and aqueous glycerol droplets, we observed

that with increased wettability and impact velocity corona splash was more proba-

ble. Our results also confirm that surface roughness suppress corona splashing but

promotes prompt splashing. However, a more in depth study is needed to found a

clear physical criterion to differentiate corona and prompt splashing.

4.4 Conclusions

We have characterised the effect of substrate wettability and roughness on the splash-

ing behaviour of liquid droplets. Our results indicate that wettability and roughness

101



affects the contact line movement and so the spreading behaviour during impact. We

have also found that the dynamic contact angle depends not only on the substrate

wettability but also on the liquid properties. We have also found that spreading

hydrophobicity on all the liquid/substrates studied here, i.e. liquids spread at a

contact angle greater than θmax ≥ 87 degrees. Our experiments demonstrate that

an increase of surface roughness at the micrometer scale results in an increase of the

maximum dynamic contact angle θmax. In addition, this effect depends on the liquid

surface tension, as roughness affects the dynamic contact angle of water more than

it affects ethanol. In contrast, we have observed that micrometer scale roughness

does not affect the spreading dynamics on (nanometer induced) superhydrophobic

surfaces at low Weber numbers (We ∼ 35). This observation is consistent with

spreading occurring under a Cassie-Baxter state, where droplets do not wet the

micrometer structures. These effects are included in our parametrisation by intro-

ducing the surface characteristics as the roughness ratio (peak to peak feature size

over the surface feature mean width, Rpk/Rsm). We show that the splashing ratio

β, combined with the maximum dynamic contact angle θmax, and the roughness

ratio successfully characterises the splashing behaviour on both, smooth and rough

substrates used in this work. With this parameterisation (if liquid parameters and

substrate roughness are known), the splashing threshold can be obtained by mea-

suring the dynamic contact angle, instead of doing several experiments varying U0.

Finally, we studied the difference between corona and prompt splashing find-

ing that increasing θmax and increasing impact speeds lead to corona splashing of

water on smooth surfaces. Corona splashing was only observed in ethanol impact-

ing smooth substrates. Furthermore, we found that roughness promotes prompt

splashing while suppressing corona splashing. Despite these results, our work is not

conclusive to make a clear distinction between corona and prompt splashing. A more

detailed study, with a wider range of impact speeds and substrates is necessary to

elucidate this question.

As most previous works, we have so far focused on the droplet impact dynamics

on solid non-porous substrates. We have described the contact angle dynamics and
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its relevance to the spreading and splashing of liquid droplets. These findings are

of extreme importance for industrial processes like liquid dispensing, liquid coating,

sprays, drug delivery, and any other application where splashing can affect coating

performance or compromise surface finish or quality. Nevertheless, there are some

practical applications, such as, the creation of protective and waterproof clothing,

where understanding the droplet impact dynamics on textiles is critical. However,

as mentioned before, this subject of study has often been overlooked. In the next

chapter (Chapter 5) we study the droplet impact dynamics on textiles, i.e. porous

solid substrates. We study the contact angle dynamics and the spreading diameter

on textiles and compare them with the results obtained in this chapter. Furthermore,

we highlight the relevance of the porosity and solid fraction of the textiles on the

impact dynamics, which lead to unobserved phenomena on non-porous substrates.
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Chapter 5

Contact line dynamics of droplet
impact on textiles

This chapter contains experimental results and discussions on the droplet impact
dynamics on nylon textiles. Textiles, unlike smooth solid substrates, are porous and
this results in a penetration phase not observed in solid substrates. Here we find
that the droplet penetration is governed by the Weber number and the textile pore
size.
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5.1 Introduction

Past chapters have looked into the droplet impact phenomena on solid imperme-

able substrates. In fact, most previous works have focused on solid, impenetrable

substrates too but a minority of past works have studied droplet impacting on solid

substrates with microtextures. For example, other forms of impact dynamics have

been observed, through changes of the micro-posts height, separation and wettabil-

ity, i.e. these changes induce the symmetric droplet splitting and pancake bouncing

of droplets [90, 134]. In contrast, droplet impact on textiles has not been widely

studied, although its understanding is necessary for the manufacturing of smart

and protective clothing or in forensics studies [135, 136]. In this chapter we study

the contact line dynamics and the penetration of droplets impacting textile nylon

meshes.

The closest similar structures to textiles found in the droplet impact literature are

impacts on micropillared substrates and rigid metallic meshes [21, 104, 106]. These

works have been focused on the impact speed threshold for the droplet capture and

penetration of a hole in a solid substrate, on the droplet penetration speed in terms

of the pore size of porous films, and on the droplet contact time on metallic meshes

[99, 104, 137]. Additionally, previous studies on droplet impact on textiles have

been confined to the comparison of blood stain patterns after the impact of blood

drops on different textiles and to the wetting on single fibre arrays [138, 139]. Here

we focus on the droplet spreading, receding and penetration after impacting nylon

textile meshes. In addition, we highlight the differences between the droplet impact

dynamics on a textile mesh, micropillared and solid substrates. Finally, by using

scaling arguments, we show that the critical penetration conditions depend on the

pore size and the impact Weber number.

5.2 Experimental Method

The experimental setup is similar to those described in previous chapters, the only

modification is on the replacement of the rotating platform by a system to hold, flat

105



Figure 5.1: Schematic diagram of the experiment. A water droplet impacts with speed
U0 on a textile mesh of a given pore size (dmesh) and yarn size Ryarn

and horizontal, the nylon textiles. The diagram of the experimental setup is shown

in Fig. 5.1. Here, our nylon textiles are coated with Perflourinates PFAC8 and

PFAC6 by plasma treatment to provide hydrophobicity. The static contact angle of

both coatings was measured to be 123 degrees, and the contact angle hysteresis has

been reported to be 55 degrees for PFAC6 and 37 degrees for PFAC8 [108]. The

nylon textiles samples, were cut into squared meshes and were formed by intertwined

monofilaments. Pore sizes (dmesh) of the nylon textiles ranged from 100 µm to 300

µm. Here, the pores are defined as the square openings between the the textile

yarns. Moreover, the yarn thickness varied from textile samples and is referred as

Ryarn. Figure 5.2 shows an SEM image of a typical nylon textile. Insets on Fig. 5.2

show the micrometer structure of the hydrophobic coating. The scale of the coating

is of a few micrometers, therefore it did not affect the macroscopic textile structure.

For the experiments, the nylon mesh textile was held with a Deβen micro-test

device so that the tensile stress could be measured and controlled. To avoid compli-

cations from textile deformations and motion, the nylon mesh was held with a tensile

force of 2.5±0.1 N for all the experiments. This force did not affect the geometry of

the textiles while keeping them rigid. Liquid droplets were created from a droplet

generator (see Chapter 2) and impacted on the textile meshes. Droplets were made

from a solution of aqueous glycerol with surface tension at room temperature of

σ = 68.5 ± 1.5 mN/m. In the experiments presented in this chapter, droplet size

was kept constant at D0 = 1.56± 0.12 mm. The range of impact velocities used in

this experiments ranged from 0.88 to 1.90 m/s. The imaging and processing systems
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Figure 5.2: SEM image of a nylon textile. The image reveals the mesh type structure of
the textile. The insets show the micrometric structure of the PFAC8 and PFAC6 coatings.

are described in Chapter 2.

5.3 Results and Discussion

In this section we present the obtained results on the droplet impact dynamics on

textiles. First we present an analysis of the spreading diameter in terms of time,

and show its similarities to droplet spreading on smooth impermeable substrates. In

addition, we describe an impact stage just observed for porous substrates, namely,

the penetration stage. This stage is characterised by the penetration of the droplet to

the textile and the absence of a liquid rim around the droplet. Moreover, we analyse

the dynamic contact angle and maximum spreading of the droplets impacting at

different Weber numbers. Our results show, that for textiles with high solid fraction

(Γ > 66%) the maximum spreading diameter follows the value predicted for solid

substrates, but deviates for leaking substrates. Finally, by using scaling arguments,

we show that the critical penetration conditions depend on the pore size and the

Weber number.

5.3.1 Contact diameter evolution on the textile surface

Figure 5.3 shows the dimensionless spreading diameter d(t) = D(t)/Dmax of the

droplet in terms of the adimensional time t∗ = t(U0/D0)). The inset in Fig. 5.3

shows that for early times 0.25 < t∗ < 0.9 the spreading diameter follows a potential
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Figure 5.3: Droplet spreading and receding diameters as a function of t∗ = t(U0/D0),
for different We numbers and various textiles with pores ranging from 100–300 mm. The
colours indicate different textile coatings: green for non-coated, red for PFAC6 coated, and
black for PFAC8 coated textiles. The inset shows the scaling d(t) ∼ t∗1/2 characteristic of
the kinematic stage. All data included. Measurement error ±2 pixels.

law, i.e. d(t) ≈ t∗1/2. This is consistent with previous works studying the spreading

diameter of droplet impact on impermeable solids [48]. This stage is often named as

the kinematic stage, since the dominant force during this stage is inertia. This stage

is characterised by the late formation of a radial liquid lamella at the base of the

droplet. The lamella expands on the textile surface, and the droplet volume above

the lamella flattens. Here, the capillary time is defined as t∗capillary =
(
ρd3mesh

σ

)
U0

D0
,

which is the time at which the capillary forces start acting. Within the experimental

conditions t∗capillary is in the range from 0.1 to 0.7, which coincides with the kinematic

stage.

At the end of the Kinematic stage capillary and viscous forces dominate, therefore

the relation d(t) ≈ t∗1/2, is no longer valid. This stage is known as the spreading

stage and the droplet adopts a pancake shape in the textile surface, while, at the

textile’s back, liquid fingers elongate and break if the kinetic energy is enough. The

contact line dynamics on the textile surface is similar for all the various textiles

characteristics, regardless of the We number, as seen in Fig. 5.3. Our data shows

that if penetration is observed dm is lower than for a droplet impacting a solid
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impenetrable substrate.

At the end of the spreading stage comes relaxation stage, where receding is

typically observed. In this stage surface characteristics such as wettability and

contact angle hysteresis play a major role on the final outcome [56]. Finally, in the

equilibrium stage the droplet finds its equilibrium contact diameter. In Fig. 5.3

we see the importance of the surface wettability and contact angle hysteresis. The

hydrophobic coated surfaces have a smaller equilibrium contact diameter than the

uncoated ones. Moreover, due to the larger contact angle hysteresis of the PFAC6

compared to the PFAC8, the equilibrium contact diameter in the textiles treated

with PFAC6 is larger than for the ones treated with PFAC8.

5.3.2 Penetration stage

Despite the similarities between droplet impact and spreading on impermeable and

porous solids, we found a unique characteristic stage for porous solids. We have

named this stage the penetration stage, as the droplet can pass through the textile

mesh forming fingers below the impacting plane. This stage occurs at times before

the kinematic stage, t∗ < 0.25. The penetration stage is characterised by the pene-

tration of the liquid droplet through the textile pores. The textile pores allow the

air to escape, therefore not trapping an air bubble inside the droplet as opposed to

impact on non-porous solids. Moreover, pores reduce the normal pressure exerted

on the substrate and the flow redirection in the horizontal direction is reduced. Only

when the droplet has penetrated sufficiently, the average pressure near the textile is

sufficiently large to cause the flow re-direction. As a result, the re-direction process

in textiles is retarded in comparison to impermeable solids. Figure 5.5, shows snap-

shots for times (t∗ < 0.25) of the impact at the same Weber numbers on a porous

(textile) and a non-porous substrate with the same wettability. For the case of tex-

tiles, a liquid lamella does not form during the penetration phase. In contrast, on

the non-porous substrate the lamella is formed at a time t∗ ≈ 0.14. Moreover, small

lateral distortion of the droplet is observed while the droplet impacts and penetrates

the textile. In Fig. 5.4, we observe that an impacting droplet can penetrate the tex-
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tile while maintaining its spherical shape. We observed this condition for textiles

with pore sizes between 100 and 300 µm and We 20. In Fig. 5.4, we overlap a circle

with red dashed lines on the droplet. Our assumption is that the droplet moves

through the mesh without changing shape, i.e. we consider a circle with diameter

D0, moving in the negative direction of the z-axis with speed U0. Here z = 0 is

the substrate position. As our experimental setup just captures a 2D image of the

droplet, this assumption is justified. At the impacting time t = 0 the circle touches

the substrate at one point and its centre is at a distance D(0) = D0/2 from the

z-axis. Assuming the centre of the circle is at x = 0, the equation of the moving

circle is:

x2 + (z − D0

2
+ U0 t)

2 = (
D0

2
)2. (5.1)

The length of the intersection of the circle at a time t > 0 at z = 0, should be

able to predict the spreading diameter D(t), of the droplet. Therefore,

D(t) ≈
√
D0 U0 t− (U0 t)2 (5.2)

and the droplet height with respect to z = 0, is,

h = D − U0 t. (5.3)

Equation 5.3, seems to be at odds with the exponential dependency found in

[140]. However, when for small values the exponential reduces to a linear function.

We emphasise that equation 5.3, is a valid approximation for the first instants of

the droplet impact. Additionally, the model used in equation 5.3, does not include

the liquid properties and the surface energy. We therefore conclude that the model

found in [140] is more accurate and it is preferred over Eq. 5.3 for t∗ > 0.25.

The experimental data shown in Fig. 5.4, for 0 < t∗ < 0.25 and We > 20, shows

good agreement with the predictions of Eqs. 5.2 and 5.3.

We conclude this section by highlighting that the penetration stage is just seen in

porous systems like textiles or metallic meshes. This penetration stage is driven by
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Figure 5.4: Droplet penetration times 0 < t∗ < 0.5. The results show the droplet
penetrating the textile with no shape variations. Here, d = D0/Dmax and h∗ = h/D0.
The legend indicates the textile mesh size in micrometres, the type of coating, and the
We number, e.g. 300C635 stands for mesh size 300 mm, PFAC6 coating, and We = 35.
Penetration is not observed for We < 20. The dashed lines correspond to Eq. 5.2 (left)
and Eq. 5.3 (right). Measurement error 2 pixels.

Figure 5.5: Image sequences comparing droplet impact on an N-300 textile and a liquid-
repellent glass slide for We = 36 and We = 40, to illustrate the effect of substrate per-
meability on the droplet deformation. Both the glass substrate and the textile are coated
with PFAC6.

111



inertia as, in the kinematic stage on non-porous substrates, but there are remarkable

differences, like the absence of the lamella at the base of the droplet.

5.3.3 Penetration regimes and critical penetration parame-

ters

Experimental results on the impact of droplets show two types of penetration regimes;

partial and complete penetration. In the former, the droplet penetrates through the

surface, but is sucked back by the droplet on the side of the impact, and the whole

liquid volume is retained by the textile. In the latter, the droplet penetrates the

substrate, forming liquid fingers at the back of the substrate that eventually break

into secondary droplets. Therefore, part of the liquid is not retained by the tex-

tile. Moreover, our results show a direct influence of the contact angle hysteresis

on these phenomena. We observed that for the partial penetration case, the liquid

that penetrates the textiles treated with PFAC6 stays at the back of the surface.

In contrast, for PFAC8 all the liquid get sucked back and remained on top of the

surface. We assume this phenomenon is owed to the differences in contact angle

hysteresis between PFAC6 and PFAC8.

We performed a balance between inertia and capillary forces to investigate the

parameters governing the two penetration regimes. Here, we neglect viscous effects

as it has been found that for Re > 10, inertia dominates. In a typical experiment

conducted in this set of experiments ρ ≈ 103 kg/m3, µ ≈ 10−2 Pa s, D0 ≈ 10−3m

and U0 ≈ 1 m/s, therefore Re ≈ 100.

Following the work of S. Ryu et al. (2017) [103], the capillary forces scale as

σ dmesh. In contrast, the inertial forces scale as k ρU2
0 , where k is a constant deter-

mined by the surface parameters, such as the wettability or geometry of the mesh.

Balancing the relevant forces we have,

k ρU2
0 ≈ σ/dmesh, (5.4)

or alternatively, in terms of the Weber number this can be written as,
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Figure 5.6: Penetration behaviour of droplet (D0 ≈ 1.56 mm) for increasingWe numbers.
The sequence in (a) shows no penetration forWe ≈ 8.9 and dmesh ≈ 101 µm. In (b),We ≈
8.3 and dmesh ≈ 203 µm, a portion of the droplet penetrates the textile but is driven back
to the top surface. In (c), We ≈ 35.0 and dmesh ≈ 303 µm, a fraction of the droplet
permanently penetrates the textile, forming liquid filaments that break up into secondary
droplets. The textiles for (a–c) are all PFAC8 nylon. In (d), We ≈ 25 and dmesh ≈ 303
µm and the textile is non-coated nylon. The penetration behaviour of (d) is similar to (c)
but the receding phase differs due to the hydrophilicity of the non-coated textile.
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Figure 5.7: Penetration regimes for droplets impacting textiles. The solid line indicates
the boundary between the penetration and no penetration regimes. Hollow symbols denote
textile penetration. Gray symbols indicate capture, i.e. a portion of the droplet penetrates
but is eventually drawn back to the impact surface. Black symbols indicate no penetration
where neither temporary liquid penetration nor droplet footprint is observed on the back
surface

dmesh ≈ D0/2kWe, (5.5)

where k = 0.24 is the best fit obtained by contrasting the scaling with the exper-

imental data. The results of the experiments for different pore sizes is shown in

Fig. 5.7. In this figure, open symbols refer to the complete penetration regime and

close symbols to the partial penetration regime. Figure 5.7, shows that Eq. 5.5,

adequately separates the partial and complete penetration regimes for the range of

Weber numbers 7 < We < 37. This is in agreement with previous results where

it has been found droplet penetration on both hydrophobic and superhydrophobic

meshes (D0 = 3.5 mm dmesh > 140 µm) occurs at We = 35 [103, 104]. Finally, we

give an estimation of the pore size required to repel a typical-sized rain droplet. The

velocity of a rain droplet of size drain ≈ 1.6 mm is U0 ≈ 1.77 m/s [141]. Therefore

according to Eq. 5.5 and Fig. 5.7, dmesh should be less than 100 µm.

The results in this chapter indicate that the best technique to avoid liquid pen-

etration on a textile is by reducing the mesh size. Moreover, hydrophobic coating

with low hysteresis is better for maintaining the liquid away from the surface at later

114



times, but is not sufficient to prevent a liquid from penetrating the textile. This can

be deduced from the penetration stage found at times t∗, since the only parameters

that come into play at this stage are the inertial forces. Moreover, capillary forces

just come into action at a time given by t∗capillary which, in this work, was found to

be in the range between 0.1–0.7.

5.3.4 Impact on (complex) cotton textiles

Figure 5.8: A. SEM image of a PFAC8 coated cotton textile. B. Image sequence of a
droplet impact on a cotton textile, We = 11.5 and D0 = 1.56± 0.12 mm.

This section studies the impact dynamics on cotton textiles. Cotton textiles

are more complex than the nylon meshes studied here. As opposed to nylon tex-

tiles, cotton textiles consist on multiple intertwined fibres that create a rough non-

homogeneous substrate. Cotton textiles have a pore size smaller than the smallest

nylon textile used here. Figure 5.8 A, shows an SEM image of a cotton textile.

Figure 5.8 B, shows the spreading and receding of an impacting droplet in a PFAC6

coated cotton textile at We = 11.5. In this sequence of images we observe that the

spreading is not completely symmetric. This is expected as the cotton textile has

an non-homogeneous surface.

Figure 5.9 shows the contact angle dynamics of an impact on a PFAC8 coated

cotton textile. The data is not consistent with the results for an impact at similar

Weber numbers on a smooth surface (see section 4.3.4). This is because fibres are

not perfectly aligned with the horizontal axis and could alter the contact angle.

Moreover, the detection of the solid boundary was more difficult as the substrate is

not uniformly flat. Consequently, we measured the contact angle from a few pixels

above the contact line. As discussed in Chapter 2 this affects the measurement

because the curvature near the pinning point is not well captured by the code.
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Figure 5.9: Contact angle dynamics and spreading diameter in terms of time of a droplet
impact a cotton textile. The Weber number for this experiment is 11.5.

Nevertheless, as the off-set was small, we could capture some similarities with the

drop impacts on smooth surfaces. At the maximum spreading diameter we observe

a decrease on the contact angle value (hysteresis), then as the receding commence,

the contact angle stays constant in the range from 6 to 12 ms. Finally, in the

equilibrium stage, the contact angle oscillates as the droplet diameter oscillates until

it reaches its equilibrium diameter. As the solid fraction of the cotton textiles used

here is large (Γ > 66%), we expect the impacting dynamics on cotton textiles, to

be equivalent to the impact dynamics on non-porous substrates with heterogeneous

roughness. Therefore, if no out of plane fibres are present, we expect the results and

conclusions from Chapter 4 subsection 4.3.3 to apply here.

5.4 Conclusions

In this chapter, we have reported and discussed drop impact experiments on textiles

with varying pore size and solid volume fraction. Textiles were rendered hydrophobic

by two different coatings, PFAC6 and PFAC8, with the same static contact angle

but different contact angle hysteresis. Our results are in agreement with previous

works on metallic meshes [103, 104]. We highlighted the importance of the contact

angle hysteresis during the relaxation and equilibrium phases. Textiles coated with

PFAC8 show a smaller equilibrium contact diameter than the ones coated with
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PFAC6, despite having the same static contact angle. In addition, we found a

characteristic stage for the nylon textile meshes, that we have named penetration

stage, characterised by being solely driven by inertia and occurring at times t∗ <

0.25. At this stage, droplets do not largely deform and can be considered as a falling

sphere. Furthermore, no lamella is formed on the base of the droplet, as opposed

to non-porous solid substrates at equivalent times. We note however, that for later

times the spreading model of a decaying exponential found in [140] should be used.

We also were able to predict the transition between two distinctively penetration

phenomena, namely, complete and partial penetration. This two-regime threshold

is well characterised by the balance between the capillary and inertial forces, as

represented in Eq. 5.5 and Fig. 5.7.

In this and previous chapters, we have focused on the contact line dynamics on

substrates ranging from wettable to non-wettable, and from porous to non-porous.

Our results indicate that the contact angle dynamics and impact outcome depend

on the liquid properties (surface tension and viscosity) and the substrate properties

(wettability, porosity and roughness). Additionally, we showed that the spreading

dynamics are qualitatively similar for porous and non porous substrates. In the next

chapter we present an application of the results obtained so far. Based on the droplet

generator introduced in Chapter 2, we present a system capable of printing liquid

latex with 60 %wt of solid content. We apply our findings on droplet spreading, for

a precise control of the droplet deposition. Furthermore, we present the first (to the

best of our knowledge) 3D printed latex objects.
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Chapter 6

Liquid latex 3D printing with the
Droplet on Demand method

This chapter presents a new approach to additive manufacturing with liquid latex,
using the drop-on-demand (DoD) system described in chapter 2. The setup allows
printing with viscous liquid latex with a solid content of 60 % wt. The process is
controllable and reliable, making the printing of patterns possible.
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6.1 Introduction

Based on the droplet on demand system described in Chapter 2, in this chapter

we present a system that can jet liquid latex. By applying the results obtained

in chapters 3-5, we obtained a system capable of producing uniform sized latex

droplets and allows precise control for their deposition. The design benefits from

an actuator with a higher force compared to conventional 3D printers, allowing

us to print viscous fluids as well as liquids with solid particles. The print-head

is assembled from three plates containing the actuator, ink chamber and nozzle

opening, respectively. Our system jets droplets onto a substrate that subsequently

cure. Droplets are placed adjacently to each other to allow them to coalesce and

form a uniform straight array (or line). The z-axis definition is created by overlaying

layers, with intermittent curing or crosslinking steps to ensure adequate support of

subsequent layers. An example of a complex pattern printed with our system is

shown in Fig. 6.1.

Figure 6.1: Example of a latex complex pattern printed with the system presented in
this chapter.
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In general, in Droplet on Demand printing (DoD), a pressure pulse induced by

thermal, piezoelectric or acoustic actuation causes a liquid droplet to form and jet

from the print-head nozzle. DoD has a number of advantages above other additive

manufacturing (AM) technologies; firstly, there is no substrate contact, avoiding

contamination of the nozzle, and secondly, higher printing speeds can be achieved

compared with, for example, fused deposition modelling (FDM) [142]. Moreover

DoD methods allow a greater control and variability of the droplet volume and

speed [143, 144]. In addition, it is a digital technology with great flexibility that

naturally permits personalisation and one-off production. Unfortunately, material

compatibility is an issue in commercial inkjet systems as the technology is restricted

to operate under a narrow window of liquid viscosities.

Recent advances in the field, includes examples of rubber latex being successfully

printed using inkjet; Raza et al. used a commercially available Microfab print-head

to print low melting point alloys and elastomers [145], and Lukić et al. printed di-

luted liquid latex (35 wt. % solid content) with a commercially available piezoelectric

inkjet printer [146]. Whilst these examples show that progress has been made, the

techniques still suffer from similar limitations in ink viscosity, solid content, nozzle

clogging, and agglomeration. In addition, inks used in AM methods have additional

requirements to that of deposition resolution, as droplets are required to cure or

solidify fast and leave an adequate footprint to build definition in the z-axis. These

restrictions still need to be addressed to improve 3D printed objects made from

viscous or high solid content materials such as bio-gels, conductive inks, and liquid

latex.

From the limitations in DoD printing, solid particle loading is one of the main

limitations across all inkjet industries. The industry standard for conventional inkjet

indicates that jetting is possible at a maximum viscosity of 20 mPa s, with a solids

loading of < 10% per volume, and a particle diameter no greater than 1/20 of the

nozzle diameter [142, 146, 147, 148]. Whilst being able to inkjet un-diluted liquid

latex is an interesting prospect in itself, the ability to add solid particles to form

a colloidal ink widens the market applications for this technique. This is because
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the addition of particles can be used to reinforce mechanical properties or improve

other properties such as thermal and electric conductivity, stiffness or elasticity of a

given construct. Moreover, this includes the possibility of reusing discarded rubber

materials, such as, micronized rubber powder (MRP), in the manufacturing of new

products.

In recent years, there has been a move towards producing MRP from waste

materials such as tires. Tires remain a major source of waste, despite an increase in

governmental initiatives to promote their recycling. In the USA alone, there are still

67 million tires occupying landfills, and an estimate of 25% (2010) of all end-of-life

tires are placed into landfills worldwide [149]. Currently, a mere 10% of end-of-life

tires are recycled to create new products [149]. A reason for the low rate is the

lack of suitable recycling methods and the limited ability to make new products

with discarded material. MRP has proved to be environmental friendly as it can

be obtained mechanically with no contaminants released to the environment. The

benefits, in terms of costs, have been previously demonstrated in the manufacturing

of MRP by creating moulded and extruded products [150, 151, 152].

This chapter describes a method to inkjet print liquid latex and MRP, as a

step towards cheaper manufacturing with elastomer/rubber based materials. We

introduce a versatile DoD inkjet print-head capable of printing pure liquid latex

containing a 60 wt. % solid content and a liquid viscosity of 21.8 ± 0.2 mPa

s. Moreover, we explore the concept of creating hybrid MRP/latex constructs by

using colloidal inks of latex and MRP. Our results show that, in this instance, the

inclusion of MRP does not affect the stiffness of the cured product but affects its

elasticity. Finally, we demonstrate that this ink can be used to manufacture cured

latex patterns by DoD deposition and natural curing.
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6.2 Experimental Method

6.2.1 Ink preparation

Two types of ink formulations were used in this study; pure liquid latex and liquid

latex with a suspension of rubber tire waste or fine rubber powder (parlon pow-

der). Pure liquid latex was acquired from Liquid Latex Direct, UK. The liquid

latex contains 60% natural rubber, 40% water and < 0.3% ammonia. The density

was measured to be 940 ± 50 mg mL−1 and the viscosity to 21.8 ± 0.2 mPa s.

Suspensions were made using parlon powder and thereafter with a coarse rubber

powder made from of end-of-life rubber, namely, micronized rubber powder (MRP).

Suspensions were made by dispersing the parlon powder or MRP in undiluted liquid

latex. The weight percentage of suspended MRP or parlon powder was calculated

as ‘WMRP/(WL+WMRP)’ or ‘WP/(WL+WP)’, where WMRP, WP and WL re-

fer to the weight of MRP, parlon powder and undiluted liquid latex respectively.

Synthetic white parlon powder was purchased from IONXIA, UK (∼66% chlorine

and < 2.5% toluene) and MRP was kindly provided by Artis UK. A heterogeneous

mixture of MRP was used with a maximum particle size of 0.6 mm. Parlon powder

was suspended at concentrations of 3.5 to 6.7 wt. %. MRP was suspended at the

concentration 9.6 wt. % when used for printing. Mechanical testing was carried out

on cast and cured latex samples containing MRP at concentrations 0, 5, 9 and 16

wt. %.

6.2.2 Print-head and 3D printer setup

For our experiments, two print-head designs were used. Both print-heads function

under the DoD mode and are similar to the droplet generator described in the exper-

imental setup section (section 2). The print-heads are fed with fresh ink through an

attached syringe which in turn is attached to a fast-acting meniscus controller (Inca

Digital Printers Ltd., UK) used to balance the pressure inside the print-head and

the atmospheric pressure, keeping the meniscus pinned at the nozzle. Two print-

head sizes were used to assess their performance with the colloidal inks. The small
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print-head uses a 20.0 mm diameter loudspeaker (8 Ohms, 0.1 W), has an inner

liquid reservoir volume of 4 mL, and a conical nozzle with an outer diameter of

1.0 mm. A larger print-head uses a Visaton Structure-Borne Driver loudspeaker (8

Ohms, 25 W) with a 9 mL volume reservoir, and a 0.85 mm conical nozzle. We claim

that these drivers (loudspeakers) have more actuation power than other piezoelectric

driven print-heads, e.g. MicroFab and MicroDrop, so making the printing of high

viscosity liquids a reality. The driving signals on both systems are produced using a

(TTi) pulse generator, an acoustic amplifier, and recorded by a digital oscilloscope.

The waveform is kept to a single pulse, with control over the pulse amplitude and

width, to adjust the droplet speed and size.

The small print-head was mounted on to a 2D motorised stage and the substrate

(Kodak inkjet paper) was secured to a support at a fixed distance. In contrast,

the larger print-head was fixed to a vibration damped support and the substrate

mounted onto the stage (Fig. 6.2a). The printing distance, i.e. the distance from

the print-head to the substrate, was kept constant at approximately 5.0 mm for both

systems. The stages were operated by stepper motors and controlled by the GRBL

protocol. In brief, the GRBL code transforms a digital structure into coordinates and

a series of orders that control the motion of the stepper motors and trigger the jetting

of the print-head. The jetting trigger activates (gated mode) the pulse generation

signal that is sent to the speaker to print on demand. The GRBL properties, stepper

speed, and printing frequency were adjusted to obtain a placement resolution below

∼300 µm. Both meniscus controllers were set to a negative pressure in the range of

8.0 - 9.0 mmH2O to keep the meniscus pinned at the nozzle and avoid flooding.

The following procedure was followed for printing; Initial loading of print-head

and syringe followed by adjusting the backpressure. The driving signal for droplet

formation was adjusted in terms of pulse duration and amplitude for each ink compo-

sition. The printing speed and frequency could be adjusted for each ink and system

so that adjacent droplets could coalesce on the substrate and form a continuous

line, or form a string of equally spaced separated droplets. Two-dimensional pat-

terns were created by controllably printing on the substrate, and three-dimensional

123



Figure 6.2: Printing with liquid latex. (a) The experimental setup showing the Grbl
controlled stage and the print-head support (the 9 mL reservoir print-head is shown); (b)
an example of a single layer structure made from pure liquid latex, using a droplet interval
of 2.5 s with two close-ups of the corner resolution; (c) varying the droplet interval keeping
the pulse signal and nozzle diameter constant: from left to right increasing the interval
length from 1.0 to 5.5 s (inserts show bird-eye perspective). All scale bars 1 mm..
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constructs were attempted by overlaying consecutive printing layers. Two methods

of drying were tested, i) ambient air curing (where individual 1.0 mm width layers

take up to 4 min to solidify) and ii) blowing hot air (≈ 400 C from a 2.3 W heat gun)

onto the individual print layers for 10 s to achieve curing of the pattern surface.

6.2.3 Material Characterisation

Air dried constructs and ink samples were imaged using standard bright field mi-

croscopy from Leica Instruments, USA (Leica MZ12.5 Stereomicroscope with an ex-

ternal light source Leica CLS150X). All standard microscopy images were analysed

using the software ImageJ, with at least five measurements taken per determined

value (for example construct and droplet dimensions).

An indentation test was run on cast samples (Fig. 6.3e) containing varying

concentrations of MRP (0, 5, 9 and 16 wt. %) to determine the effects of rubber on

the material stiffness. Three different samples per concentration were tested, with

3 tests on each sample. The Young’s modulus, E, was derived from the resulting

force-displacement data. Tensile testing was carried out on printed pure liquid latex

samples (1 layer and 4 layers), as well as on cast latex samples containing varying

amounts of MRP (0, 5, 9 and 16 wt. %). All samples tested were of a rectangular

shape. The experiments were carried out on an Instron 5566 UTM with a ± 100N

static load cell and a constant strain rate of 30 min−1. The tensile stress and strain at

the breaking point were determined from the data, as well as the Young’s modulus.

A minimum of 2 samples were tested per concentration. Statistical analysis was

carried out using the software GraphPad Prism 5. A one-way analysis variance

(ANOVA) was used, and a statistical significance was accepted when p≤ 0.05.

6.3 Results and Discussion

6.3.1 Inkjet printing with liquid latex

Initial tests were focused on establishing reliable printing conditions with pure liquid

latex, evaluated in terms of droplet formation and reproducibility, as well as jetting
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stability over time. Pulse signals were adjusted by changing the pulse width and

voltage, to obtain fully formed droplets and avoid satellite droplets [153]. Conical

nozzles were used in both printing systems, leading to droplets of uniform size both

in-flight and post impact. We have previously shown that our systems can produce

droplet impacting speeds in the range of 0.5-2.0 m s−1, where droplet creation was

dependent on the ink properties, the nozzle geometry, and the signal voltage and

width [154]. Repetition rates were restricted by the nozzle re-filling time, i.e. the

time taken by the meniscus controller and surface tension to “fill” the missing/jetted

liquid at the reservoir. Given the high viscosity of the liquid latex, a droplet de-

position rate (linear printing speed) of 0.15 cm s−1 was used. Our results indicate

that, under our conditions, latex droplets produce a footprint of twice its original

diameter, i.e. a droplet from a 1.0 mm nozzle produces a circular dot footprint of a

2.2 ± 0.9 mm diameter. Within a range, the droplet size can be adjusted by modi-

fying the pressure pulse width and amplitude, without having to change the nozzle

diameter. Both print-heads were shown to be capable of jetting pure liquid latex,

obtaining consistent jetting with liquid latex containing 60 wt. % solid content and

of relatively high viscosity (21.8 ± 0.2 mPa s). In conventional DoD printing, often a

critical droplet spacing is defined by which the droplets are close enough to coalesce

forming a parallel sided line. Above and below the critical spacing, either bulging

of the line or no coalescence occurs respectively [109]. Figure 6.2b shows the range

of droplet intervals tested, keeping the motor speed and nozzle diameter constant.

As evident, the deposited latex droplets remain isolated (un-coalesced) at droplet

jetting intervals greater than 2.5 s, whilst reducing the interval to ≤ 2.5 s leads to

droplet coalescence and path formation. At smaller droplet jetting intervals, the

increased overlap leads to instability and bulging. Figure 6.2c shows the left-side of

a square pattern fabricated with the larger print-head and using a droplet jetting

interval of < 2.5 s. These vertical and horizontal lines demonstrate the accuracy

and stability of the print. The two close-ups seen in Fig. 6.2c show examples of the

achievable resolution at the corners. Printing at corners was controlled by adding a

gap at the turning point to minimise bulging from the potential three-way droplet
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coalescence, i.e. the corner droplet, and the neighbouring droplets in the horizontal

and vertical direction. Curing at the nozzle is an important limitation for inkjet

printing. Whilst a small nozzle is desired to produce small drop sizes that dry fast,

a small sessile meniscus can cure itself at the print-head during idle times. In fact,

the curing of latex at the meniscus, and so the blocking of the nozzle, occurs within

minutes, stopping printing. In our experiments, cleaning the nozzle plate with a

fibre-free swab was sufficient to unblock the meniscus.

6.3.2 Colloidal constructs and inks

In AM, a degree of versatility in the ink composition is often needed to meet end

product specifications. Ink formulation normally rely on the addition of solid parti-

cles to alter the properties of the end product, such as reinforce the material strength

and durability, or to add colour using pigments. Restrictions in solid particle loading

is a well-known problem in inkjet technology, with conventional printing inks only

containing < 10 wt. % solid residue [144]. Having already shown that the developed

system is capable of printing with pure liquid latex of a high solid content, the next

step was to prove the feasibility of printing with a suspension of undiluted liquid

latex with the addition of either parlon powder or MRP (colloidal ink suspension).

The test was designed to include MRP made from end-of-life tire waste. MRP is a

heterogeneous mixture of rubber, and is comparatively crude. As such, preliminary

experiments were carried out using fine parlon powder, which has a very narrow

size distribution, and an average particle size in the nanometre range. Colloidal

ink suspensions of 3.5 and 6.7 wt. % parlon powder were prepared and tested in

the print-head. In both instances, consistent jetting was observed (example shown

in Fig. 6.3a). The printing of the rubber particle and latex ink was demonstrated

by jetting a series of defined arrays, as seen in Fig. 6.3a,d. The parlon powder

remained suspended in solution throughout the duration of printing, as observed

through the printed droplets. The quality of the parlon distribution post printing

was analysed using microscopy imagining. The parlon powder was shown to aggre-

gate in the suspension (Fig. 6.3b-c) leading to a non-uniform size distribution of the
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Figure 6.3: Liquid latex with rubber particle loading. (a) the print-head mounted to a
x− y stage, jetting pure liquid latex (1 drop/1.5 s). (b) microscopy images of liquid latex
with 3.5 wt. % and (c) 6.7 wt. % parlon loading; (d) a defined array made by jetting
liquid latex containing 6.7 wt. % parlon powder; (e) cast rubber samples of pure liquid
latex and with increasing MRP loading (5, 9, and 16 wt. %); (f) a graph of Young’s
Modulus, determined using indentation and tensile testing, of cast samples with 5, 9, and
16 wt. % MRP (control; 0 wt. % MRP), and printed samples of one and four layers (1LP
and 4LP, respectively) (control thin: a pure latex cast). Data reported as mean – standard
deviation; (g) example of elongation of a one layer printed sample (1LP) under a constant
strain tensile test (insert: original sample) and (h) tensile stress and strain at breaking
point, derived from the constant tensile strain experiments (p < 0.05). Data reported as
mean ± standard deviation. MRP, micronized rubber powder.

128



suspended particles. However, the parlon was well-distributed within the ink, such

that all droplets contain a homogenous mixture of liquid latex and parlon powder.

Having shown that a solid loading of fine rubber powder is feasible, our experiments

then focused on the jetting of coarse recycled MRP, which is of greater commer-

cial interest due to its recycling potential. The MRP used has an average particle

size of 0.6 mm, comparatively larger than the parlon powder but with a narrow

size distribution. The parlon powder experiments were repeated using a 9.6 wt. %

MRP particle loading. A uniform droplet size was observed throughout each print,

although unlike parlon powder, a non-homogenous distribution of MRP was visible

post curing. Solid tire rubber could be clearly visualised in 90 % of the droplets.

The non-uniform distribution of MRP can be attributed to two factors; the MRP

tended to aggregate in solution creating large clusters, and secondly, due to the

weight of coarse MRP they were prone to settle on the bottom of the print-head.

This issue is common to all colloidal ink suspensions, and not a property specific

to the liquid latex system. In fact, many commercially available print-heads contin-

uously recirculate the ink within the print-head to avoid aggregation and clogging

the nozzles [155, 156]. Implementing a more defined and rigours mixing procedure

within the printer or using smaller particles [142], could mitigate agglomeration of

the particles in solution as well as reducing the observed settling in the print-head.

Alternatively, gentle vibration of the print-head reservoir could be introduced.

The impact on the mechanical properties was tested for a range of MRP particle

loadings. Samples were prepared using casting, as shown in Fig. 6.3e, with a range

of 0 to 16 wt. % MRP solid content. The samples were tested by the standard

indentation and constant strain tensile tests. The two experimental methods yielded

comparative values for the Young’s Modulus (the overall mean ± standard deviation

are reported in Table 1). The results indicate that the stiffness of these materials

are not greatly affected by the colloid content, and any differences are within error

of each other and not statistically significant (Fig. 6.3f). However, the tensile test

indicates that adding MRP to the latex reduces the maximum elongation length from

750% to 480% (Fig. 6.3h, strain graph. The ultimate tensile stress (stress at the
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breaking point) was found to be equal, within error, for all 4 sample types (Fig. 6.3h,

stress graph). Having determined the impact of MRP on the mechanical properties,

next the effect of printing was tested. Two types of printed pure liquid latex samples

were tested, namely, a one layer (1LP) and a four layer (4LP) printed rectangles.

The stress-strain plots are shown in Fig. 6.4. An example of the one layer print being

tested is shown in Fig. 6.3g. Firstly, in terms of stiffness a higher Young’s modulus

was observed in the case of four layers compared with one layer. However, in both

instances the printed samples yield similar Young’s modulus to the cast controls.

The one layer printed line (Figs. 6.3g and 6.3h) was elongated by 434 ± 60% prior to

breaking, whereas the 4 layer printed line (4 layers printed overlaying each other) was

elongated by 553 ± 50% (Fig. 6.3h). The one layer print showed a higher ultimate

tensile stress compared to the 4 layer print (statistically significant). Overall, we

can conclude the droplet-to-droplet and layer-to-layer bonding in the printing do

not significantly change the mechanical properties of the latex, however there is a

clear dependency on sample thickness as seen in the difference of the ultimate tensile

stress. Combining these results, we infer that the effect of MRP particles in latex

reduces the elasticity without affecting the stiffness of the printed samples. This

is in line with other works, such as Mueller et al. in 2017, that have established

that the global and local mechanical properties of inkjet manufactured parts can be

affected in manufactured mixed-materials parts [157]. We have demonstrated the

ability to print high solid content latex and with suspended recycled rubber, which

from an AM perspective brings new possibilities to the recycling potential of rubber

tire waste.

6.3.3 Transition to three-dimensional objects

Having shown that it is possible to print reliably with liquid latex as well as a

colloidal ink, along with the added material benefits, next the possibility of creating

three-dimensional objects was explored. Initially precision and resolution of the

system were determined. In the first instance, pure liquid latex was used. The

first patterns created were circles with a diameter of 22 mm (Fig. 6.5a-b), with

130



Figure 6.4: The stress–strain plot for the samples “one layer print (1LP),” “four layer print
(4LP)” and “control” (pure latex). All data points are reported as the mean – standard
deviation.

a droplet interval of 2.5 s to produce a continuous string formation.As previously

described, two approaches to drying were tested; firstly, drying under ambient air

conditions resulting in 4 min drying time for a 1.0 mm width layer. The second

method consisted in blowing hot air (≈ 400 C) onto the individual print layers

for 10 s to achieve a fast curing of the pattern surface. Three consecutive layers

were completed with intermittent hot air blowing allowing each layer to dry the

last layer before applying the next layer. The print resolution was reduced with

increasing layers as evident by the increase in width. This can, for example, be

seen in Fig. 6.5a-b, where the wall thickness of the circular pattern increases from

1.7 ± 0.2 mm at layer 1, to 2.6 ± 0.2 mm at layer 3. This effect is also the

result of the drying/curing speed as the droplet cures into a spherical cap and not

as a pancake shape as in other applications of 3D printing. However, the initial

couple of layers retain the precision of the coordinated stage movement and droplet

formation, showing that high resolution is achievable. Connecting interfaces were

visualised using bright field microscopy. Individual droplets were clearly visualised,

showing the layered structure of droplets in the constructs, originating from stepwise

layering (Fig. 6.5c). Increasing the speed of drying between layers would increase

the resolution retention. A star pattern (Fig. 6.5d) was made using a 100 mg
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mL −1 (9.6 wt. %) MRP suspension. The construct thickness measured 1.9 ±

0.4 mm and was made from 15 overlaying layers (Fig. 6.5f). Droplets were in

this instance placed adjacent, but not overlapping in an attempt to mitigate the

pronounced bulging instability as observed with increasing layers [158]. Post drying

the construct revealed an increased aggregation of MRP particles in the pattern,

visible as distinctive black patches (Fig. 6.5d-e). At the corners (Fig. 6.5e), the

printing resolution also decreases going from an angle of 42 ± 2 degrees to 52 ± 3

degrees, meaning that sharpness of each corner is decreased with increasing layers.

Lastly, more complex one-pass printing patterns were attempted using pure liq-

uid latex. Fig. 6.5g-h demonstrate the ability of our technique to create more

complex structures, whilst retaining good placement resolution. Zooming in on the

connection points (Fig. 6.5h) evidence that whilst a clearly defined three-way corner

is possible (top and bottom left), bulging can still occur from three-way coalescence.

Further fine-tuning of the meshing GRBL/G-code instructions at the corners can

remove this problem by reducing jetting at the corners. Whilst the fluid proper-

ties and curing mechanisms require further development to decrease the time of

solidification, our results show that single or few layers printing is achievable.
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Figure 6.5: Three-dimensional latex constructs. (a) Three layers of pure liquid latex in
wet and (b) dry state, with (c) close-ups of the layer structure; (d) a three-dimensional
star construct made from liquid latex with 100 mg/mL (9.6 wt. %) MRP, with (e) close-up
of the dotted area in d and (f) a side view; (g) a more complex one layer structure made
from pure liquid latex and (h) close-ups of the dotted areas in g showing the corners and
line width.
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6.4 Conclusions

In this section, we have introduced an inkjet based AM process capable of printing

liquid latex with of up to 60 wt. % solid content and a liquid viscosity of 21.8 ±

0.2 mPa s, both significantly higher than previous printing methods. Moreover, this

system is able to print with a mixture of liquid latex and tire rubber particles of 0.5

times the nozzle diameter. Multiple layer objects were fabricated with both pure

liquid latex as well as with liquid latex with the addition of MRP. The Young’s

modulus as well as the strain at the breaking point showed no change when adding

the MRP, while maximum elongation length is reduced. Moreover, the printing

process does not affect the Young’s modulus of the objects. The capability of printing

with a high particle loading (high solid content latex with the addition of parlon

powder or MRP) and a heterogeneous particle size distribution, shows that the

print-head design can operate in a wide range of solid particle loadings. This is a

great advance, as most conventional inkjet-based 3D printers cannot operate with

viscous liquids or liquids with solid particle loading. The study has demonstrated

the potential of AM with liquid latex, however there is still scope for improvement.

For example, the drying time of the liquid latex should be shortened further, by for

example including a heating source in the stage or in the printing bed. Improvement

of the stage and pattern control would enhance the resolution and reliability of the

print quality. A reliable method of AM with liquid latex would bring great merits

to the industry, by reducing cost of manufacturing (no moulds needed), and adding

an unprecedented degree of flexibility in the manufacturing process. Moreover, the

study has highlighted a novel method of recycling end-of-life tires. With this work,

it is foreseeable that in the future we can create 3D printed objects with rubber tire

waste, expanding the current recycling and waste management methods.

This thesis has focused on the interaction of liquid droplets on solid substrates

with different characteristics. In particular, we have described the droplet impact

dynamics on solid substrates and textiles with different properties. Moreover, in this

chapter we presented an application to the droplet impact dynamics and remarked

its importance in DoD 3D printing. In particular, we showed that, for the creation
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of straight lines, droplet dynamics are extremely important. For example, for the

printing of straight lines, if droplets coalesce too close from each other, an instability

occurs, distorting the printed line. In contrast, if droplets impact far away from

each other, they may not coalesce and the line would not form. In the next and last

chapter of this thesis (Chapter 7), we summarise the results obtained in this thesis

and suggest future work based on limitations of our research.
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Chapter 7

Conclusions and Future Perspectives

This chapter summarises the overall findings. The chapter includes a perspec-
tive on the significance of the work, and suggestions for future work based on the
limitations of the study.
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7.1 Summary of contributions

For this thesis, I experimentally investigated droplet impact on solid and porous

substrates with different properties. The substrates ranged from hydrophilic to

superhydrophobic, and from smooth to rough. As part of my work, I used simple

theoretical models to characterise the experimental data and to predict the impact

outcome. Furthermore, I explored the application of this phenomenon to develop

the first (to the best of our knowledge) liquid latex 3D printer. The main results

are summarised in this section.

First, in Chapter 2, I further developed an automated MATLAB algorithm that

can extract the impact velocity, size of a jetted droplet bound to impact a substrate,

and the spreading diameter and contact angle from high-speed imaging frames. The

MATLAB algorithm uses a polynomial fitting around the contact line to calculate

the contact angle. In Chapter 2, I carried out a parametric study of the droplet pa-

rameters and the polynomial affecting measure the contact angle. The study showed

that, for the four stages of droplet impact investigated in this thesis, a second order

polynomial fit is the most reliable and stable (Fig. 2.8). In addition, an optimal

number of pixels to adjust the polynomial is necessary (Fig. 2.6), 30 pixels for the

experiments in this thesis. Moreover, our results highlight the importance of mea-

suring the contact angle as close as possible to the contact line (Fig. 2.9). Secondly,

I studied the contact line dynamics on solid substrates with different wettabilities in

Chapters 3 and 4. I concluded that the maximum spreading diameter is influenced

by the wettability of the substrate and the Weber number (Fig. 3.8). For impact

velocities of approximately 1.0 m/s, we found three characteristic behaviours of the

contact line dynamics in terms of the contact line speed (Fig. 4.3). For the hy-

drophilic substrates, I observed an asymptotic contact angle that kept decreasing

until ucl = 0.0 m/s and no receding was observed. For the hydrophobic surfaces, I

observed asymptotic advancing and receding angles with the contact angle hysteresis

shown at ucl = 0.0 m/s. For superhydrophobic surfaces the contact angle is almost

constant during spreading and receding, only varying when the droplet is about to

bounce. Furthermore, we used the asymptotic contact angle, the substrate rough-
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ness properties and the splashing ratio to predict the transition from no splashing

to splashing (Fig. 4.17).

Thirdly, Chapter5 studies the contact line dynamics of droplets impacting on

textiles. We showed that the contact line dynamics on textiles with a solid fraction

larger than 66% is almost identical to the contact line dynamics on solid substrates.

In contrast, substrates with solid fraction less than 66%, the maximum spreading

diameter deviates from the scaling law for solid substrates due to leaking. Addi-

tionally, we found that for all textiles at early times (t∗ < 0.1) the droplet is not

deformed and no lamella is generated, in contrast to solid substrates (Figs. 5.4 and

5.5). Furthermore, by doing a balance between kinetic and capillary pressures, we

found scaling arguments that separate the complete penetration from the partial

penetration regimes (Eq. 5.5 and Fig. 5.7).

Finally, I used a DoD system to create 3D latex structures. The printhead

was based on the DoD design described in Chapter 2 and was mounted in a two-

dimensional stage (Fig. 6.2). The 3D constructs were formed by depositing a con-

tinuous line of droplets, which are left to cure, and then by the subsequent printing

of layers on top. I optimised the frequency of the deposition and the movement of

the droplets so straight lines could be printed without bulking (Fig. 6.2 c). Further-

more, I did mechanical testing analysis and proved that the printing process does

not affect the material properties of the cured latex, even when loaded with solid

rubber particles (Fig. 6.3). The first (to the best of my knowledge) 3D printed latex

structures are shown in Fig. 6.5. This is the first step to broaden the choice of ma-

terials for 3D printing, which are normally constrained to cured liquids or absorbing

substrates.

7.2 Future Work

The results presented in this thesis have advanced our understanding of droplet

impact and contact line dynamics. However, the droplet impact phenomena is ex-

tremely rich and new questions remain unanswered.

In our experiments, low surface tension liquids always spread at low contact
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angles. Consequently, superamphipbhobic substrates would allow the study of low

surface tension liquids spreading dynamics at large contact angles (θDA > 100 de-

grees). This information would complement our spreading experiments and complete

the splashing map presented in Chapter 4, Fig. 4.10.

Previous studies have found that splashing for both, smooth and rough substrates

is suppressed at low ambient pressures [62]. Additionally, our results show that

splashing is promoted by high dynamic contact angles. Consequently, it would be

interesting to investigate the contact angle dynamics at reduced ambient pressures.

Our hypothesis is that θmax decreases, with decreasing ambient pressure.

Droplet splashing on solid substrates is commonly classified as corona and prompt

splashing. However, there is no precise definition or a standard criterion to differen-

tiate them. Consequently, a thorough study is required to further understand their

differences. For that, faster recording speeds and better spatial resolution would be

required. A two camera system would be useful too, one looking close to the impact

point, to detect small and fast drops and the ejection of the thin sheet (if created),

and another view to look at the overall spreading process to detect any secondary

droplets that may have been ejected at later times.

Regarding textiles, this work just explored the impact onto rigid single layer

textiles. In practice, e.g., in clothes, textiles can bend and are formed of several

textile layers. Therefore, the influence of textile deformation on the penetration

threshold would be interesting to explore. This could be done within our existing

setup, by varying the extensile force applied to the textile. Additionally, the influ-

ence of various textile layers and emulate a piece of clothing could be studied by

superposing two or more single textile layers. The superposition of the textiles can

be varied in a way that the pores centres are completely aligned, or offset by a given

controlled distance. Furthermore, as clothes are not always positioned horizontally

with respect to rain, a further study could consist on study the contact line dynam-

ics of a droplet impacting onto an inclined textile. The experiments would consist

in placing the stretching device on a tilting platform.

Finally, the latex 3D printer is just a proof of concept. There are still issues to
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solve or improve. The drying and curing of the droplets needs to be better controlled.

This could be done either by controlling the temperature of both the liquid (ink)

at the printhead and the substrate; or with a continuous dry air blowing system.

Additionally, a further study of the contact line dynamics of liquid latex droplets

impacting dried latex droplets would help us understand the underlying process of

additive manufacturing by inkjet processes.
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Appendix A

Error propagation in the
measurement of the Weber and
Reynolds numbers

The Reynolds and Weber numbers are used throughout the thesis to measure the

importance between inertia and viscous forces and inertia and surface tension. Given

the importance of this numbers, we have included an estimated error for this quan-

tities. All the involved quantities for calculating the Reynolds and Weber num-

bers were measured at the laboratory. In general, to find the uncertainty δq, of

q = x+ y, we can think of the maximum and minimum values that q can take. The

maximum/minimum value is obtained when the values of x and y take their maxi-

mum/minimum value within the measured uncertainty, i.e. q = x+y+(δx+δy)/q =

x + y − (δx + δy). Therfore the value of q will be always between this two values

and δq = δx + δy. In general, if q = x1 + x2 + ...xn and δq = δx1 + δx2 + ...δxn.

Correspondingly, for quotients and products if q = x1x2...xn
y1y2...yn

then,

δq

|q|
=
δx1
|x1|

+ ...+
δxn
|xn|

+
δy1
|y1|

+ ...+
δyn
|yn|

(A.1)

However, eq. A.1 overestimate the error for quantities that are independent and

random. Therefore if measurement errors follow a Gaussian distribution, adding the

quadrature is a better approximation to the error, that is,

δq

|q|
=

√(
δx1
|x1|

)2

+ ...+

(
δxn
|xn|

)2

+

(
δy1
|y1|

)2

+ ...+

(
δyn
|yn|

)2

(A.2)

As shown in Chapter 2, the associated errors of the measured viscosity, surface
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tension and density are ±0.0001 Pa s, ±0.5 mN/m and 1 kg/m3. Additionally

spatial resolution of the system is 6.47± 0.13 µm per pixel. Considering an error of

±2 pixels when measuring the diameter of the droplets D0 then δD0 = ±13.2 µm.

Additionally, U0 is calculated by doing a linear regression over time of the droplet

position prior impact. In our experiments, the resolution in time and space is in

the order of milliseconds and micrometers and the impact speed is in the order of

m/s. Therefore, we take the associated error to the slope as the error in U0. In

our experiments the error was found to be δU0 ∼ 0.005 m/s for U0 ∼ 1 m/s and

U0 ∼ 0.02 for U0 ∼ 4 m/s.

The typical values of the viscosity, surface tension, density, droplet diameter and

impact velocity are: µ ∼ 1 mPa s, σ ∼ 50 mN/m, ρ ∼ 1000, D0 ∼ 1mm and U0 ∼ 1

m/s. These values lead to typical Reynolds Re ∼ 1000 Weber We ∼ 20 numbers.

Therefore, the associated error with the Reynolds number is δRe ∼ 100 and for the

Weber number δWe ∼ 0.2. For the largest values of the impact velocity used in the

thesis U0 ∼ 5 m/s (Re ∼ 5000, We ∼ 500) the error associated to the Reynolds and

Weber numbers are δRe ∼ 500 and δWe ∼ 15. In conclusion, the largest percentage

error associated with the calculated Reynolds and Weber numbers are ∼ 10% and

∼ 3% respectively.
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